
Sorbonne University
EURECOM

The high Dimensionality factor of Coded Caching:
Resolving Bottlenecks one Antenna at a time

Eleftherios LAMPIRIS

Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in

Information and Communication Engineering

Thesis Supervisor: Petros ELIA

Defense date: 30 August 2019

before a committee composed of:

Prof. Giuseppe CAIRE Technical Univ. of Berlin Reviewer
Prof. Daniela TUNINETTI Univ. of Illinois at Chicago Reviewer
Prof. Mohammad Ali MADDAH-ALI Sharif Univ. of Technology Examiner
Prof. Antti TÖLLI Univ. of Oulu Examiner
Prof. Thrasyvoulos SPYROPOULOS EURECOM Examiner
Prof. Petros ELIA EURECOM Supervisor

Eurecom

The high Dimensionality Factor of Coded
Caching:

Resolving Bottlenecks one Antenna at a
Time

Eleftherios LAMPIRIS

Sophia Antipolis, June 2019

ii

Abstract

The main theme of this thesis is the combination of two opposing resources,
namely the multiplexing gain, corresponding to multiple antennas, and the
multicasting gain achieved in cache-aided communications. Multiple anten-
nas, or multiple transmitters with caches, provide increased gains by sepa-
rating messages, while coded caching merges messages together by exploiting
cached and unwanted content to remove interference. Thus, at a first look,
multiplexing and coded caching gains seem to be opposing to one another.
Efforts to combine the two have shown that the gains appear to be additive.
For example, in the Multiple-Input-Multiple-Output (MISO) Broadcast Chan-
nel (BC) where a Base Station, equipped with L transmit antennas, serves
the demands of K receiving, single antenna users, asking files from a library
of popular files, when users are equipped with caches, amounting to a total
sum cache-size of t times the whole library, this network can provide the
order optimal Degrees-of-Freedom (DoF) performance of DL = L+ t.

What we will show in this thesis is that, in many scenarios, pairing the
multiplexing gains with coded caching can be a much more powerful com-
bination, which can dramatically improve major fundamental limitations of
both coded caching and multiple antenna precoding. A notable example, that
will be proved in this thesis, is the role of multiple antennas on dramatically
ameliorating the infamous subpacketization constraint i.e., the limitation that
a coded caching gain equal to t requires each file to be segmented to an expo-
nential number of packets. This, in practical systems can easily surpass the
number of bits of a file by many orders of magnitude, thus imposing hard
limits on caching gains. Specifically, we will show that in practical scenar-
ios, where the number of subpackets needs to be finite, then L antennas can
provide L times higher actual DoF compared to any single antenna Coded
Caching scheme. As an example, in the single-antenna setting with K = 50
users and sum cache redundancy t = 10 in order to achieve the DoF perfor-
mance of D1 = t + 1 = 11 the required subpacketization is S1 =

(
50
10

)
≈ 1010

subfiles while on the other hand, we will show that the same system equipped
with L = 2 antennas can achieve the DoF DL = t+L = 12 with subpacketiza-
tion of SL = 5 ·104. This DoF is approximately 2 times higher compared to the
DoF that could be achieved under reasonable subpacketization constraints.

Another interesting result that we will present is the role of multiple
antennas in resolving the bottleneck of having uneven cache sizes. For
example, in the extreme case where cache-aided users coexist with cache-
less users, we will first prove, via the use of Index Coding, that in the single

iii

iv

antenna case the two types of users cannot be served simultaneously showing
that cache-size unevenness is a fundamental bottleneck of the single-antenna
case. Nevertheless, we further show how a multiple antenna system can serve
both user types at the same time, a result that either translates to the full
DoF of DL = L+ t for all users involved, i.e. the maximally known DoF of
the system without the cache-less users or translates to a DoF improvement
that is multiplicative to the number of antennas i.e., L − 1 added antennas
can provide up to a ×L DoF improvement compared to the optimal single
antenna performance.

Some further contributions that will be presented are the reduction of
the required Channel State Information at the transmitter (CSIT) and the
receivers (CSIR) in the multiple-antenna coded caching, where we will show
that the CSIT/CSIR costs can be untangled from the Coded Caching gains.
Further, we will show that the proposed multi-antenna algorithm can provide
huge CSIT/CSIR savings by reusing the already acquired feedback to trans-
mit exponentially more information compared to the state-of-art. A further
contribution is presented in the context of combining the reduced feedback
costs with reduced subpacketization requirements, making progress towards
combining subpacketization reductions with low feedback costs.

Moreover, we will explore how the DoF gains from partial connectivity
can be combined with the Coded Caching gains, by studying two models,
where in the first a transmitter’s message can only be heard by a subset of
the receivers, while in the second a receiver can hear all messages, some
with full rate and some with lower rate.

Furthermore, we explore another bottleneck of wireless channels, where
users are experiencing different channel capacities, which eventually leads to
low-capacity users “slowing-down” the high-capacity ones. Specifically, we
will study the fundamental limits of wireless Coded Caching with a single-
antenna transmitter and users who experience different channel qualities.
For this setting, we prove a performance bound and then continue to design
an order optimal solution, with a gap to optimal of at most 4.

Finally, we will show how some of the above results can be applied
to Coded MapReduce, a variant of the MapReduce framework which uses
increased job assignment at the nodes during the mapping phase in order
to decrease the shuffling (communication) phase’s time. Specifically, we will
show that known limitations such as the subpacketization constraint and
heterogeneous nodes during the mapping phase can naturally be addressed
by exploiting tools developed in multiple-antenna coded caching.

An important conclusion of this work is that for some of the presented
settings we will show that, contrary to existing algorithms, adding antennas
can provide an L-fold performance boost. This marks an unprecedented
performance improvement that solidifies the importance of complementing
Coded Caching with multiple antennas, and it is often attributed to the new
design architectures that were invented here.

Thanks

This thesis has been the effort of approximately three and a half years and
has flourished only because of the many people that have contributed directly,
by being part of these works, or indirectly, through their support during this
process.

My co-authors, Jingjing, Emanuele, Aly, Daniel, Berksan, Akis and Petros,
have contributed to many of these works but were also always available to
discuss ideas and to point out mistakes that I have made along the way (and
some times I have been insisting on these stubbornly), and have helped me
learn many things during these years.

I would like to thank my advisor, Petros, who believed in me enough
to hire me and further stuck with me during the first couple of months of
my PhD when I was going through a rough patch. His constant strive for
excellence, his vision and his patience have helped me improve my skills and
taught me to always look for the underlying meaning of things.

Furthermore, many people have indirectly helped me through this journey.
First and foremost, my family and friends who were there to listen to me
complaining when I was tired and when things were getting tough, but also
my parents who have supported this decision of mine and have continued
supporting me throughout this process.

Finally, I would like to thank Christos and Aris and Panagiotis who, not
only, gave me directions in my early academic steps, during which I was
completely at a loss, but they also instilled in me a passion and excitement
for research that inspired me to pursue a PhD and an academic carreer.

v

vi

Notation & System Model

Notation
Vectors are denoted by bold symbols.

Set notation

• Sets N, Z, R and C denote the sets of naturals, integers, reals and
complex numbers, respectively.

• [N] denotes set {1, 2, ..., N},

• For sets A,B we denote A\B the difference set i.e., A\B = {x ∈ A & x /∈
B}.

• We note that, when relevant, sets are considered to be ordered, thus
set ρ, |ρ| = m can be written in the form ρ = {ρ(1), ρ(2), ..., ρ(m)}.

Operators

• ⊕ will denote the bit-wise XOR operation

• diag(x) transforms vector x to a diagonal square matrix with its entries
comprized of the vector entries.

•
(
n
k

)
denotes the n-choose-k operation for some n, k ∈ N, n ≥ k.

• (x)+ ≜ max{x, 0}, x ∈ R.

• For a, b ∈ Z then a|b⇒ 0 ≡ b mod a and a ∤ b⇒ 0 ̸≡ b mod a

System Model
The main assumptions, that are common among the presented schemes, are
the library size of N files, i.e. {W n}Nn=1, where each file is of size f bits.
Further, the number of users is assumed to be K, and it is further assumed
that users are equipped with caches able to store M · f bits, where M < N .
We will be using the more convenient metric of the normalized cache size
defined as γ ≜ M

N
and we denote the cached content at user k ∈ [K] by Zk.

vii

viii

User requests are denoted by dk i.e., user k ∈ [K] will be requesting
file W dk . Our focus will be the calculation of the worst-case delivery time,
corresponding to each user requesting a different file. As is common, when
describing examples we will be denoting user requests by capital letters, as
follows

A ≜ W d1

B ≜ W d2

...

The two settings that we will mostly use are the single-antenna (L = 1)
Broadcast Channel (BC) and the Multiple-Input-Single-Output (MISO) BC
with L transmit antennas. For these settings, the metric of interest is the
normalized, worst-case delivery time TL(K, γ).

Further, we will also use the cache-aided Degrees-of-Freedom (DoF) met-
ric DL(K, γ), defined as

DL(K, γ) =
K(1− γ)

TL(K, γ)
. (1)

In other words, the DoF¹ reveal how many users are treated in any single
communication slot.

We will use quantity G to describe the theoretical caching gain as

G = DL(K, γ)−DL(K, γ = 0) (2)

representing the number of extra users that could be served at a time, addi-
tionally, as a consequence of introducing caching.

MISO BC In many of the presented schemes we will be studying the DoF
performance of the L-antenna MISO BC or its DoF-equivalent KT cache-
aided transmitter Interference Channel with K single antenna users. Each
user simultaneously asks for a single and different file, from the library. In
order to satisfy the users’ demands, the base station transmits the L×1 vector
x. The signal at each receiver k ∈ [K] takes the form

yk = hT
k x+ wk,

where hk ∈ CL×1 denotes the channel from the transmitter to receiver k, x is
the L×1 vector message transmitted from the L antenna array, satisfying the
power constraint E{∥x∥2} = P and wk ∼ CN (0, 1) corresponds to the noise
observed at user k. We assume that each node has all necessary channel-
state information, and that for a given signal-to-noise ratio (SNR), each link
has capacity of the form log(SNR) + o(log(SNR)).

¹In wireless communications with high signal-to-noise ratio (SNR), an achieved DoF D
implies the ability to deliver approximately D log(SNR) bits of content, per second per Hz.
Equivalently, it implies the ability to simultaneously serve D independent users (i.e., D users
per complex dimension, i.e., per second per Hz).

ix

Further, we will denote with H−1
λ the L × L matrix formed as the nor-

malized inverse of the channel between the L-antenna transmitter and the
L users in set λ where, in the case of the Interference Channel setting this
matrix is formed in a distributed manner.

In particular, matrix H−1
λ can be written in the form

H−1
λ ≜ [h⊥

λ\{1}, ...h⊥
λ\{L}] (3)

where

hT
kh⊥

λ\{i} =

{
0, k ∈ λ \ {i}
̸= 0, k ∈ [K] \ λ ∪ {i}.

(4)

Feedback and Precoding We assume that feedback is perfect and instan-
taneous, while the feedback training process is divided into 2 phases; the
uplink phase where the transmitter estimates the channels of some users,
and the downlink phase where receiver k estimates products hT

kh⊥
λ , for some

set λ ⊂ [K], |λ| = L. The feedback training process follows that of [2], hence
feedback for C users will require C training slots in the uplink training phase
(for CSIT) and C training slots in the downlink training phase (for local and
global CSIR). This process is described in detail in Chapter 4.

For simplicity, we will assume that the selected precoder is a Zero-Forcing
(ZF) precoder, which is adequate for a DoF analysis.

x

Contents

1 Introduction 1
1.1 Coded Caching - A paradigm shift 2

1.1.1 Performance of Coded Caching 3
1.2 Extension to multiple-transmitters 6

1.2.1 The Multi-server algorithm 8
1.3 Extensions of Coded Caching . 10

1.3.1 Discussion . 10

2 Fundamental Limitations of CC 11
2.1 Theoretical Performance . 11

2.1.1 Optimality of Coded Caching 12
2.2 Practical considerations of CC . 13

2.2.1 Subpacketization bottleneck of coded caching 13
2.2.2 Scaling Feedback Costs in Multi-Antenna CC 16
2.2.3 Channel Unevenness (Worst-User Effect) 16
2.2.4 Cache size unevenness . 17

2.3 Preview of the Results . 18

3 Transmitters and Subpacketization 25
3.1 The road to low-subpacketization 25
3.2 Multiple Transmitters and Subpacketization 27
3.3 The role of Transmitters in Subpacketization 28

3.3.1 Elevating different coded caching algorithms to the L
antenna setting . 31

3.3.2 Example . 33
3.3.3 Effective gains and multiplicative boost of effective DoF 34
3.3.4 Subpacketization cost of complementing the multiplex-

ing gains . 36
3.3.5 Effects of cache-aided transmitter-cooperation on coded

caching . 37
3.3.6 Near-optimality of schemes 38

3.4 Removing the integer constraint 38
3.5 Conclusion and Final Remarks . 40

4 The CSI Bottleneck 41
4.1 Coded Caching Gains with Low CSIT 43

xi

xii CONTENTS

4.1.1 Scheme Description . 45
4.1.2 Calculating the DoF performance 49

4.2 Low CSI Single-antenna Subpacketization 53
4.3 Joint CSIT and Subpacketization Reductions 56

4.3.1 Main Result . 56
4.3.2 Scheme Description . 57

5 Cache-size Unevenness and Transmitters 63
5.1 Main Results . 65

5.1.1 Cache-aided and cache-less users 65
5.1.2 Coexistence of users with different cache sizes 68

5.2 Description of the Schemes . 70
5.2.1 Placement and delivery in the presence of cache-less users 70
5.2.2 Cache-less users example (γ2 = 0) 75

5.3 Two types of cache-aided users . 77
5.3.1 Extension to the remaining cases 80
5.3.2 Two Type Cache-aided Example 80

5.4 Bounds and Converses . 82
5.4.1 Proof of Theorem 5.1 . 82
5.4.2 Converse and gap to optimal of Theorem 5.2 86
5.4.3 Proof of Theorem 5.3 . 87

5.5 Extension of the cache-aided scheme 88

6 Channel Unevenness Bottleneck 89
6.1 System Model . 91
6.2 Main Results . 92
6.3 Placement and Delivery Algorithms 94

6.3.1 Placement Phase . 94
6.3.2 Delivery Algorithm . 95
6.3.3 Decoding at the Users . 96
6.3.4 Delay calculation . 96

6.4 Bounds and Proofs of Converses 96
6.4.1 Optimality Gap of the Performance of Theorem 6.1 . . . 96
6.4.2 Bound on the difference of Binomials 98

7 Partially Connected Networks 99
7.1 Wyner’s network on caches . 102

7.1.1 Main Results . 103
7.1.2 Placement and Delivery of Files with Caching at the

Receivers . 104
7.1.3 Discussion and Concluding Remarks 107
7.1.4 No-Caching Schemes . 109
7.1.5 Proof of Theorem 7.1, Eq. (7.5) 110
7.1.6 Memory Sharing . 112

7.2 Transmitter Cooperation with No CSIT 113
7.2.1 Coding challenge . 114
7.2.2 Main Results . 114

CONTENTS xiii

7.2.3 Placement and Delivery Schemes 115
7.2.4 Example . 121

8 Distributed Computing 125
8.1 Introduction . 125

8.1.1 MapReduce . 125
8.1.2 Emergence of Coded MapReduce: exploiting computing

redundancy . 126
8.1.3 Subpacketization bottleneck of distributed computing . . 127
8.1.4 Heterogeneous Nodes . 128
8.1.5 Channel model: Distributed computing in a D2D setting 129
8.1.6 High-Dimensional CRM in the wired medium 129
8.1.7 Related work . 129
8.1.8 Schemes Preliminaries . 130

8.2 Node Cooperation & Subpacketization 131
8.2.1 Node cooperation example 134

8.3 CMR with Heterogeneous nodes 135
8.3.1 Scheme Description . 136
8.3.2 Mapping Phase . 137
8.3.3 Shuffling Phase . 137

9 Conclusion and Open Problems 143
9.1 Caching gains under Subpacketization 143
9.2 The CSI curse . 145
9.3 Subpacketization savings and low CSI 147
9.4 Uneven caches and multiple antennas 148
9.5 How to resolve the CSI bottleneck 149

9.5.1 Subpacketization - CSI tradeoff 150
9.5.2 Distributed Computing Bottlenecks 150

xiv CONTENTS

Chapter 1

Introduction

The role of caching has been brought to the forefront of academic research
due to its potential to reduce the load of networks. The main idea is to
capitalize on the fact that a significant part of the traffic corresponds to
cacheable content, thus by bringing content – mostly, popular content – and
storing it closer to – or at – the users, can allow savings either in the backhaul
or the fronthaul.

Figure 1.1: The femtocaching model of [3]. Helper nodes are equipped with
caches so as to offload the backhaul. Users (UT) are requesting files from a
library of popular files (source [3]).

The work in [3] proposed the use of smaller nodes (Helper nodes) to serve
the demands of users (user terminals) (cf. Figure 1.1). Helper nodes have a
limited radius in which they are able to satisfy the demands of some of the
users and at the same time they have the ability to store content, which can
help reduce the backhaul load. The helper nodes are connected to the base
station and can request a file if this requested file is not found in their cache.

The main idea is to cache files at the helper nodes in such a manner that
can minimize the demands passed on the base station. The above work has

1

2 CHAPTER 1. INTRODUCTION

sparked significant interest and many variants (see for example [4–7]).

1.1 Coded Caching - A paradigm shift

A very different approach in caching was introduced in [1] by Maddah-Ali
and Niesen. Compared to the previously discussed caching efforts, where the
focus was concentrated into predicting the content popularity and exploiting
this knowledge by storing the most popular files first, in the Coded Caching
approach each cached content is used to reduce the received interference.

12 N· · ·
Server

User 1

User 2

User K

Cache

Cache

Cache

Figure 1.2: The bottleneck channel, with K users and N files.

Specifically, the model in the work of Maddah-Ali and Niesen [1] consid-
ered a server with access to a library of N files, which server was connected
via a wired, noise-less channel with link capacity 1 file to K users, each
equipped with a cache able to store the equivalent capacity of M files (cf.
Figure 1.2). The system works in two distinct phases, where during the first
(placement phase) content is pushed to the users in a manner oblivious to
future requests. Then, during the second phase (delivery phase) each user
requests one file from the server and the server transmits a sequence of
messages in order to satisfy these demands.

1.1. CODED CACHING - A PARADIGM SHIFT 3

1.1.1 Performance of Coded Caching
For the above described setting, the algorithm of [1] showed that it can
achieve the normalized performance (delivery time) of

T1(K, γ) =
K(1− γ)

1 +Kγ
(1.1)

which also translates to a cache-aided Degrees-of-Freedom (DoF) perfor-
mance of

D1(K, γ) ≜ K(1− γ)

T1(K, γ)
= 1 +Kγ (1.2)

implying an ability to serve 1 + Kγ users at a time (all with a different
requested content), over the same link that would — in the absence of Coded
Caching — have allowed the serving of only one user at a time.

Toy Example

Before formally describing the placement and delivery algorithms in [1], we
will first illustrate these algorithms through the use of a toy example. Let us
assume the single transmitter, wired bottleneck channel with K = 2 users (see
Figure 1.3), where the server has access to a library of N = 2 files, namely
{W 1,W 2}. Further, let us assume that each user has the capacity to store
content of size equal to the size of M = 1 file.

Placement Phase The algorithm starts by splitting each of the two files
into S = 2 parts (subfiles) as follows

W 1 →
{
W 1

1 ,W
1
2

}
(1.3)

W 2 →
{
W 2

1 ,W
2
2

}
(1.4)

and caching at the two users as

Z1 =
{
W 1

1 ,W
2
1

}
(1.5)

Z1 =
{
W 1

2 ,W
2
2

}
(1.6)

where Zk denotes the contents of user k’s cache.

Delivery Phase Starting with denoting the two requested files using letters
A,B i.e., A will represent the preference of user 1 and B the preference of
user 2, the algorithm transmits the message

x12 = A2 ⊕B1 (1.7)

where ⊕ is the bit-wise XOR operator. We can see that this naming abstrac-
tion can represent any possible combination of the files W 1,W 2, thus for

4 CHAPTER 1. INTRODUCTION

Server

User 1 User 2

Figure 1.3: The bottleneck channel, with K = 2 users and N = 2 files.

any possible request pattern the above message will satisfy users’ demands,
as we will show in the following paragraph. Moreover, we can see that the
above transmitted message contains both remaining desired subfiles, where
the users can decode their desired subfile by “XORing” out the interfering
message.

Specifically, user 1 will use subfile B1, found in its cache, while user 2
will use subfile A2 to recover their respective subfiles.

As evident from Eq. (1.7), only one transmission is needed to satisfy
both users’ demands. On the other hand, having not performed the Coded
Caching algorithm, then the subfiles would need to be transmitted in separate
transmissions and the reduction that could be achieved would amount to the
size of the already cached parts, i.e. the local caching gain. Taking these
comments into consideration we can see that the required time to complete
all user requests is reduced in half.

Note Throughout this document we use the convention, unless otherwise
stated, that each user selects a different file, thus the calculated delivery time
amounts to the worst case delivery time. As a result, it follows that the
number of files needs to always be higher than the number of users. For the
scenario where the number of files is less than the number of users as well
as the scenario where more than one users select the same file the reader is
referred to the works in [8,9].

1.1. CODED CACHING - A PARADIGM SHIFT 5

The Coded Caching algorithm

We proceed with a detailed description of the coded caching algorithm of [1].
It is important to notice that some elements presented in this section will
form the basis for the algorithms presented in the following next chapters.

As discussed above, the server has access to a library of N files, {W n}Nn=1,
where each file is of size f bits. The server is connected to a set of K users,
and each user can store in its cache M · f bits, corresponding to a cache of
normalized size γ ≜ M

N
. The process starts with the placement phase.

Placement Phase During the placement phase the caches of the users are
populated with content, where this phase takes place before any demand has
been made.

Initially, each file is subpacketized into

S1 =

(
K

Kγ

)
(1.8)

subfiles as

W n → {W n
τ , τ ⊂ [K], |τ | = Kγ} (1.9)

where index τ tells us that the subfile W n
τ is stored at the |τ | = Kγ caches

indicated by set index τ .
Then, the cache of user k ∈ [K], i.e. Zk, is populated with content as

follows

Zk = {W n
τ : k ∈ τ, ∀n ∈ [N]} (1.10)

where we can see that this selection of content respects the cache-size con-
straint since

|Zk|
S1

=

(
K−1
Kγ−1

)(
K
Kγ

) = γ. (1.11)

From the placement algorithm (cf. Eq. (1.10)) we can make the following
observations:

• First, as demonstrated, each user is storing a fraction of each file equal
to γ ∈ (0, 1), which migrates from traditional caching policies that either
entirely store a file in a user’s cache or would not store it and

• further, any file from the library can be found in its entirety in the
collective cache of the users, which also constitutes a fundamentally
different approach compared with the traditional caching algorithms
where unpopular files may not be stored at the users,

6 CHAPTER 1. INTRODUCTION

• thus, we can deduce that the difference between the traditional caching
algorithms and the Coded Caching algorithm is that in the first case
users are treated individually and content is stored with the intention
to optimize the delivery time regardless of the other users. On the other
hand, the coded caching approach is designed in such a way to use the
collective cache of the users.

• Moreover, each subfile of every file is cached by a subset of Kγ users
and

• finally, the file index τ helps identify which Kγ users have stored this
subfile.

Delivery Phase The delivery phase commences with the request of one file
by each of the K users, where we denote the demand of user k ∈ [K] by W dk .

1 for all σ ⊆ [K], |σ| = Kγ + 1 (Select Kγ + 1 users) do
2 Transmit:

xσ =
⊕
k∈σ

W dk
σ\{k} (1.12)

3 end
Algorithm 1.1: Delivery Phase of the MN algorithm [1]

The delivery process is described in Algorithm 1.1, where we can see that
in each iteration a new subset of Kγ + 1 users is selected. For this user
subset, a XOR is formed in such a way so as to contain, for any of the users
in σ, one unknown and desired subfile and Kγ subfiles that can be found in
that user’s cache.

Decoding From Eq. (1.12) we have that if user k belongs in set σ of the
selected users then the received message xσ will contain a subfile that is
desired by this user i.e., W dk

σ\{k}. In order for user k to decode this subfile it
is required to remove the interfering subfiles. It is easy to see that in each
XOR the Kγ unwanted subfiles (from user k’s perspective) are all cached,
thus this user can decode its desired message.

1.2 Extension to multiple-transmitters
An extension of the work of [1] aimed to combine the gains from caching with
the traditional multiplexing gains of feedback-aided multi-antenna systems.
This was an interesting direction that sought to merge two seemingly op-
posing approaches, where traditional feedback-based multi-antenna systems
work by creating parallel channels that separate users’ signals, while coded
caching fuses users’ signals and counts on each user receiving maximum

1.2. EXTENSION TO MULTIPLE-TRANSMITTERS 7

interference. In this context, the work in [10] showed that — in a wired

× × × ×
×

Cache

Library Library

Cache

Cache

Cache

Cache

Figure 1.4: The multi-server setting of [10], where L = 2 servers, having access
to the library of N files are serving the demands of K users. The transmitted
messages are linearly combined (symbol × denotes a linear operation between
a set of messages), while the receivers are equipped with caches, partially
storing files from the library.

multi-server (L servers) setting (see Figure 1.4), which can easily be seen to
correspond to the high-SNR cache-aided MISO BC setting with L transmit
antennas (see Figure 1.5) — the two gains (multiplexing and caching gains)
could be combined additively, yielding the normalized delay of

TL(K, γ) =
K(1− γ)

L+Kγ
(1.13)

which corresponds to the DoF performance of

DL(K, γ) = L+Kγ. (1.14)

Soon after, the work in [11] explored the Interference Channel (IC) com-
prized of KT cache-aided, single-antenna transmitters with individual caches
of normalized size γT , and K cache-aided, single-antenna receivers with in-
dividual caches of normalized size γ. In this setting, the achieved Degrees-
of-Freedom performance is

DKT γT (K, γ) = KTγT +Kγ (1.15)

and which performance was proved in [11] to be optimal up to a multiplicative
factor of 2 under the assumptions of linear and one-shot schemes. We can
see that the two systems, namely the KT -transmitter IC with transmitter
caches of normalized size γT , and the L-antenna MISO BC (L = KTγT) are
DoF-equivalent.

8 CHAPTER 1. INTRODUCTION

BS

UE

Cache

L
I
B
R
A
R
Y

UE

Cache

UE

Cache

UE

Cache

UE

Cache
UE

Cache

L

1

...

H
2

Figure 1.5: The base station serves the demands of K single-antenna wireless
nodes and is equipped with L < K antennas. Users request one out of N
files and have caches of equivalent capacity equal to the size of M files. It is
assumed that channel matrix H is perfectly known to both the base station
and the users.

1.2.1 The Multi-server algorithm
The main idea governing the schemes of [10, 11] is based on the fact that a
transmitted message can be “cached-out” by Kγ users and at the same time,
using spatial multiplexing, can be “nulled-out” at L− 1 users, thus allowing
any transmitted message to simultaneously serve L+Kγ users.

We proceed with the description the multi-server (MS) algorithm of [10],
since the two algorithms (cf. [10, 11]) share many commonalities.

Placement phase

Initially, each file W n is subpacketized into

SL,MS =

(
K −Kγ − 1

L− 1

)
·
(

K

Kγ

)
(1.16)

subfiles, where a subfile is denoted by two indices i.e.,

W n →
{
W n

ϕ,τ , ϕ ∈
[(

K −Kγ − 1

L− 1

)]
, τ ⊂ [K], |τ | = Kγ

}
. (1.17)

User caches are filled similarly to the algorithm of [1] i.e.,

Zk∈[K] =
{
W n

ϕ,τ : k ∈ τ, ∀ϕ, ∀n ∈ [N]
}
. (1.18)

1.2. EXTENSION TO MULTIPLE-TRANSMITTERS 9

Delivery phase

The delivery algorithm of the multi-server scheme, as discussed above, relies
on the idea of a message being cache-able by Kγ users while at the same
time it can be hidden from L− 1 users. To capitalize on this, the algorithm
creates XORs, in the same way as the original Coded Caching algorithm, and
uses the multiple antennas to “steer-away” a XOR from the L−1 unintended
recipients. Thus, this XOR only “appears” to those users that are requesting
one of the subfiles contained in the XOR and which, at the same time, can
remove (cache-out) all other elements. The delivery procedure is described
in the form of pseudo-code in Algorithm 1.2.

1 for all ρ ⊆ [K], |ρ| = Kγ + L (Select Kγ + L active users) do
2 Initialize transmit vector:

xρ = 0 (1.19)

for all σ ⊂ ρ, |σ| = Kγ + 1 (Select Kγ + 1 subset) do
3

xρ = xρ + h⊥
ρ\σ

⊕
k∈σ

W dk
NEW(ϕ),σ\{k} (1.20)

4 end
5 Transmit xρ.
6 end
Algorithm 1.2: Delivery Phase of the multi-server algorithm [10].

By analysing the algorithm of [10], we can see that

1. Initially, set ρ comprized of Kγ+L users is selected out of the K users,
and

2. the transmit vector xρ is initialized.

3. Then, one-by-one all subsets σ ⊂ ρ comprized of Kγ + 1 users are
selected, and for such selected subset σ

• A precoding vector is created h⊥
ρ\σ, such that it is orthogonal to

the channels of the users in set ρ \ σ,
• XOR ⊕k∈σW

dk
NEW(ϕ),σ\{k} is formed, that aims to convey information

towards the users in set σ and
• the transmit vector xρ is updated by adding the product of the

precoder vector with the XOR.

We can see that each XOR created in the above algorithm (cf. Algo-
rithm 1.2) is the same as those generated by the algorithm of [1], with the
only difference that of index ϕ, which is used here to ensure that in every
transmission a new subfile (mini-file) is transmitted.

10 CHAPTER 1. INTRODUCTION

Decoding process of the Multi-server algorithm

From Algorithm 1.2 we can see that a received message at some user k ∈ ρ
takes the form

yρ(k) = hT
k

∑
σ⊂ρ

h⊥
ρ\σ

⊕
k∈σ

W dk
ϕ,σ\{k} (1.21)

where noise has been ignored for convenience. The first observation that we
need to make is that all XORs that don’t include user k will not appear at
the received message, since the precoders are designed in such a way that

hT
k · h⊥

ρ\σ = 0, if k ∈ ρ \ σ. (1.22)

Thus, the message received contains a linear combination with XORs that
contain a subfile that user k needs. In order for this user to decode these
subfiles, this transmission needs to be repeated

(
Kγ+L
Kγ+1

)
times under different

channel realizations, such that user k can have a set of
(
Kγ+L
Kγ+1

)
different linear

combinations of messages and proceed to decode them.

1.3 Extensions of Coded Caching
The introduction of Coded Caching in [1], has sparked significant interest
and has subsequently been applied to many interesting scenarios.

In the Device-to-Device (D2D) setting of [12] (see also [13]), nodes are
directly connected to each other via a wireless or a wired link. Nodes possess
caches storing part of the library, from which they will eventually request
one file, and need to satisfy each other’s request.

The D2D model provides the basis for the analysis of other interesting
settings involving distributed computing, such as those in Coded MapReduce
[14–16] and distributed data shuffling [17, 18].

Further, interesting connections have been made between Coded Caching
and settings, such as combination networks [19–22], fog networks [23–29]
and hierarchical networks [30–32].

1.3.1 Discussion
It is, thus, evident that the introduction of Coded Caching can significantly
increase the performance of networks, where in many scenarios equipping
each user with a cache of normalized size γ would yield an increase of the
DoF performance by an additive gain of G = Kγ.

In the next chapter we will identify some fundamental bottlenecks of
coded caching that severely reduce these promised gains, in a variety of
ways. We will finish this next chapter with a description of our solutions to
these bottlenecks, as well as with a description of some other related results
in this thesis.

Chapter 2

Fundamental Limitations of
Coded Caching

2.1 Theoretical Performance
So far we have reviewed how the main idea behind Coded Caching is the
use of receiver-side caches to massively reduce the required time to deliver
cache-able content. This is achieved not by trying to predict what each
individual user will ask, but rather to use the cached file segments at a
user that have been requested by other users, so as to reduce the amount of
received interference.

As we have seen in the previous section, this allows to transmit to multiple
users simultaneously even when using a single antenna, which results in a
delivery time (for the original Coded Caching setting of [1]) of

TL=1(K, γ) =
K(1− γ)

1 +Kγ
→ 1

γ
. (2.1)

By analyzing Eq. (2.1) we can see that even if the number of users is
increasing, the achievable delivery time of the scheme remains approximately
constant i.e., for some integer m the delay difference between two systems,
one with m ·K users and another with K users becomes

lim
K→∞

(
T1(m ·K, γ)− T1(K, γ)

)
= 0. (2.2)

The above observation sheds light on a very important reality of coded
caching, namely that the system performance is less dependent on the number
of users and more dependent on the size of the cache that each user can hold.

Subsequently, the results of [10, 11] that studied, respectively, the multi-
antenna and multi-transmitter settings, have showed that the system delay
can further decrease by increasing the number of transmit antennas, to yield
the delay of

TL(K, γ) =
K(1− γ)

L+Kγ
→ 1

L
K
+ γ

. (2.3)

11

12 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

100 300 K500 700 900

1− γ

γ

1 Antenna
2 Antennas
3 Antennas
4 Antennas
5 Antennas

Figure 2.1: The delivery time as a function of the number of users K for
various values of transmit antennas, as is theoretically achieved by the Coded
Caching scheme of [1] and the multi-antenna schemes [10, 11] for a fixed
normalized cache per user of fraction γ. We can see that the effect of
introducing antennas to the system can only marginally improve the delay,
and as users keep growing then this delay approaches the lower bound delay
of Tb =

1−γ
γ
.

As we can see in Figure 2.1, the single antenna delay approaches the value
1−γ
γ

as we increase the number of users, while the benefit of adding extra
antennas can be seen to reduce the delay but in a rather modest manner in
settings involving many users.

2.1.1 Optimality of Coded Caching
In the work of [1] it was proven that the achievable delay of the coded caching
scheme is optimal up to a multiplicative gap of 12.

Subsequently, many works have sought to tighten this gap. Here we make
an attempt to list some of these.

• Work [33] reduced the gap to a multiplicative factor of 8.

• Work [34] improved the bound to a multiplicative factor of 4.

• Work [35] showed that, under the assumption of uncoded placement,
the achievable performance of Eq. (2.1) is exactly optimal.

• Subsequently work [9] extended the result of [35] to account for the
case where N < K .

• The work in [36] reduced the gap for the worst-case demand to 2.35.

2.2. PRACTICAL CONSIDERATIONS OF CC 13

• Finally, work [37] showed that for any possible placement of files, i.e.
not restricting to uncoded placement, the performance of Eq. (2.1) is
optimal up to at most a multiplicative factor of 2.

2.2 Fundamental limitations and practical con-
siderations of coded caching

As we have seen, the impact of Coded Caching can be substantial, especially
as the number of users increases, where most modern communication systems
fail to scale. Furthermore, we can observe that the above presented results
are close to optimal, and under some assumptions optimal.

In this section, we will explore the performance of coded caching in
the presence of some realistic fundamental limitations that appear once one
takes a closer look. Specifically, we will focus on four main aspects related
to Coded Caching that constrain the performance of the above algorithms in
realistic settings namely, i) the subpacketization constraint, ii) the feedback
bottleneck, iii) the worst-user effect and finally iv) the uneven cache sizes.

2.2.1 Subpacketization bottleneck of coded caching
We have seen that the gain G ≜ DL(K, γ)−DL(K, γ = 0) = Kγ corresponding
to coded caching would, in theory, increase indefinitely with an increasing
number of users K . Nevertheless, in practice this gain remained — under
most realistic assumptions — hard-bounded by small constants, due to the
fact that the underlying coded caching algorithms required the splitting of
finite-length files into an exponential number of subpackets. For the algorithm
in [1] in the original single-stream scenario, the DoF D1(K, γ) = 1 + Kγ is
achieved only if each file is segmented at least into

S1 =

(
K

Kγ

)
(2.4)

subpackets (see [38]). As a result, having a certain maximum-allowable sub-
packetization of Smax, one solution¹ that can reduce the required subpacketi-
zation to become less than Smax is to encode over a maximum of

K̄ = arg max
Ko≤K

{(
Ko

Koγ

)
≤ Smax

}
(2.5)

users, which in turn implies a substantially reduced effective caching gain Ḡ1

of the form
Ḡ1 = K̄γ. (2.6)

¹We note here that much more sophisticated algorithms have been proposed in the
literature, which can reduce the required, single-stream subpacketization, while achieving a
higher effective caching gain than that of Eq. (2.8). We discuss those in Chapter 3.

14 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

Given such a ‘user-grouping’ reduction of having to encode over groups of
only K̄ users at a time, and given that(

K̄

K̄γ

)
∈

[(
1

γ

)K̄γ

,

(
e

γ

)K̄γ
]
=

[(
1

γ

)Ḡ1

,

(
e

γ

)Ḡ1
]

(2.7)

this effective gain Ḡ1 is bounded as

logSmax

1 + log 1
γ

≤ Ḡ1 ≤
logSmax

log 1
γ

, Ḡ1 ≤ G (2.8)

(log is the natural logarithm) which succinctly reveals that the effective
caching gain Ḡ1 (and the corresponding effective DoF D̄1 ≜ 1 + Ḡ) is placed
under constant pressure from the generally small values of γ and Smax. This
is reflected in Figure 2.2 and Figure 2.3. Interestingly, as we know from [39],
under some basic assumptions, in the context of single-antenna decentralized
coded caching, this “user-grouping” approach is close to optimal.

0

1.6 · 106

1

3.7 · 109

3

5

7.5 · 107

7

9

100 200 300

=

K

Smax

3.6 · 103

=Smax

=Smax

=Smax

Effective DoF (γ = 1
20)

400

Figure 2.2: Maximum effective DoF D̄1 achieved by the original centralized
algorithm (single antenna, γ = 1

20
) in the presence of different subpacketiza-

tion constraints Smax. The gain is hard-bounded irrespective of the number
of users K (x-axis).

Remark 2.1. It is worth noting here that, as argued in [40], in wireless cellular
settings, the storage capacity at the end users is expected to induce caches of
normalized size γ that can be less than 10−2, which — for a given target caching
gain — implies the need to code over many users, which in turn increases
subpacketization. Compounding on this problem, there is a variety of factors
that restrict the maximum allowable subpacketization level Smax. One such
parameter is the file size; for example, movies are expected to have size that
is close to or less than 1 Gigabyte. Additionally, in applications like video

2.2. PRACTICAL CONSIDERATIONS OF CC 15

Effective Multicast Gain

γ
0.10.02 0.06

Smax

=

3.6 · 103
106
109

Smax

Smax

=
=

1

3

5

7

0

Figure 2.3: Effective caching gain Ḡ1 = D̄1 − 1 (maximized over K) of the
original algorithm for different Smax. Without subpacketization constraints,
the theoretical gain is G = Kγ (unbounded as K increases).

streaming, a video file it self may be broken down into smaller independent
parts (on which subpacketization will take place separately), in order to avoid
the delay that comes from the asynchronous nature of decoding XORs in coded
caching. Such restricted file sizes may be in the order of just a few tens of
Megabytes. Another parameter that restricts Smax is the minimum packet size;
the atomic unit of storage is not a bit but a sector (newer ‘Advanced Format’
hard drives use 4096-byte sectors and force zero-padding on the remaining
unused sector), and similarly the atomic communication block is the packet,
which must maintain a certain minimum size in order to avoid communication
delay overheads.

Example 2.1. Looking at Figure 2.3, we see that if the library files (e.g.
movies) are each of size 1 Gigabyte, and under a constraint that each packet
cannot be less than 1 Kilobyte (KB) long (which jointly imply a subpacketiza-
tion limit of Smax ≈ 106), then having γ < 1/20 would hard-bound the effective
caching gain Ḡ1 to be less than 4 (we add one extra in comparison to the plot,
in order to account for any possible improvements from memory-sharing be-
tween operating points that yield neighboring integer-valued gains). This gain
reduction is because we are forced to encode over less than K̄ = 80 users,
to avoid a subpacketization

(
80
4

)
> 106 that exceeds Smax. Having γ < 1/100

would limit this gain Ḡ1 to be less than 3 (since K̄ = 300 implies subpacketiza-
tion

(
300
3

)
> 106). When Smax = 109, where each packet consists of a single byte

(without taking into consideration the overhead from using byte-sized pack-
ets), then having γ < 1/20 would limit the effective gain to less than 6, while
having γ < 1/100 would limit the number Ḡ1 of additional users that could be
served due to caching, to less than 4. When Smax ≈ 36K, reflecting perhaps
low-latency video streaming applications, for γ ≤ 1/20 then Ḡ1 ≈ 3 (D̄1 ≈ 4
users at a time), while for γ ≤ 1/100 then Ḡ1 ≈ 2 (D̄1 ≈ 3).

16 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

2.2.2 Scaling Feedback Costs in Multi-Antenna CC
Starting from the single antenna case [1] where one could achieve the caching
gain Kγ without requiring any channel state information (CSI) at the trans-
mitter (CSIT), a significant feedback problem arises in the presence of mul-
tiple antennas. Specifically, all known multi-antenna coded caching meth-
ods [10, 11, 41–43] that achieve the full DoF L + Kγ, incur scaling feedback
costs as they require each of the L + Kγ benefiting receivers to send feed-
back to the transmitter. A similar global feedback cost appears with respect
to the required CSI at the receivers (CSIR) which was required to include
information on the CSIT-based precoders of all the L+Kγ benefiting users.

The following example aims to demonstrate the aforementioned CSI costs,
and it focuses on a simple instance of the original multiserver method in [10]
which serves as a proxy to other methods with similar feedback requirements.

Example 2.2. Let us consider the cache-aided MISO BC setting with K = 4
users, normalized cache-size γ = 1/2 and L = 2 transmit antennas where,
using the multiserver approach, one can treat L+Kγ = 4 users at a time.

Each of the three transmissions takes the form

x =h⊥
4 (A23 ⊕B13 ⊕ C12) + h⊥

3 (A24 ⊕B14 ⊕D12)+ (2.9)
+ h⊥

2 (A34 ⊕ C14 ⊕D13) + h⊥
1 (B34 ⊕ C24 ⊕D23)

We clearly see that the transmitter must know all users’ channel vectors (in
order to form the four precoders), and at the same time — in order to be
able to decode the desired subfile — each receiver must know the composite
channel-precoder product for each precoder (e.g. receiver 1 must know hT

1 h⊥
1

as well as hT
1 h⊥

2 , hT
1 h⊥

3 and hT
1 h⊥

4). This implies L + Kγ = 4 uplink training
slots for CSIT acquisition, and L +Kγ = 4 downlink training slots for global
CSIR acquisition².

In the context of frequency division duplexing (FDD), this feedback cost
of existing methods, implies a CSIT cost of L+Kγ feedback vectors, while in
the more interesting setting of Time Division Duplexing (TDD), this requires
L+Kγ uplink training time slots for CSIT acquisition, and an extra cost of
L + Kγ downlink training time slots for global CSIR acquisition, thus the
required CSI increases as the number of users increases.

As we know, such scaling feedback costs can consume a significant portion
of the coherence time, thus resulting in diminishing DoF gains, as this was
shown in [44].

2.2.3 Channel Unevenness (Worst-User Effect)
The third bottleneck of Coded Caching is related to a reality of the wireless
channel, where each user is experiencing a different channel capacity. This

²The process of feedback acquisition will be described in Algorithm 4.1 found in Sec-
tion 4.1.1, where we will recall that global CSIR acquisition can be performed by broadcasting
a set of training symbols to all users.

2.2. PRACTICAL CONSIDERATIONS OF CC 17

bottleneck – also referred to as “the worst-user bottleneck”– is exacerbated by
the multicast nature of Coded Caching, since if a user experiences a “bad”
channel then the rate of each XOR that includes this user needs to be low
enough to allow decoding at this user.

Thus, the uneven channels bottleneck not only affects the performance of
a single user, but instead impacts the overall system performance.

Example 2.3. Let us consider the wireless Single-Input-Single-Output (SISO)
BC with K users, each equipped with a cache of normalized size γ and let us
further assume that the channel strength³ of the first user is equal to α1 =

1
K
+γ,

while the remaining K − 1 users have the maximum channel strengths i.e.,
α2 = ... = αK = α = 1.

Assuming a naive implementation of the algorithm of [1] – where the de-
signed XORs (which are designed for the equal-strength case) are sent se-
quentially one after the other – the achieved delay, T uc

1 , under uneven channel
strengths would take the form

T uc
1 = (1− γ)

1

α1

+
(K − 1)(1− γ)

1 +Kγ

1

α
(2.12)

=
1− γ
1+Kγ
K

+
(K − 1)(1− γ)

1 +Kγ
≈ 2T1. (2.13)

Thus, a naive implementation of the algorithm of [1] when even a single user
is experiencing a bad channel can almost double the experienced delivery time,
independently from the cache-size and which has the equivalent effect of re-
ducing by half the multicasting gain.

2.2.4 Cache size unevenness
The final bottleneck we will discuss relates to uneven cache sizes. To accen-
tuate this bottleneck let us, first, consider the extreme case where cache-less
users coexist with cache-aided users. In this setting, we will see that, when
considering the single-stream setting (either wireless or wired) where both
user types co-exist we can treat only one type per transmission. This fact

³Here we will make use of the Generalized Degrees-of-Freedom (GDoF) framework used
in [45] (see also [46]), thus a message received at some user k ∈ [K] takes the form

yk =
√
Pαkhkx+ wk, (2.10)

with P representing the transmitting power, x∈C the output signal of the transmitter satis-
fying the power constraint E{|x|2} ≤ 1 and hk ∈ C corresponding to the channel coefficient
of user k. Further, αk ∈ (0, 1] represents the normalized, by factor logP , link strength of
user k and finally, wk ∼ CN (0, 1) represents the Gaussian noise at user k. From the above,
the average signal-to-noise-ratio (SNR) at user k ∈ [K] takes the form

E{|
√
Pαkhkx|2} = Pαk (2.11)

which amounts to a (normalized) user rate of rk = αk. The GDoF model is presented in
detail in Chapter 6.

18 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

can deeply impact the performance of the system, since the addition of a
cache-less user to the system incurs a total delay increase of one unit of
time.

This bottleneck is closely related to the multicasting nature of coded
caching, where a transmitted message is designed to be useful to many users.
As mentioned before, the decoding process requires the use of cached content
to remove the interfering subfiles so that a user can retrieve its file, which
has the effect of a cache-less user not being able to take advantage of these
messages, which means that the two types of users will need to be treated
separately.

As suggested, the above bottleneck translates to an increase of a whole
unit of time for each cache-less user, where we will show in section 5.4.1
that in the single-stream case this performance is exactly optimal under
the assumption of uncoded placement i.e., the delay of a system with K1

cache-aided users (each equipped with a cache of normalized size γ1) and K2

cache-less users takes the form

T1(K1, γ1, K2, γ2 = 0) =
K1(1− γ1)

1 +K1γ1
+K2. (2.14)

The scenario of cache-less users co-existing with cache-aided ones is of
particular interest for various reasons. First, it is expected that during the
transition from a system that does not exploit cached content to a fully
cache-aided system, there will inevitably be a period when both user types
coexist. Further, even in the fully cache-aided scenario there may well be
some users that opt-out from dedicating part of their cache to store content.
Finally, some users may possess legacy devices that may not be able to take
advantage of coded caching.

2.3 Preview of the Results
In this chapter we have discussed some performance bottlenecks that can
severely deteriorate the performance of Coded Caching. In the following
chapters we will show how impactful multiple antennas can be in ameliorat-
ing some of these bottlenecks, such as the subpacketization constraint (see
Chapter 3) and the uneven cache-size bottleneck (see Chapter 5).

We proceed with a preview of the contributions of the remaining chapters.

Chapter 3 - Subpacketization The first bottleneck that we will explore is
the subpacketization constraint, which can severely deteriorate the Coded
Caching gains in practical systems.

What we will show here for the first time is that pairing transmitters with
Coded Caching not only does not increase the required subpacketization, but
can severely reduce it. Our contribution lies in the realization that having
this extra dimensionality on the transmitter side, in fact reduces rather than
increases subpacketization, and does so in a very accelerated manner. This

2.3. PREVIEW OF THE RESULTS 19

property is based on the principle of the virtual decomposition of the cache-
aided MISO BC into L parallel, single-stream coded caching channels with
K
L

users each. This decomposition is made possible because, as we show
here, the near optimal DoF DL(K, γ) = L

(
1 + K

L
γ
)
= L +Kγ can be gained

without encoding across parallel channels.
We continue with the two main results.

Theorem. In the cache-aided MISO BC with L transmitting antennas and K
receiving users, the delay of TL(K, γ) = K(1−γ)

L+Kγ
and the corresponding DoF

DL(K, γ) = L+Kγ, can be achieved with subpacketization

SL =

(K
L
Kγ
L

)
. (2.15)

Corollary. Under a maximum allowable subpacketization Smax, the multi-antenna
effective caching gain and DoF take the form

ḠL = min{L · Ḡ1, Kγ} (2.16)
D̄L(K, γ) = min{L · D̄1(K, γ), L+Kγ} (2.17)

which means that with extra antennas, the (single-antenna) effective DoF
D̄1(K, γ) is either increased by a multiplicative factor of L, or it reaches the
theoretical (unconstrained) DoF DL(K, γ) = L+Kγ.

Chapter 4 - CSI Bottleneck The second bottleneck that we will explore
is the scaling (with the number of users) feedback requirements of multi-
antenna systems. The effects of this bottleneck were first revealed in our
work in [47], which continued to show how a novel XOR design (comprized
of Kγ

L
+ 1 subfiles instead of Kγ + 1) can reduce the per-transmission CSI

requirements from Kγ + L, i.e. CSI that scaled with the number of users,
to CSI equal to L, i.e. completely untangled from the number of users.
Moreover, the work also showed that this novel XOR design allows for a
more efficient reuse of the acquired CSI, by transmitting exponentially more
than in the previously known algorithms for the same amount of CSI, thus
making the result relevant even for longer coherence periods.

This chapter is comprized of three delivery algorithms that show the
progress we made in designing algorithms that require low CSI, beginning
from a very high subpacketization requirement and managing to reduce it in
subsequent works. Specifically,

• the first algorithm that we will discuss shows that it is possible to
achieve the multi-antenna DoF of DL(K, γ) = L +Kγ, while requiring
L CSIT/CSIR vectors per transmission. This allowed, for the first time,
to completely untangle the feedback cost from the DoF gains.

• Subsequently, the second algorithm that we will present improves upon
the previous result by maintaining the low CSI costs, while at the
same time reducing the subpacketization to (approximately) match the
subpacketization of the single antenna case.

20 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

• Finally, the third algorithm that we present has the slightly reduced DoF
DL(K, γ) = (L+Kγ)(1−γ), but requires L CSIT/CSIR feedback costs per
transmission and further reduces the subpacketization of the previous
scheme by an exponentially large factor thus, making progress into
combining the subpacketization reductions of multiple-antenna systems
with the desirable low CSI costs.

Chapter 5 - Uneven cache sizes In this chapter we will explore the funda-
mental performance of both the single and multiple antenna channels, where
users are equipped with caches of uneven sizes. For the two type setting of
interest (where K1 cache-aided users are equipped with caches of normalized
size γ1 and K2 users are equipped with normalized cache-size γ2 ∈ [0, γ1)), we
first prove, with the help of Index Coding tools, that cache-less users present
a fundamental bottleneck in the single antenna case, i.e.

Theorem. In a single-stream BC with K1 cache-aided users equipped with
normalized cache of size γ1 and with K2 additional cache-less users, the opti-
mal delay, under the assumption of uncoded placement, takes the form

T1(K1, γ1, K2, γ2 = 0) =
K1(1− γ1)

1 +K1γ1
+K2. (2.18)

Further, we show that adding L− 1 transmitters allows either an L-boost
on the DoF or full cache-aided DoF for all users. Specifically,

Theorem. In the MISO BC with L ≥ 1 antennas, K1 cache-aided users
equipped with cache of fractional size γ1, and K2 ≥ (L − 1)T

(1)
1 cache-less

users, the delivery time

TL(K1, γ1, K2, γ2 = 0)= T
(1)
1 +

K1 − (L− 1)T
(1)
1

min{L,K2}
(2.19)

is achievable and within a factor of 2 from optimal, while if K2 ≤ (L − 1)T
(1)
1

then
TL(K1, γ1, K2, γ2 = 0) =

K2 +K1(1− γ1)

K1γ1 + L
(2.20)

is achievable and within a factor of 3 from optimal under the assumption of
linear and one-shot schemes, where T

(1)
1 = K(1−γ)

1+Kγ
.

Moreover, we will show that increasing the number of transmit antennas
has the equivalent effect of smoothing-out the cache unevenness and more
specifically, we will show that starting from the single-antenna two type,
cache-aided and cache-less users, setting by adding cumulative cache Γ2 to
the cache-less users and L− 1 transmit antennas, the DoF can be increased
by a multiplicative factor of up to Γ2 + L.

2.3. PREVIEW OF THE RESULTS 21

Chapter 6 - Uneven Channels This chapter is concerned with the uneven
channel bottleneck that is experienced in wireless channels. For the single
antenna setting, we prove a performance converse, and then proceed to design
an algorithm that is based on superposition coding and has a multiplicative
gap from the optimal of at most 4.

Theorem. In the K-user SISO Broadcast Channel with single antenna re-
ceivers, receiver channel strengths

{
αk

}K
k=1

, αk ≤ αk+1, ∀k ∈ [K] and each
receiver equipped with a cache of normalized size γ, the achieved worst-case
delivery time takes the form

Tsc(K, γ,α) = max
w∈[K]

{
1

αw

·
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)(
K
Kγ

) }
(2.21)

and has a multiplicative gap from the optimal performance of at most 4.

Chapter 7 - Partially connected cache-aided networks In this chapter
we will study partially connected models. The first is inspired by Wyner’s
network [48] that models interfering mobile cells and where any single trans-
mitter is connected to two subsequent receivers. When transmitters have
limited backhaul access and receivers are equipped with caches, we explore
how caching can alleviate the backhaul load and how users that may not
be connected to the same transmitter can take advantage of coded caching
gains. We proceed with the main result of this work.

Theorem. In the Wyner’s network with per-transmitter maximum backhaul
load MT · f bits and a normalized cache size at each receiver of a fraction
γ of the library, the per-user (interference-free) DoF of d(MT , γ) = 1 can be
achieved with the following pairs for any x ∈ N:

d

(
1− γ2

4γ
, γ =

1

2x+ 1

)
= 1, (2.22)

d

(
1

4γ
, γ =

1

2x

)
= 1. (2.23)

For this setting we will show how introducing caches to the users can
provide exponential savings in the the backhaul load.

Further, we will also study the K transmitter, K receiver network where
it is assumed that a transmitter is connected via a high (unit) capacity link
to its corresponding receiver, while to any other receiver by a weaker link,
characterized by parameter α ≤ 1 (see [49]). Both transmitters and receivers
are equipped with caches and it is also assumed that there is no CSIT.

In this setting, we will explore how the topological factor can be combined
with coded caching in order to take advantage of both topological gains and
coded caching gains in an effort to counter the lack of CSIT.

The results show, for example, that when each transmitter has access to
the whole library then the performance of the system is favored by both the
topological factor and the caching gains. More formally,

22 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

Theorem. In the K-user topological MISO BC with parameter α and receiver-
side caches of normalized size γ, the cache-aided GDoF take the form

Dα(K, γT = 1, γR) = K(1− α) + (KγR + 1)α. (2.24)

Chapter 8 - Coded MapReduce This last chapter studies the bottlenecks
of distributed computing under the MapReduce framework. While earlier
works [14,15] have showed a trade-off between computation and communica-
tion that can boost MapReduce, nevertheless some notable bottlenecks arose.
In the Coded MapReduce (CMR) framework the main idea is to increase the
amount of computation at each node (Mapping phase), in exchange for a
lower communication load (Shuffling Phase). CMR capitalizes on the core
concept of Coded Caching i.e., the transmission of coded messages and the
decoding of those messages through the use of side information. In the above
framework, we will present two contributions that take advantage of the po-
tentially high-dimensionality (high-rank) of Device-to-Device (D2D) systems.
The first is inspired by the subpacketization reductions in multi-antenna en-
vironments where we will show that this reduction can be naturally applied
in CMR. Further, we apply the results from the uneven cache-size chap-
ter to show how a system with heterogeneous nodes (nodes have different
computing capabilities) can perform as its equivalent homogeneous system.

The first bottleneck is the subpacketization constraint that, as in the
caching case, is attributed to the need to encode across many users. Our
contribution lies in completely resolving this bottleneck in the wireless case,
while also showing that a wired case can take advantage of this solution.
We summarize the main result in the following theorem.

Theorem. In the K-node distributed computing setting where the dataset can
only be split into at most Smax identically sized packets, the proposed Group-
based Coded MapReduce algorithm with groups of L users, can achieve com-
munication delay

TGCMR
shuf =

1− γ

t̄L
Tc (2.25)

for

t̄L = γ · argmax
K̄≤K

{(K̄
L
K̄γ
L

)
≤ Smax

}
. (2.26)

Note 2.1. The subpacketization constraint is further accentuated in CMR com-
pared to the caching case, by the fact that each initial dataset segment (subfile)
will be further mapped to one out of a set of intermediate results. This map-
ping, for example, in the case of sorting [50] arranges each of the values of a
segment, from the vector that needs to be sorted, into one out of theK (equal to
the nodes) different intermediate families. If the file segment does not contain
a large number of numbers, then the resulting intermediate families will con-
tain uneven number of elements thus before the multicast transmission they

2.3. PREVIEW OF THE RESULTS 23

will require zero-padding in order to be transmitted together, resulting in a
further reduction of the multicasting gains.

Further, in the remaining part of this chapter we will discuss the hetero-
geneous computing bottleneck, where nodes that possess different computing
capabilities are tasked to perform the same CMR problem. The main difficulty
in this scenario is that faster nodes will finish the mapping phase before their
slower counterparts, which will result in delays (faster nodes will wait for
the slower nodes to complete the mapping phase so that the shuffling phase
can commence). We resolve this bottleneck by forcing faster nodes to map
more, and fully utilizing this increased redundancy at the shuffling phase.

It is notable that the system’s performance is exactly equal to the corre-
sponding homogeneous system’s performance thus showing how computing
systems are immune to mapping heterogeneity. The main result of this part
follows.

Theorem. The achievable time of a MapReduce algorithm in a heterogeneous
distributed computing system with K1 nodes each able to map fraction γ1 of
the total dataset, while K2 nodes can map fraction γ2 of the dataset each, takes
the form

T hCMR
tot (γ1, γ2)=T (1)

map(γ1f)+
Tshuf
K

1− γ1
γ1

+
K2

(
1− γ2

γ1

)
min{K2, K1γ1+K2γ2}

+
Q

K
Tred

where the communication (shuffling) cost can be simplified, in the case of K2≥
K1γ1+K2γ2, to

T hCMR
comm (γ1, γ2)=

Tshuf
K

K1(1− γ1) +K2(1− γ2)

K1γ1 +K2γ2
. (2.27)

Intuition on the designs

The presented results mark an important element on the designing of Coded
Caching algorithms, that of adapting the placement and delivery algorithms
to the specific scenario. While the approach of [1] is almost optimal [37] (and
under some assumptions optimal [35]) in the single antenna case, where each
user has the same cache size, nevertheless by maintaining some fundamental
elements of the algorithm (both in the case of placement and that of deliv-
ery) from [1], but changing others, we show that the emerged gains can be
substantial and in many cases multiplicative.

This becomes evident, for example, in Chapter 4 where the reduction
of the feedback costs was achieved by the modification of the XORs to be
composed not of Kγ + 1 subfiles as in previous algorithms, but designed to
carry Kγ

L
+ 1 subfiles, thus allowing us to have a class of users that can

”cache-out” a (reduced number of) Kγ
L

subfiles, and some users that could
cache out a much increased Kγ + L − 1 subfiles, thus alleviating the role
of beamforming for canceling interference, thus in turn alleviating the cost

24 CHAPTER 2. FUNDAMENTAL LIMITATIONS OF CC

of CSI. Further, in the same chapter, we can see that the joint reduction in
subpacketization and CSI was achieved through a novel placement algorithm,
which asymmetrically assigns content to users, by dividing a file into parts
and where only a subset of the users can store from a specific part. This
novel placement created a set of cache-aided and cache-less users that are
requesting content simultaneously and, by taking advantage of the delivery
algorithm from the uneven cache-size chapter we were able to maintain the
DoF performance, and at the same time to reduce the problem dimensionality
which then reduces the subpacketization

Another notable example is the major reductions achieved in the sub-
packetization bottleneck. In this scenario, going against the core philosophy
of Coded Caching, i.e. the requirement for partially overlapping caches, we
assigned caches that are identical, and then combined this with a decomposi-
tion principle which allowed us to separate the network into L non-interfering
(single-antenna) coded caching networks. The challenge comes naturally
from the fact that, of course, if (for example) you have two antennas and
K = 100 users, you cannot simply use these two antennas to “separate” the
first 50 users from the other 50 users (two antennas can protect one user, not
50). This was essentially achieved with the decomposition-based algorithm
that we proposed which avoids XORs and brings forward massive reduc-
tions in the required subpacketization, and which have not been experienced
before.

Chapter 3

The role of transmitters in
resolving the Subpacketization
Bottleneck

A main assumption in Coded Caching algorithms is that the file size can be
potentially infinite. In reality, though, if one constraints this file size into
the finite size region, then the theoretical gains will be significantly reduced.

The observation that subpacketization can severely restrict coded caching
gains was first made in [39], in the context of decentralized Coded Caching¹.
Specifically, the authors of [39] showed that the algorithm of [51] can provide
effective caching gains of approximately Ḡ = 1 under the assumption of a
subpacketization constraint

Smax ≤
eKγ

Kγ
. (3.1)

Further the authors prove an upper subpacketization bound for the de-
centralized case showing that the effective gain Ḡ = 4

3
· g − 1 would require

at least subpacketization

Smax,FLA ≥ O

(
g

K

(
1

γ

)g−1
)
. (3.2)

In other words, the above result states that any Coded Caching gains,
achieved in the decentralized setting, will always be restricted by the loga-
rithm of the file size.

3.1 The road to low-subpacketization
The subpacketization bottleneck sparked significant interest in designing
Coded Caching algorithms which can provide further caching gains under

¹Decentralized Coded Caching (cf. [51]) removes the assumption of a known number of
users during the placement phase and proceeds to cache without this knowledge, usually by
breaking a file into subfiles and storing each subfile randomly with probability γ.

25

26 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

reduced subpacketization costs. A first breakthrough came with the work
in [52] (see also [53]) which reformulated the Coded Caching problem into a
placement-delivery array (PDA) combinatorial design problem, and which ex-
ploited interesting connections between Coded Caching and distributed stor-
age to design an algorithm that provided the maximum theoretical caching
gain of

G1,PDA = Kγ − 1 (3.3)

i.e, treating a total of Kγ, rather than Kγ+1, users at a time, at the reduced
subpacketization of

S1,PDA =

(
1

γ

)Kγ

=

(
1

γ

)G1,PDA+1

(3.4)

thus allowing — under some constraints on the operating parameters — for
an effective caching gain of

Ḡ1,PDA = min
{
logSmax

log 1
γ

− 1, Kγ − 1

}
. (3.5)

Similar conclusions were also drawn in [53] which used linear codes
(LC) over high-order finite fields, to create set partitions that identify —
under some constraints on the values of γ — how the subpackets are cached
and delivered, thus allowing for a tradeoff between an adjustable theoretical
gain G1,LC ≤ Kγ − 1 and the corresponding subpacketization S ≈

(
1
γ

)G1,LC
,

resulting in a similar effective gain of

Ḡ1,LC ≈
logSmax

log 1
γ

− 1 (3.6)

(naturally again the effective gain Ḡ1,LC cannot exceed the theoretical gain
G1,LC).

Another breakthrough was presented in [54] which took a hyper-graph
theoretic approach to show that there do not exist caching algorithms that
achieve a constant delivery time T1(K, γ), i.e. independent of K, with sub-
packetization that grows linearly² with K . This work also provided construc-
tions which nicely tradeoff performance with subpacketization, which require
though (see [54, Construction 6]) that K > 4/γ2 (approximately) in order³ to
have gains bigger than 1.

Another milestone of a more theoretical nature was the very recent work
in [55] which employed the Ruzsa-Szeméredi graphs to show for the first
time that, under the assumption of (an unattainably) large K, one can get

²This assumes that γ is independent of K, that each file is divided into an identical
number of subpackets, and also assumes uncoded cache placement.

³K must be large because the theoretical gain is reduced and is approximately Kγ2/4.
K must also be (essentially) a square integer; square integers become rarer as K increases.

3.2. MULTIPLE TRANSMITTERS AND SUBPACKETIZATION 27

a (suboptimal) gain that scales with K, with a subpacketization that scales
with K1+δ for some arbitrarily small positive δ.

While indeed different new algorithms provide exponential reduction in
subpacketization, the corresponding improvement on the actual gain Ḡ —
over the original (MN) algorithm in [1], for realistic values of γ and Smax —
remains hard bounded and small. For example, for γ ≤ 1/20 and Smax ≤ 105,
no known algorithm can improve over the MN algorithm’s effective caching
gain (and effective DoF) by more than two⁴ (2 additional users served at a
time) (see also Section 3.3.1).

3.2 Multiple Transmitters and Subpacketization
As we have seen, works [10, 11] showed the increased DoF gains that can
be achieved through the combination of multiple antennas or multiple trans-
mitters, with coded caching. These methods, though, required even higher
subpacketization.

Specifically, in the the Multi-Server (MS) setting of the work in [10], the
required subpacketization takes the form

SL,MS =

(
K −Kγ − 1

L− 1

)(
K

Kγ

)
≈
(
K

L

)L

·
(
1

γ

)Kγ

(3.7)

while in the cache-aided Interference Channel (IC) setting of [11] the required
subpacketization takes the form

SL,IC =

(
KT

KTγT

)(
K

Kγ

)(
K −Kγ − 1

L− 1

)
(Kγ)!(KTγT − 1)! (3.8)

≫
(

1

γT

)KT γT

· SL,MS. (3.9)

Chapter Overview

In this chapter we will present the result of [56], which constitutes the first
work that considered the use of antennas or transmitters to reduce the sub-
packetization. The result shows that the order-optimal DoF, DL(K, γ) =
L + Kγ in the multi-antenna case and the order optimal DoF DKT ,γT (K, γ)
can be achieved with respective subpacketizations

SL =

(K
L
Kγ
L

)
(3.10)

SKT γT =

(K
KT γT
Kγ

KT γT

)
. (3.11)

⁴This best-known improvement is due to [54, Construction 6] (a = b = 2, λ = 40) which
encodes over K̄ = 3160 users to give an effective DoF of 6, while the MN algorithm gives a
DoF of 4 (with K̄ = 60).

28 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

In practise, the above results show that when considering the transmission
of finite length files, having L antennas allows for up to ×L coded caching
gains, as we will show later on.

Another interesting point, is that the above result eliminates any subpack-
etization associated with the multiplexing gains.

3.3 The role of Transmitters in Subpacketiza-
tion

We present the main results, first for the integer case where L|K and L|Kγ.
The interpolation to all cases K,L is easily handled using memory sharing,
and as we note later on, does not result in substantial performance degra-
dation. The details for this are handled in Section 3.4.
Theorem 3.1. In the cache-aided MISO BC with L transmitting antennas and
K receiving users, the delay of TL(K, γ) = K(1−γ)

L+Kγ
and the corresponding DoF

DL(K, γ) = L+Kγ, can be achieved with subpacketization

SL =

(K
L
Kγ
L

)
. (3.12)

Proof. We begin by organizing the users into groups of size L i.e., a total of
K
L

groups. The significance of a group is that users belonging in the same
group will cache exactly the same content, a proposal that comes in contrast
to Coded Caching’s core idea, where cache overlap needs to be partial in
order to allow for multicasting opportunities to emerge.

We denote the K
L
groups by Gκ, κ ∈

[
K
L

]
while, for tractability, we assume

the following placement of a user Uk, k ∈ [K] into a group

Gκ∈[KL] =
{
Uκ, Uκ+K

L
, ..., Uκ+(L−1)·K

L

}
. (3.13)

Group-based placement phase We begin the placement phase by segment-
ing files into subpackets according to

SL =

(K
L
Kγ
L

)
(3.14)

i.e., a file is divided into

W n →
{
W n

τ , τ ⊂
[
K

L

]
, |τ | = Kγ

L

}
. (3.15)

In this case, comparably to the Coded Caching algorithm of [1], index τ will
denote which group of users have this subfile cached.

In the placement phase which, as mentioned before, is based on the notion
that users belonging to the same group will have identically cached content,
the caches are filled as follows

Zk∈Gκ = {W n
τ : κ ∈ τ, ∀n ∈ [N]} . (3.16)

3.3. THE ROLE OF TRANSMITTERS IN SUBPACKETIZATION 29

Note 3.1. At this point we can notice that the above placement is based on the
algorithm of [1], where instead of considering K users with cumulative cache
Kγ, the algorithm that we present segments the files as if only K

L
users where

in the channel, with cumulative cache Kγ
L
.

Furthermore, it is interesting to note that we could have instead used any
single-antenna algorithm for the placement (e.g. [52–54]), again caching same
content to the users of a group while the files would be subpacketized according
to parameters K

L
and Kγ

L
. This connection is further explored in Section 3.3.1.

Group-based delivery of content The delivery process is described in the
form of a pseudo-code in Algorithm 3.1.

1 for all σ ⊆
[
K
L

]
, |σ| = Kγ

L
+ 1 (Select Kγ

L
+ 1 groups) do

2 Let Gµ = {gµ,1, gµ,2, ..., gµ,L}.
3 Transmit:

xσ =
∑
µ∈σ

H−1
Gµ
·

W

dgµ,1
σ\{µ}
...

W
dgµ,L
σ\{µ}

 . (3.17)

4 end
Algorithm 3.1: Group-based Delivery Process

Algorithm 3.1 selects, in every iteration, a new subset of Kγ
L

+ 1 groups.
Then, it creates the linear combination of Kγ

L
+ 1 vectors, where each vector

is of size L and contains information for the users of a specific group. For
example one of these vectors, intended for users of group κ ∈ σ, is

H−1
Gκ
·

W

dgκ,1
σ\{κ}
...

W
dgκ,L
σ\{κ}

 (3.18)

where H−1
Gκ

is the ZF-precoding matrix that spatially separates the users of the
group. We can see that every user of a group will receive, from its desired
file, exactly the same index as the other same-grouped users, i.e. subfile
indexed by σ \ {κ}.

Thus, in each iteration of the algorithm a total of L ·
(
Kγ
L

+ 1
)
= L +Kγ

users will be treated, were we proceed to show that each user will be able to
successfully decode its file.

30 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

Decodability Assuming user k ∈ Gκ, then the received message takes the
form (noise is suppressed for simplicity)

yk = hT
k ·
∑
λ∈σ

H−1
Gλ
·

W

dgλ,1
σ\{λ}
...

W
dgλ,L
σ\{λ}

 . (3.19)

First, user k ∈ Gκ can remove any subfile that has index τ ∋ κ, using
its cached content and the acquired CSI. Then, the remaining part of the
received signal is

yremk = hT
k · H−1

Gκ
·

W

dgκ,1
σ\{κ}
...

W
dgκ,L
σ\{κ}

 = W dk
σ\{κ}. (3.20)

The remaining signal (Eq. (3.20)) constitutes a ZF-precoded signal which,
due to the design of the precoder, will separate the messages of the users so
it will provide each user with its desired subfile, free from any inter-group
interference.

Note 3.2. The above algorithm has been presented for the case of a single
transmitter with L antennas. Here we will see how this algorithm can be
extended to the case of multiple transmitters (KT) each with cache of size
equivalent to MT files, where these transmitters are equipped with one or more
antennas.

We begin with the placement of content to the transmitters, where we im-
pose two important rules for a successful placement policy.

• To cache each file at KT · γT different transmitters, and

• to avoid, as much as possible, any further, unnecessary subpacketization.

The above two points will permit firstly, that a file is cached at a maximal
amount of transmitters so as to succesfully perform ZF-precoding, and sec-
ondly to achieve the highest possible caching gains under finite file sizes, by
constraining the amount of subpacketization due to transmitter side caching.

A placement algorithm that respects both above points, and more impor-
tantly that requires no additional subpacketization, is the following

ZkT∈[KT] =

{
Wm : m ∈ {1 + [(kT − 1) ·MT mod N], ...,

1 + [(kT ·MT − 1) mod N]}
}
. (3.21)

Then, using the above placement of files at the transmitters we can construct
the transmitted message of Eq. (3.17) by creating each ZF precoded vector in
a distributed manner and by further allowing these Kγ

L
+ 1 vectors to combine

linearly in the air.

3.3. THE ROLE OF TRANSMITTERS IN SUBPACKETIZATION 31

3.3.1 Elevating different coded caching algorithms to the
L antenna setting

The aforementioned subpacketization can be further reduced when consider-
ing alternative coded caching algorithms. We recall that the scheme that we
have presented, involved ‘elevating’ the original MN algorithm in [1], from
the single-stream scenario (L = 1) with K ′ = K/L users, to the L-antenna
case with K ′ groups of L-users per group. This same idea can apply directly
to other centralized coded caching algorithms like those in [52, 53, 55], in
which case the steps are almost identical:

• Choose the new coded caching algorithm for the single-stream K ′-user
scenario.

• Split the K users into K ′ groups of L users each, and employ the new
algorithm to fill the caches as in the K ′-user single-stream case, as if
each group is a user, such that same-group users have caches that are
identical.

• Using the coded caching algorithm for the single-stream K ′-user sce-
nario, generate the sequence of XORs. Each XOR consists of D1(K

′, γ)
summands, where D1(K

′, γ) is the theoretical sum-DoF provided by the
coded caching algorithm in the K ′-user single-antenna (single stream)
BC.

• Each element (summand) of the XOR, corresponds to a group of users,
and each such XOR summand is replaced by a (precoded) L-length
vector that carries the L-requests of the associated group. Add these
D1(K

′, γ) vectors together, to form a composite transmitted vector that
corresponds to the XOR.

• Each composite vector treats a total of D1(K
′, γ) groups at a time, i.e.,

treats L ·D1(K
′, γ) users at a time.

• Then continue with the rest of the XORs.

We recall that when⁵ elevating the MN algorithm — which, for the single-
stream K ′-user case, treats D1(K

′, γ) = K ′γ + 1 users at a time — we treated
D1(K

′, γ) = K ′γ + 1 groups at a time, thus treating a total of DL(K, γ) =
L ·D1(K

′, γ) = L+Kγ users at a time.
On the other hand, when elevating for example the algorithms in [52,53],

we would naturally have to change the cache placement and the sequence of
XORs, and we would have to account for the fact that — for the single stream
K ′-user case — the algorithm treats D1,PDA(K

′, γ) = K ′γ users at a time (not
K ′γ + 1), and thus for L ≥ 1, we would treat D1,PDA(K

′, γ) = K
L
γ groups at a

time (L ≤ Kγ), thus treating a total of DL,PDA(K, γ) = L ·D′
1,PDA = Kγ users

at a time (not Kγ + L).

⁵We will use the term ‘elevate’ to correspond to when we apply a single-stream coded
caching algorithm to the multi-antenna case, via the above sequence of steps.

32 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

The following corollary describes the effective caching gain provided by
the scheme that elevates to the L antenna case, the placement-delivery array
(PDA) and linear code (LC) algorithms in [52] and [53]. These algorithms
exist under some constraints on γ.

Corollary 3.1. Given a maximum allowable subpacketization Smax, the effec-
tive caching gain of the here-elevated PDA and LC algorithms, takes the form

ḠL,PDA = ḠL,LC = min
{

L · logSmax

log(1
γ
)

, Kγ − L

}
. (3.22)

Proof. With a theoretical gain GL,PDA = DL,PDA(K, γ) − DL,PDA(γ = 0) =
Kγ − L, the underlying subpacketization

SL,PDA =

(
1

γ

)K′γ−1

(3.23)

can be written as

SL,PDA =

(
1

γ

)GL,PDA
L

(3.24)

and thus the effective gain is ḠL,PDA = L · logSmax
log(1

γ
)
, which is bounded by the

theoretical caching gain Kγ − L offered by the scheme in the absence of
subpacketization constraints.

The L-fold impact of antennas to alternative single-antenna coded
caching algorithms

The fact that the underlying coded caching algorithm is used in the design
at the level of groups of users, implies that any difference in the effective
caching gain between two underlying algorithms in the single-stream case,
will be magnified — once each algorithm is elevated to the L-antenna case
as was shown here — by a factor of up to L. For example, if we were to
compare the elevated MN scheme to, say, the aforementioned elevated PDA
and LC schemes, we would see (cf. Corollary 3.1 and Corollary 3.3) that

ḠL,PDA = min
{
L · logSmax

log(1
γ
)
, Kγ − L

}
(3.25)

ḠL ≥ min
{
L · logSmax

1 + log(1
γ
)
, Kγ

}
(3.26)

which would tell us that (when Kγ is an integer) the improvement in effective
gains is bounded as

ḠL,PDA − ḠL ≤ L · logSmax

log(1
γ
)(1 + log(1

γ
))
. (3.27)

3.3. THE ROLE OF TRANSMITTERS IN SUBPACKETIZATION 33

When L = 1, this improvement — under realistic assumptions on γ and
Smax — can be small, but when the algorithm is elevated to the multi-antenna
setting, this improvement increases as a multiple of L.

Remark 3.1. This implies that the method proposed here, rather than by-
passing the need for novel single-stream coded caching algorithms of reduced
subpacketization, it in fact accentuates the importance of searching for such
algorithms.

3.3.2 Example
Let us assume a MISO BC with L = 5 transmit antennas, K = 50 users and
user caches of normalized size γ = 3

10
. We will show how the DoF of

DL(K, γ) = L+G = L+Kγ = 5 + 15 = 20 (3.28)

can be achieved with subpacketization SL = 120.

Placement First, we assign the K = 50 users into K ′ = 10 groups of L = 5
users per group i.e.,

G1 = {1, 11, 21, 31, 41}, . . . ,G10 = {10, 20, 30, 40, 50}.

Since K ′γ = 3, we split each file W n into |τ | =
(
K′

K′γ

)
= 120 parts

W n = {W n
(1,2,3),W

n
(1,2,4), . . . ,W

n
(1,3,4), . . . ,W

n
(8,9,10)}

and then fill the caches

ZG1 = {W n
(1,2,3),W

n
(1,2,4), . . .W

n
(1,3,4), . . .W

n
(1,9,10)}Nn=1

...
ZG10 = {W n

(1,2,10),W
n
(1,3,10), . . . ,W

n
(2,3,10), . . .W

n
(8,9,10)}Nn=1

as described. We will serve K ′γ + 1 = 4 groups at a time.

Delivery We start by treating the group clique σ = (1, 2, 3, 4) first. Let

wκ
τ =

[
W

dGκ(1)
τ ,W

dGκ(2)
τ ,W

dGκ(3)
τ ,W

dGκ(4)
τ ,W

dGκ(5)
τ

]T
(3.29)

be the information vector comprized of L = 5 subfiles with index τ , that are
meant for the users of group Gκ.

For these 4 groups, i.e. 20 users, the transmission takes the from

x(1,2,3,4) = H−1
G1
w1

(2,3,4) +H−1
G2
w2

(1,3,4) +H−1
G3
w3

(1,2,4) +H−1
G4
w4

(1,2,3). (3.30)

34 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

Decoding Receiver 1 can immediately remove — using its cache — the last
three summands in (3.30), while ZF-precoding can remove the unwanted
L− 1 = 4 elements from w1

(2,3,4).

3.3.3 Effective gains and multiplicative boost of effective
DoF

We recall that in the absence of subpacketization constraints, adding extra
transmitting antennas, takes us from a theoretical DoF D1(K, γ) = 1+Kγ to
DL(K, γ) = L+Kγ (cf. [10]), leaving the theoretical caching gain unaffected,
and adding DL(K, γ)−D1(K, γ) = L− 1 DoF. For example, adding one extra
antenna (going from L = 1 to L = 2) simply allows us to add one extra served
user per second per hertz.

What the result of Theorem 3.1 shows is that, when subpacketization is
taken into consideration, adding extra transmitting antennas (or adding extra
transmitter-side caching) can have a much more powerful, multiplicative
impact on the effective gains.

Recall from Eq. (2.5) that for L = 1, the subpacketization takes the form
S1 =

(
K
Kγ

)
, which – as we briefly argued before – means that having a max-

imum allowable subpacketization Smax, limits the number of users we can
encode over, from K to a smaller

K̄1 ≜ arg max
Ko≤K

{(
Ko

Koγ

)
≤ Smax

}
. (3.31)

On the other hand, in the L antenna case, the reduced subpacketization cost
SL =

(K
L
Kγ
L

)
allows us, for the same constraint Smax, to encode over

K̄L ≜ arg max
Ko≤K

{(Ko

L
Koγ
L

)
≤ Smax

}
= min{L · K̄1, K} (3.32)

users, just because the transition from S1 to SL reflects a simple substitution
of K by K/L. Going from 1 to L antennas, allows us to encode over L times
as many users (up to K), which in turn offers L times more caching gain

ḠL = min{L · Ḡ1, G}

up to the theoretical G = Kγ. Specifically if
(K

L
Kγ
L

)
≤ Smax then ḠL = G

(corresponding to a multiplicative boost of ḠL

Ḡ1
= G

Ḡ1
), else the effective gain

and the effective sum-DoF both experience a multiplicative increase by a
factor of exactly L. For completeness this is represented in the following
corollary, which ignores for now integer rounding-off effects. The corollary
follows directly from the above.

3.3. THE ROLE OF TRANSMITTERS IN SUBPACKETIZATION 35

Corollary 3.2. Under a maximum allowable subpacketization Smax, the multi-
antenna effective caching gain and DoF take the form

ḠL = min{L · Ḡ1, G = Kγ} (3.33)
DL(K̄, γ) = min{L ·D1(K̄, γ), DL(K, γ) = L+Kγ} (3.34)

which means that with extra antennas, the (single-antenna) effective DoF
D1(K̄, γ) is either increased by a multiplicative factor of L, or it reaches the
theoretical (unconstrained) DoF DL(K, γ) = L+Kγ.

Remark 3.2. What we saw is that this L-fold multiplicative DoF boost stays
into effect as long as

(K
L
Kγ
L

)
≥ Smax, so in essence it stays into effect as long as

subpacketization remains an issue.

The following corollary bounds the derived effective caching gain ḠL.

Corollary 3.3. Given a maximum allowable subpacketization Smax, the effec-
tive caching gain of the presented scheme is bounded as

ḠL ≥ min
{

L · logSmax

1 + log(1
γ
)
, Kγ

}
. (3.35)

Proof. This follows directly from Sterling’s approximation which bounds sub-

packetization as SL =
(
K′

K′γ

)
≤
(

e
γ

)K′γ

=
(

e
γ

)G
L which directly implies that

ḠL ≥ L · logSmax
1+log(1

γ
)
(up to the theoretical gain G = Kγ).

L=8
L=4
L=2

L=1

Additional users due to caching: Smax = 36K

E
ff
ec
ti
ve

ga
in

Ḡ
L
=

d̄
L
(γ
)
−
L

5

10

15

20

25

0

γ

0.02 0.04 0.06 0.08 0.10

E
ff
ec
ti
ve

ga
in

Ḡ
L
=

d̄
L
(γ
)
−
L

γ

Additional users due to caching: Smax = 106

5

10

15

20

25

30

35

0 0.02 0.04 0.06 0.08 0.1
0

L=8

L=4
L=2

L=1

Figure 3.1: Maximum achievable effective caching gain ḠL = DL(K, γ) − L
(maximized over all possible K), achieved by the new scheme for different L,
under subpacketization constraint Smax = 3.6 · 104 (left) and Smax = 106 (right).

36 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

Practical implication - Making small caches relevant Another benefit
of the reduced subpacketization, is the resulting exponential increase in the
range of cache sizes that can achieve a given target gain. While in theory, a
small γ does not necessarily preclude higher caching gains because we could
conceivably compensate by increasing the number of users we encode over,
such an increase would increase subpacketization thus again precluding high
gains (subpacketization limits would not allow for such an increase in the
number of users we encode over). Specifically we recall (cf. (2.7)) that for
L = 1 the subpacketization is bounded as S1 ≥

(
1
γ

)G
, which means that to

meet subpacketization constraint Smax and target caching gain G, we need

γ ≥ (Smax)
−1/G . (3.36)

On the other hand, the reduced subpacketization SL ≥
(

1
γ

) 1
L
G

in the L an-
tenna case (cf. (2.7), after substituting K by K/L), can allow for the same
caching gain G (given sufficiently many users to encode over) with only

γ ≥
(
(Smax)

−1/G
)L

. (3.37)

This exponential reduction in the minimum applicable γ, matches well with
the spirit of exploiting caches at the very periphery of the network, where we
are expected to find relatively small but abundantly many caches.

3.3.4 Subpacketization cost of complementing the multi-
plexing gains

The following corollary highlights that, in an L-antenna MISO BC system,
the subpacketization cost is not determined by K or L = λK, nor by the
number of extra users G we wish to add due to caching, but rather by the
ratio x = DL(K,γ)

DL(K,γ=0)
between the DoF and the multiplexing gain.

Corollary 3.4. In the L-antenna MISO BC setting, a subpacketization of

SL =

(
1/λ

x− 1

)
=

(
1
λ
γ
λ

)
(3.38)

can yield a DoF that is x times the multiplexing gain.

Proof. The DoF increase from DL(K, γ = 0) = L to DL(K, γ) = L + Kγ =
x ·L, x ∈ N, implies that Kγ = L(x− 1) and that γ = λ(x− 1), which means
that the corresponding subpacketization SL =

(
K/L
Kγ/L

)
now takes the form

SL =

(
1
λ
γ
λ

)
=

(
1/λ

x− 1

)
. (3.39)

3.3. THE ROLE OF TRANSMITTERS IN SUBPACKETIZATION 37

Remark 3.3. This generalization here, from the known single-antenna case
where λ = 1

K
, D1(K, γ) = x = Kγ+1, to the L antenna case, is nicely captured

by Sterling’s approximation which — for DL(K, γ) = x · L — remains fixed at

SL ∈

[(
1

γ

)x−1

,

(
e

γ

)x−1
]
. (3.40)

The result is simply a reflection of the fact that the same subpacketization cost
of treating K ′γ+1 users at a time (K ′ = K/L) in the single-antenna case, now
guarantees the treatment of K ′γ + 1 groups at a time.

Example 3.1. From the above we see that normalized cache sizes γ = λ(x−
1) = λ and a subpacketization SL = 1/λ = K/L, suffice to double the total
cache-free DoF (x = 2), while γ = 2λ and

SL =

(
1/λ

2

)
<

1

2λ2
(3.41)

can triple the number of users served at a time, from L to 3L. Hence, for
example, in a cell of K users served by a multi-antenna base-station that pro-
vides DL(K, γ = 0)/K = L/K = λ = 1/30 cache-free DoF per user, having
γ = xL−L

K
= λ(x − 1) = 2λ = 2/30 and Smax =

(
1/λ
x−1

)
=
(
30
2

)
= 435 would allow

caching to triple the number of users served at a time (x = 3).

3.3.5 Effects of cache-aided transmitter-cooperation on
coded caching

Given Eq. 3.11, it is not difficult to conclude that all the previous corollaries
apply directly to the KT ×K cache-aided interference scenario, after substi-
tuting L with KTγT . In particular, drawing from the previous corollaries, we
can summarize the following results that apply to cache-aided transmitter
cooperation.

• As the transmitter-side cache redundancy KTγT increases, the effective
DoF will either be increased by a multiplicative factor of KTγT , or it will
reach the theoretical (unconstrained) DoF KTγT+Kγ (cf. Corollary 3.2).

• In the presence of transmitter-side cache redundancy KTγT , the effective
caching gain is bounded below by (KTγT) · logSmax

1+log(1
γ
)
(cf. Corollary 3.3).

• Increasing the transmitter-side cache redundancy KTγT , allows for an
exponentially reduced minimum applicable γ ≥

(
(Smax)

−1/G
)KT γT

that
can offer a (receiver-side) caching gain of G = Kγ (cf. Section 3.3.3).

• Subpacketization SKT γT =
(K

KT γT
x−1

)
can yield a sum DoF that is x times

the cooperative multiplexing gain KTγT (cf. Corollary 3.4).

38 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

• When the transmitter-side and receiver-side cache redundancies match
(i.e., when KTγT = Kγ), the DoF KTγT + Kγ can be achieved with
subpacketization SKT γT = K

KT γT
(cf. Corollary 3.6).

3.3.6 Near-optimality of schemes
The schemes that we have employed here have the ‘one-shot, linear’ property
which means that each data element is manipulated linearly, and only once
(a data bit is not transmitted more than once). This lends all the above
results amenable to the analysis in [11] whose outer bound then allows us to
directly conclude that the schemes are near optimal. This is described below,
for purposes of completeness, in the form of a corollary.

Corollary 3.5. The described subpacketization

SL =

(K
L
Kγ
L

)
(3.42)

SKT γT =

(K
KT γT
Kγ

KT γT

)
(3.43)

guarantees DoF performance that is at most a factor of 2 from the theoretical
optimal linear-DoF.

Proof. As stated, the proof is direct from the bound in [11], from the per-
formance achieved by the schemes here, and from the fact that the schemes
have the ‘one-shot linear’ property.

3.4 Removing the integer constraint
We proceed to remove the constraints L|K and L|Kγ, by applying, as in [1],
memory sharing. The results, after removing the integer constraints, will
remain approximately the same except for a marginal increase in subpacke-
tization⁶ to at most

SL ≤ K ·max
{(

⌈K/L⌉
⌈Kγ/L+ 1⌉

)
,

(
⌈K/L⌉

⌊Kγ/L+ 1⌋

)}
(3.44)

and a relatively small reduction in the achieved DoF (DL(K, γ) = L+Kγ) by
a multiplicative factor (gap) that is bounded above by 2 when L > Kγ and
by 3

2
when L < Kγ, while the gap vanishes as Kγ

L
increases.

To remove the constraint L|K we will add to the system “phantom” users
such that the new (hypothetical) number of users is K̂ = L

⌈
K
L

⌉
. Moreover,

if L ∤ K̂γ we will perform memory sharing (cf. [1]) by splitting each file W n

⁶Note that for the settings in [1,10,11], the aforementioned subpacketization costs do not
account for the extra subpacketization costs due to memory sharing.

3.4. REMOVING THE INTEGER CONSTRAINT 39

into two parts, (W n)′, (W n)′′ of different sizes |(W n)′| = p|Wn| and |(W n)′′| =
(1− p)|W n|, and cache each part with normalized cache sizes

γ′ =
|Zk ∩ (W n)′|
|(W n)′|

=
L

K̂

⌊
K̂γ

L

⌋
(3.45)

γ′′ =
|Zk ∩ (W n)′′|
|(W n)′′|

=
L

K̂

⌈
K̂γ

L

⌉
(3.46)

which guarantees that L|K̂γ′ and L|K̂γ′′. This also gives that p = γ′′−γ
γ′′−γ′ .

Then, as the original scheme describes, we divide (W n)′ into
(K̂/L

K̂γ′/L

)
parts,

(W n)′′ into
(K̂/L

K̂γ′′/L

)
parts, and cache from (W n)′, (W n)′′ according to Eq. (3.16).

The corresponding subpacketization cost is thus bounded as

SL ≤ K ·max
{(

K̂/L

K̂γ′/L

)
,

(
K̂/L

K̂γ′′/L

)}

≤ K ·max
{(

⌈K/L⌉
⌈Kγ/L⌉+ 1

)
,

(
⌈K/L⌉

⌊Kγ/L⌋+ 1

)}
(3.47)

where the multiplicative factor of K is the one that upper bounds the sub-
packetization effect of splitting the file in two parts before subpacketizing
each part. This effect is bounded by K because p ≥ 1/K by virtue of the fact
that Kγ is an integer⁷.

Then, in order to derive a multiplicative gap on DoF, Dnc
L (K, γ), that

accounts for removing the two constraints, we will consider two separate
cases. First, we will look at the case of K̂γ ≤ L. By applying memory
sharing, we can see that each part will be cached with redundancy 0 and L
respectively. This means that the completion time will be

T =
m′

0 + L
+

m′′

L+ L
, (3.48)

where m′ = Kp(1− γ′) and m′′ = K(1− p)(1− γ′′). Then, we can see that the
completion time is upper-bounded T ≤ K(1−γ)

L
and lower-bounded T ≥ K(1−γ)

2L
,

which incorporates the facts that the performance cannot be worse than if
there were any caching gains, but it cannot be better than if the caching gain
was L. Using that, we can calculate the bounds of the DoF as follows

K(1− γ)

L
≥ T ≥ K(1− γ)

2L
K(1− γ)

K(1−γ)
2L

≥ Dnc
L ≥

K(1− γ)
K(1−γ)

L

2L ≥ Dnc
L (K, γ) ≥ L

⁷To see this, we rewrite γ as γ = a/K where a is an integer, and then we see that

p = γ′′−γ
γ′′−γ′ =

⌈
K̂a
KL

⌉
− aK̂

KL⌈
K̂a
KL

⌉
−
⌊

K̂a
KL

⌋ > 1
K where, in the last step we used the fact that the denominator

is 1 (unless it is zero, in which case there is no additional subpacketization cost), while for
the numerator we have that

⌈
K̂a
KL

⌉
− aK̂

KL > 1
K because L|K̂a.

40 CHAPTER 3. TRANSMITTERS AND SUBPACKETIZATION

which implies a gap of 2.
Similarly, for Kγ ∈ (qL, qL+ 1), q = {1, 2, ...} we can see that the above

gap becomes q+1
q

thus, if L < Kγ then the gap is at most 3
2
.

3.5 Conclusion and Final Remarks
Intuition on design

The design was based on the simple observation that multi-node (transmitter-
side) precoding, reduces the need for content overlap. The subpacketization
reduction from

(
K
Kγ

)
to
(
K/L
Kγ/L

)
was here related to the fact that the receivers

of each group have identical caches. Subpacketization can generally increase
because there needs to be a large set of pairings between the different caches.
Here the number of different distinct caches is reduced, and thus the number
of such pairings remains smaller.

Practicality and timeliness of result

The scheme consists of the basic implementable ingredients of ZF and low-
dimensional coded caching, and it works for all values of K,L, γ,KT , γT . Its
simplicity and effectiveness suggest that having extra transmitting antennas
(servers) can play an important role in making coded caching even more
applicable in practice, especially at a time when subpacketization complexity
is the clear major bottleneck of coded caching, and also at a time when
multiple antennas and transmitter cooperation are standard ingredients in
wireless communications.

Subpacketization scaling and algorithmic simplicity

We can make the following observation

Corollary 3.6. For L = Kγ, the aforementioned DoF L+Kγ can be achieved
with subpacketization

SL =
1

γ
=

K

L
.

Proof. The proof is direct from the above.

Chapter 4

The Real Cost of Adding
Antennas, a.k.a. The CSI
Bottleneck

One of the biggest advantages of the single-antenna Coded Caching algorithm
is its ability to serve a scaling number of users at a time, without any CSIT
thus, offering an alternative to the high feedback-costs required by multi-
antenna systems. As is known (cf. [44], [57]), such feedback costs are the
reason most multi-antenna solutions fail to scale¹.

On the other hand, as we previously saw, trying to complement the coded
caching gains with multiplexing gains by adding even one more antenna,
would have required, with the state-of-art algorithms, a feedback cost that
would scale with the number of users.

Let us recall Example 2.2 (see also Eq. 4.1), where any transmission of
the algorithm in [10] (see also [11, 73, 74] requires CSIT from all Kγ + L
benefiting users so as to form the precoders and, subsequently, requires the
CSIR cost of L+Kγ, so as to inform all benefiting users of the channel-vector
precoder products that the users will use to cache-out interfering messages.
In Example 2.2, corresponding to the setting with L antennas, K = 4 users
equipped with cache of normalized size γ = 1

2
one such vector takes the form

x =h⊥
4 (A23 ⊕B13 ⊕ C12) + h⊥

3 (A24 ⊕B14 ⊕D12)+ (4.1)
+ h⊥

2 (A34 ⊕ C14 ⊕D13) + h⊥
1 (B34 ⊕ C24 ⊕D23)

where we can see that the channels of all 4 users need to be known to form
the precoding vectors and further all 4 composite channel - precoder products
need to be fed-back.

¹For a detailed view on the feedback requirements of the MISO (multiple input single
output) BC the reader is directed in the work of [58] for a Degrees-of-Freedom characteri-
zation under perfect CSIT, in [59–62] for a no CSIT analysis, in [63–65] for a treatment of
the compound CSIT scenario and in [66] for the exploitation of delayed CSIT knowledge.
Further, [67] considers only the patterns of the channel coherence period to be known, the
works in [68–71] allowed mixed CSI at the transmitters to be known, while the work in [72]
considered alternating CSIT.

41

42 CHAPTER 4. THE CSI BOTTLENECK

Related Work

Motivated by this feedback bottleneck, different works on multi-antenna
(multi-transmitter) coded caching have sought to reduce CSI costs, but in
all known cases, any subsequent CSI reductions come at the direct cost of
substantially reduced DoF. For example, the works in [75,76] consider reduced
quality CSIT, but yield a maximum DoF that is bounded close to Kγ + 1,
while the works in [77, 78] consider only statistical CSI, but again achieve
much lower DoF. Similarly, the work in [79] uses ACK/NACK type CSIT to
ameliorate the issue of unequal channel strengths, but again, achieves no
multiplexing gains.

Preview of the Results In this chapter we will describe three multiple-
antenna algorithms that achieve² the maximally known DoF of DL(K, γ) =
L+Kγ, requiring a per-transmission CSI cost of L training slots in the uplink
and L training slots in the downlink.

These three algorithms constitute a progressive effort that aimed to com-
plement the reduces feedback costs, with a low subpacketization. We will
start from Algorithm 4.2 (see [47]), which constitutes the first work to show
that the aforementioned feedback costs are achievable, and does this with
the subpacketization

SL,CSI = (Kγ + L)

(
K

Kγ

)(
K −Kγ − 1

L− 1

)
. (4.2)

Further, in Algorithm 4.3 we introduce a new multi-antenna Coded
Caching scheme which retains the CSI savings of the previous scheme and
does so with a subpacketization that approximately matches the subpacketi-
zation of the single antenna case i.e.,

SL,CSAS = (L+Kγ)

(
K

Kγ

)
. (4.3)

Finally, the third algorithm (see Section 4.3 and the work in [80]) are
making progress towards combining the low feedback cost of [47] with the low
subpacketization that the multiple antennas provide (cf. [56]) and specifically
we show how an exponentially smaller subpacketization, compared to the
single stream case, can be achieved while retaining the low feedback costs
of previous works. Specifically, the required subpacketization takes the form

SL,JCS = Lc

(K
Lc

Kγ

)
, where Lc =

L+Kγ

1 +Kγ
. (4.4)

Note 4.1. We can see that all the above algorithms can readily be applied
in the fully connected multiple transmitter Interference Channel setting (KT

transmitters, each equipped with a cache of normalized size γT). In this case,
instead of files being combined into XORs locally at the transmitter, they are
instead linearly combined in the air (see also Note 3.2 and Section 3.2).

²We need to note that the third algorithm achieves the marginally smaller DoF of
(L+Kγ)(1− γ).

4.1. CODED CACHING GAINS WITH LOW CSIT 43

4.1 Coded Caching Gains with Low CSIT
To address the CSI bottleneck, the algorithm designed in [47] is able to
achieve the maximally known DoF of DL(K, γ) = L + Kγ by requiring the
much lower CSI cost of L training slots for the uplink and L training slots
for the downlink.

Further, as we will demonstrate in Section 9.2, the state-of-art scheme [10]
not only requires much more CSI in each transmission slot, but at the same
time reuses less of this CSI, thus showing how these feedback costs aggregate
with every time-slot, thus consuming a big part of the coherence time, even
when this coherence time is long.

We proceed with the main result of the work in [47].

Theorem 4.1. In the L-antenna MISO-BC with K single-antenna users each
equipped with cache of normalized size γ, the DoF DL(K, γ) = L + Kγ can
be achieved with CSIT from only L users at a time, and thus with CSIT cost
of L uplink training time-slots, and global CSIR cost of L downlink training
time-slots and required subpacketization of

SL,CSI = (Kγ + L)

(
K

Kγ

)(
K −Kγ − 1

L− 1

)
. (4.5)

Intuition and small example Before fully describing the scheme, we pro-
ceed with some intuition on the design.

We first note that for the cache placement, the partition of files into
subfiles and the storing of subfiles in the users’ caches, will draw directly
from the placement algorithm of [1].

On the other hand, the XOR generation method will be fundamentally
different. The first step is to construct XORs composed of Kγ

L
+ 1 subfiles,

and to then have each transmission communicate L such XORs, thus al-
lowing each transmission to communicate L+Kγ different subfiles aimed at
simultaneously serving a set of L+Kγ users. Each such set of L+Kγ served
(“active”) users will be divided into two sets; the first set λ will consist of the
L users that will be assisted by precoding, while the second set π will have Kγ
users who will not be assisted by precoding and who must thus compensate
with their caches. Finally, the information vector that was described above
(comprized of the L XORs) will be multiplied by the normalized inverse H−1

λ

of the channel matrix between the base station and the users in set λ.
What we will see is that the design will guarantee that, during the de-

coding process, each of the users in λ will only receive one of the XORs
(the rest will be nulled-out by the precoder), while the remaining Kγ users
(i.e., those in set π) will receive a linear combination of all L XORs. Hence
this will mean that the users in λ will have to each cache out Kγ

L
subfiles³ in

³Here we need to point out that the number of subfiles that each user in λ needs to have
cached in order to decode its desired subfile is much smaller than in the original scheme
of [1], a fact that has been exploited in [81] to show how users without caches can have the
full cache-aided DoF in a multiple-antenna environment.

44 CHAPTER 4. THE CSI BOTTLENECK

order to decode their desired subfile, while the users in π will have to cache
out Kγ + L− 1 subfiles i.e., all but one subfiles.

Next, we will demonstrate a single transmission of our algorithm using
the setting of Example 2.2. The goal is to achieve the same performance as
before (all 4 users being able to decode their subfiles in each transmission),
while using CSIT from only two users at a time, thus requiring no more
than L = 2 training slots in the uplink and L = 2 training slots in the
downlink (this example in its entirety can be found in Example 4.3 located
in Section 4.1.2).

Example 4.1. In the same MISO BC setting of Example 2.2, with L = 2
transmit antennas, K = 4 users, and a user cache of fractional size γ = 1/2, a
transmitted vector from the proposed algorithm, takes the form⁴

x = h⊥
2 (A34 ⊕ C14) + h⊥

1 (B34 ⊕D23) (4.6)

where, as before, files A,B,C and D are requested by users 1, 2, 3 and 4, re-
spectively, and where Aij represents the part of A that can be found in the
caches of users i and j (similarly for Bij, Cij and Dij).

Assuming that user k receives yk, k ∈ {1, 2, 3, 4}, then the message at each
user takes the form:

y =

y1
y2
y3
y4

T

=

hT
1 (h⊥

2 · A34 ⊕ C14 + h⊥
1 ·B34 ⊕D23)

hT
2 (h⊥

2 · A34 ⊕ C14 + h⊥
1 ·B34 ⊕D23)

hT
3 (h⊥

2 · A34 ⊕ C14 + h⊥
1 ·B34 ⊕D23)

hT
4 (h⊥

2 · A34 ⊕ C14 + h⊥
1 ·B34 ⊕D23)

 (4.7)

=

A34 ⊕ C14

B34 ⊕D23

hT
3 (h⊥

2 · A34 ⊕ C14 + h⊥
1 ·B34 ⊕D23)

hT
4 (h⊥

2 · A34 ⊕ C14 + h⊥
1 ·B34 ⊕D23)

 (4.8)

where we have suppressed noise for simplicity.
Hence we see that user 1 and user 2 only receive the first and second XOR

respectively (due to the design of the precoders), which means that each of
these two users can decode their desired subfiles, i.e. A34 and B34 respectively,
by “caching-out” the unwanted subfiles C14 and D23, respectively.

On the other hand, looking at the decoding process for users 3 and 4, we
see that user 3 must cache-out subfiles A34, B34 and D23 (which, by design of
the placement are already cached at user 3) in order to decode the desired C14,
while user 4 must cache-out subfiles A34, B34 and C14 (which, by design of the
placement, are already cached at user 4) to decode the desired subfile D23. In
order to achieve this, users 3 and 4 need to employ their cached content and,
also, need some CSI knowledge; user 3 needs products hT

3 h⊥
2 and hT

3 h⊥
1 , while

user 4 needs hT
4 h⊥

2 and hT
4 h⊥

1 .
⁴Here the reader is warned that there is a notational discrepancy between the subfile

indices of this example and the formal notation. In this example we have kept the notation
as simple as possible in order to more easily provide a basic intuition on the structure of
the scheme.

4.1. CODED CACHING GAINS WITH LOW CSIT 45

4.1.1 Scheme Description
We proceed to present the scheme’s cache-placement, feedback-acquisition
and content-delivery phases.

Placement Phase

The placement phase happens without knowledge of the number of transmit
antennas, nor assumes any CSI knowledge. It follows the scheme in [1] where
each file W n, n ∈ [N], is initially split into

(
K
Kγ

)
subfiles i.e.,

W n → {W n
τ , τ ⊂ [K], |τ | = Kγ} (4.9)

and the placement of content to the users takes the form

Zk = {W n
τ : ∀τ ∋ k, |τ | = Kγ, ∀n ∈ [N]} . (4.10)

CSI Acquisition

This part takes place at the beginning of the coherence period and it involves
first an uplink training phase and then a downlink training phase. In the
uplink phase, a user set λ is selected, comprized of L users, who will transmit
pilot signals so that the transmitter can estimate their channel coefficients
hk, ∀k ∈ λ, and thus construct precoders h⊥

λ\{k}, ∀k ∈ λ. Then, during the
downlink training phase, the transmitter will broadcast, for each of the L
precoders, P vectors⁵ as follows

diag
(
h⊥
λ\{k}

)
SL×P , ∀k ∈ λ

which, when multiplied by a user’s individual channel, will allow for esti-
mation at any user q ∈ π ⊂ [K] \ λ (recall |π| = Kγ), the needed global-CSIR
products hT

q ·h⊥
λ\{k}, ∀k ∈ λ and where the operation diag(h) creates a square

diagonal matrix whose elements are the entries of vector h.
In summary: there are L slots for CSIT because only the L users in

set λ need to send CSIT, and there are L slots for global CSIR because,
for each fixed precoder, one (training symbol) shot suffices to communicate
the composite channel-precoder product to any number of users. The above
process in the form of a pseudo-algorithm can be found in Algorithm 4.1.

An extra required Subpacketization Upon notification of the requests
{W dk , k ∈ [K]} and after the number of antennas is revealed to be L, each
requested subfile W dk

τ is further split twice as follows⁶

W dk
τ →{W dk

σ,τ , σ ⊆ [K] \ (τ ∪ {k}), |σ| = L− 1} (4.11)
W dk

σ,τ →{W ϕ,dk
σ,τ , ϕ ∈ [L+Kγ]}. (4.12)

⁵P is simply the minimum number of vectors that are required for a perfect estimation
of the intended CSI.

⁶We note that, for clarity of exposition and to avoid many indices, the index ϕ of
Equation 4.12 will henceforth be suppressed, thus any Wϕ,dk

σ,τ will be denoted as W dk
σ,τ unless

ϕ is explicitly needed.

46 CHAPTER 4. THE CSI BOTTLENECK

1 Uplink Training
2 Transmitter selects set λ ⊂ [K] of L users.
3 Users in λ sequentially transmit from set sup of predetermined pilot

symbols.
4 Transmitter receives pilots and forms hk, ∀k ∈ λ.
5 Transmitter constructs precoders h⊥

λ\{k}, ∀k ∈ λ.
6 Downlink Training
7 for k ∈ λ (Select Precoder) do
8 Select SP×L (Set of P downlink pilot vectors)
9 for p ∈ P do
10 Transmit:

xk(p) =

h
⊥
λ\{k}(1)S(1, p)

...
h⊥
λ\{k}(L)S(L, p)

 .

11 end
12 end

Algorithm 4.1: Uplink and downlink feedback training phases

Delivery phase details

In the following we describe how, for every transmission, the transmitter
will first create a vector of L XORs, and will then precode these with the
appropriate set of precoders.

Individual XOR design For any two disjoint sets

µ ⊂ [K], ν ⊂ [K], µ ∩ ν = ∅

where |µ| = Kγ
L
+1, |ν| = Kγ L−1

L
, and for an arbitrary σ ⊆

(
[K]\(µ∪ν)

)
, |σ| =

L− 1, we construct the XOR

Xν,σ
µ =

⊕
k∈µ

W dk
σ,(ν∪µ)\{k} (4.13)

which consists of Kγ
L

+ 1 subfiles, where

• each subfile is requested by one user that belongs to the user set µ, and
where

• all subfiles are known by all users in the user set ν.

The set (ν ∪ µ) \ {k}, k ∈ µ plays the role of τ from the placement phase, as
it describes the set of users that have this subfile in their cache, while set σ
is a selected subset of L− 1 users from the set λ.

4.1. CODED CACHING GAINS WITH LOW CSIT 47

Example 4.2. Let us consider the L = 2 MISO BC with cumulative cache
of size Kγ = 4. Let µ = {1, 2, 3}, ν = {4, 5} and consider some arbitrary
σ ∈ [K] \ {1, 2, 3, 4, 5}, |σ| = 1. Then, the designed XOR takes the form

X45,σ
{123} = W d1

{σ,2345︸︷︷︸
τ

}
⊕W d2

{σ,1345} ⊕W d3
{σ,1245} (4.14)

and it delivers the subfiles requested by the users in set µ, while each element
of the XOR is cached at all users of set ν. Users 1, 2 and 3 work in the
traditional way to cache out each others’ subfiles in order to get their own
(e.g. user 1 caches out W d2

{σ,1345} ⊕ W d3
{σ,1245} to get its own W d1

{σ,2345}
)
, while

users 4 and 5 are fully protected (since they have cached all 3 subfiles) against
this entire undesired XOR. As a quick verification, we see that each index τ
(which indicates the set of users that have cached the specific subfile) has size
|τ | = Kγ = 4 which adheres to the available cache-size constraint, which tells
us that each file can be stored with redundancy Kγ = 4.

Design of vector of XORs

1 for all λ ⊂ [K], |λ| = L (Select precoded users) do
2 Create H−1

λ

3 for all π ⊂ ([K] \ λ) , |π| = Kγ (Select non-Precoded-aided users)
do

4 Break π into some Fi i ∈ [L] : |Fi| = Kγ
L
,⋃

i∈[L]Fi = π, Fi ∩ Fj = ∅, ∀i, j ∈ [L]

5 for s ∈ {0, 1, ..., L− 1} do
6 ri = ((s+ i− 1) mod L) + 1, i ∈ [L]
7 Transmit

xs
λ,π =H−1

λ ·

X
π\Fr1 ,λ\λ(1)
λ(1)∪Fr1

X
π\Fr2 ,λ\λ(2)
λ(2)∪Fr2

...

X
π\FrL

,λ\λ(L)
λ(L)∪FrL

. (4.15)

8 end
9 end

10 end
Algorithm 4.2: Delivery Phase of Low CSI Scheme

At this point we describe how the L XORs of a transmitted vector are
chosen. As explained above, the aim of every transmission is to serve different
subfiles to L + Kγ users (there is no data repetition), while requiring CSIT

48 CHAPTER 4. THE CSI BOTTLENECK

from only L users. This is described by the following sequence of steps in
Algorithm 4.2. Up to now, we have seen that:

• In Step 1, a set λ of L users is chosen, which set signifies the precoding-
assisted users.

• In Step 2, a (ZF-type) precoder H−1
λ is designed to spatially separate the

L users in set λ.

• In Step 3, another set π ⊆ [K] \ λ of Kγ users is selected from the
remaining users.

To construct the L XORs and to properly place them in the vector, the
following steps take place.

• In Step 4, the set π of Kγ users is partitioned, arbitrarily, into L non-
overlapping sets Fi, i ∈ [L], each having Kγ

L
users.

• In Step 5 all users from set λ are associated to a distinct set Fi, as
a function of parameter s that takes values from {0, 1, ..., L − 1}. For
example, when s = 0, the first XOR of the vector will be intended for
users in set λ(1)∪F1 (while completely known by all users in π\F1), the
second XOR will be intended for the users in the set λ(2) ∪ F2 (while
completely known by all users in π \ F2) and so on.
Further, when s = 1 the first XOR is intended for users in λ(1) ∪ F2

(while completely known by all users in π \ F2), the second XOR is for
users in λ(2) ∪ F3 (while completely known by all users in π \ F3) and
so on. In particular, Step 5 (and the operation in Step 6, as shown
in Algorithm 4.2), allow us to iterate over all sets Fi, associating every
time a distinct set Fi to a distinct user from group λ, until all users
from set λ have been associated with all sets Fi.

• Then in the last step (Step 7), the vector of the L XORs is transmitted
after being multiplied by precoder matrix H−1

λ .

Decoding at the users

By design of the XORs (cf. (4.13)), the constructed vector guarantees (together
with the precoder) that the users in λ can decode the single XOR (due to ZF)
that they receive, and from there (due to caching) proceed to decode their
own subfile.

Moreover, this XOR design also guarantees that each user in π has cached
all subfiles that are found in the entire vector, apart from its desired subfile.
Further, the training phase of Section 4.1.1 has provided the users of set π
with all the necessary CSI estimates (specifically, it has provided the receivers
with all the necessary precoder-channel composite scalars) to perform the
decoding of the linear combination of the transmitted vector.

To see the above more clearly, let us look at the signal received and the
decoding process at some of the users.

4.1. CODED CACHING GAINS WITH LOW CSIT 49

For some user k belonging in set λ, the decoding process is simple. The
received message takes the form

yk = hT
k · H−1

λ

X
π\Fr1 ,λ\λ(1)
λ(1)∪Fr1

X
π\Fr2 ,λ\λ(2)
λ(2)∪Fr2

...

X
π\FrL

,λ\λ(L)
λ(L)∪FrL

=X

π\Frk
,λ\{k}

{k}∪Frk
. (4.16)

Due to the design of the remaining XOR (see eq. (4.13)), all but one subfiles
have been cached by user k, thus the user can decode the desired subfile.

On the other hand, the decoding process at some user in set π also requires
access to feedback information. The received message at user m ∈ π takes
the form

ym = hT
m · H−1

λ

X
π\Fr1 ,λ\λ(1)
λ(1)∪Fr1

X
π\Fr2 ,λ\λ(2)
λ(2)∪Fr2

...

X
π\FrL

,λ\λ(L)
λ(L)∪FrL

=

L∑
j=1

hT
mh⊥

λ\λ(j)X
π\Frj

,λ\λ(j)
λ(j)∪Frj

. (4.17)

First, we can observe that due to the process described in Algorithm 4.1,
user m has estimated all products hT

mh⊥
λ\λ(j), ∀j ∈ [L] that appear in Eq. (4.17).

Then, by taking account of the fact that Fri ∩ Frj = ∅, i ̸= j we can see that
user m belongs in one of the Frj subsets of π, which means that user m has
fully cached the content of all but one XORs (see Eq. (4.13)), thus can remove
them from Eq. (4.17). Further, the remaining XOR, due to its structure (cf.
Eq. (4.13)), is decodable by user m.

4.1.2 Calculating the DoF performance
Showing that each desired subfile is transmitted exactly once The first
task here is to show that, for a given fixed subfile W dk

σ,τ , each of the Kγ + L
sub-subfiles (defined by the same fixed set (σ, τ, k) and are differentiated using
the Kγ+L different ϕ ∈ [Kγ+L] – the notation of which, as you may recall,
we suppress), will appear in Kγ + L different transmissions xs

λ,π, for some
λ, π, s.

For any arbitrary subfile W dk
σ,τ , the labeling (σ, τ, k) defines the set of active

users λ∪π = σ∪τ ∪{k}. Let us recall that λ∩π = ∅, σ∩τ = ∅, that σ ⊂ λ, and
that |σ| = L − 1, |λ| = L, |π| = |τ | = Kγ. For a fixed (σ, τ, k), let us consider
the two complementary cases; case i) k ∈ λ, and case ii) k /∈ λ.

50 CHAPTER 4. THE CSI BOTTLENECK

In case i), since |σ ∪ τ ∪ k| = Kγ + L and because |σ ∪ τ | = Kγ + L − 1
(which means that k /∈ σ ∪ τ), we can conclude that λ = σ ∪ {k}. Given also
that

π = (σ ∪ τ ∪ {k}) \ λ = τ

means that fixing (σ, τ, k), points to a single λ and a single π. For any
fixed (λ, π), in our algorithm, Step 5 identifies L specific sub-subfiles which
are defined by the same (σ, τ, k), thus can be differentiated by L different
ϕ ∈ [Kγ+L]; these L sub-subfiles of W dk

σ,τ will appear in transmissions xs
λ,π, s =

0, 1, . . . , L− 1.
In case ii) the fact that k /∈ λ, implies that — for a given fixed (σ, τ, k)

(which also defines the set of active users) — there can be Kγ different sets
λ which take the following form

λ = σ ∪ τ(i), i ∈ [Kγ].

This means that fixing (σ, τ, k) corresponds to Kγ different possible sets λ.
Since for a fixed (σ, τ, k) the union of λ ∪ π is fixed, we can conclude that
each fixed (σ, τ, k) is associated to Kγ different pairs (λ, π).

Now, having chosen a specific pair (λ, π), where we remind that k ∈ π,
we can see from Step 5 of Algorithm 4.2 that user k can belong in exactly 1
set Fri , i ∈ [L], let that be Frj , which means that from all L transmissions of
Step 5, a sub-subfile belonging to category W dk

σ,τ will be transmitted in exactly
one transmission, i.e. the transmission which will have XOR

X
π\Frj ,σ

τ(i)∪Frj
. (4.18)

In total, for all the different (λ, π) sets, subfile W dk
σ,τ will be transmitted

Kγ + L times.
Finally, since we showed that an arbitrary subfile, W dk

σ,τ , will be trans-
mitted exactly Kγ + L times, this implies that all subfiles of interest will be
transmitted by spanning through all possible λ, π sets.

Calculating the DoF performance The resulting DoF can now be easily
seen to be DL(K, γ) = L + Kγ by recalling that each transmission includes
Kγ +L different subfiles, and by recalling that no subfile is ever repeated. A
quick verification, accounting for the subpacketization

SL,CSI =

(
K

Kγ

)(
K −Kγ − 1

L− 1

)
(Kγ + L)

and for the number of iterations in each step, gives that

TL,CSI(K, γ) =

Step 1︷ ︸︸ ︷(
K

L

) Step 3︷ ︸︸ ︷(
K − L

Kγ

)
·
Step 5︷︸︸︷
L(

K
Kγ

)(
K−Kγ−1

L−1

)
(Kγ + L)

=
K(1− γ)

Kγ + L
(4.19)

4.1. CODED CACHING GAINS WITH LOW CSIT 51

which implies the DoF of

DL(K, γ) =
K(1− γ)

TL,CSI(K, γ)
= L+Kγ. (4.20)

The following example employs the complete notation W ϕ,dk
σ,τ in order to

demonstrate the iteration over all subfiles.
Similar to before, we use A

(ϕ)
σ,τ ≜ W

(ϕ),d1
σ,τ , B(ϕ)

σ,τ ≜ W
(ϕ),d2
σ,τ , and so on.

Example 4.3. Consider a transmitter with L = 2 antennas, serving K = 4
users whose caches allow for a cumulative caching redundancy Kγ = 2. Each
file is split into

S =

ϕ︷ ︸︸ ︷
(Kγ + L)

σ︷ ︸︸ ︷(
K −Kγ − 1

L− 1

) τ︷ ︸︸ ︷(
K

Kγ

)
= 24

sub-subfiles and the following are the
(
K
L

)(
K−L
Kγ

)
L = 12 transmissions that will

satisfy all the users’ requests.

x34
12,1 = H−1

12

[
A

(1)
2,34C

(1)
2,14

B
(1)
1,34D

(1)
1,23

]
,x34

12,2 = H−1
12

[
A

(2)
2,34D

(1)
2,13

B
(2)
1,34C

(1)
1,24

]

x12
34,1 = H−1

34

[
B

(1)
4,13C

(1)
4,12

A
(1)
3,24D

(1)
3,12

]
,x12

34,2 = H−1
34

[
A

(1)
4,23C

(2)
4,12

B
(1)
3,14D

(2)
3,12

]

x13
24,1 = H−1

24

[
A

(2)
4,23B

(2)
4,13

C
(2)
2,14D

(2)
2,13

]
,x13

24,2 = H−1
24

[
B

(3)
4,13C

(3)
4,12

A
(3)
2,34D

(3)
2,13

]

x24
13,1 = H−1

13

[
A

(2)
3,24B

(2)
3,14

C
(2)
1,24D

(2)
1,23

]
,x24

13,2 = H−1
13

[
A

(3)
3,24D

(2)
3,12

B
(3)
1,34C

(3)
1,24

]

x23
14,1 = H−1

14

[
A

(3)
4,23B

(4)
4,13

D
(3)
1,23C

(4)
1,24

]
,x23

14,2 = H−1
14

[
A

(4)
4,23C

(4)
4,12

B
(4)
1,34D

(4)
1,23

]

x14
23,1 = H−1

23

[
A

(4)
3,24B

(3)
3,14

C
(3)
2,14D

(4)
2,13

]
,x14

23,2 = H−1
23

[
B

(4)
3,14D

(4)
3,12

C
(4)
2,14A

(4)
2,34

]
.

As we see, the delay is T2,CSI
(
4, 1

2

)
= 12

24
= 1

2
and the DoF are

D2,CSI

(
4,

1

2

)
=

K(1− γ)

T2,CSI
(
4, 1

2

) = 4. (4.21)

Example 4.4. We consider the L = 2 MISO BC with K = 6 users and γ = 2/3

52 CHAPTER 4. THE CSI BOTTLENECK

(Kγ = 4). Then, the required 30 transmissions are

x3456
12,1 = H−1

12

[
A

(1)
2,3456C

(1)
2,1456D

(1)
2,1356

B
(1)
1,3456E

(1)
1,2346F

(1)
1,2345

]
, x3456

12,2 = H−1
12

[
A

(2)
2,3456E

(1)
2,1346F

(1)
2,1345

B
(2)
1,3456C

(1)
1,2456D

(1)
1,2356

]

x2456
13,1 = H−1

13

[
A

(1)
3,2456B

(1)
3,1456D

(1)
3,1256

C
(2)
1,2456E

(2)
1,2346F

(2)
1,2345

]
, x2456

13,2 = H−1
13

[
A

(2)
3,2456E

(1)
3,1246F

(1)
3,1245

C
(3)
1,2456B

(3)
1,3456D

(2)
1,2356

]

x2356
14,1 = H−1

14

[
A

(1)
4,2356B

(1)
4,1356C

(1)
4,1256

D
(3)
1,2356E

(3)
1,2346F

(3)
1,2345

]
, x2356

14,2 = H−1
14

[
A

(2)
4,2356E

(1)
4,1236F

(1)
4,1235

D
(4)
1,2356B

(4)
1,3456C

(4)
1,2456

]

x2346
15,1 = H−1

15

[
A

(1)
5,2346B

(1)
5,1346C

(1)
5,1246

E
(4)
1,2346D

(5)
1,2356F

(4)
1,2345

]
, x2346

15,2 = H−1
15

[
A

(2)
5,2346D

(1)
5,1236F

(1)
5,1234

E
(5)
1,2346B

(5)
1,3456C

(5)
1,2456

]

x2345
16,1 = H−1

16

[
A

(1)
6,2345B

(1)
6,1345C

(1)
6,1245

F
(5)
1,2345D

(6)
1,2356E

(6)
1,2346

]
, x2345

16,2 = H−1
16

[
A

(2)
6,2345D

(1)
6,1235E

(1)
6,1234

F
(6)
1,2345B

(6)
1,3456C

(6)
1,2456

]

x1456
23,1 = H−1

23

[
B

(2)
3,1456A

(3)
3,2456D

(2)
3,1256

C
(2)
2,1456E

(2)
2,1346F

(2)
2,1345

]
, x1456

23,2 = H−1
23

[
B

(3)
3,1456E

(2)
3,1246F

(2)
3,1245

C
(3)
2,1456A

(3)
2,3456D

(2)
2,1356

]

x1356
24,1 = H−1

24

[
B

(2)
4,1356A

(3)
4,2356C

(2)
4,1256

D
(3)
2,1356E

(3)
2,1346F

(3)
2,1345

]
, x1356

24,2 = H−1
24

[
B

(3)
4,1356E

(2)
4,1236F

(2)
4,1235

D
(4)
2,1356A

(4)
2,3456C

(4)
2,1456

]

x1346
25,1 = H−1

25

[
B

(2)
5,1346A

(3)
5,2346C

(2)
5,1246

E
(4)
2,1346D

(5)
2,1356F

(4)
2,1345

]
, x1346

25,2 = H−1
25

[
B

(3)
5,1346D

(2)
5,1236F

(2)
5,1234

E
(5)
2,1346A

(5)
2,3456C

(5)
2,1456

]

x1345
26,1 = H−1

26

[
B

(2)
6,1345A

(3)
6,2345C

(2)
6,1245

F
(5)
2,1345D

(6)
2,1356E

(6)
2,1346

]
, x1345

26,2 = H−1
26

[
B

(3)
6,1345D

(2)
6,1235E

(2)
6,1234

F
(6)
2,1345A

(6)
2,3456C

(6)
2,1456

]

x1256
34,1 = H−1

34

[
C

(3)
4,1256A

(4)
4,2356B

(4)
4,1356

D
(3)
3,1256E

(3)
3,1246F

(3)
3,1245

]
, x1256

34,2 = H−1
34

[
C

(4)
4,1256E

(3)
4,1236F

(3)
4,1235

D
(4)
3,1256A

(4)
3,2456B

(4)
3,1456

]

x1246
35,1 = H−1

35

[
C

(3)
5,1246A

(4)
5,2346B

(4)
5,1346

E
(4)
3,1246D

(5)
3,1256F

(4)
3,1245

]
, x1246

35,2 = H−1
35

[
C

(4)
5,1246D

(3)
5,1236F

(3)
5,1234

E
(5)
3,1246A

(5)
3,2456B

(5)
3,1456

]

x1245
36,1 = H−1

36

[
C

(3)
6,1245A

(4)
6,2345B

(4)
6,1345

F
(5)
3,1245D

(6)
3,1256E

(6)
3,1246

]
, x1245

36,2 = H−1
36

[
C

(4)
6,1245D

(3)
6,1235E

(3)
6,1234

F
(6)
3,1245A

(6)
3,2456B

(6)
3,1456

]

x1236
45,1 = H−1

45

[
D

(4)
5,1236A

(5)
5,2346B

(5)
5,1346

E
(4)
4,1236C

(5)
4,1256F

(4)
4,1235

]
, x1236

45,2 = H−1
45

[
D

(5)
5,1236C

(5)
5,1246F

(4)
5,1234

E
(5)
4,1236A

(5)
4,2356B

(5)
4,1356

]

x1235
46,1 = H−1

46

[
D

(4)
6,1235A

(5)
6,2345B

(5)
6,1345

F
(5)
4,1235C

(6)
4,1256E

(6)
4,1236

]
, x1235

46,2 = H−1
46

[
D

(5)
6,1235C

(5)
6,1245E

(4)
6,1234

F
(6)
4,1235A

(6)
4,2356B

(6)
4,1356

]

x1234
56,1 = H−1

56

[
E

(5)
6,1234A

(6)
6,2345B

(6)
6,1345

F
(5)
5,1234C

(6)
5,1246D

(6)
5,1236

]
, x1234

56,2 = H−1
56

[
E

(6)
6,1234C

(6)
6,1245D

(6)
6,1235

F
(6)
5,1234A

(6)
5,2346B

(6)
5,1346

]
By examining any of the above transmitted vectors we can deduce that each

transmission serves a total of 6 users, while the feedback cost is 2 training slots
for CSIT and 2 training slots for global CSIR.

4.2. LOW CSI SINGLE-ANTENNA SUBPACKETIZATION 53

4.2 Low CSI with Single-Antenna Subpacketi-
zation (CSAS)

In this section we will describe a new cache-aided transmission scheme de-
signed for the L-antenna MISO BC channel with K cache-aided users, where
each user is equipped with a cache of normalized size γ ∈ (0, 1). As discussed
previously, this new algorithm can achieve the DoF of DL(K, γ) = L + Kγ
with L CSI cost per-transmission. At the same time it significantly reduces
the subpacketization requirements compared to the algorithm presented in
the previous section.

Theorem 4.2. In the L-antenna MISO BC with K single-antenna users, each
equipped with a cache of normalized size γ, the DoF of DL(K, γ) = L+Kγ is
achievable with per-transmission CSI cost C = L and subpacketization of

SL,CSAS = (L+Kγ)

(
K

Kγ

)
. (4.22)

Intuition on the design The main premise is to transmit in each slot
Kγ +L subfiles using a vector of L messages. We achieve this by creating a
vector comprized of L elements which is further multiplied by a ZF precoder.
The entries of the vector consist of one XOR, comprized of Kγ + 1 subfiles
(created exactly as in the algorithm of [1]), and L − 1 uncoded subfiles. We
continue with the placement and delivery phases.

Placement phase

Initially, each file is subpacketized into S1 =
(
K
Kγ

)
subpackets, which are

further split into Kγ+L smaller packets. We will assume that T1 ≜ K(1−γ)
1+Kγ

is
an integer, while extending the scheme to non-integer values requires a little
higher subpacketization. Users’ caches are filled according to

Zk∈[K] =
{
W n,ϕ

τ : τ ⊂ [K], |τ | = Kγ, k ∈ τ, (4.23)
∀ϕ ∈ [Kγ + L],∀n ∈ [N]

}
.

The purpose of index ϕ is to deliver, every time a “fresh” subfile, making
a total of Kγ + L subfiles for each associated index τ . We will refrain from
using this ϕ index in the following algorithm, in order to keep the notation
more clear, and we will prove in Corollary 4.1 that each subfile is transmitted
exactly Kγ + L times.

Delivery phase

In each delivery slot, as discussed above, we will create a vector of size L×1,
where one of its entries will be a XOR comprized of Kγ + 1 subfiles, while
the remaining L− 1 entries will be uncoded subfiles. Then, the vector will be

54 CHAPTER 4. THE CSI BOTTLENECK

multiplied by a L×L precoder matrix, which is calculated as the normalized
inverse of the channel between the L-antenna transmitter and a subset of the
Kγ + L users, namely one of the users of the XOR and the L− 1 users that
will be the recipients of the uncoded messages. The process is provided in the
form of a pseudo-code in Algorithm 4.3 and will be further described in the
following paragraph. We remind that H−1

λ denotes the normalized inverse of
the channel matrix formed between the L antenna transmitter and the users
in set λ, while βτ,k ⊆ [K] \ τ is a set of L− 1 elements, which are selected to
be the following elements of element k ∈ [K] \ τ in the ordered set [K] \ τ .

1 for all σ ⊆ [K], |σ| = Kγ + 1 (pick XOR) do
2 for all s ∈ σ (pick precoded user) do
3 Set: τ = σ \ {s}
4 Set: λ = {s} ∪ βτ,s.
5 Transmit:

xs,τ = H−1
λ ·

⊕
k∈σ W

dk
σ\{k}

W
dβτ,s(1)
τ

...

W
dβτ,s(L−1)

τ

(4.24)

6 end
7 end

Algorithm 4.3: Delivery Phase of CSAS Scheme

Detailed description of Algorithm 4.3 The algorithm begins by selecting
set σ ⊂ [K] comprized of Kγ + 1 users. For these users, the algorithm will
form a XOR in the same way as does the algorithm of [1].

Further, in Step 2, the algorithm selects one user, s, from the users of set
σ, which user will be assisted by precoding. It is easy to see that the subfile
index that this user will receive is σ \ {s} = τ .

Moreover, in Step 4 is formed set λ that contains all the precoding-assisted
users. Apart from user s ∈ σ that was selected in Step 2, the remaining L− 1
precoding-assisted users are selected by calculating set βτ,s, as sthe L − 1
consecutive elements of element s in set [K] \ τ . For example, if σ = {1, 2, 3},
K = 5 and L = 2 and s = 1, then [K] \ τ = {1, 4, 5} thus, βτ,s = {4}, as 4 is
the consecutive element of element s. The users of set τ ∪ {s} ∪ βτ,s form the
L+Kγ users that will receive a subfile in this slot.

For the above selected users, the algorithm creates a L× 1 vector, where
one of the elements is a XOR designed for the users in set σ, while the
remaining elements correspond to subfiles described by index τ = σ \ {s} and
intended for the users in set βτ,s.

4.2. LOW CSI SINGLE-ANTENNA SUBPACKETIZATION 55

Further, the algorithm forms the precoder matrix H−1
λ such that it is

the normalized inverse of channel matrix between the L-antenna transmitter
and the users in λ = {s} ∪ βτ,s. Finally, the transmitted vector is created by
multiplying the precoder matrix with the vector containing the messages.

Decoding Process We begin with the users of set λ i.e., the users that are
“precoding-assisted”. Due to the design of the precoder matrix H−1

λ , we can
see that these users will receive either the XORed message (user s) or each
of the uncoded messages to the respective user i.e.,

yk∈λ = hT
k xs,τ =

{
⊕m∈σW

dm
σ\{m}, k = s

W dk
τ , else

(4.25)

where for simplicity we have suppressed the noise. It is easy to see that users
in set βτ,s will be assisted by precoding, thus will only “see” the uncoded
subfile that they want. Further, user s will receive XOR ⊕m∈σW

dm
σ\{m} which

can proceed to decode using its cached content.
On the other hand, users in set τ will be receiving a linear combination of

all L messages, which will proceed to decode using both the CSIT knowledge
and their cached subfiles. The received message at some user k ∈ τ takes the
form

yk∈τ = hT
k xs,τ (4.26)

= hT
kh⊥

λ\{s}

⊕
m∈σ

W dm
σ\{m} + hT

k

L−1∑
i=1

h⊥
λ\βτ,s(i)W

dβτ,s(i)
τ . (4.27)

Examining Eq. (4.27), we can see that the subfiles that are included in the
summation term have all been cached by all receivers of set τ and as such
they can be removed from the equation. What remains is XOR ⊕k∈σW

dk
σ\{k}

which, by design, is decodable by all users that belong in set τ .

Corollary 4.1. In Algorithm 4.3, each requested subfile W dk
τ is transmitted

exactly Kγ + L times.

Proof. We begin by showing the Kγ+1 element of the requested. Since each
XOR ⊕k∈σW

dk
σ\{k} is transmitted Kγ + 1 times (cf. Step 2 of Alg. 4.3) i.e., by

picking every time a different user of the set σ to be precoding-assisted, it
follows that every subfile included in the XOR will be transmitted Kγ + 1
times.

Further, we want to prove that for any user k ∈ [K] and any subfile
described by index τ , this subfile will be transmitted exactly L − 1 times as
part of the uncoded elements. Let us consider user k that needs to receive
subfile W dk

τ . First, we can see that this subfile will be transmitted as part of
the uncoded elements of the information message only when σ, i.e. the set
of users that will be receiving the XOR, is of the form

σ = τ ∪ {s} (4.28)

56 CHAPTER 4. THE CSI BOTTLENECK

and where s ∈ [K] \ (τ ∪{k}), thus s can take any of the K−Kγ− 1 different
values.

We can discern two cases, namely K −Kγ = L and K −Kγ > L. In the
first case i.e., K − Kγ = L, it is clear that for every s ∈ [K] \ τ \ {k} then
βτ,s = [K] \ (τ ∪ {s}), thus k will be included in each transmission, which
amounts to L− 1 different subfiles.

In the second case, where the size of set [K] \ τ is bigger than L, only a
subset of the users will be selected every time in order to form sets βτ,s,∀s ∈
[K] \ τ \ {k}. Using pk ∈ {1, 2, ..., K −Kγ}, k ∈ [K] \ τ to denote the position
of element k in set [K] \ τ , we can see that k ∈ βτ,s iff

pk = (ps + l) mod (K −Kγ)− 1, l ∈ {2, 3, ..., L}. (4.29)

But the condition of Eq. (4.29) is true for a single value of l when s is fixed,
thus it can hold for exactly L− 1 different values s.

4.3 Joint Consideration of CSIT and Subpacke-
tization (JCS)

Examining the two solutions from [47, 56] we can point out that each one
provides benefits towards addressing their respective goal, but does so with
exacerbating the other bottleneck, i.e. the work in [56] addresses the sub-
packetization bottleneck but requires a very high feedback cost while work
in [47] addresses the CSI bottleneck but requires a high subpacketization cost.

In contrast, our recent work in [80] made progress towards unifying these
two extremes, using multiple antennas to help reduce the subpacketization
and at the same time requiring a CSIT cost that is untangled from the DoF.

4.3.1 Main Result
Theorem 4.3. In the L-antenna MISO BC with K single-antenna users, each
equipped with a cache of normalized size γ ∈ (0, 1), the DoF

DL(K, γ) = (1− γ)(L+Kγ) (4.30)

is achievable with per-transmission CSI cost C = L and subpacketization of

SL,JCS = Lc

(K
Lc

Kγ

)
, where Lc =

L+Kγ

1 +Kγ
. (4.31)

Remark 4.1. We observe that, as the number of antennas increases, the sub-
packetization reduction – with respect to the single-stream case (cf. Eq. (1.8))
while, naturally the subpacketization savings compared to other multi-antenna
coded caching algorithms (see [2, 10, 11, 47]), are even larger – can be very
substantial. For example, if L = Kγ + 2, the subpacketization approximately
reduces by a (multiplicative) factor of Sr = 2Kγ .

4.3. JOINT CSIT AND SUBPACKETIZATION REDUCTIONS 57

Furthermore, in the limit of asymptotically large K, and for L≫ 1, we see
that the multiplicative reduction in subpacketization takes the form

lim
K→∞

Sr = lim
K→∞

(
L+Kγ

1 +Kγ

)Kγ

= lim
K→∞

(
L+Kγ

Kγ

)Kγ

= lim
K→∞

(
L/γ

K
+ 1

)Kγ

= e
L
γ
γ = eL (4.32)

implying that every additional antenna, in addition to increasing the DoF, also
reduces subpacketization by a factor of e.

4.3.2 Scheme Description
Scheme Intuition The main idea that allows for these exponential sub-
packetization reductions, borrows from the result of [81] (see also Chapter 5),
where it was shown that the DoF of an L-antenna MISO BC system with
Kc cache-aided users (γc > 0) and Kn cache-less⁷ (γn = 0) users is equal to
Dhet

L (Kc, γc, Kn, γn) = L+Kcγc, which exactly matches the DoF (and the delay)
of an equivalent homogeneous system with K = Kc+Kn users each equipped
with a cache of normalized size γ = Kcγc

Kn+Kc
.

In this work, we exploit this idea of having ‘cache-less’ users that benefit
from full caching gains, in order to achieve a reduction in the problem
dimensionality by a factor of Lc. This will be achieved by partitioning each
file into Lc parts and then by grouping the users into Lc groups, where each
group of K/Lc users will cache content that is exclusively from just one of
the Lc parts of the library content. Hence for each such part, the associated
group of K

Lc
users will be ‘forced’ to store each file with a large redundancy

Kγ, while simultaneously all remaining K− K
Lc

users will not cache this part
at all. This further means that for each particular part, there is a group of
K
Lc

cache-aided users, and the rest can be considered to be cache-less.
We proceed with the placement and delivery phases.

Placement Phase

We start by dividing the users into Lc =
L+Kγ
1+Kγ

groups

K1=

{
1, ...,

K

Lc

}
, ...,KLc =

{
(Lc−1)

K

Lc

+1, ..., K

}
. (4.33)

Further, we split each file W n, n ∈ [N] into Lc =
L+Kγ
1+Kγ

parts {W n
1 , ...,W

n
Lc
},

and then each part into
(K

Lc
Kγ

)
subfiles i.e.,

W n
p →

{
W n

p,τ , τ ⊂ Kp, |τ | = Kγ
}
, p ∈ [Lc] (4.34)

⁷We note that this DoF can be achieved while Kn ≤ L−1
γ .

58 CHAPTER 4. THE CSI BOTTLENECK

hence, a total subpacketization requirement of

SL,JCS = Lc

(K
Lc

Kγ

)
. (4.35)

Caching at user kp ∈ Kp, p ∈ [Lc] takes the form

Zkp =
{
W n

p,τ : kp ∈ τ, τ ⊂ Kp, |τ | = Kγ, ∀n ∈ [N]
}

naturally corresponding to a normalized cache size∣∣Zkp

∣∣
S

=

(
K/Lc−1
Kγ−1

)
Lc ·

(
K/Lc

Kγ

) =
1

Lc

Kγ
K
Lc

= γ. (4.36)

Delivery Phase

As mentioned above, the delivery algorithm is based on the method of [81]
which merges, in the same transmission, cache-aided and cache-less users.
The delivery is divided into Lc sub-phases, where in sub-phase q ∈ [Lc] the
objective is to deliver to all users, the part of their requested file corresponding
to partition (labeled by) q. Hence, users of group Kq act as the cache-aided
users, while the remaining users, [K] \ Kq, act as cache-less users.

We will focus on describing the delivery for one of the Lc data parts (for
part q ∈ [Lc]); for the other parts, corresponding to different q, we simply
exchange the roles of the cache-aided and the cache-less users. We remind
that the goal is to transmit simultaneously to L +Kγ users⁸. To do so, we
create an L dimensional data vector, where one of its entries is the standard
XOR (cf. [1])

Xσ =
⊕
k∈σ

W dk
σ\{k}, σ ⊆ Kq, |σ| = Kγ+1 (4.37)

intended for some Kγ + 1 (‘cache-aided’) users in Kq, while the remaining
L − 1 entries of the data vector are L − 1 uncoded subfiles intended for set
Gn ⊆ [K] \ Kq of L− 1 ‘cache-less’ users, where these L− 1 uncoded subfiles
are carefully picked to have the same index τ ⊂ σ. This data vector is then
ZF precoded, and the transmitted vector takes the form

xτ
σ = H−1

{kq}∪Gn

Xσ,

W
dGn(1)
τ ,
...

W
dGn(L−1)
τ

T

. (4.38)

Decoding at the cache-less users directly benefits from the ZF precoder,
which delivers one stream to each of the L−1 cache-less users, and one stream

⁸In the majority of the slots, since the achieved DoF is slightly smaller than L+Kγ

4.3. JOINT CSIT AND SUBPACKETIZATION REDUCTIONS 59

(the XOR) to the cache-aided user kq who will subsequently ‘cache-out’ the
interfering messages from the XOR to get its desired message W

dkq
σ\{kq}.

On the other hand, any other ‘cache-aided’ receiver k ∈ τ , will not benefit
from precoding and will rather receive maximal interference in the form

yτσ(k ∈ τ) = hT
k xτ

σ + wk

= hT
kh⊥

Gn
Xσ + hT

k

∑
i∈Gn

h⊥
Gn\{i}∪{kq}W

di
τ + wk.

Transmitted messages W di
τ intended for the cache-less users have been

picked to be completely known at all the cache-aided users in τ = σ \ {kq},
allowing each user in set τ to cache-out these messages, with the additional
use of their acquired CSIR⁹. This leaves each user in τ ⊂ σ with receiving
only Xσ, from which they can naturally decode their desired message.

Matching Algorithm

In the previous section we described the data vector that consists of one
XOR, Xσ, and L − 1 uncoded subfiles each described by the same index τ .
In this section we focus on how the XOR/subfile-index pairs are picked, so
that the decoding process can be performed successfully at all participating
L+Kγ users.

Focusing on a specific part of the files, labeled by q ∈ [Lc], the goal is to
successfully communicate all possible XORs Xσ, σ ⊆ Kq, |σ| = 1+Kγ (for all
‘cache-aided’ users in Kq) and at the same time to communicate each subfile
W di

τ , ∀i ∈ [K] \ Kq, ∀τ ⊂ Kq, |τ | = Kγ for the remaining users.
We begin by forming a bipartite graph, where nodes on the right-hand-

side (RHS) represent each of the XORs, while each node on the left-hand-side
(LHS) represents a set of L− 1 subfiles with the same index τ , but belonging
to a different file (each intended for a different user).

The set of all nodes Lp,τ on the LHS of the graph is{
Lp,τ : p ∈

[
K

L+Kγ

]
, τ ⊂ Kq, |τ | = Kγ

}
(4.39)

where p designates a class of L− 1 cache-less users (there are 1
L−1

(K − K
Lc
) =

K
L+Kγ

such classes), while τ designates the subfile index.
On the other hand, the RHS of the graph consists of two types of nodes.

The first set of nodes Rσ takes the form

{Rσ : σ ⊆ Kq, |σ| = Kγ + 1} (4.40)

and each node corresponds to a XOR Xσ, while the second set of nodes R∅,s
takes the form {

R∅,s : s ∈
[

Kγ

1 +Kγ

(
K/Lc

Kγ

)]}
(4.41)

⁹The fact that L uplink and downlink training slots can provide for this (global) CSIR,
is easy to see as is discussed in Section 4.1.1.

60 CHAPTER 4. THE CSI BOTTLENECK

and each node corresponds to an empty message.
The problem at hand is to match each node Lp,τ to a single and unique

node Rσ, which is equivalent to finding a perfect matching (cf. [82]). Each
class-index pair Lp,τ can share an edge with node Rσ iff τ ⊂ σ (∀p ∈

[
K

Kγ+L

]
).

Further, Lp,τ shares an edge with any node R∅,s.
Thus, there are Kγ

1+Kγ

(
K/Lc

Kγ

)
possible edges from any LHS node Lp,τ , and

these are the edges to any node of the second type of RHS nodes and to
exactly K

Lc
−Kγ nodes of the first type of RHS nodes¹⁰. Since each node has

the same number of edges, then it is guaranteed that there exists a perfect
matching (cf. [82]), while this perfect matching can be calculated through the
low complexity algorithm of [83].

Calculating a perfect matching indicates which XOR Xσ or which empty
message will be transmitted with a class-index pair (p, τ). Thus, we transmit
all XORs and their respective subfiles, while for pairs that are matched to
an empty set we only transmit uncoded subfiles.

Calculation of Delivery Time Focusing on the dataset partition labeled
by q, we can observe that the transmission will end when all ‘cache-less users’
(i.e., those in set [K] \ Kq) receive all their requested subfiles. Using the fact
that in each transmission we communicate a desired subfile to a each of the
L− 1 users, implies that the number of transmissions is equal to the number
of LHS nodes, which in turn implies a delay of

TL,JCS(K, γ) =
Lc

K
L+Kγ

(
K/Lc

Kγ

)
Lc

(
K/Lc

Kγ

) =
K

L+Kγ
(4.42)

and a DoF performance

DL,JCS(K, γ) =
K(1− γ)

TL,JCS(K, γ)
= (L+Kγ)(1− γ). (4.43)

Example

We assume a MISO BC setting where the transmitter is equipped with L = 7
antennas and K = 18 users each equipped with a cache of normalized size
γ = 1

9
. In this setting the subpacketization required by the algorithm in [1]

is S1 =
(
18
2

)
= 153 and, as previously discussed, does not require any CSIT,

while this work requires a subpacketization of SL = 3
(
6
2

)
= 45 and a CSIT

cost of C = L = 7 training slots.
Further, the proposed scheme can achieve the DoF of DL,JCS(K, γ) = 8,

while it improves upon the work in [1], which achieves DoF D1(K, γ) = 3. A
comparison over the CSIT cost, subpacketization requirements and achieved
DoF between many multi-antenna algorithms as well as the algorithm of [1]
is provided in Table 4.1.

¹⁰This happens because (p, τ) ↔ σ iff τ ⊂ σ, thus for a specific τ we have σ = τ ∪ {k} :
k ∈ Kq \ τ . This means that a τ can be matched to |Kq \ τ | = K

Lc
−Kγ nodes.

4.3. JOINT CSIT AND SUBPACKETIZATION REDUCTIONS 61

K = 18, Kγ = 2, L = 7 CSIT Cost per slot Subpacketization DoF
MN [1] 0 153 3
MS [10] 9 106 9
Subpacketization [56] 9 9 9
Low CSI [47] 7 7 · 106 9
CSAS (Sec. 4.2) 7 1377 9
JCS Scheme [80] 7 45 8

Table 4.1: Comparison of the DoF, Subpacketization and CSIT requirements
of algorithms [1, 10, 47, 56, 80] and algorithm of Section 4.2 for the setting
with K = 18 users, each with cache of normalized size γ = 1

18
and a base

station equipped with L = 7 antennas.

We begin with the placement phase, where users are divided into Lc =
L+Kγ
1+Kγ

= 3 groups i.e.,

K1 = {1, 2, 3, 4, 5, 6}
K2 = {7, 8, 9, 10, 11, 12}
K3 = {13, 14, 15, 16, 17, 18}.

Further, each subfile is divided into SL,JCS = Lc

(
K/Lc

Kγ

)
subfiles

W n →
{
W n

q,τ , q ∈ [Lc], τ ⊂ Kp, |τ | = Kγ
}
. (4.44)

Focusing on the first part of the file partition (i.e., focusing on part q = 1),
for any file n ∈ [N], the users cache as follows

Z1 = {W n
1,12,W

n
1,13,W

n
1,14,W

n
1,15,W

n
1,16}

Z2 = {W n
1,12,W

n
1,23,W

n
1,24,W

n
1,25,W

n
1,26}

Z3 = {W n
1,13,W

n
1,23,W

n
1,34,W

n
1,35,W

n
1,36}

Z4 = {W n
1,14,W

n
1,24,W

n
1,34,W

n
1,45,W

n
1,46}

Z5 = {W n
1,15,W

n
1,25,W

n
1,35,W

n
1,45,W

n
1,56}

Z6 = {W n
1,16,W

n
1,26,W

n
1,36,W

n
1,46,W

n
1,56}

Z7 = ... = Z16 = ∅.

In order to determine the transmission pairs, we need to find a perfect
matching over the formed bipartite graph. One such possible matching is
depicted in Figure 4.1.

Delivery and Decoding As discussed above, a node on the LHS corre-
sponds to a class of L − 1 = 6 cache-less users and the subfile each will
receive, while nodes on the RHS represent the XORs, each destined to Kγ+1
users. The matching informs us of the set of Kγ + L users and the subfiles

62 CHAPTER 4. THE CSI BOTTLENECK

X123

X124

X125

X126

X134

X135

X136

X145

X146

X156

1, 12
2, 12
1, 13
2, 13
1, 14
2, 14
1, 15
2, 15
1, 16
2, 16

X234

X235

X236

X245

X246

X256

X345

X346

X356

X456

1, 23
2, 23
1, 24
2, 24
1, 25
1, 56
2, 56
1, 26
1, 34
2, 34

∅
∅
∅
∅
∅
∅
∅
∅
∅
∅

2, 25
2, 26
1, 35
2, 35
1, 36
2, 36
1, 45
2, 45
1, 46
2, 46

Figure 4.1: The matching of the example of Sec. 4.3.2 split into three sub-
graphs.

that need to be transmitted. For example, selecting the first XOR-subfile pair,
we create the transmission vector

x12
123 = H−1

λ

W d1

1,23⊕W d2
1,13⊕W d3

1,12

W d7
1,12
...

W d12
1,12

where λ = {3, 7, 8, 9, 10, 11, 12}. Decoding at users in λ is direct since H−1

λ

separates the messages into L parallel streams. From these users, user 3
will also use its cache to extract its desired message from the XOR. The
remaining users, users 1 and 2, receive a linear combination of L elements.
For example, user 1 will receive

y12123(1) =hT
1 h⊥

λ\{3}W
d1
1,23 ⊕W d2

1,13 ⊕W d3
1,12 + hT

1

12∑
k=7

h⊥
λ\{k}W

dk
1,12 + w1

where we can see that the contents of the last summation can all be found
in the cache of user 1, who can then remove them, and proceed to again
use its cache to extract its desired information from the remaining XOR. A
similar process takes place at user 2.

Calculation of Time The bipartite graph of Figure 4.1 (corresponding to
part q = 1) implies 30 transmissions per part, which means that there will be
a total of 90 transmissions, each of normalized duration 1

SL,JCS
= 1

45
.

Consequently the overall delivery time takes the form

T7,JCS

(
18,

1

9

)
=

90

45
= 2. (4.45)

Chapter 5

Uneven Cache sizes and the
Multiple-Antenna Benefit

Within the context of coded caching, the work reveals the interesting con-
nection between multiple transmitters and cache-content heterogeneity, ef-
fectively showing that multiple antennas can completely remove the penalties
typically associated to cache-size unevenness.

First, we show that when both cache-aided and cache-less users need to
be served by a single antenna transmitter then the optimal strategy is to treat
each group separately, which is proved using Index Coding tools [84].

Further, we turn our focus on the MISO BC or its Degrees-of-Freedom
equivalent Interference Channel. First, we identify the performance limits
of the extreme case where cache-aided users coincide with users that do not
have caches and then we expand the analysis to the case where both user
groups are cache-aided but with heterogeneous cache-sizes. In the first case,
the main contribution is a new algorithm that employs perfect matchings on
a bipartite graph allowing to serve both user types simultaneously. In terms
of performance the algorithm can offer, for a wide range of parameters the
full multiplexing as well as the full coded-caching gains to both cache-aided
as well as cache-less users, while when this is not possible, we show that the
performance improvement achieves an L-fold boost.

Finally, in the heterogeneous setting where both user types are cache-
enabled, we reveal the surprising finding that adding cumulative normalized
cache Γ2 to the (previously) cache-less users and L−1 antennas to the system,
increases the Degrees of Freedom by a multiplicative factor of Γ2 + L.

Related Work

The cache-size unevenness problem has extensively been researched for the
single-antenna case. The work in [85] considered heterogeneous caches under
the decentralized setting assumption. Further, the work in [86] splits the
caches into layers, where the first layer is equal to the smallest cache in
the network, the second layer is equal to the difference between the second
smallest cache and the smallest cache and so on. Placement is performed

63

64 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

in a layer-by-layer basis, where the each layer is filled using the algorithm
of [1] adjusted to the number of users that are involved in this layer and
the cache size corresponding to this layer. In [87], the authors formulate
the single-stream, heterogeneous cache problem through a set of optimization
constraints. Each file is broken into 2K subfiles and the size of each subfile is
determined by solving the underlying optimization problem. Further, in [88]
the authors study the device-to-device setting (D2D) where users are equipped
with caches of heterogeneous sizes.

In [89] the authors study a two-user setting, where users have different
cache sizes and are able to receive information from a common channel and
at the same time each user is connected by an individual link, of potentially
different capacity, to the main server. For this setting the authors characterize
an achievable region. In [90] the authors study the heterogeneous setting
under the assumption of users belonging in one of two cache groups, either
the higher cache-size group with cache of normalized size γ1 or the smaller
cache-sized group with normalized cache-size γ2. The authors propose that
user caches be divided into two parts, where the first part is of normalized
size γ2 and the placement follows the MN [1] approach using parameters
(K, γ2). For the users with bigger caches, the remaining is filled with content
that is designed to reduce the perceived interference from the transmissions.
Authors show that their proposed solution achieves a performance gap of at
most 1.11 from the proposed method of [87], while at the same time avoiding
the complexity of solving the optimization problem.

A main theme of the above works is that cache-size heterogeneity shows
a DoF loss compared to its equivalent homogeneous setting.

Setting and brief summary of contributions

In the current setting, we will study the role of multiple antennas in tackling
the penalties associated with heterogeneous caches. Specifically, we will first
consider a system where a set of K1 users are equipped with caches, γ1 > 0,
while the remaining K2 = K −K1 users are cache-less, γ2 = 0. In the single-
antenna case we will show that under the assumption of uncoded placement
the optimal solution is to treat each group separately, thus showing that a
single-stream system is severely penalized by the presence of cache-less users.

Further, we shift the analysis to the study of the multiple antenna case,
where we will show that for a wide range of parameters we are able to simul-
taneously treat both user groups, thus achieving the DoF of the corresponding
homogeneous setting i.e.,

DL(K1, γ1, K −K1, 0) = K1γ1 + L = DL

(
K, γ = γ1

K1

K

)
. (5.1)

Moreover, when the DoF of the homogeneous system cannot be achieved,
we will show that the DoF performance is L times higher than the single
antenna case, which performance we will prove that is exactly optimal under
the assumption of uncoded placement.

5.1. MAIN RESULTS 65

We will then proceed to explore how adding caches to the second group
of users changes the system performance i.e., the K2 = K−K1 users are now
endowed with caches of normalized size γ2 ∈ (0, γ1). First, we will show that
the DoF of

DL(K1, γ1, K2, γ2) = L+K1γ1 +K2γ2 (5.2)

can be achieved for a broad range of parameters, thus showing that multiple-
antennas can help reduce the effects of cache-size unevenness. One notable
result shows that the same performance boost experienced in the cache-less
case when adding L−1 antennas (by a multiplicative factor of L) can be also
achieved by adding caches to the cache-less group.

Specifically, beginning from the single antenna setting with the cache-
aided and cache-less groups, by adding a cumulative cache equal to Γ2 at the
cache-less group and L − 1 antennas we can achieve a multiplicative DoF
boost up to Γ2 + L.

We proceed with the theorems and some interesting corollaries.

5.1 Main Results
We begin with the case that involves cache-less users (γ2 = 0), and then we
will generalize it to the broader case where γ2 ∈ (0, γ1).

5.1.1 Cache-aided and cache-less users
We start with a result that exemplifies — in the single stream case of L = 1 —
the problem with having cache-aided users coexisting with cache-less users.
We will denote with

T (i)
m ≜ Ki(1− γi)

m+Kiγi
(5.3)

the delay needed to serve Ki cache-aided users with normalized cache size
γi (in the absence of any cache-less users) using m antennas, where this
performance is exactly optimal in the single stream case (under uncoded
cache placement [9, 35]), while it is order optimal, with a gap of at most
2 from the optimal in the multi-antenna case (under the assumptions of
one-shot and linear schemes) [11].

Theorem 5.1. In a single-stream BC with K1 cache-aided users equipped
with cache of normalized size γ1 and with K2 additional cache-less users, the
optimal delay, under the assumption of uncoded placement, takes the form

T1(K1, γ1, K2, γ2 = 0) = T
(1)
1 +K2

=
K1(1− γ1)

1 +K1γ1
+K2. (5.4)

Proof. The proof is relegated in Section 5.4.1.

66 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

The above reveals that in the single stream case, every time a single cache-
less user is added, there is a delay penalty of an entire unit of time, revealing
that the two types of users can only be treated separately. If such separation
were to be applied in the multi-antenna case, the achievable performance
would be

TL(K1, γ1, K2, γ2 = 0) =
K1(1− γ1)

L+K1γ1
+

K2

L
(5.5)

and the K2 cache-less users would experience the multiplexing gain of L, but
would experience no caching gain.

We proceed with the main result.

Theorem 5.2. In the MISO BC with L ≥ 1 antennas, K1 cache-aided users
equipped with cache of fractional size γ1, and K2 ≥ (L − 1)T

(1)
1 cache-less

users, the delivery time

TL(K1, γ1, K2, γ2 = 0)= T
(1)
1 +

K1 − (L− 1)T
(1)
1

min{L,K2}
(5.6)

is achievable and within a factor of 2 from optimal, while if K2 ≤ (L − 1)T
(1)
1

then
TL(K1, γ1, K2, γ2 = 0) =

K2 +K1(1− γ1)

K1γ1 + L
(5.7)

is achievable and within a factor of 3 from optimal under the assumption of
linear and one-shot schemes.

Proof. The achievability part of the proof can be found in Section 5.2.1, while
the outer bound and gap calculations can be found in Section 5.4.2.

Furthermore we have the following which accentuates the multiplicative
and optimal nature of the gains from adding antennas.

Theorem 5.3. Starting from the single-antenna BC with K1 cache-aided users
with caches of normalized size γ1 and K2 = (L̃− 1)T

(1)
1 cache-less users (γ2 =

0), where L̃ takes any positive value, going from 1 to L ≤ L̃ antennas, reduces
delay by L times and is the optimal performance under the assumption of
uncoded cache placement.

Proof. The calculation of the performance comes directly from Theorems 5.1
and 5.2, while the proof of optimality of the scheme employs index coding
and is shown in Section 5.4.3.

Let us proceed with a few corollaries that explore some of the ramifica-
tions of the above theorem. Eq. (5.5) helps us place the following corollary
into context.

Corollary 5.1. In the L-antenna, (K1, γ1, K2, γ2 = 0)MISO BC withK2 ≤ (L−
1)T

(1)
1 , all cache-aided and cache-less users can experience full multiplexing

gain L as well as full caching gain K1γ1.

5.1. MAIN RESULTS 67

Proof. The proof is direct from Eq. (5.7).

Example 5.1. In a setting with K1 = 5 cache-aided users each equipped with
a cache of normalized size γ1 = 1

5
and K2 = 2 cache-less users, the single-

antenna, optimal delay under the assumption of uncoded placement is

T1

(
5,

1

5
, 2, 0

)
=

K1(1− γ1)

K1γ1 + 1
+K2 = 4. (5.8)

By adding one more antenna, i.e. L = 2, the delay becomes

T2

(
5,

1

5
, 2, 0

)
=

K1(1− γ1) +K2

K1γ1 + 2
= 2 (5.9)

yielding a performance improvement by a factor of 2.

Note 5.1. We quickly note that the above multiplicative boost of the DoF is
in contrast to the additive DoF boost (additive multiplexing gain) experienced
in systems with only cache-aided users [10], showing the important role of
antennas in systems with cache heterogeneity.

We proceed with another corollary which can be placed into context, by
noting that in a system with L antennas and K2 cache-less users, adding
one more antenna would allow (without added delay costs) the addition of
only a diminishing number of K2

L
extra cache-less users.

Corollary 5.2. Starting from the basic single-stream BC with K1 cache-aided
users equipped with caches of normalized size γ1, then adding an extra L− 1
transmit antennas, allows for the addition of

K2 = (L− 1)T
(1)
1 ≈ L− 1

γ1
(5.10)

extra cache-less users, at no added delay costs.

Proof. This is direct from Theorem 5.2.

The following takes another point of view and explores the benefits of
injecting cache-aided users into legacy (cache-less) MISO BC systems. To put
the following corollary into context, we recall that in a L transmit-antenna
MISO BC serving K2 ≥ L cache-less users, the optimal delay is K2

L
.

Corollary 5.3. In a MISO BC with K2 ≥ L cache-less users, introducing K1

additional cache-aided users with γ1 ≥ L
K2
, incurs delay

TL(K1, γ1, K2, γ2 = 0) ≤ K2

L− 1

and thus we can add an infinite number of cache-aided users with a delay
increase by a factor that is at most L

L−1
.

Proof. This is direct from Theorem 5.2.

68 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

Multiple antennas for ‘balancing’ cache-size unevenness In the variety
of works (cf. [85, 86, 91, 92]) that explore the single-stream coded caching
setting in the presence of uneven cache sizes, we see that having cache-
size asymmetry induces delay penalties and that the preferred cache-size
allocation is the uniform one. The following corollary addresses this issue,
in the multi-antenna setting.

Corollary 5.4. The L-antenna, (K1, γ1, K2, γ2 = 0) MISO BC with K2 ≤ (L−
1)T

(1)
1 cache-less users, incurs the same achievable delay

TL(K1, γ1, K2, γ2 = 0) =
K2 +K1(1− γ1)

L+K1γ1
=

K(1− γav)

L+Kγav

as the order optimal homogeneousK-user MISO BCwith homogeneous caches
of normalized size γav=

K1γ1
K

(same cumulative cache K1γ1 = Kγav).

Proof. This is direct from Theorem 5.2.

Example 5.2. Let us assume the (K1 = 5, γ1 = 1/5, K2 = 2, γ2 = 0) MISO BC
setting with L = 2 antennas. The performance of this setting, as shown in a
previous example (Eq. (5.9)) is T2 = 2.

Furthermore, the performance of the L = 2 antenna MISO BC system with
K = 7 cache-aided users and γ = γ1

K1

K
= 1

7
is (cf. [10,11]) is

T2

(
7,

1

7

)
=

K(1− γ)

L+Kγ
= 2. (5.11)

5.1.2 Coexistence of users with different cache sizes
We now proceed to lift the constraint of cache-less users and consider the
more general scenario of γ2 ∈ (0, γ1).

Theorem 5.4. In the L-antenna (K1, γ1, K2, γ2 > 0) MISO BC, if T (1)
1 ≥ T

(2)
L−1,

then the delivery time matches that of the corresponding homogeneous system
with K users of equally sized caches γ = K1γ1+K2γ2

K
, i.e.

TL(K1, γ1, K2, γ2) =
K1(1− γ1) +K2(1− γ2)

L+K1γ1 +K2γ2
(5.12)

while if T (1)
1 < T

(2)
L−1 it takes the form

TL(K1,γ1, K2, γ2) =
K1(1− γ1)

K1γ1 + 1
+

K2(1− γ2)− T
(1)
1 (L− 1 +K2γ2)

min{K2, L+K2γ2}
.

Proof. The proof is constructive and is detailed in Section 5.3.

Remark 5.1. Theorems 5.2 and 5.4 show how adding either one more anten-
nas or enabling with caches the cache-less users provides the same increase
in the DoF. Most importantly, by either increasing the number of antennas or

5.1. MAIN RESULTS 69

increasing the caches of the weaker users helps to decrease the heterogeneity
of the system and allows to achieve the homogeneous performance. For ex-
ample, let us assume the L-antenna (K1, γ1, K2 = L · T (1)

1 , γ2) MISO BC. Then,
the performance is given by Eq. (5.6) i.e.,

TL(K1, γ1, K2, γ2 = 0) = T
(1)
1 +

T
(1)
1

L
= T

(1)
1

L+ 1

L
. (5.13)

Next, we will show that increasing either the number of antennas by 1 or adding
a small cache to each of the cache-less users such that K2γ2 = 1 will result to
the same DoF performance. First, increasing the number of antennas to L+1,
corresponds to the case described by Eq. 5.7 i.e.,

TL+1 (K1, γ1, K2, γ2 = 0) = T
(1)
1 . (5.14)

Further, by adding a small cache to each of the cache-less users such that
K2γ2 = 1 we can easily see that the performance corresponds to Eq. (5.12),
thus

TL

(
K1, γ1, K2, γ2 =

1

K2

)
=

K1(1− γ1) +K2 − 1

L+K1γ1 + 1

= T
(1)
1 −

1

L+ 1 +K1γ1
(5.15)

where the last term corresponds to the local caching gain.

What the above says is that beginning from the single-stream case with
K2 = (L̃ − 1)T

(1)
1 cache-less users, then adding caches to those users and/or

increasing the number of antennas up to a total DoF of L̃, will lead to a
multiplicative increase of the DoF. This is an outcome of the exploitation
of the multiple antennas as a means of spatially separating users and hence
treating in the same transmission both user types.

Example 5.3. Let us assume the single antenna system with K1 = 7 cache-
aided users equipped with normalized caches of size γ1 = 1

7
and K2 = 10

cache-less users. First, we will calculate the performance of the above setting
and then we will proceed with adding one more antenna, i.e. L′ = 2 and finally,
we will add caches to the cache-less users.

The first setting’s performance is calculated using Eq. (5.4)

T1 (7, 1/7, 10, 0) =
7− 1

2
+ 10 = 13. (5.16)

Further, the second setting’s performance is given by Eq. (5.6)

T2 (7, 1/7, 10, 0) =
7− 1

2
+

7

2
=

13

2
. (5.17)

Finally, the third setting’s performance is given by Eq. (5.13)

T2 (7, 1/7, 10, 1) =
7− 1

2
+

3

3
= 4. (5.18)

70 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

From the above we can see that doubling the number of antennas will halve
the system delay. Furthermore, if we also equip cache-less users with caches
of cumulative size Γ2 = 1, while having L′ = 2 antennas, we can see that the
delay is reduced by more than a multiplicative factor of 3, compared to the
original setting, which amounts to a nmultiplicative reduction equal to L′ + Γ2

and a further additive reduction attributed to the local caching gain.

Note 5.2. It is interesting to note, as will be evidenced in the description of the
algorithm and the decoding process at the users, that in the scenario where
the cache-aided users co-exist with the cache-less users, that the decoding
process at the cache-less users makes use of simple precoding elements, and
as such can be implemented by any current mobile device.

Thus, not only the algorithm is able to provide the increased gains, but at
the same time it can be readily implementable in the scenarios described in the
introduction.

5.2 Description of the Schemes
We begin with the description of the case where the cache-aided users co-
exist with the cache-less users. This scheme will then serve as the basis for
the algorithm presented in the case where both user types have positive cache
sizes.

In both of these cases, the challenge of the algorithm lies in properly
combining the delivery of content towards each of the two types of users,
such that subfiles intended to one set are either “cacheable” or will be “nulled-
out” via Zero-Force (ZF) precoding.

Notation We remind that for m ∈ N we denote

T (i)
m ≜ Ki(1− γi)

m+Kiγi
, i ∈ {1, 2}. (5.19)

Further, for sets σ, β we define the two XORs Xσ and Xσ,β as

Xσ =
⊕
k∈σ

W dk
σ\{k} (5.20)

Xσ,β =
⊕
k∈σ

W dk
β∪σ\{k}. (5.21)

5.2.1 Placement and delivery in the presence of cache-less
users

The first scheme that we will present is designed to serve the demands of
both cache-aided and cache-less users in the same transmission. The multi-
antenna advantage that we will exploit is, compared to the single-stream case,
the ability to spatially separate users, allowing unwanted interference towards

5.2. DESCRIPTION OF THE SCHEMES 71

cache-less users to be “nulled-out”. We build the transmission message by
forming a vector comprized of one XOR, intended for some K1γ1 + 1 cache-
aided users, and L− 1 uncoded subfiles, each intended for a cache-less user.
The uncoded messages are nulled-out at a specific cache-aided user, as well
as its non-intended cache-less users. Further, the XOR is “steered-away”
from all the L− 1 participating cache-less users, thus allowing the cache-less
users to successfully decode their intended messages. Moreover, the cache-
aided, precoder-assisted user is also able to decode its message, since the
precoding process “hides” the unintended, uncoded messages, leaving only
the XOR, which naturally can be decoded. Finally, we need to examine the
decoding at the remaining K1γ1 cache-aided users. Since there are no other
spatial degrees-of-freedom that we can exploit, it follows that these K1γ1
users will receive a linear combination of all L messages. In order for these
users to decode their message (which is contained in the XOR) they need to
“cache-out” the L − 1 uncoded messages and since any subfile is cached at
most at K1γ1 users, it follows that each uncoded subfile needs to have the
same index, which is uniquely defined by the K1γ1 cache-aided users.

In order to communicate the requested files it suffices to transmit for the
cache-aided users all XORs, generated as in the algorithm of [1], while for
the cache-less users all the subfiles for each of their requested files. The
transmit message generation that was described in the previous paragraph
reveals that if we transmit a specific XOR, e.g. χ, then the subfiles need to
have the same index, i.e. τ , where τ ⊂ χ. This design can be viewed as
the problem of matching a XOR index χ with a subfile index τ , such that,
at the end, each XOR will be matched to a single and unique subfile index
(injective).

In other words, the above problem can be viewed as a perfect matching
on a bipartite graph, where each node on the left-hand-side (LHS) represents
one of the different XORs, while each node one the right-hand-side (RHS)
represents a collection of L − 1 subfiles, intended for some L − 1 cache-less
users, of the same index τ .

We proceed with the description of the placement and delivery phases.

Placement Phase

Initially, each file W n, n ∈ [N], is divided into

SL(K1, γ1, K2, 0) = K1(1− γ1)

(
K1

K1γ1

)
(5.22)

subfiles, where subfiles are named according to

W n → {W n,ϕ
τ , τ ⊂ K1, |τ | = K1γ1, ϕ ∈ K1 \ τ}

while cache Zk of cache-aided user k ∈ K1 is filled according to

Zk ={W n,ϕ
τ : k ∈ τ, ∀ϕ ∈ K1 \ τ, ∀n ∈ [N]}. (5.23)

72 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

This is identical to the original placement in [1] (for problem parameters
K1, γ1), and the extra subpacketization (corresponding to ϕ) will facilitate
the aforementioned combinatorial problem of matching XORs with uncoded
subfiles.

Delivery Phase

We will first focus on the case of K2 = (L− 1)T
(1)
1 , where the delay

TL(K1, γ1, K2, 0) =
K2 +K1(1− γ1)

K1γ1 + L
(5.24)

can be achieved by consistently treating K1γ1 + L users. The extension to
an arbitrary number of cache-less users is based on the above algorithm and
will be described later on.

Matching Problem As we have seen, the demands of the cache-aided users
are treated by default by sending each XOR Xχ. At the same time, we are
able to treat L − 1 cache-less users, under the condition that their received
subfile index τ is the same and that τ ⊂ χ.

Thus, the challenge presented in the creation of a transmitted vector is to
match a XOR index χ with a subfile index τ ⊂ χ such that, at the end, each
χ is matched to a unique τ , in the case where T

(1)
1 = 1 while if T (1)

1 > 1, then
χ needs to be matched to exactly T

(1)
1 different τ . This constitutes a perfect

matching over a bipartite graph, where the left-hand-side (LHS) set of nodes
represent the

(
K1

K1γ1+1

)
different χ indices, while a node of the right-hand-side

(RHS) represents one of the T
(1)
1 copies of the

(
K1

K1γ1

)
different τ intended for

some L − 1 cache-less recipients. A node of the LHS, χ is connected to a
node of the RHS τ iff τ ⊂ χ.

This type of problem is guaranteed to have a solution when each node
from one side, e.g. LHS, is connected to exactly d ∈ N nodes of the other
side, e.g. RHS (see [82]). In our problem, it is easy to see that each node of
the LHS is connected to d = T

(1)
1 · (K1γ1 + 1) = K1(1− γ1) nodes of the RHS.

Since an algorithm that finds such a solution may have high complexity
(for example see [93]) we, instead, present an algorithm that requires a slightly
higher subpacketization, but can provide an instant solution to the above
matching problem. Specifically, the subpacketization of Eq. (5.22) contains
the term K1(1− γ1), thus creating K1(1− γ1) copies of each XOR Xχ, while
the same holds for every subfile τ intended for the cache-less users. Our
algorithm achieves a perfect matching by matching node (ϕ, τ), where ϕ ∈
K1 \ τ , with one of the XORs X{ϕ}∪τ of the LHS.

Transmission The delivery phase, in the form of pseudo-code, is presented
in Algorithm 5.1, which we further describe in this paragraph. Transmission
commences by splitting the cache-less users into T

(1)
1 groups with L− 1 users

in each group (Step 2). Then we pick set τ ⊂ K1, |τ | = K1γ1 (Step 3), which

5.2. DESCRIPTION OF THE SCHEMES 73

1 T
(1)
1 = K1(1−γ1)

1+K1γ1
(assume T

(1)
1 ∈ N).

2 Group cacheless users:

g1 = {K1 + 1, K1 + 2, ..., K1 + L− 1}, ...,
g
T

(1)
1

= {K1 + (L− 1) · (T (1)
1 − 1), ..., K}.

3 for all τ ⊂ K1, |τ | = K1γ1 (pick file index) do
4 for all ϕ ∈ K1 \ τ (pick precoded user) do
5 Set χ = τ ∪ {ϕ}
6 for all t ∈

[
T

(1)
1

]
(pick cacheless group) do

7 Transmit:

xt
τ,ϕ = H−1

{ϕ}∪gt

Xχ

W
dgt(1),ϕ
τ

...
W

dgt(L−1),ϕ
τ

 .

8 end
9 end

10 end
Algorithm 5.1: Transmission in the Cache-less Case

set serves two purposes. First, it identifies the cache-aided users that will
not be assisted by precoding and second, it identifies the subfile index that
the selected cache-less users will receive.

Next, cache-aided user ϕ is picked from the remaining set of cache-less
users K1 \ τ (Step 4). Further, set gt containing some L− 1 cache-less users
is picked (Step 6).

The transmitted vector is created by calculating the precoder matrix H−1
{ϕ}∪gt

such that it forms the normalized inverse of the channel between the L-
antenna transmitter and users of set {ϕ} ∪ gt. The precoder matrix is mul-
tiplied by the information vector, which is comprized of XOR Xχ (intended
for users τ ∪{ϕ}) and the L− 1 subfiles, all sharing index τ (intended for the
cache-less users of set gt) (Step 7).

Decodability In each transmitted vector, we can identify two sets of users,
i) those that are assisted by precoding (set {ϕ}∪ gt) and ii) those that are not
(set τ). For the “precoding-aided” set we can immediately recognize that due
to the form of the precoder they will receive only their intended message. In
the special case of user ϕ, decoding the received XOR will also require the
use of its cache.

Users belonging to the second set (set τ) will be receiving a linear combi-

74 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

nation of all L messages i.e.,

ytτ,ϕ(k ∈ τ) = hT
kh⊥

τ Xχ +
L−1∑
i=1

hT
kh⊥

λ\{gt(i)}W
dgt(i),ϕ
τ + wk (5.25)

where λ = ϕ∪ gt. We can see that all the subfiles included in the summation
are cached at all users of set τ , thus can be removed from the equation.
What remains is XOR Xχ, which can be decoded (this is direct from [1]) by
all members of set χ.

Transmitting unique subfiles every time At this point the reader may
have noticed that the secondary subfile index, associated with the subfile of
the cache-aided users, is not identified in Alg. 5.1. This is intentional, since
every time we transmit subfile W dk

τ , we pick a new upper index such that
all such indices have been picked. We continue to show that the number of
times a subfile is transmitted is exactly K1 −K1γ1.

Proof. Let us assume we are interested in delivering W dk
µ to a user belonging

to the set of cache-less users. We can see that the subfile index µ uniquely
defines Step 3, while the user’s number k defines Step 6. Then the algorithm
goes over all possible ϕ ∈ K1 \ µ (Step 4), thus at the end subfile W dk

µ will be
delivered exactly K1 −K1γ1 times to cache-less user k.

Now we turn our focus to some cache-aided user k and examine how
many times this user will receive subfile W dk

µ . We need to count the number
of times the subfile is delivered when user k is assisted by precoding as well
as the number of times this same subfile is transmitted when user k is not
assisted by precoding.

When user k is assisted by precoding it follows that the remaining cache-
aided users are uniquely defined by µ, i.e. τ = µ, thus there is only one
iteration for Steps 3 and 4. Then, Algorithm 5.1 will iterate Step 6 a total of
t = T

(1)
1 times, thus transmitting W dk

µ a total of T (1)
1 = K1(1−γ1)

1+K1γ1
times.

Further, when user k is not assisted by precoding, then k ∈ τ and the set
of active cache-aided users is χ = τ ∪ µ. Given that the set of cache-aided
users is fixed and that k ∈ τ , it follows that the algorithm will iterate Steps 3
and 4 a total of K1γ1 times, which correspond to each of the remaining cache-
aided users (χ \ {k}) being chosen to be assisted by precoding. Moreover, for
each of these iterations Step 6 is repeated T

(1)
1 times.

In total, the number if times subfile W dk
τ is transmitted, when k is a

cache-aided user, either assisted by precoding or not, is

T
(1)
1 +K1γ1 · T (1)

1 = K1(1− γ1) (5.26)

which concludes the proof.

Generalization of scheme and calculation of delay

We have seen that Algorithm 5.1 requires T
(1)
1 ∈ N. It is clear that if (L −

1) · T (1)
1 /∈ N, which represents the threshold beyond which we cannot serve

5.2. DESCRIPTION OF THE SCHEMES 75

all cache-less users with the maximum DoF, then the number of cache-less
users K2 must be either smaller or higher than (L − 1) · T (1)

1 , both of which
will be treated in the following paragraph.

If, on the other hand, (L−1) ·T (1)
1 ∈ N, while T

(1)
1 /∈ N, then we can simply

increase the subpacketization by a multiplicative factor of L − 1. This will
create a bipartite graph with (L− 1)K1(1− γ1)

(
K1

K1γ1+1

)
nodes on the LHS and

(L−1)(K1γ1+1)
(

K1

K1γ1

)
nodes on the RHS i.e., both numbers are integers, thus

the perfect matching can be achieved.
The other two constraints that we need to address, in order to generalize

our algorithm are the cases where K2 ≷ (L− 1)T
(1)
1 .

First, if K2 < (L − 1)T
(1)
1 we proceed as in Algorithm 5.1 but when the

demands of the cache-less users have been completely satisfied, then we move
to treat only the cache-less users (through any multi-antenna algorithm, such
as [10,11,47,56]), which we can, naturally, achieve with DoF DL(K1, γ1) = L+
K1γ1, thus achieving the consistent DoF of DL(K1, γ1, K2, γ2 = 0) = L+K1γ1
for the whole duration of the transmission.

Finally, for the case of K2 > (L − 1)T
(1)
1 , delivery is split into two sub-

phases. During the first sub-phase, we simply employ Algorithm 5.1 on the
first (L−1)T

(1)
1 cache-less users while simultaneously completing the delivery

to all K1 cache-aided users. This is done at a rate of K1γ1 + L users at a
time. Then in the second sub-phase we treat the remaining K2 − (L− 1)T

(1)
1

cache-less users via ZF-precoding, thus L users at a time. The above sum up
to total delay

TL(K1, γ1, K2, γ2 = 0) = T
(1)
1 +

K2−(L− 1)T
(1)
1

min{L,K1−(L− 1)T
(1)
1 }

. (5.27)

Delay Calculation Following the steps of Algorithm 5.1, corresponding to
the case of K2 =

K1(1−γ1)
K1γ1+1

, we have

TL

(
K1,γ1,

K1(1− γ1)

K1γ1 + 1
, 0
)
=

(
K1

K1γ1

)
K1(1− γ1)

K1(1−γ1)
K1γ1+1

K1(1− γ1)
(

K1

K1γ1

)
=

K1(1− γ1)

K1γ1 + 1
=

K1(1− γ1) +K2

K1γ1 + L
. (5.28)

5.2.2 Cache-less users example (γ2 = 0)
In this example, we will consider the L = 2-antenna MISO BC, where K1 = 5,
users have caches of normalized size γ1 = 1

5
, while K2 = 2 users have no

caches.
First, each file W n, n ∈ [N] is subpacketized as follows

W n → {W n,ϕ
τ , τ ⊂ K1, |τ | = K1γ1, ϕ ∈ K1 \ τ}. (5.29)

76 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

The caches of the users in set K1 are filled according to Eq. (5.23), so for
example, the cache of the first user contains

Z1 =
{
W n,2

1 ,W n,3
1 ,W n,4

1 ,W n,5
1 , ∀n ∈ [N]

}
.

Before we describe set of all transmitted vectors that can satisfy the users’
demands, we analyze a transmitted vector and its decoding at each user.

Transmission and decoding for specific set of users The goal is to treat
K1γ1 + L = 3 users in each time-slot. Let us look in detail one transmitted
vector, where we treat cache-aided users 1 and 2 together with cache-less
user 6. In this case, we transmit

x1
1,2 = H−1

26

[
A1

2B
2
1

F 2
1

]
. (5.30)

At the reception of a message, user 2 will receive — due to ZF precoding and
the design of the precoding matrix H−1

26 — only the XORed message A1
2B

2
1 ,

where it can proceed to cache-out A1
2 and thus to decode the desired subfile

B2
1 . User 6 will receive, again due to precoding, only its respective desired

message F 2
1 . Finally, user 1 will receive a linear combination of A1

2B
2
1 and

F 2
1 , as follows

y1 = hT
1 h⊥

6 A
1
2B

2
1 + hT

1 h⊥
2 F

2
1 + w1 (5.31)

First, by caching out F 2
1 , user 1 can decode the XOR, while by XORing out

subfile B2
1 it can decode its desired message.

Sequence of transmissions We now proceed with the entire sequence
of the 40 transmissions. Given that each file is subpacketized into K1(1 −
γ1)
(

K1

K1γ1

)
= 5(1− 1

5
)
(
5
1

)
= 20 subpackets, the 40 transmissions will correspond

to the desired delay of T = K2+K1(1−γ1)
L+K1γ1

= 2. The transmissions are:

x1
1,2 = H−1

26

[
A1

2B
2
1

F 2
1

]
, x2

1,2 = H−1
27

[
A3

2B
3
1

G2
1

]
, x1

1,3 = H−1
36

[
A1

3C
3
1

F 3
1

]
x2
1,3 = H−1

37

[
A2

3C
2
1

G3
1

]
, x1

1,4 = H−1
46

[
A1

4D
4
1

F 4
1

]
, x2

1,4 = H−1
47

[
A2

4D
2
1

G4
1

]
x1
1,5 = H−1

56

[
A1

5E
5
1

F 5
1

]
, x2

1,5 = H−1
57

[
A2

5E
2
1

G5
1

]
, x1

2,1 = H−1
16

[
A4

2B
4
1

F 1
2

]
x2
2,1 = H−1

17

[
A5

2B
5
1

G1
2

]
, x1

2,3 = H−1
36

[
B2

3C
3
2

F 3
2

]
, x2

2,3 = H−1
37

[
B1

3C
1
2

G3
2

]

5.3. TWO TYPES OF CACHE-AIDED USERS 77

x1
2,4 = H−1

46

[
B2

4D
4
2

F 4
2

]
, x2

2,4 = H−1
47

[
B1

4D
1
2

G4
2

]
, x1

2,5 = H−1
56

[
B2

5E
5
2

F 5
2

]
x2
2,5 = H−1

57

[
B1

5E
1
2

G5
2

]
, x1

3,1 = H−1
16

[
A4

3C
4
1

F 1
3

]
, x2

3,1 = H−1
17

[
A5

3C
5
1

G1
3

]
x1
3,2 = H−1

26

[
B4

3C
4
2

F 2
3

]
, x2

3,2 = H−1
27

[
B5

3C
5
2

G2
3

]
, x1

3,4 = H−1
46

[
C3

4D
4
3

F 4
3

]
x2
3,4 = H−1

47

[
C1

4D
1
3

G4
3

]
, x1

3,5 = H−1
56

[
C3

5E
5
3

F 5
3

]
, x2

3,5 = H−1
57

[
C1

5E
1
3

G5
3

]
x1
4,1 = H−1

16

[
A3

4D
3
1

F 1
4

]
, x2

4,1 = H−1
17

[
A5

4D
5
1

G1
4

]
, x1

4,2 = H−1
26

[
B3

4D
3
2

F 2
4

]
x2
4,2 = H−1

27

[
B5

4D
5
2

G2
4

]
, x1

4,3 = H−1
36

[
C2

4D
2
3

F 3
4

]
, x2

4,3 = H−1
37

[
C5

4D
5
3

G3
4

]
x1
4,5 = H−1

56

[
D4

5E
5
4

F 5
4

]
, x2

4,5 = H−1
57

[
D1

5E
1
4

G5
4

]
, x1

5,1 = H−1
16

[
A3

5E
3
1

F 1
5

]
x2
5,1 = H−1

17

[
A4

5E
4
1

G1
5

]
, x1

5,2 = H−1
26

[
B3

5E
3
2

F 2
5

]
, x2

5,2 = H−1
27

[
B4

5E
4
2

G2
5

]
x1
5,3 = H−1

36

[
C2

5E
2
3

F 3
5

]
, x2

5,3 = H−1
37

[
C4

5E
4
3

G3
5

]
, x1

5,4 = H−1
46

[
D2

5E
2
4

F 4
5

]
x2
5,4 = H−1

47

[
D3

5E
3
4

G4
5

]
.

The 40 slots, each of duration

ts =

(
Kc(1− γ)

(
Kc

Kcγ

))−1

=
1

20
, (5.32)

imply a delay T = 2, which is also the same delay that would be needed in
the symmetric case where the K = 7 users would have an identical γav = 1

7

(same cumulative cache Kγav = 1).

5.3 Two types of cache-aided users
In this section we consider the L-antenna MISO BC setting, where both user
types are equipped with caches of heterogeneous capacities i.e., γ1, γ2, where
γ2 ∈ (0, γ1). Contrary to the cache-less users case, here, treating the two types
simultaneously is indeed possible, even when utilizing one transmit antenna.
The elusive goal that is presented in this setting has been to achieve the same
performance as the respective homogeneous system i.e, when γav =

K1γ1+K2γ2
K

.
What we will show here is that this performance can indeed be achieved in
the multi-antenna case, for a wide range of parameters.

First, we will focus on proving the result of Eq. (5.12), where we can see
that each transmission serves exactly L+K1γ1+K2γ2 users. The main idea is
to create an L×1 information vector, which we will further multiply with an
L × L precoder matrix to form the transmitting vector. The elements of the

78 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

created vector belong in one of 4 types. One element corresponds to a XOR
of 1+K1γ1 subfiles intended for some users of set K1, while another element
corresponds to a XOR of 1 +K2γ2 subfiles which is intended for some users
of set K2. The remaining L − 2 elements will carry L1 − 1, L1 ∈ [1, L − 1]
uncoded messages for users of set K1 and L2 − 1, L2 ∈ [1, L − 1] uncoded
messages for users of set K2, where L1 +L2 = L, and where the exact values
of variables L1 and L2 are calculated by solving

K1(1− γ1)

L1 +K1γ1
=

K2(1− γ2)

L2 +K2γ2
(5.33)

and assuming that L1 ≥ 1.
In other words, in the above problem we allocate L1 streams to one set

of users and L2 streams to the other set of users. This observation will
allow us to view the problem at hand as a concatenation of two multi-
antenna problems. In what follows, we will use the multi-antenna Coded
Caching algorithm which we present in detail in Section 4.2. Further, we
will assume that L1 and L2 are integers, while we relegate the non-integer
case in Section 5.5.

Placement Phase

We split each file W n, n ∈ [N] into

SL(K1, γ1, K2, γ2) = (K1γ1 + L1)

(
K1

K1γ1

)
(K2γ2 + L2)

(
K2

K2γ2

)
(5.34)

subfiles, i.e. each subfile W n,ϕ1,ϕ2
τ1,τ2

is characterized by 4 indices, ϕ1 ∈ [K1γ1+L1],
τ1 ⊂ K1, |τ1| = K1γ1 and ϕ2 ∈ [K2γ2 +L2], τ2 ⊂ K2, |τ2| = K2γ2, where indices
τ1 and τ2 reveal which users have cached this subfile from sets K1 and K2,
respectively.

The caches of the users are filled as follows

Zk1∈K1 = {W n,ϕ1,ϕ2
τ1,τ2

: k1 ∈ τ1, ∀τ2, ϕ1, ϕ2} (5.35)
Zk2∈K2 = {W n,ϕ1,ϕ2

τ1,τ2
: k2 ∈ τ2, ∀τ1, ϕ1, ϕ2} (5.36)

where it is easy to see that the above placement respects the cache-size
constraint of each user.

Delivery Phase

Algorithm 5.2 describes the delivery phase in the form of a pseudo-code.
As mentioned above, the algorithm works as a concatenation of two multi-
antenna Coded Caching schemes. Specifically, we can see that having selected
the XOR for set K1, along with the precoded user (Steps 1 and 2), then the
algorithm goes over all possible combinations of XORs and their respective
users corresponding to set K2. In the case of users of set K1, this allows to
deliver all the index pairs (ϕ2, τ2) that correspond to the other set of users.

5.3. TWO TYPES OF CACHE-AIDED USERS 79

1 for all σ1 ⊆ [K1], |σ1| = K1γ1 + 1 do
2 for all s1 ∈ σ1 do
3 for all σ2 ⊆ [K2], |σ2| = K2γ2 + 1 do
4 for all s1 ∈ σ2 do
5 Set: τ1 = σ1 \ {s1}
6 τ2 = σ2 \ {s2}
7 λ = {s1} ∪ {s2} ∪ βτ1,s1 ∪ βτ2,s2 .
8 Transmit:

xs1,τ1
s2,τ2

= H−1
λ ·

Xσ1,βτ1,s1

W
dβτ1,s1 (1)

τ1,τ2

...

W
dβτ1,s1 (L1−1)

τ1,τ2

Xσ2,βτ2,s2

W
dβτ2,s2 (1)

τ1,τ2

...

W
dβτ2,s2 (L2−1)

τ1,τ2

9 end

10 end
11 end
12 end
Algorithm 5.2: Transmission Process of the multi-antenna Coded
Caching setting with users of heterogeneous cache-sizes.

Decoding Process The decoding process is similar to that of Algorithm 4.3.
For the users in set λ i.e., the “precoded” users, we can see that they receive
only one of the L messages, thus they either decode using a ZF precoder
(users in λ \ {s1} \ {s2}) or they use a ZF decoder and continue to decode
their respective XOR by use of their cached content.

The remaining users will receive a linear combination of all L messages,
which they can decode using the acquired CSI and their stored content. For
example, user k ∈ τ1 will receive

yk =hT
kh⊥

λ\{s1}Xσ1,τ2 + hT
k

L−1∑
i=1

h⊥
λ\βτ1,s1(i)

W
dβτ1,s1(i)
τ1,τ2

+hT
kh⊥

λ\{s2}Xσ2,τ1 + hT
k

L−1∑
i=1

h⊥
λ\βτ2,s2(i)

W
dβτ2,s2(i)
τ1,τ2 . (5.37)

We can see that terms 2, 3, and 4 of Eq. (5.37) are completely known to

80 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

any receiver of set τ1, thus can be removed. The remaining term is XOR
Xσ1,τ2 which, by design, is decodable by any user belonging in set τ1.

5.3.1 Extension to the remaining cases
In this section we will prove the result of Eq. (5.13), which corresponds to
the case where the number of streams that should be allocated to the group
with the higher cache size is less than one. In this case, we simply treat
the users of set K1 using one stream and allocate the remaining L2 = L− 1
streams for the second set of users, K2.

At some point in the transmission all the files requested by set K1 have
been successfully communicated, while users of set K2 require more trans-
missions to completely receive their files. This is because we transmit at a
rate of K1γ1 + 1 subfiles to the users of set K1 and with rate of L− 1 +K2γ2
subfiles to the users of set K2, while K1(1−γ1)

1+K1γ1
< K2(1−γ2)

L−1+K2γ2
.

To complete the transmission of files to the second set of users, we em-
ploy any multi-antenna cache-aided algorithm (e.g. [10, 56]) and proceed to
transmit at a rate of L +K2γ2 subfiles at a time. Thus, the completion time
corresponding to the two parts of transmission takes the form

TL(K1,γ1, K2, γ2) =
K1(1− γ1)

K1γ1 + 1
+

K2(1− γ2)− T
(1)
1 (L− 1 +K2γ2)

min{K2, L+K2γ2}
. (5.38)

5.3.2 Two Type Cache-aided Example
In this section we present an example that illustrates the mechanics of the
two user case. Specifically, we will focus on the L = 3-antenna MISO BC,
where K1 = 5 users of set K1 are equipped with caches of normalized size
γ1 =

2
5
, while K2 = 4 users of set K2 are equipped with caches of normalized

size γ2 =
1
4
. For this setting, the number of streams (cf. Eq. (5.33)) should be

divided as L1 = 1 and L2 = 2.
We begin by splitting each file into

S3

(
5,

2

5
, 4,

1

4

)
= (K1γ1 + L1)(K1γ2 + L2)

(
K1

K1γ1

)(
K2

K2γ2

)
= 360

subfiles, where subfile W n,ϕ1,ϕ2
τ1,τ2

has indices τ1 ⊂ [5], |τ1| = 2, ϕ1 ∈ [3], τ2 ⊂
[4], |τ2| = 1, ϕ2 ∈ [3].

Placement Phase

This phase is carried out according to Eq. (5.35)-(5.36) where, for example,
the caches of users 1 ∈ K1 and 6 ∈ K2 are filled as

Z1 = {W n,ϕ1,ϕ2

12,τ2
,W n,ϕ1,ϕ2

13,τ2
,W n,ϕ1,ϕ2

14,τ2
,W n,ϕ1,ϕ2

15,τ2
,∀τ2, ϕ1, ϕ2}

Z6 = {W n,ϕ1,ϕ2

τ1,6
,∀τ1, ϕ1, ϕ2}.

5.3. TWO TYPES OF CACHE-AIDED USERS 81

Delivery Phase

For notational simplicity, we abstain from using indices ϕ1, ϕ2. Further, we
will only present one iteration of the algorithmic steps 1-2, that delivers the
first XOR (A23B13C12 intended for users 1, 2, 3) of the user set K1, while it
goes through over all of the remaining steps i.e., Steps 3− 8.

x6,7
1,23 = H−1

168

A23,7B13,7C12,7

F23,7G23,6

H23,7

 , x7,6
1,23 = H−1

178

A23,6B13,6C12,6

F23,7G23,6

H23,6

x6,8
1,23 = H−1

167

A23,8B13,8C12,8

F23,8H23,6

G23,8

 , x8,6
1,23 = H−1

187

A23,6B13,6C12,6

F23,8H23,6

G23,6

x6,9
1,23 = H−1

167

A23,9B13,9C12,9

F23,9I23,6
G23,9

 , x9,6
1,23 = H−1

197

A23,6B13,6C12,6

F23,9I23,6
G23,6

x7,8
1,23 = H−1

179

A23,8B13,8C12,8

G23,8H23,7

I23,8

 , x8,7
1,23 = H−1

189

A23,7B13,7C12,7

G23,8H23,7

I23,7

x7,9
1,23 = H−1

178

A23,9B13,9C12,9

G23,9I23,7
H23,9

 , x9,7
1,23 = H−1

196

A23,7B13,7C12,7

G23,9I23,7
F23,7

x8,9
1,23 = H−1

186

A23,9B13,9C12,9

H23,9I23,8
F23,9

 , x9,8
1,23 = H−1

196

A23,8B13,8C12,8

H23,9I23,8
F23,8

 .

Decoding Process

The decoding process follows the steps of Algorithm 4.3. First, the members
of set λ, i.e. the precoded users, will receive one of the L messages, which
can decode using their cached content. Further, the users of set τ1 ∪ τ2 will
receive a linear combination of all L messages, which can decode using the
acquired CSIT and their cached content.

As an example, we will look at the decoding of transmitted message x6,7
1,23

at any intended user. First, we can see that the precoded users are 1, 6, 8 and
these users will receive

y6,71,23(k ∈ {1, 6, 8}) = hT
kh⊥

{1,6,8}\{k}

A23,7B13,7C12,7, k = 1

F23,7G23,6, k = 6

H23,7, k = 8

where naturally any of these users can decode its intended subfile. For the
remaining users (users 2, 3, 7) the receiving message takes the form

y6,71,23(k ∈ {2, 3, 7}) =hT
kh⊥

{6,8}A23,7B13,7C12,7 + hT
kh⊥

{1,8}F23,7G23,6 + hT
kh⊥

{1,6}H23,7.

We can easily see that each of these users can decode its desired subfile by
caching-out any other interfering message.

82 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

5.4 Bounds and Converses

5.4.1 Proof of Theorem 5.1
Toward proving Theorem 5.1, we adapt the approach of [35], to lower bound
the delay for the case where, out of the K users, only K1 users have a cache.
The bound will prove tight for all

L ≥ K2

T
(1)
1 (K1, γ1)

− 1 =
K2(1 +K1γ1)

K1(1− γ1)
− 1. (5.39)

The proof (for L = 1) tracks closely steps¹ from [35] which — for the case of
K1 = K (where all users have caches) — employed index coding to bound the
performance of coded caching. Some of these steps are sketched here for the
sake of completeness. Particular care is taken here to properly construct the
bound’s counting arguments in a way that accounts for the fact that specific
symmetries that are essential to the approach in [35], do not directly hold
here, simply because the set K1 = [K1] of users that enjoy side information
is only a subset of the users that request files.

We will begin with lower bounding, first for the case of L = 1, the delay
T (d, χ) for any generic caching-delivery strategy χ and any demand vector
d ∈ Dwc ≜ {d : di ̸= dj, i, j ∈ [K], i ̸= j} whose K entries are all different. In
the following, we use Zi to denote the cache of each user i, where naturally
Zi = ∅ for i ∈ K2 ≜ [K] \ K1.

Distinct caching problems and their corresponding index coding equiv-
alents We first follow closely the approach in [35] to describe the associa-
tion between index coding and our specific caching scenario here. As in [35],
each caching problem (defined by a demand vector d ∈ Dwc) is converted into
an index coding problem, by having each requested file W di split into 2K1

disjoint subfiles W di
T , T ∈ 2[K1], where T ⊂ [K1] indicates the set of users that

have W di
T cached. Since no subfile of the form W di

T , T ∋ i is requested, the
index coding problem here is defined by

K12
K1−1 +K22

K1

requested subfiles, which form the nodes of the side-information graph G =
(VG, EG), where VG is the set of vertices (each vertex/node representing a
different subfile W di

T , T ̸∋ i) and EG is the set of direct edges of the graph. We
recall that an edge from node W di

T to W
di′
T ′ exists if and only if i′ ∈ T .

As in [35], this allows us to lower bound T (d, χ) by using the index-coding
converse from [94] which says that for a given d, χ — with corresponding

¹We note in advance that a naive adaptation of the approach in [35], where we would
simply account for a reduced sum-cache constraint K1M corresponding to a redundancy
t = K1M

N , would yield a loose bound; for example when L = 1, this naive bound would be
T ≥ K−t

t+1 which would then translate to T ≥ K1(1−γ1)
1+K1γ1

+ K2

1+K1γ1
which is loose as the optimal

delay will turn out to be T = K1(1−γ1)
1+K1γ1

+K2.

5.4. BOUNDS AND CONVERSES 83

side information graph Gd = (VG, EG) with VG vertices/nodes and EG edges —
the delay is bounded as

T ≥
∑
V∈VJ

|V| (5.40)

for every acyclic induced subgraph J of Gd, where VJ denotes the set of nodes
of the subgraph J , and where |V| is the size of the message/subfile/node V.

The following describes the acyclic graphs, and also directly shows that
these remain acyclic after they are enlarged to account for the content re-
quested by the cache-less users. In the following we will consider permuta-
tions σ ∈ SK1 from the symmetric group SK1 , and, for a given demand vector
d, we will use Ad ≜ ∪i∈[K]\[K1]W

di to denote the union of all content in d
that is requested by the users in [K] \ [K1].
Lemma 5.1. For any d and any σ ∈ SK1 , an acyclic subgraph Jd,σ of Gd,
is designed here to consist of all subfiles {W dσ(i)

T , ∀i ∈ [K1], ∀T ⊆ [K1] \
{σ(1), σ(2), . . . , σ(i)}}, and the enlarged graph Jd,σ ∪ Ad is also acyclic.

Proof. The proof that the subgraph Jd,σ is acyclic is direct from [35,
Lemma 1]. The proof that Jd,σ ∪ Ad is also an acyclic graph, i.e., that the
addition (on the original Jd,σ) of all the nodes corresponding to Ad does not
induce any cycles, follows by first recalling that a directed edge from node
W di

T to W
di′
T ′ exists if and only if i′ ∈ T , which thus tells us that an edge

cannot be drawn from any node representing content from Ad, because any
cache-less user i ∈ K \ [K1] cannot belong to any such T simply because
T ⊂ [K1].

Given the acyclic subgraph Jd,σ ∪Ad, we combine Lemma 5.1 with (5.40)
to get

T (d, χ) ≥ TLB(σ,d, χ) (5.41)
where

TLB(σ,d, χ) ≜
∑

V∈VJd,σ
∪Ad

|V|

=
∑

T ⊆[K1]\{σ(1)}

|W dσ(1)

T |+
∑

T ⊆[K1]\{σ(1),σ(2)}

|W dσ(2)

T |+ . . .

+
∑

T ⊆[K1]\{σ(1),...,σ(K1)}

|W dσ(K1)

T |+ |Ad|. (5.42)

Then, as in [35], we average over worst-case demands to get
T ∗ ≜ min

χ
max
d∈DWc

T (d, χ)

≥ min
χ

max
d∈DWc

max
σ∈SK1

TLB(σ,d, χ)

≥ min
χ

1

|DWc |
1

|SK1|
∑

σ∈SK1

∑
d∈DWc

TLB(σ,d, χ)

≥ min
χ

1

P (N,K)K1!

∑
σ∈SK1

∑
d∈DWc

TLB(σ,d, χ) (5.43)

84 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

where in the above we use P (N,K) ≜ N !
(N−K)!

.
Rewriting the summation in (5.43), we get∑

σ∈SK1

∑
d∈DWc

TLB(σ,d, χ) = (5.44)

K1∑
i=0

∑
n∈[N]

∑
T ⊆[K1]:|T |=i

|W n
T | ·
∑

σ∈SK1

∑
d∈DWc

1VJd,σ
(W n

T)︸ ︷︷ ︸
≜Qi(Wn

T)

+|Ad|

where VJd,σ
is the set of vertices in the acyclic component subgraph Jd,σ for

a given d, σ pair, and where 1VJd,σ
(W n

T) denotes the indicator function which
takes the value of 1 only if W n

T ⊂ VJd,σ
, else it is set to zero.

Counting arguments accounting for cache-less users Our aim is to
count the number of times, Qi(W

n
T), that any specific subfile W n

T appears in
the summation in (5.44). To do this, we follow the same counting arguments
as in [95, Section VII-C] which derives Qi(W

n
T) for the case where K users

share Λ ≤ K caches, where each cache r ⊂ [Λ] serves Λr users. Adapting
these steps² in [95, Section VII-C] gives that

Qi = Qi(W
n
T)

△
=
∑

σ∈SK1

∑
d∈DWc

1VJd,σ
(W n

T)

=

(
N − 1

K − 1

) K1∑
r=1

P (K1 − i− 1, r − 1)(K1 − r)!

· (K − 1)!(K1 − 1)!(K1 − i). (5.45)

Setting xi
△
=
∑

n∈[N]

∑
T ⊆[K1]:|T |=i |W n

T | and recalling that

N =

K1∑
i=0

xi =

K1∑
i=0

∑
n∈[N]

∑
T ⊆[K1]:|T |=i

|W n
T | (5.46)

we combine (5.43), (5.44) and (5.45), to get

T ≥
K1∑
i=0

Qi

P (N,K)K1!
xi. (5.47)

We now resume counting to calculate Qi

Λ!P (N,K)
for each i = 0, 1, . . . , K1.

²The following expression could not have been derived, had we simply substituted K
for K1, in the corresponding Qi expression in [35]. Such a naive approach would have
essentially corresponded to treating the cache-less and cache-aided cases separately, and
would not have allowed us to guarantee, among other things, that both cache-less and
cache-aided users request different files.

5.4. BOUNDS AND CONVERSES 85

Applying (5.45), we see that

Qi

K1!P (N,K)
=

(N − 1)!(N −K)!

(K − 1)!(N −K)!K1!N !

·
K1∑
r=1

(K − 1)!(K1 − i)P (K1 − i− 1, r − 1)(K1 − r)!

=
1

K1!N

K1∑
r=1

(K1 − i)P (K1 − i− 1, r − 1)(K1 − r)!

=
1

K1!N

K1∑
r=1

(K1 − i)(K1 − i− 1)!(K1 − r)!

(K1 − i− r)!

=
1

K1!N

K1∑
r=1

(K1 − i)!(K1 − r)!

(K1 − i− r)!

=
1

N

K1∑
r=1

(K1 − i)!(K1 − r)!i!

K1!(K1 − i− r)!i!

=
1

N

K1∑
r=1

(
K1−r

i

)(
K1

i

) =

(
K1

i+1

)(
K1

i

)
N

=
K1 − i

(i+ 1)N
. (5.48)

Now substituting (5.48) into (5.47), we get that

T (χ) ≥
K1∑
i=0

K1 − i

(i+ 1)N
xi +

K1!P (N,K)

K1!P (N,K)
|Ad|︸︷︷︸
K2

(5.49)

where the use of the fraction K1!P (N,K)
K1!P (N,K)

= 1 is meant to remind us the number
of times acyclic graphs corresponding to Ad were invoked in the summation
in (5.44), and where we also note that the expression above follows from the
fact that all d ∈ Dwc force |Ad| = K2.

Optimization At this point we observe that the crucial constant K1−i
(i+1)N

derived for the part of the subgraph corresponding to cache-aided users,
matches exactly the number K1−i

(i+1)N
derived in [35] for the K = K1 case where

all users can have a cache. Consequently, under the same file-size constraint
given in (5.46), and given the current cache-size constraint

∑K1

i=0 i ·xi ≤ K1M ,
the expression in (5.49) serves as a lower bound on the delay of scheme χ
whose cache placement implies the set {xi}.

Then, following the exact minimization steps in [37, Proof of Lemma 2],
we get

T (χ) ≥ K1(1− γ1)

1 +K1γ1
+K2 (5.50)

for integer K1γ1, whereas for all other values of K1γ1, this is extended to its
convex lower envelop.

86 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

This concludes lower bounding maxd ∈ DwcT (d, χ), and thus — given
that the right hand side of (5.50) is independent of χ — lower bounds the
performance for any scheme χ, hence concluding the proof of the converse
for Theorem 5.1 for the case of L = 1.

5.4.2 Converse and gap to optimal of Theorem 5.2

Let us first consider the gap to optimal for the case of K2 ≥ (L−1)T (1)
1 , where

we recall that T (1)
1 = K1(1−γ1)

1+K1γ1
.

We have seen that when K2 = α(L−1)T
(1)
1 ≥ (L−1)T

(1)
1 (i.e., when α ≥ 1),

the achievable delay in Eq. (5.6) takes the form

TL(K1, γ1, K2, γ2 = 0) =
(L− 1)T

(1)
1 +K1(1− γ1)

K1γ1 + L
+

K2 − (L− 1)T
(1)
1

L
(5.51)

=
(L− 1)T

(1)
1 +K1(1− γ1)

L+K1γ1
+ (α− 1)

L− 1

L
T

(1)
1 (5.52)

=
T

(1)
1

L
(αL− α + 1). (5.53)

For a lower bound on the minimum possible delay, we use

TL(K1, γ1, K2, γ2 = 0) ≥ min{K2, L}
L

= min{1, α(L− 1)T1

L
} (5.54)

corresponding to the optimal delay required to satisfy only the cache-less
users. A quick calculation of the ratio between Eq. (5.51) and Eq. (5.54),
provides with the multiplicative gap of

g =
αL−α + 1

αL− α
= 1 +

1

α(L− 1)
≤ 2. (5.55)

When K2 < L, then α(L− 1)T
(1)
1 < L, which again gives

g =
T

(1)
1

L
(αL− α + 1) <

T
(1)
1 (αL− α− 1)

α(L− 1)T
(1)
1

≤ 2. (5.56)

For the case of Kn = α(L− 1)T1, α ≤ 1, the lower bound takes the form

TL(K1, γ1, K2, γ2 = 0) ≥ max
{
min{L,K2}

L
,
1

2

K1(1− γ1)

K1γ1 + L

}
(5.57)

where the first term corresponds to the optimal performance of an ‘easier’
system where all the cache-aided users are removed, and where the second
term corresponds to an easier system where all cache-less users are removed,
and where — for this latter type of system, we know from [11] that treating
K1γ1 + L users at a time is at most a factor of 2 from optimal, under the

5.4. BOUNDS AND CONVERSES 87

assumptions of linear and one-shot schemes. Combining Eq. (5.57) with the
achievable TL(K1, γ1, K2, γ2 = 0) = K2+K1(1−γ1)

K1γ1+L
from Eq. (5.7), yields a gap of

g =

K2+K1(1−γ1)
K1γ1+L

max
{

K2

L
, 1
2
K1(1−γ1)
K1γ1+L

} .
To bound this gap, note that if K2

L
> 1

2
K1(1−γ1)
K1γ1+L

then we know from before that

g =

K2+K1(1−γ1)
K1γ1+L

K2

L

=
L

K1γ1
+

K1(1−γ1)
K1γ1+L

K2

L

≤ 1 + 2,

where we used that K2

L
> 1

2
K1(1−γ1)
K1γ1+L

.
Similarly when K2

L
< 1

2
K1(1−γ1)
K1γ1+L

, the gap is bounded as

G =

K2+K1(1−γ1)
K1γ1+L

1
2
K1(1−γ1)
K1γ1+L

=

K2

K1γ1+L

1
2
K1(1−γ1)
K1γ1+L

+ 2 ≤ 3

where the last step considers that K2

L
< 1

2
K1(1−γ1)
K1γ1+L

.
This concludes the proof of Theorem 5.2. □

5.4.3 Proof of Theorem 5.3
In order to form an outer bound, we will consider a system with an L-
antenna transmitter, which transmitter can communicate L distinct messages
{W1, ...,WL} while user k ∈ [K] will receive linear combination Lk(W1, ...,WL)
of these messages. The main difference between the considered system and
the system model is that, in this case, each user can select any arbitrary
linear combination and then inform its decision to the transmitter. Further,
we will assume that each user requests a different file, which rules out any
natural multicasting opportunities.

By making use of the result from Theorem 5.1 we can see that, in order
for any single transmitted message to be decoded it may contain information
only for the cache-aided or the cache-less users. This means that we can
separate the messages into two sets, i.e. {Wn}Pn=1 and {Wc}Cc=1, where the
former are intended for the cache-less users, while the later are intended for
the cache-aided users and where P + C = L.

Using the above allocation of messages to each group, we further assume
that each message intended for the cache-aided users contains Kγ+1 subfiles,
thus the total amount of information transmitted to the cache-aided users
can be at most C(Kγ + 1). Thus, the delivery time takes the form

T ≥ min
C

max
{
T

(1)
1 (L̃− 1)

L− C
,
Kc(1− γ)

C(1 +Kγ)

}
= T

(1)
1

L̃

L
. (5.58)

Since the performance of the system matches the lower bound of Eq. (5.58),
then the delay provided in Theorem 5.3 is optimal under the assumption of
uncoded placement.

88 CHAPTER 5. CACHE-SIZE UNEVENNESS AND TRANSMITTERS

5.5 Extension of the cache-aided scheme
In this section we present an extension of Algorithm 5.2 to accommodate
any values L1, L2 ∈ [1, L− 1], such that L1 + L2 = L. The main premise is to
increase the per-type subpacketization by value d ∈ N, such that d·L1, d·L2 ∈ N,
thus the total subpacketization becomes

S = d2(L1 +K1γ1)

(
K1

K1γ1

)
(L2 +K2γ2)

(
K2

K2γ2

)
. (5.59)

The new scheme works by repeating d2 times Alg. 5.2, with the difference
that some transmissions will allocate ⌈L1⌉ streams to users of set K1 and at
the same time it will allocate ⌊L2⌋ streams to set K2 and in some transmis-
sions will allocate ⌊L1⌋ streams to users of set K1 and at the same time it
will allocate ⌈L2⌉ streams to set K2.

This way, it allows the average allocation of L1 and L2 streams to each
user type, which leads to the DoF DL(K1, γ1, K2, γ2) = L+K1γ1 +K2γ2.

Chapter 6

Channel Unevenness Bottleneck

In this chapter, our focus is concentrated on the worst-user effect that is
caused by the uneven channel nature of wireless channels, which is inter-
twined with the multicasting transmission structure of Coded Caching. This
performance bottleneck has its roots in the observation that in a wireless
setting users will experience different channel capacities thus, a multicast
message intended to convey information to many users at a time will have
to be delivered with the worst user’s rate so as to be decodable by all users.
The uneven channels bottleneck does not only affect a single user, but instead
the whole system performance, thus even a single user’s low-capacity channel
can reduce the performance of all users. This performance degradation can
be seen as an important drawback in the implementation of Coded Caching
in wireless communications.

The model of interest is the wireless Broadcast Channel (BC) with a single
antenna transmitter that serves K cache-aided, single antenna receivers with
potentially different channel rates.

Related Work

Many previous works have considered user channel qualities not being equal,
in the context of Coded Caching. Specifically, a lot of effort has been re-
cently made in understanding the impact of coded caching under the more
realistic scenario where the transmit Signal-to-Noise Ratio (SNR) is finite.
In this direction many interesting results, showed that the performance of
single-stream Coded Caching can outperform that of multiple streams in the
low SNR region [41], while the works in [43,96] (see also [97]) revealed the
importance in designing the multicast beamformers in order to take into
account the fact that users are cache-aided. Further, the work in [74] stud-
ied the SNR performance of multi-antenna algorithms depending on their
subpacketization requirements.

Moreover, the works in [98, 99] used feedback to select the user XORs
that can maximize the sum-rate and a fairness function that ensures the that
users with lower rates can also receive their requested content in a timely
manner.

89

90 CHAPTER 6. CHANNEL UNEVENNESS BOTTLENECK

The works in [100,101] (see also [102–104] studied broadcast channels with
channel erasures and showed how an erasure to one user can still be useful
in the other users as side information.

Works [77,78] studied the setting with K transmitters each storing either
part or the whole library, and which transmitters where tasked with serving
K cache-aided receivers. In this setting, the direct links are “strong” thus
are able to facilitate a high rate, while the cross links are “weak”. The
proposed setting considered the case where no Channel State Information at
the Transmitters (CSIT) was available to the transmitters and it was shown
that the lack of CSIT can be ameliorated by exploiting the topological factor
of the channel and the multicast transmissions.

Further, the work in [79] studied a multiple-antenna setting where the
antennas were used as a means to increase diversity and achieve higher
rates. The work showed that in order to achieve a scalable transmission
rate by transmitting a single XORed message (as in the algorithm of [1]) but
from a total of L antennas would require the number of antennas to scale as
O(lnK) in order for a scaling, with the number of users rate to be achieved.

A similar setting to the one proposed in this work was studied in works
[105, 106]. Specifically, the work in [105] studied the single antenna channel
where each user has a - potentially - different channel strength in the finite
Signal-to-Noise-Ratio (SNR) region. The authors proposed algorithms that
could outperform the naive implementation of the algorithm of [1]. Further,
the work in [106] studied the single antenna channel where the K users are
split into two categories, those with full-rate channels and those with reduced
rate channels. The authors designed a superposition code-based algorithm
and showed its order optimal performance.

Another similar setting to the one presented in this chapter, was explored
in [107] where the authors divided each file into 2K − 1 subfiles (each for a
different user subset) and further used opportunistic scheduling of users and
superposition coding to maximize the rate.

Moreover, the work in [41] (see also [108]) exploited multiple antennas
to combat the worst user effect, by transmitting a XOR message, as in the
scheme of [1] and multiplied it by a beamforming vector designed to allocate
power in such a way that will “raise” the worst user’s channel.

Further, the work in [109] has considered the multiple-antenna channel
with asymmetric channel qualities and created the content placement and
subsequent delivery phases in such a way to allow for a scaling rate.

Results Overview

Here we will propose a new algorithm that is designed to elevate the single-
antenna performance when users are experiencing uneven channels. The
algorithm borrows the placement strategy and generation of XORs from [1]
but delivers these XORs in a more efficient manner, based on statistical
knowledge of the user channel strengths and through the use of superposi-
tion coding. For this proposed setting we prove a performance bound and

6.1. SYSTEM MODEL 91

further continue to show that our proposed algorithm performs within a
multiplicative gap of 4 from this bound.

A very interesting result that is derived from this work is that, under the
assumption of users being sorted with respect to their channel strength, i.e.
αk ≤ αk+1, ∀k ∈ [K], when the channel qualities satisfy

αk ≥ 1− e−k·γ, ∀k ∈ [K] (6.1)

then the system can perform exactly as if there was no channel degradation,
thus showing how the “strong” users can elevate the “weaker” ones, and
further showing that systems with smaller cache sizes are more immune to
channel unevenness.

6.1 System Model
We consider the single-input-single-output (SISO), wireless, broadcast chan-
nel (BC) with K single-antenna receivers.

The objective is to design the pre-fetching at the caches and the delivery
of requests in such a way to minimize the delivery time T (K, γ,α), where α
denotes the vector containing the channel strength of each of the K users.
The transmission/reception model follows the Generalized Degrees of Free-
dom (GDoF) framework of [45] (see also [46, 49]), thus a message received
at some user k ∈ [K] takes the form

yk =
√
Pαkhkx+ wk, (6.2)

where P represents the transmitting power, x ∈ C is the output signal of the
transmitter satisfying the power constraint E{|x|2} ≤ 1 and hk ∈ C corre-
sponds to the channel coefficient of user k. Further, αk ∈ (0, 1] represents the
normalized, by factor logP , link strength of user k. Finally, wk ∼ CN (0, 1)
represents the Gaussian noise at user k. From the above we can deduce the
average signal-to-noise-ratio (SNR) at user k ∈ [K] as

E{|yk|2} = Pαk (6.3)

which amounts to a (normalized) user rate of rk = αk. It should be noted that
without loss of generality α = 1 corresponds to the highest possible channel
strength, i.e. αK = 1.

For the model under study, we consider the most generic case, where each
user has – potentially – a distinct link strength, namely, any two channel
strength parameters αk, k ∈ [K] may be different from each other. Without
loss of generality, we assume an ascending ordering of the strength set
α ≜ {αk}Kk=1, i.e., αk+1 ≥ αk, for any k ∈ [K].

Notation We will use Xσ to denote a XOR generated as in the algorithm
of [1] i.e.,

Xσ =
⊕
k∈σ

W dk
σ\{k}. (6.4)

92 CHAPTER 6. CHANNEL UNEVENNESS BOTTLENECK

Further, we will use sets Xk, k ∈ [K] to denote the sets of XORs whose
minimum numbered user is user k, i.e.

Xk =

{
Xσ iff min{σ} = k

}
, (6.5)

where for k ≤ K −Kγ − 1, it follows that

|Xk| =
(
K − k + 1

Kγ + 1

)
−
(
K − k

Kγ + 1

)
(⋆)
=

(
K − k

Kγ

)
, (6.6)

where (⋆) comes directly from Pascal’s triangle and further,∣∣∣∣∣
k⋃

m=1

Xm

∣∣∣∣∣ =
(

K

Kγ + 1

)
−
(
K − k

Kγ + 1

)
. (6.7)

6.2 Main Results
In this section we present¹ the achievable performance of the algorithm of [1]
under a naive implementation and further, in Theorem 6.1 we describe the
achievable performance of our scheme along with its order optimality.

Proposition 6.1. In the SISO-BC with user channel strength αk ≤ 1 and
caching of fraction γ at each user, a naive implementation of the algorithm
of [1] would amount to the delivery time of

Tuc(K, γ,α) =
1(
K
Kγ

) ∑
σ⊆[K], |σ|=Kγ+1

max
i∈σ

{
1

αi

}
. (6.8)

Proof. The proof comes directly by allocating normalized time Tσ to XOR
Xσ, according to

Tσ = max
w∈σ

{
1

αw

}
which is required by the user with the weakest channel, i.e. Uw, w ∈ σ, of
XOR Xσ, to decode almost surely the transmitted message.

Theorem 6.1. In the K-user SISO Broadcast Channel with single antenna
receivers, receiver channel strengths

{
αk

}K
k=1

, αk ≤ αk+1, ∀k ∈ [K] and each
receiver equipped with a cache of normalized size γ, the achieved worst-case
delivery time takes the form

Tsc(K, γ,α) = max
w∈[K]

{
1

αw

·
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)(
K
Kγ

) }
(6.9)

and has a multiplicative gap from the optimal performance of at most 4.
¹We note that the derivation of the expression in Proposition 6.1 has also been calculated

in previous works which focused on a finite SNR region analysis of Coded Caching (see
[41, 105]).

6.2. MAIN RESULTS 93

Channel threshold αk

User

γ =
1

100

γ =
10

100

γ =
30

100

0.2

0.4

0.6

0.8

0 20 40 60 80

Figure 6.1: The threshold αth,w for each w ∈ [K] with respect to different
values of γ.

Proof. The achievability part of the scheme is described in Algorithm 6.1 of
Section 6.3, while a performance bound as well as the multiplicative perfor-
mance gap between the proposed algorithm and bound are proved in Sec-
tion 6.4.1.

Corollary 6.1. In a K-user SISO BC with receiver channel strengths
{
αw

}K
w=1

satisfying αw ≤ αw+1, ∀w ∈ [K] and each receiver equipped with a cache of
normalized size γ, the maximally known performance

T (K, γ,α = 1) = K(1− γ)

1 +Kγ
(6.10)

i.e., achieved when all uses have full-rate channels
(
{αw = 1}Kw=1

)
can also be

achieved if users have degraded channels as follows

αw ≥ αth,w = 1−
(
K−w
Kγ+1

)(
K

Kγ+1

) ≈ 1− e−wγ, ∀w ∈ [K]. (6.11)

Proof. The proof is direct by use of Eq. (6.9), the Sterling approximation(
n
k

)
≈
(
n
k

)k and the limit

lim
K→∞

(
1− b

K

)K

= e−b. (6.12)

Remark 6.1. In Figure 6.1 we can see the threshold channel strengths for
a setting with K = 100 users and different values of γ, that are required to
achieve the same performance as in the non-degraded version.

94 CHAPTER 6. CHANNEL UNEVENNESS BOTTLENECK

As illustrated in Figure 6.1 and from Eq. (6.11), we can deduce that as the
cache size grows, and more precisely as the coded caching gain increases,
achieving the the maximum performance of the non-degraded channel would
require a big portion of the user channels needs to have the maximum channel
strength.

Example 6.1. Let us consider the wireless Single-Input-Single-Output (SISO)
BC with K users, each equipped with a cache of normalized size γ and let us
further assume that the channel strength of the first user is equal to α1 =

1
K
+γ,

while the remaining K − 1 users have the maximum channel strengths i.e.,
α2 = ... = αK = α = 1.

Assuming a naive implementation of the algorithm of [1] – where the de-
signed XORs (which are designed for the equal-strength case) are sent se-
quentially one after the other – the achieved delay, T uc

1 , under uneven channel
strengths would take the form

T uc
1 = (1− γ)

1

α1

+
(K − 1)(1− γ)

1 +Kγ

1

α
(6.13)

=
1− γ
1+Kγ
K

+
(K − 1)(1− γ)

1 +Kγ
≈ 2T1. (6.14)

Thus, a naive implementation of the algorithm of [1] when even a single user
is experiencing a bad channel can almost double the experienced delivery time,
and which has the equivalent effect of reducing by half the multicasting gain.

6.3 Placement and Delivery Algorithms

In this section, we present the achievable scheme, beginning with the place-
ment phase at the receivers, then continuing with the description of the
transmission policy during the delivery phase and concluding with the de-
coding process at the users.

6.3.1 Placement Phase

We begin by filling the caches of the users with content from the library. Our
approach borrows from the placement algorithm of [1] thus, does not assume
any knowledge of the channel strengths at the time of the placement. To this
end, each file W n, n ∈ [N], is subpacketized into S =

(
K
Kγ

)
subfiles and the

cache of user k, k ∈ [K] is given by

Zk = {W n
τ : τ ⊂ [K], k ∈ τ, |τ | = Kγ, ∀n ∈ [N]} (6.15)

which is easy to show that respects the cache-size constraint.

6.3. PLACEMENT AND DELIVERY ALGORITHMS 95

6.3.2 Delivery Algorithm
During the delivery phase, the goal is to successfully communicate all

(
K

Kγ+1

)
XORs (cf. Eq. (6.4)). To this end, in every communication slot we will split
the available transmission power into K −Kγ levels (power levels). In each
power level we will encode XORs that are meant for some particular user.
For example, the highest power level, i.e. Level 1, will contain XORs that
are intended for the weakest user (user 1) i.e., XORs belonging in set X1.
Further, power level 2 will contain XORs that are intended for user 2, but
are not intended for user 1, i.e., belonging in set X2 and so on. This power
allocation for each XOR allows the weakest user of the XOR to be able to
decode it, thus all other users that want to retrieve this XOR can also decode
it successfully.

The challenge lies in finding the appropriate power allocation for each
power level, such that the overall delay is minimized.

1 Let αk ≤ αk+1, ∀k ∈ [K]
2 Find w ∈ [K] such that

w = arg min
k∈[K]

{(
K−k
Kγ+1

)
αk

}
. (6.16)

3 Set : β0 = 0 and for k ∈ [K −Kγ − 1] set

βi =
|∪ik=1Xk|
|∪wk=1Xk|

αw =

(
K

Kγ+1

)
−
(

K−i
Kγ+1

)(
K

Kγ+1

)
−
(
K−w
Kγ+1

)αw. (6.17)

for all k ∈ [K −Kγ − 1] do
4 Encode xk ← NEW(Xk)
5 with power

Pk = P−βk−1 − P−βk (6.18)

6 and rate

rk = βk − βk−1 =

(
K−k
Kγ

)(
K

Kγ+1

)
−
(
K−w
Kγ+1

)αw. (6.19)

7 end
8 Transmit xk’s concurrently.

Algorithm 6.1: Superposition Coding-Based Delivery

In Algorithm 6.1 we describe the power and rate allocation for each XOR.
The algorithm begins by identifying the bottleneck user (Step 2). This is done
by “demanding” that all XORs intended for users up to and including user
w ∈ [K] to be decodable by user w. Further, in Step 3 are calculated the

96 CHAPTER 6. CHANNEL UNEVENNESS BOTTLENECK

power level coefficients βi.
In Step 4, for every k ∈ [K −Kγ − 1] a new XOR is selected from set Xk

and is encoded in message xk, with power Pk = P−βk−1 − P−βk (Step 5) and
rate (K−k

Kγ
)

(K
Kγ+1

)−(K−w
Kγ+1

)
αw (Step 6). In Step 8 all the xk messages are transmitted

concurrently.

6.3.3 Decoding at the Users
Let us see the received message at user k ∈ [w], which takes the form

yk∈[w] =hk

√
Pαk

k∑
m1=1

xm1 + hk

√
Pαk

K−Kγ∑
m2=k+1

xm2 (6.20)

= hk

√
Pαkx1︸ ︷︷ ︸

logP≈αk−αw·
(K
Kγ+1)−(K−1

Kγ+1)
(K
Kγ+1)−(K−w

Kγ+1)

+ · · ·+ hk

√
Pαkxk︸ ︷︷ ︸

logP≈αk−αw·
(K
Kγ+1)−(K−k

Kγ+1)
(K
Kγ+1)−(K−w

Kγ+1)

+ hk

√
Pαk

K−Kγ∑
m2=k+1

xm2︸ ︷︷ ︸
logP≈αk−αw·

(K
Kγ+1)−(K−i

Kγ+1)
(K
Kγ+1)−(K−w

Kγ+1)

.

From the power and rate allocation for each of these messages (cf. Eq. (6.18)
and Eq. (6.19)) we can see that the messages of the second summation have
power that is below the noise level, for this particular user through the use
of Successive Interference Cancellation (SIC), User k can decode any mes-
sage xm, m ≤ k, which messages are ones that potentially include relevant
information for this user.

6.3.4 Delay calculation
The total delay of the scheme is the maximum delivery time over all xk

messages to deliver the set of XORs Xk i.e.,

Tsc(K, γ,α) = max
k∈[K−Kγ−1]

{
|Xk|(
K
Kγ

) · 1
rk

}
(6.21)

= max
w∈[K−Kγ−1]

{
1

αw

·
(

K
Kγ+1

)
−
(
K−w
Kγ+1

)(
K
Kγ

) }
. (6.22)

6.4 Bounds and Proofs of Converses

6.4.1 Optimality Gap of the Performance of Theorem 6.1
In this section, we prove the multiplicative gap of G = 4 between the
achievable performance Tsc ≜ Tsc(K, γ,α) of Eq. (6.9) of Theorem 6.1 and

6.4. BOUNDS AND PROOFS OF CONVERSES 97

a lower bound, denoted by Te. We bound the performance of our system
using a similar system where, now, users 1 through w (we remind here
that user w corresponds to the bottleneck user) have channel capacities of
αk = αw ≜ α, ∀k ∈ [w], while the remaining users have the maximal channel
capacity of 1. This essentially means that we elevate the capacities of the first
w users to the capacity of the channel of user w and we further elevate the
capacities of the remaining users to the maximum possible channel capacity.
We denote the performance of this elevated system with Te.

Proof. We begin by identifying a bound on the performance Te. This is lower
bounded by

Te ≥

t1︷︸︸︷
1

α

t2︷ ︸︸ ︷
1

2

w(1− γ)

1 + w · γ
(6.23)

where term t1 corresponds to the channel capacity of the first w users, i.e.
α = αw, while term t2 corresponds to the minimum possible delay² for a
cache-aided system with w users, each able to store fraction γ of the library
and which performance bound is proved in [37].

We proceed with bounding the ratio Tsc/Te to which end, we consider two
separate cases, namely wγ ≷ 1. First, by examining the case of wγ < 1 the
ratio takes the form

Tsc

Te

≤

(K
Kγ+1

)−(K−w
Kγ+1

)
(K
Kγ
)

1
2
w(1−γ)
(1+wγ)

≤ w(1− γ)
1
2
w(1−γ)
(1+wγ)

≤ 4, (6.24)

where we used the inequality (K
Kγ+1

)−(K−w
Kγ+1

)
(K
Kγ
)

≤ w(1 − γ) which we prove in
Section 6.4.2, and which informally says that the above inequality can be
interpreted as the amount of information contained in all XORs meant for
users 1 through w which is, at most, equal to the amount of information that
needs to be transmitted to those users i.e., w(1− γ).

Further, in the case of wγ ≥ 1, the bound takes the form

Tsc

Te

=

(K
Kγ+1

)−(K−w
Kγ+1

)
(K
Kγ
)

1
2
w(1−γ)
(1+wγ)

≤

(K
Kγ+1

)
(K
Kγ
)

1
2
w(1−γ)
(1+wγ)

(6.25)

=

K(1−γ)
1+Kγ

1
2
w(1−γ)
1+wγ

= 2
K(1 + wγ)

w(1 +Kγ)
= 2 + 2

K − w

w+Kwγ
(6.26)

< 2

(
1 +

K + w

w + wKγ

)
< 2

(
1 +

K

wKγ

)
≤ 4 (6.27)

which concludes the proof.
²We need to note, here, that the factor of D2 that is proven in [37] is slightly smaller,

but for the sake of simplicity we use the more convenient 1
2 .

98 CHAPTER 6. CHANNEL UNEVENNESS BOTTLENECK

6.4.2 Bound on the difference of Binomials
In this section we prove the following corollary, which is used to derive the
bound of Section 6.4.1.

Corollary 6.2. For every integer m > 0, the following inequality holds(
K

Kγ+1

)
−
(
K−m
Kγ+1

)(
K
Kγ

) ≤ m(1− γ). (6.28)

Proof. We begin by proving the following inequality(
K−n−1

Kγ

)(
K
Kγ

) ≤ (1− γ), n ≥ 0. (6.29)

First, we can see that for n = 0, the inequality holds. Further, since for
any m > p, we have that

(
K−m
Kγ

)
<
(
K−p
Kγ

)
, it follows that the inequality of

Eq. (6.29) holds for any n ≥ 0.
Further, in order to prove the inequality of Eq. (6.28) we will make use of

Pascal’s triangle, proof by induction and the result of Eq. (6.29). We begin
by proving Eq. (6.28) for m = 1,(

K
Kγ+1

)
−
(
K−1
Kγ+1

)(
K
Kγ

) =

(
K

Kγ+1

)
− K−Kγ−1

K

(
K

K−Kγ−1

)(
K
Kγ

) (6.30)

=

(
K

Kγ+1

)(
K
Kγ

) Kγ + 1

K
= (1− γ). (6.31)

Now, let us assume that Eq. (6.28) holds for some n ≥ 1. Then, we want
to prove that it, also, holds for n+ 1.(

K
Kγ+1

)
−
(
K−n−1
Kγ+1

)(
K
Kγ

) =

(
K

Kγ+1

)
−
(
K−n
Kγ+1

)
+
(
K−n−1

Kγ

)(
K
Kγ

) (6.32)

=

(
K

Kγ+1

)
−
(
K−n
Kγ+1

)(
K
Kγ

) +

(
K−n−1

Kγ

)(
K
Kγ

) (6.33)

≤ n(1− γ) + (1− γ) (6.34)

where in Eq. (6.32) we used the equality from Pascal’s triangle and, then in
Eq. (6.34) we used the inequality of Eq. (6.28).

Chapter 7

Partially Connected Networks

In this chapter we will change the focus from the fully connected settings that
we considered so far to partially connected settings, where the connection
between a subset of the transmitters and a subset of the receivers could be
either non-existent or very weak.

The partially connected settings present very interesting scenarios both
DoF-wise and from a practical point of view. Specifically, from the perspective
of performance, dealing with partially connected networks allows users to
be naturally separated thus allowing for concurrent transmissions and thus
for higher DoF. This advantage can further help achieve a much higher
performance even if CSI is non-existent (we will explore such a setting in
this chapter) or even achieve a much higher DoF performance using smaller
amounts of CSI.

The second reason that justifies the design of algorithms for partially
connected networks is their practical importance. While in the previous
chapters we studied networks where all users are connected to the same
set of transmitters or base station, in fact it is possible that many such
networks would exist one close to another and that interference might form
between transmitters of one network and receivers belonging in another. This
observation dictates the use of interference management and, at the same
time, caching to jointly help to alleviate this interference.

In this chapter we will study the following two different models.

• The first setting is based on Wyner’s network, [110], which seeks to
model cellular networks where sets of transmitter - receiver pairs are
receiving interference from a nearby cell. For this model we will explore
how transmitter cooperation (made possible by the use of a backhaul
link and CSIT availability) and receiver side caching can form two
complementary resources that elevate the setting’s performance.

• The second setting will, again, assume sets of transmitter - receiver
pairs, where a message would be receiver with full rate if coming from
a corresponding transmitter and with lower rate if coming from any of
the remaining transmitters. We explore the setting’s performance when
both transmitters and receivers are endowed with caches. This model

99

100 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

helps study interfering cells where the assumption of links being either
strong or non-existent is relaxed.

Specifically, the first setting of interest, [111], is a variation of Wyner’s
network [110] according to which there are a set of K transmitters and a
set of K receivers and where transmitter k is connected only to users k and
k + 1. According to the model that we will consider, the transmitters have
individual access to the backhaul, through which they can fetch a limited
amount of bits, and at the same time the receivers are equipped with caches
(cf. Figure 7.1). Further, we will assume perfect knowledge of CSIT, which
will allow for full transmitter cooperation.

f
f
f

f
f
f

f
f
f

f
f
f

Cloud

Figure 7.1: The Wyner’s network where each transmitter is connected, via an
individual link, to the backhaul from where it can fetch MT · f bits. Each
user is equipped with a cache of normalized size γ. Receiver k + 1 can only
receive messages from transmitters k and k + 1.

The second setting that we will study [77], also considers the sets of K
transmitters and K receivers where, now, both transmitters and receivers
are equipped with caches (each transmitter can store fraction γT ∈

[
1
K
, 1
]

of the library and each receiver is equipped with cache of normalized size
γ ∈ (0, 1)). Moreover, here, we relax the assumption that a transmitter is
either connected or not connected to a user, by assuming that each user
is connected via a full-rate link to its corresponding transmitter (achieving
logP rate), while it can receive information from all other transmitters via
weak links (α · logP , α ≤ 1), (cf. Figure 7.2). Furthermore, transmitters have
knowledge of only the statistical CSI thus, a challenge of this model is the
effective transmission of content that resides at only distant transmitters,
thus can only be communicated via weak links.

Design Challenge of algorithm

The main objective in the design of the algorithms is to combine the high
DoF that are naturally provided by the partially connected settings, with the

101

Cache

Cache

Cache

Cache

Cache

Cache
Cache

Cache

Figure 7.2: The no CSIT network of work [77], where a receiver is con-
nected via a strong link to its respective transmitter and at the same time
is receiving messages, via weaker links, from all other transmitters. Both
transmitters and receivers are equipped with caches. A challenge of this set-
ting is that CSI is not known at the transmitters, which reduces significantly
the performance. Moreover, when requested user content resides exclusively
at far-away transmitters, then it can only be communicated via weak links,
which significantly degrades the performance.

DoF provided by caching content to the users.
It is important to note that the Coded Caching performance emerges

when users are overhearing the same message, which conveys information
to all these recipients. On the other hand, when considering that users are
separated into L networks without any interference between them, we can
see that performance would slightly increase (see [10]) from

T1(K, γ) =
K(1− γ)

1 +Kγ
(7.1)

to

TL(K, γ) =
K(1− γ)

L+Kγ
. (7.2)

Now, in the scenarios that we consider, the users are partially connected
and that creates a design challenge of transmitting messages that can be
overheard by their intended recipients and a the same time to be kept away
from unintended recipients.

Related work

The work in [112] considered a similar setting to ours and designed a caching
and delivery policy that led to the characterization of the per user DoF in
large Wyner’s networks. However, the authors in [112] assumed that each

102 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

transmitter can only download from the backhaul messages associated to
the receivers connected to it. We relax this restriction here, by allowing
transmitters to download any part of any file, as long as the backhaul constraint
is respected and we show that this added flexibility will lead to superior
performance.

Further, the work in [113] considers a K-user partially connected in-
terference network, where each receiver is connected to L transmitters with
succeeding indices, and caching is enabled at both transmitters and receivers.
Contrary to a transmitter-side caching approach, here the choice of down-
loaded content at each transmitter is based on receiver demands.

Similarly, the work in [114] considered cache-aided transmitters serving
cache-aided receivers in a topological model, where each transmitter is con-
nected to a subset of the receivers. The transmission process takes place
under the absence of CSIT and the main goal is to design the caches so that
the delivery time can be minimized.

The work in [115] considers the hexagonal cellular network comprized of
C cells (one transmitter per cell) and KR receivers per cell. Both transmitters
and receivers are cache-enabled, while receivers are receiving interference
from nearby cells and the goal was to characterize the DoF performance of
this network.

7.1 Wyner’s network on caches: Using caches
to alleviate the backhaul

We assume a set of K transmitters, KT ≜ {0, 1, ...K−1}, and a set of K
receivers, KR ≜ {0, 1, ...K − 1}, where transmitter k ∈ KT is connected to
receivers k and k + 1. The received signal at receiver k + 1 takes the form

yk+1 = xk+1 + hk,k+1xk + wk+1, (7.3)

where xk ∈ C denotes the transmitted signal from transmitter k, that satisfies
the average power constraint E{∥xk∥2} ≤ P , hk,k+1 ∈ C denotes the channel
realization between transmitter k and receiver k + 1, while wk+1 corresponds
to the channel noise, wk+1 ∼ CN (0, 1).

Each receiver is equipped with a cache of normalized size γ. Transmitters
are connected by individual links to the backhaul and can each fetch MT · f
bits. Upon complete delivery of all files, the considered performance metric is
the asymptotic per-user Degrees of Freedom (puDoF) (i.e., the DoF normalized
by the number of users in large networks), as defined in [116]. We use
d(MT , γ) to denote the per-user DoF (puDoF) achieved with a backhaul load
MT and a fractional cache size γ. Further, we assume that transmitters know
CSI with perfect accuracy and can cooperate.

We will use [n]k ≜ n mod k to denote the modulo operation.

7.1. WYNER’S NETWORK ON CACHES 103

7.1.1 Main Results
Theorem 7.1. In the Wyner’s network with per-transmitter maximum back-
haul load MT ·f bits and no caches at the receivers, the per-user DoF d(MT , γ)
for any x ∈ N satisfy the following:

d

(
4x2

4x− 1
, γ = 0

)
=

4x− 1

4x
, (7.4)

d

(
x+ 1

2
, γ = 0

)
≥ 2x

2x+ 1
. (7.5)

Proof. The proof of achievability is based on a modification of the schemes
in [117] and [118], and is provided in Section 7.1.4. The converse of Eq. (7.4)
follows from [117], where it was shown under an average backhaul load
constraint. Since any scheme respecting a maximum load constraint is also
respecting the average load constraint with the same value, it follows that
the result is tight.
Theorem 7.2. In the Wyner’s network with per-transmitter maximum back-
haul load MT · f bits and a per-user cache of normalized size γ, the per-user
(interference-free) DoF of d(MT , γ) = 1 can be achieved with the following
pairs for any x ∈ N:

d

(
1− γ2

4γ
,

1

2x+ 1

)
= 1, (7.6)

d

(
1

4γ
,
1

2x

)
= 1. (7.7)

Proof. The proof is constructive and presented in Section 7.1.2.
Corollary 7.1. Caching a fraction γ= 1

4x
, x ∈ N of the library at the receivers

can increase the puDoF by an additive factor γ, while simultaneously decreas-
ing the backhaul load by a multiplicative factor of 1− γ.
Proof. The proof makes use of the results from Eq. (7.4) and Eq. (7.7). Starting
from a backhaul load of MT = 4x2

4x−1
, and adding a fractional cache-size γ = 1

4x

at each receiver, the new backhaul load becomes

M ′
T =

4x− 1

4x

4x2

4x− 1
= x. (7.8)

We conclude the proof by observing through Eq. (7.7) that the pair (M ′
T , γ) =

(x, 1
4x
) leads to achieving the full puDoF.

Remark 7.1. Observing the result in [112, Theorem 1], we can see that in order
to achieve complete interference mitigation, it is required to have a backhaul
load of MT = 2 and cache size γ = 1

6
. On the contrary, here we can achieve

the maximal puDoF with the backhaul - cache-size pairs (MT = 2, γ = 1
8
) and

(MT = 3
2
, γ = 1

6
).

The key factor enabling our result is that we allow for a more flexible
backhaul load, instead of restricting each transmitter to download a specific
set of messages which, in turn, allows to utilize transmitter cooperation more
efficiently.

104 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

1 for m ∈ {1, ..., 1−γ
2γ
} (Choose a Delivery Network) do

2 for p ∈ {0,m} (Choose Slot of Delivery Net) do
3 Transmitter k : 0 ≤ [k + p]2m < m sends:

xk=

[k]2m∑
i=0

(−1)i
k−1∏
j=k−i

hj,j+1W
rk−i

[k+m−i]S ⊕W
rk+m−i
[k−i]S

4 Transmitter k : m ≤ [k + p]2m < 2m− 1 sends:

xk=
m−1∑

i=[k+1]m

(−1)i
k−1∏

j=k−i

hj,j+1W
rk−i

[k+m−i]S⊕W
rk+m−i
[k−i]S

5 Transmitter k : [k + p]2m = 2m− 1 sends:

xk = ∅.

6 end
7 end

Algorithm 7.1: Delivery Phase of the Cache-aided Scheme

7.1.2 Placement and Delivery of Files with Caching at the
Receivers

In this section, we describe the scheme leading to the result of Theorem
7.2. We provide the proof of Eq. (7.6), i.e., when the cache size takes values
γ = 1

2x+1
, x ∈ N, while noting that Eq. (7.7) would follow by using memory

sharing (cf. Section 7.1.6).

Placement Phase

In the placement phase, each file is subpacketized into S = 1
γ
subfiles i.e., for

every file W n, n ∈ [N] we have W n → {W n
0 , ...,W

n
S−1}.

Users cache according to

Zk =
{
W n

[k]S
, ∀n ∈ n ∈ [N]

}
. (7.9)

Delivery Phase

As discussed above, the delivery phase starts with the request from each user
of any¹ file from the library. For γ = 1

2x+1
, x ∈ N, the goal is to rely on the

smallest possible backhaul load that allows for interference-free reception i.e.

minMT s.t. d(MT , γ) = 1. (7.10)

¹We will assume that each user requests a different file, which corresponds to the worst
case user demand.

7.1. WYNER’S NETWORK ON CACHES 105

The delivery phase consists of 2x transmission slots, where in each slot,
we deliver fraction γ = 1

2x+1
of the requested file to every receiver which, along

with the cached fraction will amount to the whole file. We will call each
successive pair of delivery slots a Delivery Network (DNm, m ∈ {1, 2, ..., x}).
Thus, there will be a total of x delivery networks. The role of DNm is to
deliver to user k ∈ KR subfiles indexed by [k±m]S . To this end, during DNm

the transmitted messages contain XORs (or linear combinations of XORs),
where each XOR is formed using two subfiles with difference of indices equal
to [m]S . For example, in DNm, m ∈ {1, ..., 1−γ

2γ
}, the two transmitted XORs,

intended for user k ∈ KR, will be

W rk
[k+m]S

⊕W
rk+m

[k]S
, W rk

[k−m]S
⊕W

rk−m

[k]S
.

Transmission takes place according to Algorithm 7.1. First, we demonstrate
how the algorithm succeeds in achieving full puDoF through the following
example and subsequently we discuss in detail the steps of Algorithm 7.1.

Example 7.1. Let us assume that each user can store fraction γ= 1
5
of the li-

brary, which corresponds to 4 transmission slots and thus 2Delivery Networks,
namely DN1 and DN2. We begin by subpacketizing each file into 5 subfiles and
caching at each user according to Eq. (7.9), i.e.,

Z0 = {W n
0 , ∀n ∈ {1, 2, ..., N}} ,

Z1 = {W n
1 , ∀n ∈ {1, 2, ..., N}} ,

...
Z5 = {W n

0 , ∀n ∈ {1, 2, ..., N}} .

W r0
1 ⊕W r1

0 W r2
3 ⊕W r3

2∅ ∅

Rx0 Rx1 Rx2 Rx3 ...

Figure 7.3: Slot 1 of Delivery Network DN1, for the setting of Example 7.1.

W r2
1 ⊕W r1

2 W r4
3 ⊕W r3

4∅ ∅

Rx0 Rx1 Rx2 Rx3 ...

Figure 7.4: Slot 2 of Delivery Network DN1, for the setting of Example 7.1.

106 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

After the request of a single file from each user, the transmission begins
with DN1 and then with DN2. The first pair of transmission slots are respon-
sible for delivering XORs comprized of subfiles with subsequent indices i.e.,
W r0

1 ⊕ W r1
0 , W r1

2 ⊕ W r2
1 , W r2

3 ⊕ W r3
2 , W r3

4 ⊕ W r4
3 and so on. The transmitted

messages at the first 4 transmitters during DN1 are illustrated in Fig. 7.3-7.4.
The two slots ofDN2 follow after the completion of the two slots of Delivery

Network DN1. Here, the transmitters will communicate subfiles to user k with
indices [k±2]S i.e.,W r0

2 ⊕W r2
0 ,W r1

3 ⊕W r3
1 ,W r2

4 ⊕W r4
2 ,W r3

0 ⊕W r5
3 , and so on. The

transmitted messages for each of the two slots are illustrated in Fig. 7.5-7.6.
In each of the 4 slots from Delivery Networks DN1 and DN2, a different

subfile is delivered to each receiver, thus completing the delivery of all files²,
while downloading exactly 6 subfiles at each transmitter.

Details of the Delivery Algorithm First, a delivery network is chosen
(Step 1), and then one of the two slots of the delivery network is chosen
(Step 2). As discussed above, the purpose of delivery network DNm is to
deliver to each receiver k ∈ KR subfiles indexed as [k ± m]S . During each
transmission slot, the transmitters are divided into three non-overlapping
sets. The first set (Line 3) is tasked with transmitting new messages and
nulling the interference created by the messages of previous transmitters.
The second set (Line 4) is tasked with transmitting messages that nullify
the interference at their respective receiver, which interfering messages have
been generated by transmitters of the first set. Finally, the third set (Line 5)
of transmitters remains silent.

Characterizing the Required Backhaul Load
In this section, we will characterize the backhaul load that our algorithm
requires in order to achieve interference-free transmission for a given frac-
tional cache-size γ = 1

2x+1
, x ∈ N.

We begin by observing (cf. Algorithm 7.1 and Example 7.1) that the back-
haul load at each transmitter during a specific Delivery Network is – poten-
tially – different, and the two slots of a delivery network are designed to
balance the per-transmitter backhaul load. As an example, in Figures 7.5-7.6
we can see that if a transmitter is silent during one slot of DN2, then during
the other slot it will transmit the linear combination of two XORs, thus will
need to fetch from the backhaul 4 subfiles.

Consider a transmitter that, during Slot 2 of DNm, is silent. This trans-
mitter’s index, k, (Line 5 of Algorithm 7.1) must satisfy [k +m]2m = 2m − 1,
which gives k = (2b−1)m−1, b ∈ N. This further means that during Slot 1 of
DNm, the transmitter’s load will be characterized by Line 3 of Algorithm 7.1,
since [k]2m = [2bm − m − 1]2m = m − 1. Thus, this transmitter will need to
fetch the contents of m XORs, making the total, per-delivery-network, back-

²We note that while W r0 is not completely delivered, asymptotically that does not affect
the per-user DoF of a large network.

7.1. WYNER’S NETWORK ON CACHES 107

W r0
2 ⊕W r2

0 −h1,2(W
r1
3 ⊕W r3

1)
−h0,1(W

r2
0 ⊕W r0

2)

W r1
3 ⊕W r3

1

∅

h0,1 h1,2 h2,3 h3,4 h4,5 h5,6 ...

Rx0 Rx1 Rx2 Rx3 Rx4 Rx5 Rx6 ...

W r4
1 ⊕W r6

4 −h5,6(W
r5
2 ⊕W r7

0)
−h4,5(W

r4
1 ⊕W r6

4)

W r5
2 ⊕W r7

0

Figure 7.5: Slot 1 of Delivery Network DN2, for the setting of Example 7.1.

W r1
4 W r2

4 ⊕W r4
2∅
−h2,3(W

r2
4 ⊕W r4

2)

W r3
0 ⊕W r5

3

h0,1 h1,2 h2,3 h3,4

Rx0 Rx1 Rx2 Rx3 Rx4 Rx5 Rx6 ...

−h3,4(W
r3
0 ⊕W r5

3) W r6
3 ⊕W r8

1∅

h4,5 h5,6 ...

Figure 7.6: Slot 2 of Delivery Network DN2, for the setting of Example 7.1.

haul load equal to 2m subfiles. Using this observation, we can calculate the
overall required per-transmitter backhaul load, which is (note: x = 1−γ

2γ
)

MT =
1

S
·

x∑
m=1

2m = γ · 2 · x(x+ 1)

2
=

1− γ2

4γ
.

7.1.3 Discussion and Concluding Remarks
From Corollary 7.1, we can deduce that receiver-side caching impacts the
delivery time in three different ways.

Local Caching Gain Having stored fraction γ from each of the files, the
system can have reductions in the delivery time since part of the desired
content is already stored at the receivers and hence it is not required to be
communicated.

Multicasting Gain Since messages contain XORed subfiles, in order to
decode its desired subfile each receiver needs to make use of its cached but
unwanted content. Thus, unwanted, cached content allows the transmission
of more than one message simultaneously, which saves transmission slots.

Cooperative Transmission Gain As fraction γ of each file is cached at
each receiver, the user will require only the smaller fraction (1−γ) of the file.
Now, for the same backhaul load as the no-caching case, this smaller request

108 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

(from 1 to 1 − γ) permits the transmitters to fetch more content, which can
further boost the cooperation gains.

Figure 7.7: Per-user DoF as a function of cache size for different values of
backhaul load.

Figure 7.8: Required backhaul load without user caching that achieves the
same per-user DoF as the cache-aided scheme with the pair (MT , γ).

In Figure 7.7, we illustrate the above points b) and c) by plotting the
puDoF that is achieved using different pairs (MT , γ). It is interesting to
note that a high backhaul load paired with a small cache can provide an
intereference-free reception at every node.

Further, in Figure 7.8, we plot³ the backhaul load that would have been
³The MT values of the y-axis are calculated according to the results of Theorem 7.1.

While not all of the points presented may be achievable, nevertheless their convex envelope
is, and as a result present an even more optimistic case in favor of the no-caching schemes.

7.1. WYNER’S NETWORK ON CACHES 109

needed to achieve the same per-user DoF as does the pair (MT , γ). We
can note here that caching even fraction γ = 1

20
with a backhaul load of

MT = 3 would have otherwise required a no caching backhaul load of MT =
6. Moreover, caching fraction γ = 0.1 can reduce the load from MT ≈ 7
to MT = 2. This further accentuates the role of coded transmissions and
multicasting as relevant and impactful techniques that allow for fast delivery
of content.

On the other hand, in the absence of caching, the cost of increasing the
DoF even by a small fraction would have been extremely high. For example,
if MT = 16

7
we know that we can achieve d = 7

8
, but in order to achieve

d′ = 15
16
, we would have to more than double the backhaul cost (see Eq. (7.4)).

Contrarily, the same increase can be achieved by caching at each user an
(approximate) fraction γ = 1

16
of the library, and requiring a backhaul load

of only MT = 2.

7.1.4 No-Caching Schemes

In this section, we provide the achievable schemes, in the absence of caching,
that prove Theorem 7.1. The presented schemes rely on applications of the
schemes in [117] and [118] (See also [116] for a summary and high-level illustra-
tion) with time sharing, in order to meet the considered backhaul constraint.

1 Assume MT = 4x2

4x−1
, x ∈ N.

2 Next(i) returns the smallest index of a subfile of W ri that has not
been transmitted in a previous time slot.

3 Subpacketize each file into S = 4x− 1 subfiles.
4 for t ∈ {0, 1, ..., 4x− 1} (Time Slots) do
5 Transmitter k : 0 ≤ [k − t]4x < 2x sends:

xk=

[k−t]4x∑
i=0

(−1)i
(

k−1∏
j=k−i

hj,j+1

)
W

rk−i

Next(k−i).

6 Transmitter k : 2x ≤ [k − t]4x < 4x− 1 sends:

xk =
2x−L∑
i=1

(−1)i−1

(
k+i−1∏
j=k+1

1

hj−1,j

)
W

rk+i

Next(k+i),

where L = [k − t]4x − 2x− 1.
7 Transmitter k : [k − t]4x = 4x− 1 does not transmit.
8 end
Algorithm 7.2: Delivery Phase Under no Caching corresponding to the
result of Eq. (7.4)

110 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

Proof of Theorem 7.1, Eq. (7.4)

The proposed scheme is completed in 4x blocks of communication. Each
receiver gets 4x − 1 packets, and each packet is delivered through a one
degree of freedom link. Each file is subpacketized into 4x − 1 subfiles, i.e.
file W n → {W n

0 ,W
n
1 , ...,W

n
4x−2}. Each subfile is carried over one packet. In

each block of communication, we divide the network into subnetworks, each
consisting of 4x consecutive transmitter-receiver pairs, and use the scheme
in [117] to deliver 4x− 1 packets in each subnetwork.

In what follows, we explain the scheme for the case when x = 1 for sim-
plicity, and demonstrate how it generalizes to larger values of x. For the first
block of communication when x = 1, the first transmitter downloads W r0

0 ,
the second transmitter downloads W r0

0 and W r1
0 , and the third downloads

W r3
0 . All three subfiles W r0

0 ,W r1
0 and W r3

0 can then be delivered through
one DoF links using cooperative transmission, as illustrated in [117]. The
fourth transmitter is inactive, thereby eliminating inter-subnetwork interfer-
ence, and thus allowing the same scheme to be applied to each remaining
subnetwork.

In the second block of communication, the first transmitter is inactive,
while the same scheme is applied while we allocate to the second transmitter
the role that the first transmitter had in the network, to the third transmitter
the role that the second transmitter had and so on. More precisely, the first
subnetwork would now consist of users with indices {1, 2, 3, 4}. Subfile W r1

1

would then be downloaded by transmitters 1 and 2, W r2
0 would be downloaded

by transmitter 2, and W r4
1 would be downloaded by transmitter 3, while the

fifth transmitter is deactivated. Since transmitter 5 is inactive, then there is
no inter-subnetwork interference, hence the same scheme can be applied to
the subnetwork containing users {5, 6, 7, 8} to deliver subfiles {W r5

1 ,W r6
0 ,W r8

1 }
without causing interference to the following subnetwork, and similarly, three
subfiles can be delivered over one DoF links for every subsequent subnetwork.
Proceeding in a similar fashion as above for the third block of communication
for the case when x = 1, we are able to deliver all 4x − 1 = 3 subfiles of
each file W i for almost all files⁴ in the 4x = 4 communication blocks. The
achieved puDoF would then be given by 4x−1

4x
= 3

4
. For the backhaul load, in

each block of communication, each transmitter downloads an average of x
subfiles. Over the 4x communication blocks, each transmitter downloads 4x2

subfiles, resulting in MT = 4x2

4x−1
files.

7.1.5 Proof of Theorem 7.1, Eq. (7.5)
We explain in this section how the scheme presented in [118] can be modified
to prove the result in Theorem 7.1, Eq. (7.5). The key idea is to employ time
sharing for the scheme that achieves the same puDoF when the backhaul
allows for distributing a message to a maximum of x transmitters.

⁴In fact, we deliver all files W rk
i , whose index i ≥ 4x − 1, but since the focus is on the

asymptotic puDoF, then ignoring a small set of users would not affect the result.

7.1. WYNER’S NETWORK ON CACHES 111

1 Assume MT = x+1
2
, x ∈ N.

2 Next(i) returns the smallest index of a subfile of W ri that has not
been transmitted in a previous time slot.

3 Subpacketize each file into S = 2x subfiles.
4 for t ∈ {0, 1, ..., 2x} (Time Slots) do
5 Transmitter k : 0 ≤ [k − t]2x+1 < x sends:

xk=

[k−t]2x+1∑
i=0

(−1)i
(

k−1∏
j=k−i

hj,j+1

)
W

rk−i

Next(k−i).

6 Transmitter k : x ≤ [k − t]2x+1 < 2x sends:

xk =
x−L∑
i=1

(−1)i−1

(
k+i−1∏
j=k+1

1

hj−1,j

)
W

rk+i

Next(k+i),

where L = [k − t]2x+1 − x.
7 Transmitter k : [k − t]2x+1 = 2x does not transmit.
8 end
Algorithm 7.3: Delivery Phase Under no Caching corresponding to the
result of Eq. (7.5)

W r0
0 W r0

0 ,W r1
0

W r0
0 ,W r1

0

W r2
0

W r0
0 ,W r1

0

W r2
0 ,W r3

0

h0,1 h1,2 h2,3 h3,4

Rx0 Rx1 Rx2 Rx3 Rx4 Rx5

W r5
0 ,W r6

0

W r7
0 ,W r8

0

W r6
0 ,W r7

0 ,W r8
0

h4,5 h5,6

Figure 7.9: One transmission slot in the non-cache-aided network with back-
haul constraint of MT = 5

2
corresponding to Eq. (7.5). This slot involves a

subnetwork of 9 users and delivers 8 packets (to all users apart from the 4th),
thus achieving a pudDoF of d

(
5
2
, 0
)
= 8

9
.

Similarly to the above proof, the proposed scheme completes in 2x + 1
communication blocks, and each file is subpacketized into 2x subfiles, and
each subfile is delivered through a one DoF link. In each communication
block, the network is split into subnetworks, where each has 2x+1 consecutive
transmitter-receiver pairs.

Consider the case where x = 2. In the proposed scheme, subfile W r0
0 is

communicated between the first transmitter-receiver pair with no interference.
The same subfile is also downloaded by the second transmitter (with index 1)
to cancel its interference at receiver 1. Subfile W r1

0 is then delivered through
transmitter 1 to receiver 1. Similarly, transmitter 3 delivers W r4

0 to the last

112 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

receiver in the first subnetwork, and transmitter 2 downloads the same subfile
to cancel its interference at receiver 3. Finally, transmitter 2 delivers W r3

0

to receiver 3 with no interference. Note that W r3
0 is not transmitted in the

first block of communication. Also, the last transmitter in the subnetwork is
inactive to eliminate inter-subnetwork interference.

In each communication block, a total of x(x+1) subfiles are downloaded
from the backhaul for each subnetwork of 2x+1 users. Upon the conclusion
of all 2x + 1 communication blocks, each transmitter has downloaded an
equal number of subfiles from the backhaul. Since each file has 2x subfiles,
the per-transmitter backhaul load MT is given by,

MT =
x(x+ 1)

2x
=

x+ 1

2
. (7.11)

7.1.6 Memory Sharing
In this section, we describe the memory sharing concept, which we first use to
prove the result of Theorem 7.2, Eq. (7.7), i.e, the required backhaul load under
the assumption of complete interference mitigation and fractional cache size
γ = 1

2k
, and we further use this result to calculate the puDoF of any pair(

MT ∈ N, γ < 1
4MT

)
.

The main idea of memory sharing is to split each file into two parts and
cache from each part in an uneven manner. We begin by splitting each
file W n, n ∈ [N] into parts i.e., W n → {W n,1,W n,2} with respective sizes
|W n,1| = p · |W n| and |W n,2| = (1 − p) · |W n|, where p ∈ [0, 1]. We proceed to
cache, at each user, fraction γ1 = 1

2x−1
from the first part of each file and

fraction γ2 = 1
2x+1

from the second part of each file, which means that the
cache constraint must satisfy

γ = p · γ1 + (1− p) · γ2, (7.12)
1

2x
= p

1

2x− 1
+ (1− p)

1

2x+ 1
,

p =
2x− 1

4x
.

Then, using the result of Eq. (7.6), for each of the two parts, we can
calculate the total required backhaul load as

MT = p
1− γ2

1

4γ1
+ (1− p)

1− γ2
2

4γ2
(7.13)

=
2x− 1

4x

4(2x)(2x− 2)

2x− 1
+

2x+ 1

4x

4(2x)(2x+ 2)

2x+ 1

= 8x =
1

4γ
. □

Further, in order to calculate the puDoF for an arbitrary γ < 1
4MT

that is
paired with an integer-valued backhaul load, MT ∈ N, we follow the same

7.2. TRANSMITTER COOPERATION WITH NO CSIT 113

procedure of splitting the file into two parts, where now the fractional cache
sizes chosen for each part take the values γ1 =

1
4MT

and γ2 = 0, respectively,
thus p can be computed by solving

γ = pγ1 + (1− p)γ2 ⇒ p = 4γMT , (7.14)

so that the memory cache constraint is respected. The puDoF when we
transmit each part is going to be, respectively, d(MT , γ1) = 1 (cf. Eq. (7.7))
and d(MT , 0) = 4MT−2

4MT−1
(cf. Eq. (7.5)), thus the time required to serve all

demands would be

T (MT , γ) = p
1− γ1

d(MT , γ1)
+ (1− p)

1− γ2
d(MT , 0)

,

from which we can calculate the achievable per-user DoF as

d (MT , γ) =
1− γ

T (MT , γ)
.

7.2 Transmitter Cooperation with No CSIT:
Weak Interference meets Caching

In the second setting we consider a scenario with K transmitter/receiver
pairs, where each receiver k ∈ [K] is connected to transmitter k via a strong
direct link with unit-normalized capacity, while the cross links from all other
transmitters are weaker, with capacity α ≤ 1. In this setting, each transmit-
ter and receiver are equipped with a cache of normalized sizes γT and γR,
respectively, and it is assumed that transmitters do not have access to CSI.

The received signal at user k ∈ [K], takes the form

yk(t) =
√
Phk,k(t)xk(t) +

∑
k′∈[K]\{k}

√
Pαhk′,kxk′(t) + wk(t) (7.15)

where an input signal xi(t) from transmitter i satisfies the power constraint
E{|xi(t)|2} ≤ 1, where the channel fading coefficient from transmitter i to
receiver k (i, k ∈ [K]) is denoted by hi,k(t), and where noise wk(t) ∼ CN (0, 1).
The average received signal-to-noise ratio (SNR) from any link to user k is,
thus, calculated as

E
{
|
√
Phi,k(t)xi(t)|2

}
=

{
P, i = k

Pα, i ̸= k.

We note that the channel strength model follows the GDoF framework
which we formally present in Chapter 6 (see also [45,46,49]).

114 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

7.2.1 Coding challenge
This setting brings about interesting challenges but also opportunities. The
lack of CSIT is naturally non-beneficial, while the topological factor can be
used to counter the lack of CSIT by (occasionally) reducing the interference
power. At the same time though, this topological factor, together with the
requirement that the transmitters do not receive any additional data after
the caching phase, will inevitably force some of the receivers’ requested data
to reside only at far-away (weak) transmitters. Such ‘cross’ interference set-
tings have notoriously bad performance, which will be here boosted by using
receiver-side (coded) caching and partial cooperation among the transmit-
ters. Hence our main challenge will be to place content in a way that best
allows for topology, caching and transmitter cooperation to jointly remove
unwanted interference. In the end, the schemes will combine Coded Caching
with rate-splitting (Han-Kobayashi) approaches [119], and with interference
enhancement techniques [120].

Some Intuition By carefully combining the above three techniques we
want to ameliorate the performance loss due to the lack of CSIT. Specifi-
cally, the rate-splitting approach will allow for a partition of a message into
“private” (low powered) and “common” (high powered) parts. The low powered
part of the message will be “heard” only by one receiver (strongly connected)
while the high powered part will be heard by all. Further, we will take advan-
tage of content replicated at the transmitter side to bring forth interference
enhancement, [120], by transmitting interference over the private part of the
message, which is then used as side information to allow for interference
removal at the receiver side. Finally, receiver side caching will be used as
another source of side information that can help reduce interference.

7.2.2 Main Results
We first proceed with the GDoF performance of the case where each trans-
mitter has access to the whole library, namely the topological MISO BC.

Theorem 7.3. In the K-user topological MISO BC with parameter α and
receiver-side caches of normalized size γ, the cache-aided GDoF here take
the form

Dα(K, γT = 1, γR) = K(1− α) + (KγR + 1)α. (7.16)

Theorem 7.4. In theK-user topological MISO BC (parameter α) and receiver-
side caches of normalized size γ, the cache-aided GDoF performance of

Dα(K, γT = 1, γR) = K(1− α) + (KγR + 1)α (7.17)

is order optimal with gap of at most 12 from the optimal performance.

Proof. The order optimality is proven in [78].

7.2. TRANSMITTER COOPERATION WITH NO CSIT 115

Theorem 7.5. In the K-transmitter K-receiver setting, with topological pa-
rameter α where each transmitter has cache of normalized size γT , while the
receivers don’t have caches, the achievable delay takes the form

Tα(K, γT) =
KγT

K(1−τ)+
(
min{ 2τ−1

1−γT
, τ}
)+ +

xsK(1− γT)

min
{

τ
1−γT

, 1
} .

where

xs =
K(1− τ)

K(1−τ) +
(
(KγR+1)min

{
2τ−1
1−γT

, τ
})+

Kg =
K(1− γT)

(
K−1
KγR

)(
K

KγR+1

)
− γT

(
K−1
KγR

)
−
(

KγT
KγR+1

)
K−KγR−1

K

.

Theorem 7.6. In the K-transmitter K-receiver setting, with topological pa-
rameter α where each transmitter has cache of normalized size γT and each
receiver has normalized cache-size γR, the achievable delay takes the form

Tα(K, γT ≤ γR) =
K(1− γR)

(KγR + 1)min
{

τ
1−γT

, 1
}

Tα(K, γT > γR) =
KγT (1− γR)

K(1− τ) + (KγR + 1)
(
min

{
2τ−1
1−γT

, τ
})+

+
K(1− γT)(1− γR)

Kg min
{

τ
1−γT+

, 1
} · xs

where xs and Kg defined in Theorem 7.5.

7.2.3 Placement and Delivery Schemes
Cache Placement

Files are split into

S =

(
K

KγT

)(
K

KγR

)
(7.18)

subfiles i.e.,

W n → {W n
τT ,τR

, τT ⊂ [K], |τT | = KγT , τR ⊂ [K], |τR| = KγR}. (7.19)

Placement at transmitter kT and receiver kR takes the form

ZkT = {W n
τT ,τR

: kT ∈ τT , ∀τR,∀n ∈ [N]}, (7.20)
ZkR = {W n

τT ,τR
: kR ∈ τR, ∀τT ,∀n ∈ [N]}. (7.21)

116 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

Delivery Phase

The delivery scheme is dependent on parameters α and γT and is described
here for the four distinct cases, namely

• The MISO BC case where each transmitter cache has access to the
entire library,

• the interference scenario where γR < γT < 1, and α ≤ 1
2

• the interference scenario where γR < γT < 1 and α ≥ 1
2
, and

• the interference scenario where γT ≤ γR.

MISO BC with receiver side caching In this case, as discussed before,
each transmitter has access to the whole library which means that the trans-
mitter index takes the form τT = [K] thus, in order to simplify the notation
we will abstain of using this index.

We begin by dividing a subfile into two parts,

W n → {W n,1
τR

,W n,2
τR
} (7.22)

with respective relative sizes p and 1− p, where

p =
|W n,1

τR
|

|W n
τR
|
=

(KγR + 1)α

K(1− α) + (KγR + 1)α
. (7.23)

The transmitted message from transmitter k ∈ [K] will be of the form

xk = ck︸︷︷︸
common

+ bk︸︷︷︸
private

where c has power 1 − P−α and rate α, while bk, has power P−α and rate
1− α. Each transmitter k ∈ [K] encodes in bk from any requested subfile its
part 2, i.e.

bk ← {W dk,2
τR

,∀τR : k /∈ τR}.

Moreover, the high powered, common, part of the message is encoded with
all the XORs which are formed as a combination of KγR + 1 elements from
the set of W n,1

τR
subfiles, i.e.

ck ←
{ ⊕

m∈σR

W dm,1
σR\{m}, ∀σR ⊆ [K], |σR| = KγR + 1

}
.

Note 7.1. We can notice that common message ck is the same throughout all
the transmitters, while private messages bk are transmitter dependent.

The above separation of transmitted messages into two parts (one with high
power and one with low power) “re-shapes” the channel to act as the equivalent
to a set of two separate channels, where the first channel conveys a common

7.2. TRANSMITTER COOPERATION WITH NO CSIT 117

message that can be overheard by all users with rate (1−α), while the second
acts as a set of K individual links each from a transmitter to its respective
receiver and each carrying messages the rate of α.

This observation along with the multicasting opportunities of Coded Caching
allows to use the common part of the channel to serve many users at a time, by
exploiting the user caches, while also continue to exploit the separation, and
scalable rate, that the private part of the channel offers.

Decoding The received signal at user k takes the form

yk = hk,kck︸ ︷︷ ︸
P−P 1−α,α

+
∑
i ̸=k

hi,kci︸ ︷︷ ︸
P 1−α,α

+ hk,kbk︸ ︷︷ ︸
Pα,1−α

+
∑
i ̸=k

hi,kbi︸ ︷︷ ︸
P 0,1−α

. (7.24)

User k ∈ [K] first decodes message ck by treating interfering messages as
noise (TIN), and does so with rate α. Then, proceeds to remove all common
messages ci, i ∈ [K] \ {k} from Eq. (7.24). Further, by TIN the receiver can
decode the respective private (lower powered) message with rate 1− α.

For the above, the delivery time achieved is

Tα(K, γT , γR) = max
{
(1− p)

(
K

KγT

)(
K−1
KγR

)(
K

KγT

)(
K

KγR

)
(1− α)

, p

(
K

KγT

)(
K

KγR+1

)(
K

KγT

)(
K

KγR

)
α

}

=
K(1− γR)

K(1− α) + (KγR + 1)α
,

which implies the cache-aided GDoF performance of

Dα(K, γT = 1, γR) = K(1− α) + (KγR + 1)α. (7.25)

Interference Channel with α ≤ 1
2
and γT > γR

In this case, the delivery phase is split into two sub-phases. During the first
sub-phase, each transmitter k will deliver all their cached subfiles that are re-
quested by its respective (direct) receiver (receiver k). Each transmitter sends
its message with power 1 and rate 1−α, while receivers decode the message
by treating all other messages as noise, thus with rate 1 − α. Specifically, a
transmitted signal from transmitter k contains:

xk ←
{
W dk

τT ,τR
: k ∈ τT & k /∈ τR

}
.

Users are able to decode their messages by treating interfering messages
as noise.

The duration of this sub-phase is

T 1
α(K, γT , γR) =

(
K−1

KγT−1

)(
K−1
KγR

)
(1− α)

(
K

KγT

)(
K

KγR

) =
γT (1− γR)

1− α
.

118 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

In essence, the above sub-phase takes advantage of the fact that inter-
ference from far-away transmitters is weak (α ≤ 1

2
) to deliver a part of the

requested subfile using the direct links.
Further, the role of the second sub-phase is to deliver the remaining part

of the files, which reside in far-away transmitters. Each transmitter forms
all XORs of size KγR + 1 apart from those whose all KγR + 1 elements have
already been transmitted. In the transmitted signal we encode the following
subfiles

xk ←
{ ⊕

m∈σR

W dm
τT ,σR\{m}, ∀ τT ⊂ [K], |τT | = KγT , k ∈ τT ,

∀σR ∈ R1 \ R2,

R1 = {ρ1 ⊂ [K], |ρ1| = KγR + 1}

R2 = {ρ2 ⊆ τT , |ρ2| = KγR + 1}
}
.

i.e. in the transmitted signals we encode all possible XORs of size KγR + 1,
apart from those whose all (KγR + 1) elements have been transmitted in
delivery subphase 1.

Moreover, we can see that some XORs have been partially transmitted in
subphase 1, something that allows for interference removal opportunities.

Example 7.2. As an example, let us assume that K = 4, that each transmitter
caches fraction γT = 1

2
of the library and that each receiver has a cache of

normalized size γR = 1
4
. In this setting, we can see that receiver 1 would

receive subfile W d1
12,4 in subphase 1.

At the same time, this subfile would appear in subphase 2 encoded into
XOR W d1

12,4⊕W d4
12,1. While this XOR is useful for receiver 4, thus it needs to be

transmitted since it conveys information that has not appeared in sub-phase 1,
nevertheless it carries no useful information for receiver 1, and who can fully
“cache-it-out” so that to reduce its experienced interference.

In total, each XOR will be transmitted from KγT transmitters. Each
message is transmitted with power 1 and encoded with all the above XORs,
while the rate of each XOR is

rXOR =
min

{
α

1−γT
, 1
}

(
K

KγT

) [(
K

KγR+1

)
− γT

(
K−1
KγR

)
−
(

KγT
KγR+1

)
K−KγR−1

K

]
which accounts for all the possible XORs

(
K

KγR+1

)
, minus those that have

been partially transmitted (γT
(
K−1
KγR

)
), (see Example 7.2), thus no longer causing

interference, and minus those that have been fully transmitted in sub-phase 1
(
(

KγT
KγR+1

)
).

7.2. TRANSMITTER COOPERATION WITH NO CSIT 119

We can see that the total rate of each transmitted message is

rxk
=

(
K−1

KγT−1

) [(
K

KγR+1

)
−
(

KγT
KγR+1

)]
min

{
α

1−γT
, 1
}

(
K

KγT

) [(
K

KγR+1

)
− γT

(
K−1
KγR

)
−
(

KγT
KγR+1

)
K−KγR−1

K

]
=

γT

[(
K

KγR+1

)
−
(

KγT
KγR+1

)]
min

{
α

1−γT
, 1
}

[(
K

KγR+1

)
− γT

(
K−1
KγR

)
−
(

KγT
KγR+1

)
K−KγR−1

K

] .
By removing the partially transmitted XORs of subphase 1, from each xi

message, the remaining rate of any xi is rxi
= γT min{ α

1−γT
, 1}.

As evident, there appear two cases, depending on parameters γT and α.
If α ≤ 1− γT , Rxk decodes xk by TIN, with rate

γT
α

1− γT
≤ 1− α (7.26)

and proceeds to remove its contents from all the received signals. Since the
XORs appearing in message xk will also be transmitted from some other
KγT − 1 transmitters the remaining signal has sum-rate∑

i∈[K]

rxi
− rxk

=
α

1− γT
− γT

α

1− γT
= α

which makes them decodable by a joint decoding process.
On the other hand, if α ≥ 1−γT , then a receiver proceeds to jointly decode

all xi, i ∈ [K] messages.
The time required to complete this sub-phase is

T (2)
α (K, γT , γR) =

(
K−1
KγT

) [(
K

KγR+1

)
−
(

KγT
KγR+1

)]
rxk

(
K

KγT

)(
K

KγR

) =
K(1− γT)(1−γR)

Kg min
{

α
1−γT+

, 1
} .

Interference scenario with α ≥ 1
2
and γT > γR In this case, similarly to

the previous one, delivery consists of two sub-phases.
First, each subfile is split into two parts W n,1

τT ,τR
and W n,2

τT ,τR
with relative

sizes |W n,1
τT ,τR
| = xs · |W n

τT ,τR
| and |W n,2

τT ,τR
| = (1− xs) · |W n

τT ,τR
| where

xs =
(KγR + 1)min

{
2α−1
1−γT

, α
}

(KγR+1)min
{

2α−1
1−γT

, α
}
+K(1−α)

.

During delivery sub-phase 1, a transmitted message is partitioned into two
parts, namely the common part and the private part, as follows

xk = ck︸︷︷︸
1−P−α,α

+ bk︸︷︷︸
P−α,1−α

, k ∈ [K]

120 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

and where the content encoded in each such message takes the form

ck ←
{ ⊕

m∈σR

W dm,1
τT ,σR\{m}, ∀τT ⊂ [K], |τT | = KγT : k ∈ τT

∀σR ⊆ [K], |σR| = KγR + 1

}
(7.27)

bk ←
{
W dk,2

τT ,τR
, ∀τT ⊂ [K], |τT | = KγT , k ∈ τT

∀τR ⊂ [K], |τR| = KγR : k /∈ τR

}
. (7.28)

Thus, ck is designed to carry all XORs composed composed of subfiles from
set

{
W n,1

τT ,τR
, k ∈ τT

}
, i.e. from subfiles cached at transmitter k. Further, bk

carries all subfiles from set
{
W n,2

τT ,τR
, k ∈ τT , k /∈ τR

}
, i.e. subfiles of the 2nd

partition which are cached by transmitter k but not cached by receiver k.
The required time for this subphase is

T 1
α(K, γT , γR) =

1

S
·max

{
(1− xs)

(
K−1

KγT−1

)(
K−1
KγR

)
(1− α)

,
xs

(
K

KγT

)(
K

KγR+1

)
min{ α

1−γT
, α}

}

=
KγT (1− γR)

K(1−α)+(KγR + 1)min
{

2α−1
1−γT

, α
} .

At the end of the above subphase, all W n,1
τT ,τR

requested subfiles have been
delivered, while the remaining of the requested W n,2

τT ,τR
subfiles are to be send

via sub-phase 2. Similarly to the previous paragraph’s approach, we will
send the rest of the subfiles via the low-rate channel, since these subfiles are
residing only on far-away transmitters. The achieved delivery time for this
sub-phase takes the form

T 2
α(K, γT , γR) =

K(1− γT)(1−γR)

Kg min
{

α
1−γT+

, 1
}(1− xs).

Interference scenario with γT < γR In this final case, the benefits of
Coded Caching outperform the gain of sending some subfiles using the fast,
direct channel. As a result, we will only focus on transmitting XORs using
uniquely the low-rate channel. Each transmitter sends its message with full
power, i.e. P = 1, and total rate γT min{ α

1−γT
, 1}. In this message we encode

XORs that are comprized of KγR +1 subfiles and which are all found at the
specific transmitter i.e.,

xk ←
{ ⊕

kR∈σR

W dk
τT ,σR\{kR} : k ∈ τT , σR ⊆ [K], |σR| = KγR + 1

}
(7.29)

7.2. TRANSMITTER COOPERATION WITH NO CSIT 121

with each XOR having rate

rXOR =
min

{
α

1−γT
, 1
}

(
K

KγT

)(
K

KγR+1

) .
We can discern two regions of interest, namely α ≶ 1 − γT . In either

region, the received message takes the form

yk = hk,k

√
Pxk +

√
P−α

∑
i ̸=k

hi,kxi + wk. (7.30)

If α ≤ 1− γT , then receiver k would first decode xk by treating any other
message as noise, which can be achieved with rate α. Then, proceeds to
remove message xk from Eq. (7.30) and proceed to jointly decode all K − 1
remaining messages.

The delay for this second sub-phase takes the form

T (2)
α (K, γT , γR) =

(
K

KγT

)(
K

KγR+1

)
(

K
KγT

)(
K

KγR

)
min

{
α

1−γT
, 1
}

=
K(1− γR)

(KγR + 1)min
{

α
1−γT

, 1
} .

7.2.4 Example
Let us consider the K = 4 pair network with topology parameter α = 6

10
and

normalized cache-sizes γT = 1
2
and γR = 1

4
, respectively which corresponds to

the above presented case 3.
The initial subpacketization is S =

(
4
2

)(
4
1

)
= 24 subfiles, while the receiver

side caches are filled as

ZkR = {12, 13, 14, 23, 24, 34} ⊗ {kR}, kR ∈ [4]

and the transmitter caches are filled as

Zt1 ={12, 13, 14}⊗{1, 2, 3, 4},
Zt2 ={12, 23, 24}⊗{1, 2, 3, 4},
Zt3 ={13, 23, 34}⊗{1, 2, 3, 4},
Zt4 ={14, 24, 34}⊗{1, 2, 3, 4}.

Delivery Sub-phase 1 In the first delivery sub-phase, subfiles are split into
two parts W n,1

τT ,τR
,W n,2

τT ,τR
, according to Eq. (7.27).

The transmitted signals take the form

xk = ck︸︷︷︸
1−P−α,2α−1

+ bk︸︷︷︸
P−α,1−α

. (7.31)

122 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

Common messages have individual rate of 2α−1 and contain the following
XORs

c1 ←
{
A1

τT ,2 ⊕B1
τT ,1, A1

τT ,3 ⊕ C1
τT ,1, A1

τT ,4 ⊕D1
τT ,1, C1

τT ,2 ⊕B1
τT ,3,

D1
τT ,2 ⊕B1

τT ,4, C1
τT ,4 ⊕D1

τT ,3

}
,∀τT ∈ {12, 13, 14}

c2 ←
{
A1

τT ,2 ⊕B1
τT ,1, A1

τT ,3 ⊕ C1
τT ,1, A1

τT ,4 ⊕D1
τT ,1, C1

τT ,2 ⊕B1
τT ,3,

D1
τT ,2 ⊕B1

τT ,4, C1
τT ,4 ⊕D1

τT ,3

}
,∀τT ∈ {12, 23, 24}

c3 ←
{
A1

τT ,2 ⊕B1
τT ,1, A1

τT ,3 ⊕ C1
τT ,1, A

1
τT ,4 ⊕D1

τT ,1, C1
τT ,2 ⊕B1

τT ,3,

D1
τT ,2 ⊕B1

τT ,4, C
1
τT ,4 ⊕D1

τT ,3

}
,∀τT ∈ {13, 23, 34}

c4 ←
{
A1

τT ,2 ⊕B1
τT ,1, A1

τT ,3 ⊕ C1
τT ,1, A

1
τT ,4 ⊕D1

τT ,1, C1
τT ,2 ⊕B1

τT ,3,

D1
τT ,2 ⊕B1

τT ,4, C
1
τT ,4 ⊕D1

τT ,3

}
,∀τT ∈ {14, 24, 34}

while the bi part of the message contains

b1 ←A2
τT ,τR

,∀τT ∈ {12, 13, 14},∀τR ∈ {2, 3, 4}
b2 ←B2

τT ,τR
,∀τT ∈ {12, 23, 24},∀τR ∈ {1, 3, 4}

b3 ←C2
τT ,τR

,∀τT ∈ {13, 23, 34},∀τR ∈ {1, 2, 4}
b4 ←D2

τT ,τR
, ∀τT ∈ {14, 24, 34},∀τR ∈ {1, 2, 3}.

In order to see the decoding process, let us focus on user 1, who receives

y1 = h11c1︸ ︷︷ ︸
P−P 1−α

+
4∑

i=2

hi1ci︸︷︷︸
Pα

+h11b1︸ ︷︷ ︸
P 1−α

+
4∑

i=2

hi1bi︸︷︷︸
P 0

. (7.32)

First, user 1 proceeds to decode message c1 by treating all other messages
as noise. Since its rate is 2α − 1 < 1 − α user 1 can decode the message
successfully. Then, proceeds to remove c1 from Eq. (7.32).

From the remaining common messages, i.e. c2+ c3+ c4 what is left is half
of all the XORs, which in total have sum rate 2α − 1. User 1 can jointly
decode these remaining common messages by treating the private messages
as noise and proceed to remove them from the received signal. Finally, user
1 can decode b1 with rate 1− α, by treating b2, b3, b4 as noise.

Delivery Sub-phase 2 This phase aims to deliver the rest of the messages,
i.e. the part 2 of a subfile which is cached only at far away transmitters,
since part 1 that resides in close transmitters has been transmitted in the
previous sub-phase.

7.2. TRANSMITTER COOPERATION WITH NO CSIT 123

Transmitters send their messages xk, k ∈ [K] each with power 1 and rate
1/4. For example transmitter 1’s message content is

x1 ←
{
A2

12,3 ⊕ C2
12,1, A

2
12,4 ⊕D2

12,1, C
2
12,2 ⊕B2

12,3, D
2
12,2 ⊕B2

12,4,

C12,4 ⊕D2
12,3, A

2
13,2 ⊕B2

13,1, A
2
13,4 ⊕D2

13,1, C
2
13,2 ⊕B2

13,3,

D2
13,2 ⊕B2

13,4, C
2
13,4 ⊕D2

13,3, A
2
14,2 ⊕B2

14,1, A
2
14,3 ⊕ C2

14,1,

C2
14,2 ⊕B2

14,3, D
2
14,2 ⊕B2

14,4, C
2
14,4 ⊕D2

14,3

}
.

From the above XORs, receiver 1 removes all those that contain subfiles
of file AτT ,τR , since all these subfiles AτT ,τR , 1 ∈ τT have been previously
delivered, while their XORed counterpart is cached at Z1 and then proceeds
to jointly decode xi, i ∈ [K].

124 CHAPTER 7. PARTIALLY CONNECTED NETWORKS

Chapter 8

The high-dimensionality Aspect
of Distributed Computing

8.1 Introduction
In this chapter we will change the focus from caching to distributed com-
puting showing first, how the intuition from Coded Caching has been used
to speed up the execution of MapReduce algorithms and further, how some
of the previously discussed algorithms can completely remove any associated
bottlenecks.

Chapter Overview We will begin by describing the MapReduce frame-
work, which constitutes a way to transform serially executed programs to
parallel ones. Further, we will discuss its extension to Coded MapReduce
(CMR) [15], where the tools of Coded Caching, i.e. using side information to
allow for message multicasting, have been used to provide significant com-
munication reductions. Then, we will discuss two main bottlenecks of the
CMR framework, the subpacketization bottleneck [121] and the co-existence
of heterogeneous computing nodes [122]. Finally, we will describe algorithms
that can completely resolve these two bottlenecks.

8.1.1 MapReduce
The MapReduce (MR) model [123] is a parallel computing framework that
transforms a sequential problem into a parallel one. For a setting of K com-
puting nodes connected through a bottleneck channel, the ultimate objective
is the parallel computation of Q ≥ K functions on a dataset F comprized of
f elements. To facilitate the execution of Q

K
functions at each node i.e., to

allow a parallel execution of the final problem, the MR process takes place
in three distinct phases. More specifically, the phases are:

1. the mapping phase, where each element of the dataset is assigned to one
or more computing nodes and where the nodes perform an intermediate
computation aiming to “prepare” for parallelization,

125

126 CHAPTER 8. DISTRIBUTED COMPUTING

2. the shuffling phase (or communication phase), where nodes communi-
cate between each other the preprocessed data that is needed to make
the process parallel, and

3. the reduce phase, where nodes work in a completely parallel manner to
provide the final output that each is responsible for.

Classes of tasks that can be parallelized under a MapReduce framework in-
clude Sorting [50], Data Analysis and Clustering [124,125] and Word Count-
ing [126] among others [127].

The communication bottleneck of distributed computing While though
MapReduce allows for parallelization, it also comes with different bottlenecks
involving for example struggling nodes [126, 128] and non-fine-tuned algo-
rithms [129]. The main bottleneck though that bounds the performance of
MapReduce is the duration of the shuffling phase, especially as the dataset
size becomes larger and larger. While having more nodes can speed up
the computation time, the aforementioned information exchange often yields
unchanged or even increased communication load and delays, leading to a
serious bottleneck in the performance of distributed computing algorithms.

The required execution time of the MR model, assuming that the three
phases happen in sequence, can be seen to be

TMR
tot = Tmap

(
f

K

)
+ Tshuf

K − 1

K
+

Q

K
Tred (8.1)

where Tmap(d · f) is the time spent, by one node, to pre-process a fraction d
of the dataset, Tshuf is the required time to communicate the entire amount
of intermediate values between any two nodes, and Tred denotes the time
required, by a single node, to complete the reduction part of a single function.

As we can see from Eq. (8.1), the Mapping and Reduce phases are reducing
as the number of nodes is increased. On the other hand, the problem lies
with the communication delay Tshuf which, remains approximately the same
thus, can provide the main bottleneck.

8.1.2 Emergence of Coded MapReduce: exploiting com-
puting redundancy

For a general distributed computing problem fitting the aforementioned MapRe-
duce model, a method of reducing the communication load was introduced
in [15], which modified the mapping phase, in order to allow for the shuf-
fling phase to employ coded communication. The main idea of the method
— which is referred to as Coded MapReduce (CMR) — was to assign and
then force each node to map fraction γ > 1

K
of the whole dataset (such that

each element of the dataset is mapped in t = Kγ computing nodes) and then
— based on the fact that such a mapping would allow for common mapped

8.1. INTRODUCTION 127

information at the different nodes — to eventually perform coded communi-
cation where during the shuffling phase, the packets were not sent one after
the other, but were rather combined together into XORs and sent as one.

This allowed the total achieved execution time to take the form

TCMR
tot = Tmap(γf) + Tshuf

1− γ

Kγ
+

Q

K
Tred (8.2)

where we can see that the mapping cost has increased, while the shuffling
cost has decreased significantly, forming a trade-off between increasing the
mapping cost and decreasing the shuffling cost.

The reason this speedup would work is because the recipients of these
packets could use part of their (redundant) mapped packets as side informa-
tion in order to remove the interfering packets from the received XOR, and
acquire their own requested packet.

Coding for Straggler Mitigation

Another line of work (see [128,130–134]), has considered a different bottleneck
of distributed computing (not falling under the MR framework) that is now
caused by some nodes experiencing delays during the computation, thus
causing significant delays in the overall execution time of the algorithm. The
main idea behind these efforts to alleviate this so-called straggling effect, is
to split the dataset into some L < K parts and assign to nodes a function of
one or more parts (usually in the form of coded linear combinations), thus
needing only a subset of the results from the nodes (in particular the faster
ones) in order to recover the final result.

While coding for straggling nodes can provide an increased performance,
nevertheless it suffers from two main limitations: i) an increased load as-
signed to each node (fraction 1

L
instead of fraction 1

K
of the dataset), and

ii) a restriction to linear problems (with the notable extension to polynomial
problems [135]) thus excluding other tasks such as sorting.

8.1.3 Subpacketization bottleneck of distributed comput-
ing

Despite the fact that the aforementioned coded method promises, in theory,
big delay reductions by a factor of t = Kγ compared to conventional uncoded
schemes, these gains are heavily compromised by the fact that the method
requires that the dataset be split into an unduly large number of packets¹

S =

(
K

t

)
≥
(
K

t

)t

. (8.3)

¹The subpacketization S strictly refers to the number of chunks the dataset has to be
split into in order to prepare the mapping phase. At the time when the shuffling phase takes
place, CMR requires to further split each mapped chunk into Kγ equally-sized smaller parts.
This extra subpacketization, which occurs at a bit level, is negligible compared to S and it
is not taken into account in our analysis.

128 CHAPTER 8. DISTRIBUTED COMPUTING

Specifically, the fact that the finite-sized dataset can only be divided into
a finite number of packets, limits the values of parameter t that can be
achieved, because the corresponding subpacketization S must be kept below
some maximum allowable subpacketization Smax which, also, must be less
than the number of elements f in the dataset. If this number S =

(
K
t

)
exceeds

the maximum allowable subpacketization Smax, then coded communication is
limited to include coding that spans only

K̄ = argmax
K

{(
K

t

)
≤ Smax

}
(8.4)

nodes at a time, forcing us to repeat coded communication K/K̄ times, thus
resulting in a smaller, actual gain

t̄ = K̄γ < Kγ

which can be far below from the theoretical communication gain from coding.
Such high subpacketization can naturally limit the coding gains t, but it can
also further delay the shuffling phase because it implies more transmissions
and thus higher packet overheads, as well as because smaller packets are
more prone to have mapped outputs that are unevely sized, thus requiring
more zero padding.

In what follows, we will solve the above problems with a novel group-
based method of distributing the dataset across the computing nodes, and
a novel method of cooperation/coordination between nodes in the transmis-
sion, which will jointly yield a much reduced subpacketization, allowing for
a wider range of t values to be feasible, thus eventually allowing substan-
tial reductions in the overall execution time for a large class of distributed
computing algorithms.

8.1.4 Heterogeneous Nodes
In the second part, we assume that nodes have heterogeneous computing
capabilities during the mapping phase. Specifically, K1 nodes (set K1) can
perform mapping faster than the rest K2 = K −K1 nodes (set K2), and as a
result each node of the first type is tasked with mapping a fraction γ1∈

[
1
K1

, 1
]

of the dataset, while each node of the second type is tasked with mapping a
smaller fraction γ2 ∈ [0, γ1).

Using the increased set-to-set dimensionality that can be found in wireless
settings (cf. Section (8.1.5)) and the wired setting with intermediary nodes
(cf. Section (8.1.6)), we exploit the redundancy at all nodes and reduce the
shuffling delay by a factor of K1γ1+K2γ2 that matches exactly the cumulative
computed redundancy. This solution will show that even though the system
is computationally heterogeneous, it actually performs like an equivalent
homogeneous system where each node could map a uniform fraction γ =
K1γ1+K2γ2

K
of the dataset.

8.1. INTRODUCTION 129

Data assignment uses a modification of the original CMR algorithm of
[15]. The novel communication algorithm during the shuffling phase manages
to consistently serve K1γ1+K2γ2 nodes per transmission, a gain that appears
either because a) nodes can transmit messages as if the two types were not
interfering, or otherwise because b) nodes of set K1 can jointly transmit as
if they were a single transmitter with K1γ1 antennas.

8.1.5 Channel model: Distributed computing in a D2D
setting

We assume that the K computing nodes are all fully connected via a wireless
shared channel as in the classical fully-connected D2D wireless network. At
each point there will be a set of active receivers, and active transmitters.
Assuming a set of L active transmitters jointly transmitting vector x ∈ CL×1,
then the received signal at a receiving node k takes the form

yk = hT
k x+ wk, (8.5)

where as always x satisfies a power constraint E(||x||2) < P , where hk ∈
CL×1 is the (potentially random) fading channel between the transmitting
set of nodes and the receiving node k, and where wk denotes the unit-power
AWGN noise at receiver k. We assume the system to operate in the high SNR
regime (high P), and we assume perfect channel state information (CSI) (and
for the wired case, perfect network coding coefficients) at the active receivers
and transmitters.

8.1.6 High-Dimensional CRM in the wired medium
We note that the same procedure that takes place in the wireless channel, can
be directly applied in the wired setting where the intermediate nodes (routers,
switches, etc.) in the links, can perform pseudo-random network coding
operations on the received data (cf. [10]). This would then automatically yield
a linear invertible relationship between the input vectors and the received
signals, thus allowing for the design of the precoders that cancel intra-group
interference. This is also depicted in Figure 8.1.

8.1.7 Related work
The CMR framework has sparked significant interest due to its ability to
allow the shuffling phase of MapReduce to scale with the number of nodes.
The work in [136] considered the wireless channel with full-duplex links and
proposed new assignment and shuffling phases that could allow the doubling
of the rate. Further, the work in [137] considered using an MDS outer code
in order to address straggling nodes during the mapping phase. Further,
the work in [138] managed to reduce even further the execution time of the
mapping phase without effecting the associated shuffling gains.

130 CHAPTER 8. DISTRIBUTED COMPUTING

× ××

×

× ×
× ×

××

Figure 8.1: Illustration of the wired setting. × denotes a network coding
operation.

8.1.8 Schemes Preliminaries
In the section we will introduce some preliminaries that cover both pre-
sented schemes. Specifically, we will introduce the mapping phase and re-
duce phases, while the assignment of segments to the nodes, as well as the
respective shuffling phases are treated individually in the respective sections
(see Section 8.2 and Section 8.3).

The process commences with the mapping phase, where the dataset, F ,
is divided into S chunks, F1, ..., FS, which are distributed to the nodes, such
that node k is assigned chunks

Mk =
{
Fsk , sk ∈ [S]

}
(8.6)

and where
|Mk|
S

= γ, ∀k ∈ [K]. (8.7)

Each node is responsible for executing a set of mapping functions {mq, ∀q ∈
[Q]} on each of its assigned dataset chunks sk ∈Mk. The result of the map-
ping phase is the set of intermediate values {mq(Fs), q ∈ [Q], s ∈ [S]}.

In the reduce phase, each node k will be assigned the set of functions
Qk ⊂ [Q] in order to perform the reduction. Thus, at the end of the mapping
phase, all nodes need to communicate intermediate values guaranteeing that
node k ∈ [K] will gather

I(qk) = {mq(Fs) ≜ F (q)
s , ∀s ∈ [S]}, ∀q ∈ Qk. (8.8)

In what follows, we will assume, for simplicity, that Q = K and that node k
will be assigned function q = k.

We define as Category q ∈ [Q] the collection of all intermediate values
that, after reduction, can produce result q ∈ [Q].

During the reduce phase the objective is for each node to perform func-
tions rq, ∀q ∈ Qk on the set Iq of intermediate values that it has gathered.

8.2. NODE COOPERATION & SUBPACKETIZATION 131

8.2 Node Cooperation to reduce Subpacketiza-
tion in Coded MapReduce

Main result

We proceed to describe the performance of the new proposed algorithm.
Key to this algorithm — which we will refer to as the Group-based Coded
MapReduce (GCMR) algorithm — is the concept of user grouping, similar to
work [56]. We will group the K nodes into K

L
groups of L nodes each, and

then every node in a group will be assigned the same subset of the dataset and
will produce the same mapped output. By properly doing so, this will allow
us to use in the shuffling phase a new D2D coded caching communication
algorithm which assigns the D2D nodes an adaptive amount of content.
This will in turn substantially reduce the required subpacketization, thus
substantially boosting the speedup in communication and overall execution
time.

For the sake of comparison, let us first recall that under the subpacke-
tization constraint Smax, the original Coded MapReduce approach achieves
communication delay

TCMR
shuf =

1− γ

t̄
Tc (8.9)

where

t̄ = γ · argmax
K̄≤K

{(
K̄

K̄γ

)
≤ Smax

}
(8.10)

is the maximum achievable effective speedup (due to coding) in the shuffling
phase. In the above and in what follows, we assume for simplicity that
Q = K such that each node has one final task.

We proceed with the main result.

Theorem 8.1. In the K-node distributed computing setting where the dataset
can only be split into at most Smax identically sized packets, the proposed
Group-based Coded MapReduce algorithm with groups of L users, can achieve
communication delay

TGCMR
shuf =

1− γ

t̄L
Tc (8.11)

for

t̄L = γ · argmax
K̄≤K

{(¯K/L
¯K/Lγ

)
≤ Smax

}
(8.12)

Proof. The proof follows directly from the scheme description.

The above implies the following corollary, which reveals that in the
presence of subpacketization constraints, simple node grouping can further
speedup the shuffling phase by a factor of up to L.

132 CHAPTER 8. DISTRIBUTED COMPUTING

Corollary 8.1. In the subpacketization-constrained regime where Smax ≤
(
K/L
Kγ/L

)
,

the new algorithm here allows for shuffling delay

TGCMR
shuf =

1− γ

t̄L
Tc =

TCMR
shuf

L
(8.13)

which is L times smaller than the delay without grouping for the same choice
of the parameter γ.

Proof. The proof is direct from the theorem.

Finally the following also holds.

Corollary 8.2. When Smax ≥
(
K/L
Kγ/L

)
, the new algorithm allows for the uncon-

strained theoretical execution time

TGCMR
tot = Tmap(γF) +

(1− γ)

Kγ
Tc + Tred

(
F

K

)
. (8.14)

Proof. The proof is direct from Theorem 8.1.

Dataset assignment phase

We split the K nodes into K ′ ≜ K
L

groups

Gi = {i, i+K ′, ..., i+ (L− 1)K ′}, i ∈ [K ′] (8.15)

of L nodes per group, and we split the dataset into

SGCMR =

(
K ′

K ′γ

)
(8.16)

segments, where γ ∈ { 1
K′ ,

2
K′ , · · · , 1} is a parameter of choice defining the

redundancy factor of the mapping phase later on.
Thus, the dataset is divided into

F →
{
Fτ , τ ⊂

[
K

L

]
, |τ | = Kγ

L

}
. (8.17)

Each node gk ∈ Gk is assigned the set of segments

MGk
= {Fτ : k ∈ τ} . (8.18)

Shuffle Phase

Each node gk of group Gk, must retrieve from the nodes of the other groups²
the set of intermediate values

{F (q)
τ : k /∈ τ, ∀q ∈ Qgk} (8.19)

²Since the nodes of the same group have computed exactly the same results.

8.2. NODE COOPERATION & SUBPACKETIZATION 133

i.e., all the intermediate values that correspond to function set Qgk that have
not been computed locally (k /∈ τ).

The shuffling process is described in Algorithm 8.1, which we proceed to
analyze.

Initially, the set of active groups are selected (Step 1), such that a total
of Kγ

L
+ 1 groups are selected. From these groups, one-by-one a group is

selected to be the transmitting group (Step 2). The nodes of the transmitting
group cooperate and form a distributed MIMO system that transmits the L×1
vector

xs,σ =
∑

k∈σ\{s}

H−1
Gs,Gk

F

(gk(1))
σ\{k}
...

F
(gk(L))
σ\{k}

 . (8.20)

Examining Eq. (8.20) we can see that the transmitted vector is a linear
combination of Kγ

L
vectors, where each vector is conveying information to

the nodes of a specific group.

1 for all σ ⊆
[
K
L

]
, |σ| = Kγ

L
(pick active groups) do

2 for all s ∈ σ (pick transmitting group) do
3 Group Gs transmits:

xs,σ =
∑

k∈σ\{s}

H−1
Gs,Gk

F

(gk(1))
σ\{k}
...

F
(gk(L))
σ\{k}

 . (8.21)

4 end
5 end

Algorithm 8.1: Shuffling Phase with Node Cooperation

Decoding Let us assume that the selected set of groups is σ and the trans-
mitting group is s ∈ σ. Then, for some node p ∈ Gp, p ∈ σ \ {s}, the received
message takes the form (Noise is suppressed for simplicity)

yp = hT
Gs,p ·

∑
k∈σ\{s}

H−1
Gs,Gk

F

(gk(1))
σ\{k}
...

F
(gk(L))
σ\{k}

 . (8.22)

First, we notice that from all the Kγ
L

vectors that are summed, the Kγ
L
− 1

are intermediary values that have been previously been calculated by node p
can be removed, leaving the resulting message to be

yremp = hT
Gs,p · H

−1
Gs,Gp

F

(gp(1))

σ\{p}
...

F
(gp(L))

σ\{p}

 . (8.23)

134 CHAPTER 8. DISTRIBUTED COMPUTING

Due to the design of the precoder matrix H−1
Gs,Gp

all nodes belonging in
group Gp are spatially separated thus will receive their messages interference-
free.

8.2.1 Node cooperation example
Let us consider a setting with K = 32 computing nodes, a chosen redundancy
of Kγ = 16, and a cooperation parameter L = 8. The nodes are split into
K
L
= 4 groups

G1 ={1, 5, 9, 13, 17, 21, 25, 29},
G2 ={2, 6, 10, 14, 18, 22, 26, 30},
G3 ={3, 7, 11, 15, 19, 23, 27, 31},
G4 ={4, 8, 12, 16, 20, 24, 28, 32}

and the dataset is split into
(
K/L
Kγ/L

)
= 6 segments as

F → {F12, F13, F14, F23, F24, F34} (8.24)

Segments are distributed to the nodes as follows

MG1 ={F12, F13, F14},
MG2 ={F12, F23, F24},
MG3 ={F13, F23, F34},
MG4 ={F14, F24, F34}.

In the mapping phase, each segment Fτ is mapped into the set of intermediate
values {F q

τ }Kq=1. The transmissions that will deliver all needed intermediate
values are (for simplicity we use H−1

i,j ≜ H−1
Gi,Gj

).

x1,123 =H−1
1,2FG2

13,1 +H−1
1,3FG3

12,1

x1,124 =H−1
1,2FG2

14,1 +H−1
1,4FG4

12,1

x1,134 =H−1
1,3FG3

14,1 +H−1
1,4FG4

13,1

x2,123 =H−1
2,1FG1

23,2 +H−1
2,3FG3

12,2

x2,124 =H−1
2,1FG1

24,2 +H−1
2,4FG4

12,2

x2,234 =H−1
2,3FG3

24,2 +H−1
2,4FG4

23,2

x3,123 =H−1
3,1FG1

13,3 +H−1
3,2FG2

13,3

x3,134 =H−1
3,1FG1

34,3 +H−1
3,4FG4

13,3

x3,234 =H−1
3,2FG2

34,3 +H−1
3,4FG4

23,3

x4,124 =H−1
4,1FG1

24,4 +H−1
4,2FG2

14,4

x4,134 =H−1
4,1FG1

34,4 +H−1
4,3FG3

14,4

x4,234 =H−1
4,2FG2

34,4 +H−1
4,3FG3

24,4,

8.3. CMR WITH HETEROGENEOUS NODES 135

where we have used

FGg
τ ≜

F
g(1)
τ

...
F

g(L)
τ

 (8.25)

to denote the vector of L = 8 elements consisting of the intermediate results
intended for nodes in group Gg.

Observing for example the first transmission, we see that the nodes in
group G2 can remove any interference caused by the intermediate results
intended for group G3 since these intermediate values have been calculated
by each node in G2 during the mapping phase. After noting that the pre-
coding matrix H−1

1,2 removes intra-group interference, we can conclude that
each transmission serves each of the 16 users with one of their desired in-
termediate values, which in turn implies a 16-fold speedup over the uncoded
case.

8.3 CMR with Heterogeneous nodes
To reflect the heterogeneous capabilities of the computing nodes during the
mapping phase – as stated before – we consider a set of K1 computing nodes,
{1, 2, ..., K1}≜K1, being able of mapping on time a fraction γ1∈

[
1
K
, 1
]
of the

dataset, while the rest K2 =K−K1 nodes, {K1+1, ..., K} ≜ K2, are able to
map a smaller fraction γ2 ∈ [0, γ1) of the dataset.

Main Results

The main contribution of this work is the design of a new algorithm for
dataset assignment, and a new transmission policy during the shuffling phase.
The achievable performance for any values of γ1, γ2 yields

T hCMR
tot (γ1,γ2)=max

{
T (1)
map(γ1f), T

(2)
map(γ2f)

}
+
Tshuf

K

1−γ1
γ1

+
Tshuf

K

K2

(
1− γ2

γ1

)
min{K2, K1γ1+K2γ2}

+
Q

K
Tred (8.26)

where T
(j)
map(γjF), j = 1, 2 corresponds to the time required for each node in

group j to map fraction γj of the dataset, and where the delay reflects the
fact that the shuffling phase will conclude when the mapping at any node has
finished. In order to minimize Eq. (8.26), we choose values γ1, γ2 in such a
way to reflect the relative computing capabilities³ i.e., T (1)

map(γ1F) = T
(2)
map(γ2F).

This is summarized in the following theorem.

³Thus, if nodes in K1 are twice as fast as nodes in K2, then γ1 = 2γ2.

136 CHAPTER 8. DISTRIBUTED COMPUTING

Theorem 8.2. The achievable time of a MapReduce algorithm in a heteroge-
neous distributed computing system with K1 nodes each able to map fraction
γ1 of the total dataset, while K2 nodes can map fraction γ2 of the dataset each,
takes the form

T hCMR
tot (γ1, γ2)=T (1)

map(γ1f)+
Tshuf
K

1− γ1
γ1

+

+
Tshuf
K

K2

(
1− γ2

γ1

)
min{K2, K1γ1+K2γ2}

+
Q

K
Tred (8.27)

where the communication (shuffling) cost can be simplified, in the case of K2≥
K1γ1+K2γ2, to

T hCMR
comm (γ1, γ2)=

Tshuf
K

K1(1− γ1) +K2(1− γ2)

K1γ1 +K2γ2
(8.28)

Proof. The proof is constructive and presented in Sec. 8.3.1.

Remark 8.1. The effect of heterogeneity can be completely removed.
The above holds directly from Eq. (8.28) where we see that the delay

matches that of a homogeneous system with K nodes and a uniform γ =
K1γ1+K2γ2

K
.

Remark 8.2. Heterogeneous systems with interference are faster than mul-
tiple homogeneous systems even when the latter multiple systems experience
no inter-system interference.

This is because, by comparing the proposed solution with a second system
where now the two sets K1 and K2 are ‘magically’ non-interfering (isolated),
we conclude that while the mapping delay of the two systems would be the
same, the shuffling phase delay Tcom = Tshuf

K
max

{
1−γ1
γ1

, 1−γ2
γ2

}
= Tshuf

K
1−γ2
γ2

of the
second system would exceed that of our system. This reveals an important
advantage of larger heterogeneous systems over multiple non-interfering ho-
mogeneous ones, and it suggests that the collaborative effects from mapping
data to more nodes, despite heterogeneity, exceeds any effect of having par-
allel (smaller, homogeneous) systems. This surprising conclusion is mainly
due to the fact that “strong” nodes have the potential to assist the transmis-
sion of intermediate values to the “weak” nodes, thus boosting the overall
performance.

8.3.1 Scheme Description
Data Assignment

We begin by dividing the dataset into

Shet =

(
K1

K1γ1

)
·
(

K2

K2γ2

)
(8.29)

segments i.e., Fτ1,τ2 , τ1⊂K1, |τ1| = K1γ1, τ2 ⊂ K2, |τ2| = K2γ2.

8.3. CMR WITH HETEROGENEOUS NODES 137

8.3.2 Mapping Phase
Nodes k1 ∈ K1 and k2 ∈ K2 are assigned to respectively map⁴

Mk1 = {Fτ1,τ2 : k1 ∈ τ1, ∀τ2 ⊂ K2, |τ2| = K2γ2}
Mk2 = {Fτ1,τ2 : k2 ∈ τ2, ∀τ1 ⊂ K1, |τ1| = K1γ1}.

8.3.3 Shuffling Phase
After the mapping phase, the nodes exchange information so that each node
k ∈ [K] can collect the set

Ik =
{
F (q)
τ1,τ2

, τj ⊆ Kj, |τj| = Kjγj, j = {1, 2}, q ∈ Qk

}
where we remind that F (q)

τ1,τ2 ≜ mq(Fτ1,τ2).
We will employ a novel way of transmission, comprized of two sub-

phases. The first sub-phase is reminiscent of the original CMR approach [15],
where though now we will allow two nodes to transmit simultaneously, one
node from each group; this can happen because we choose the transmitted
messages to be completely known to the receiving nodes of the other group.
During the second shuffling sub-phase, nodes from K1 will coordinate to act
as a distributed multi-antenna system and transmit the remaining data to
nodes of set K2.

1 for all τ1 ⊂ K1, |τ1| = K1γ1 (pick Rx nodes from K1) do
2 for all τ2 ⊂ K2 , |τ2| = K2γ2 (pick Rx nodes from K2) do
3 for all k1 ∈ K1 \ τ1 (pick transmitter 1) do
4 for all k2 ∈ K2 \ τ2 (pick transmitter 2) do
5 Transmit concurently:

Tx k1: xk2,τ2
k1,τ1

=
⊕
m∈τ1

F
(qm),k1,k2
{k1}∪τ1\{m},τ2

Tx k2: xk1,τ1
k2,τ2

=
⊕
n∈τ2

F
(qn),k1,k2
τ1,{k2}∪τ2\{n}

6 end
7 end
8 end
9 end
Algorithm 8.2: Shuffling Sub-Phase 1 of the Heterogeneous Nodes Scheme

⁴The dataset fraction assigned to a node in each group yields

|Mki
|

F
=

(
Ki−1

Kiγi−1

)
·
(

Kj

Kjγj

)(
Ki

Kiγi

)
·
(

Kj

Kjγj

) = γj , i, j ∈ {1, 2}, i ̸= j.

138 CHAPTER 8. DISTRIBUTED COMPUTING

First Shuffling Sub-Phase (Transmission)

At the beginning of the first sub-phase, an intermediate value F
(qk)
τ1,τ2 , qk ∈ Qk

required by node k ∈ [K], is further subpacketized as

F (qk)
τ1,τ2
→

{{
F (qk),k1,k2
τ1,τ2

, k1∈τ1, k2∈K2\τ2
}

k∈K1{
F (qk),k1,k2
τ1,τ2

, k1∈K1\τ1, k2∈τ2
}

k∈K2

(8.30)

yielding the relative sub-packet sizes∣∣∣F (qk),k1,k2
τ1,τ2

∣∣∣∣∣∣F (qk)
τ1,τ2

∣∣∣ =

1

K1γ1K2(1−γ2)
, if k ∈ K1

1

K1(1−γ1)K2γ2
, if k ∈ K2

(8.31)

meaning that sub-packets for nodes in set K2 are larger than sub-packets for
nodes in set K1. To rectify this uneveness and allow for the simultaneous
transmissions required by our algorithm, we will equalize the packet sizes
transmitted from both K1 and K2 by further splitting the sub-packets intended
for node k ∈ K2 into two parts, with respective sizes

∣∣F ′(qk),k1,k2
τ1,τ2

∣∣ =
∣∣∣F (qk)

τ1,τ2

∣∣∣
K1γ1K2(1−γ2)

(8.32)∣∣F ′′(qk),k1,k2
τ1,τ2

∣∣ = ∣∣F (qk)
τ1,τ2

∣∣ 1− γ2/γ1
K1(1−γ1)K2(1−γ2)γ2

. (8.33)

The process of transmitting packets in the first shuffling sub-phase is de-
scribed in Algorithm 8.2, which successfully communicates a single category
to each of the nodes.

In Algorithm 8.2, Steps 1 and 2 select, respectively, a subset of receiving
nodes from set K1 and a subset of receiving nodes from set K2. Then, Steps
3 and 4 pick transmitting nodes from the sets K1 and K2, respectively such
that these nodes are not in the already selected receiver sets from Steps
1 and 2. Then, in Step 5, the two selected transmitting nodes create and
simultaneously transmit their packets.

Decoding in First Shuffling Sub-phase In Algorithm 8.2, transmitted sub-
packets for nodes of set K1 are picked to be known at all nodes of set K2,
and vice versa. This allows nodes of a set to communicate as if not being
interfered by nodes of the other set.

First Shuffling Sub-phase Performance The above-described steps are
arranged in nested loops that will, eventually, pick all possible combinations
of (k1, k2, τ1, τ2), thus delivering all needed sub-packets to nodes in K1. The
normalized completion time of this first sub-phase is

Tcomm,1 =
Q

K

K1(1−γ1)
(

K1

K1γ1

)
K2(1−γ2)

(
K2

K2γ2

)
K1γ1K2(1− γ2)

(
K1

K1γ1

)(
K2

K2γ2

) =
Q

K

1− γ1
γ1

8.3. CMR WITH HETEROGENEOUS NODES 139

where factor Q
K

reflects a repetition of Algorithm 8.2 needed for delivering
all categories, where the numerator reflects the four loops of the algorithm,
and where the denominator uses the subpacketization level S and Eq. (8.31)
to reflect the size of each transmitted packet.

Second Shuffling Sub-Phase

The second part of the shuffling phase initiates when the data required by
the nodes in K1 have all been delivered. The transmission during this second
sub-phase follows the ideas of the distributed antenna cache-aided literature
(cf. [2,10,11,47]). Specifically, nodes of set K1 act as a distributed K1γ1-multi-
antenna⁵ system, while nodes of set K2 act as cache-aided receivers, cumula-
tively “storing” K2γ2 of the total “library”. Directly from [2, 10, 11,47], we can
conclude that in our setting, this setup allows a total of min{K2, K1γ1+K2γ2}
nodes to decode successfully a desired intermediate value per transmission.
The remaining messages to be sent during this sub-phase are{

F ′′(qk),k1,k2
τ1,τ2

, k1 ∈ K1 \ τ1, k2 ∈ τ2,∀τ1,∀τ2
}
.

By combining the remaining messages of category qk i.e.,

{F ′′(qk),k1,k2
τ1,τ2

∀k1 ∈ K1 \ τ1, ∀k2 ∈ K2} → F ′′(qk)
τ1,τ2

, (8.34)

we have ∣∣F ′′(qk)
τ1,τ2

∣∣ = 1− γ2/γ1
1− γ2

∣∣F ′′(qk),k1,k2
τ1,τ2

∣∣ , ∀τ1, τ2. (8.35)

With this in place, the delay of the second subphase is

Tcomm,2 =

t2︷︸︸︷
Q

K

t3︷ ︸︸ ︷
1− γ2/γ1
(1−γ2)

t4︷︸︸︷
K2

t5︷ ︸︸ ︷
(1− γ2)

min {K2, K2γ2 +K1γ1}︸ ︷︷ ︸
t1

(8.36)

=
Q

K

K2(1− γ2/γ1)

min {K2, K2γ2 +K1γ1}

where term t1 corresponds to the aforementioned performance (in number
of nodes served per transmission) that is achieved by multi-antenna Coded
Caching algorithms [2, 10, 11, 47]. In the above, the term t2 corresponds to a
repetition of the scheme to deliver multiple categories to each node. Finally
terms t3, t4, t5 represent the total amount of information that needs to be
transmitted, where t3 represents the size of each category, t4 the number of
nodes and t5 corresponding to the (remaining) part that each node had not
computed and needed to receive.

⁵We note to the reader that at this point is where the notion of the high-rank matrix is
required in the equivalent wired system.

140 CHAPTER 8. DISTRIBUTED COMPUTING

Example

Let us consider a setting where the two sets are comprised of K1 = 3 and
K2 = 4 nodes, and where any node in each group respectively maps fractions
γ1 =

2
3
and γ2 =

1
2
of the dataset. The goal is the calculation of a total of

Q = 7 functions. Initially, dataset F is divided into S =
(
3
2

)(
4
2

)
= 18 chunks,

each defined by two indices⁶, τ1 ∈ {12, 13, 23} and τ2 ∈ {45, 46, 47, 56, 57, 67}.
Node k ∈ [7] is tasked with mapping Fτ1,τ2 iff k ∈ τ1 ∪ τ2.

Following the mapping phase, each chunk, Fτ1,τ2 , has Q = 7 associated
intermediate values F

(1)
τ1,τ2 , ..., F

(7)
τ1,τ2 , where each intermediate value F

(qk)
τ1,τ2 , is

further divided into sub-packets according to Eq. (8.30), while those sub-
packets meant for K2, are further divided according to Eq. (8.31)-(8.33). For
example chunks C12,45, D12,56 are split as

C12,45 → {C1,6
12,45, C

1,7
12,45, C

2,6
12,45, C

2,7
12,45}

D12,56→{D3,5
12,56, D

3,6
12,56}→{D

′3,5
12,56, D

′′3,5
12,56, D

′3,6
12,56, D

′′3,6
12,56}.

Directly from Algorithm 8.2, the sets of transmissions that correspond to
shuffling sub-phase 1 are

x4,56
1,23 = B1,4

13,56 ⊕ C1,4
12,56, x1,23

4,56 = E1,4
23,46 ⊕ F 1,4

23,45

x4,57
1,23 = B1,4

13,57 ⊕ C1,4
12,57, x1,23

4,57 = E1,4
23,47 ⊕G1,4

23,45

x4,67
1,23 = B1,4

13,67 ⊕ C1,4
12,67, x1,23

4,67 = F 1,4
23,47 ⊕G1,4

23,46

x5,46
1,23 = B1,5

13,46 ⊕ C1,5
12,46, x1,23

5,46 = D1,5
23,56 ⊕ F 1,5

23,45

x5,47
1,23 = B1,5

13,47 ⊕ C1,5
12,47, x1,23

5,47 = D1,5
23,57 ⊕G1,5

23,45.

x5,67
1,23 = B1,5

13,67 ⊕ C1,5
12,67, x1,23

5,67 = F 1,5
23,57 ⊕G1,5

23,56.

x4,56
2,13 = A2,4

23,56 ⊕ C2,4
12,56, x2,13

4,56 = E2,4
13,46 ⊕ F 2,4

13,45

x4,57
2,13 = A2,4

23,57 ⊕ C2,4
12,57, x2,13

4,57 = E2,4
13,47 ⊕G2,4

13,45

x4,67
2,13 = A2,4

23,67 ⊕ C2,4
12,67, x2,13

4,67 = F 2,4
13,47 ⊕G2,4

13,46

x5,46
2,13 = A2,5

23,46 ⊕ C2,5
12,46, x2,13

5,46 = D2,5
13,56 ⊕ F 2,5

13,45

x5,47
2,13 = A2,5

13,47 ⊕ C2,5
12,47, x2,13

5,47 = D2,5
13,57 ⊕G2,5

13,45

x5,67
2,13 = A2,5

23,67 ⊕ C2,5
12,67, x2,13

5,67 = F 2,5
13,57 ⊕G2,5

13,56

⁶For notational simplicity, for sets we use, for example {12} instead of {1, 2}. We
also rename as Aτ1,τ2 ≜ F

(1)
τ1,τ2 , Bτ1,τ2 ≜ F

(2)
τ1,τ2 , ..., Gτ1,τ2 ≜ F

(7)
τ1,τ2 and also F

′(qk)
τ1,τ2 is denoted

with F
(qk)
τ1,τ2 , since the corresponding transmission (either in the first or second sub-phase) is

clearly associated with each of the two parts.

8.3. CMR WITH HETEROGENEOUS NODES 141

x4,56
3,12 = A3,4

23,56 ⊕B3,4
13,56, x3,12

4,56 = E3,4
12,46 ⊕ F 3,4

12,45

x4,57
3,12 = A3,4

23,57 ⊕B3,4
13,57, x3,12

4,57 = E3,4
12,47 ⊕G3,4

12,45

x4,67
3,12 = A3,4

23,67 ⊕B3,4
13,67, x3,12

4,67 = F 3,4
12,47 ⊕G3,4

12,46

x5,46
3,12 = A3,5

23,46 ⊕B3,5
13,46, x3,12

5,46 = D3,5
12,56 ⊕ F 3,5

12,45

x5,47
3,12 = A3,5

23,47 ⊕B3,5
12,47, x3,12

5,47 = D3,5
12,57 ⊕G3,5

12,45

x5,67
3,12 = A3,5

23,67 ⊕B3,5
13,67, x3,12

5,67 = F 3,5
12,57 ⊕G3,5

12,56.

During shuffling sub-phase 2, where now all information for the first set
of nodes has been delivered, the first set of nodes will use their computed
intermediate values so as to speed up the transmission of the remaining
intermediate values toward the second set of nodes. To simplify the second
shuffling sub-phase, we will combine together sub-parts of the same upper
indices i.e., {F ′′k1,k2

τ1,τ2
,∀k1 ∈ K1\τ1,∀k2 ∈ τ2}→Fτ1,τ2 .

Using a scheme similar to that of [56] and denoting with H−1
τ,µ the nor-

malized inverse of the channel matrix between transmitting nodes in set τ
and receiving nodes in set µ, and with hτ,k the channel vector from nodes in
set τ to node k, then the 9 transmissions that deliver all remaining data are

xτ
45,67 = H−1

τ,45

[
Dτ,67

Eτ,67

]
+H−1

τ,67

[
Fτ,45

Gτ,45

]
τ ∈ {12, 13, 23}

xτ
46,57 = H−1

τ,46

[
Dτ,57

Fτ,57

]
+H−1

τ,57

[
Eτ,46

Gτ,46

]
τ ∈ {12, 13, 23}

xτ
47,56 = H−1

τ,47

[
Dτ,56

Gτ,56

]
+H−1

τ,56

[
Eτ,47

Fτ,47

]
τ ∈ {12, 13, 23}.

The message arriving at each receiving node takes the form of a linear
combination of intermediate values. In order for a node to decode its desired
intermediate value, first we can see that matrix H−1

τ,µ is designed in such a
way so as to separate the transmitted messages at the two nodes, i.e.,

hT
τ,k∈µ · H−1

τ,µ ·

F 1,
...

F k,
...

F n

 = W k.

For example, Node 4 will receive, in the first transmission,

y1245,67(k = 4) = D12,67 + hT
12,6 · H−1

12,67

[
F12,45

G12,45

]
and then, using CSIR and its computed intermediate values F12,45 and G12,45,
Node 4 will decode its desired intermediate value D12,67.

142 CHAPTER 8. DISTRIBUTED COMPUTING

Chapter 9

Conclusion and Open Problems

In this final chapter we will explore some of the ramifications of the presented
algorithms along with some open problems.

9.1 Caching gains under Subpacketization
We begin by discussing some interesting examples related to subpacketization.
The following note relates to content replication at the transmitter side.

Note 9.1. As seen in the placement algorithm of Note 3.2 (see also Sec-
tion 3.3.5), content replication at the transmitter side need not impose a fun-
damental increase in the required subpacketization. This observation allows
the caching gains to be complemented by the multiplexing gains free of any
additional subpacketization that would have imposed a further constriction on
the Coded Caching gains.

As we have seen, previous multi-transmitter algorithms required subpack-
etization that not only was exponential to the caching gains, but was also
exponential to the number of transmitters.

Example 9.1 (Multiplicative boost of effective DoF). Let us assume K = 1280
users each with cache of normalized size γ = 1

20
, served by an L-antenna base

station. In this setting, the theoretical caching gain is G = Kγ = 64 and the
theoretical DoF DL(K, γ) = L+G = L+ 64.

If the subpacketization limit Smax was infinite, then the effective and theo-
retical caching gains would match, as we could get Ḡ1 = ḠL = G = Kγ = 64
even when L = 1, which would imply only an additive DoF increase from
having many antennas.

If, instead, the subpacketization limit was the lesser, but still practically
infeasible

Smax =

(
K/2

Kγ/2

)
=

(
640

32

)
= 1054 (9.1)

then, in the presence of a single antenna, we would encode over K̄ = 640
users to get a constrained gain of Ḡ1 = K̄γ = 640 1

20
= 32 which means that,

143

144 CHAPTER 9. CONCLUSION AND OPEN PROBLEMS

irrespective of the number of antennas L ≥ 2, the caching boost offered by the
proposed method would yield the multiplicative boost of ḠL

Ḡ1
= 2.

Let us now consider the more reasonable subpacketization

Smax =

(
80

4

)
≈ 1.5 · 106 (9.2)

which implies that we encode over only K̄ = 80 users, to get, in the single-
antenna case, an effective caching gain Ḡ1 = K̄γ = 4 treating a total of
D1(K̄, γ) = 1 + Ḡ1 = 5 users at a time.

Assume now that we increased the number of transmitting antennas to
L = 2. Then, using the exact same subpacketization of Smax =

(
80
4

)
and making

use of the Algorithm 3.1 would allow to treat

DL=2

(
K̄ = 80, γ =

1

20

)
= 2 ·D1

(
K̄ = 80, γ =

1

20

)
= 10 (9.3)

users at a time thus, ḠL = 8 and thus providing a ḠL

Ḡ1
= 2 DoF-boost.

Similarly for L = 4 and L = 16, which yield a DoF boost of 4 and 16,
respectively.

The following example highlights the utility of matching Kγ with L, and
focuses on smaller cache sizes.

Example 9.2. In a BC with γ = 1/100 and L = 1, allowing for caching gains
of G = Kγ = 10 (additional users due to caching), would require

S1 =

(
1000

10

)
> 1023 (9.4)

so in practice coded caching could not offer such gains. In the L = 10 antenna
case, this caching gain comes with subpacketization of only SL=10 = K/L =
100.

Example 9.3 (Base-station cooperation). Let us consider a scenario where
in a dense urban setting, a single base-station (KT = 1) serves K = 104 cell-
phone users, where each is willing to dedicate 20 GB of its phone’s memory
for caching parts from a Netflix library of N = 104 low-definition movies. Each
movie is 1 GB in size, and the base-station can store 10 TB. This corresponds
to having M = 20, γ = M/N = 1/500, and γT = 1. If LT = 1 (single transmit-
ting antenna), a caching gain of G = 20 would have required (given the MN
algorithm) subpacketization of

S1 =

(
K

Kγ

)
=

(
10000

20

)
> 1061. (9.5)

If instead we had two base-stations (KT = 2) with LT = 5 transmitting
antennas each, this gain would require subpacketization

S10 =

(K
KTLT

Kγ
KTLT

)
=

(
10000/10

20/10

)
=

(
1000

2

)
≈ 5 · 105 (9.6)

9.2. THE CSI CURSE 145

20 60 100 1400

10−5

10−15

10−25

CSI Cost

Transmission Fraction

Low CSI: K = 50

Low CSI: K = 100

Low CSI: K = 200

MS: K = 50

MS: K = 100

MS: K = 200

Figure 9.1: The CSI cost (x-axis) that is required to successfully communicate
a fraction (y-axis) of the delivery phase using the algorithm in [2] (Low CSI)
and the multi-server (MS) algorithm in [10]. The CSI cost represents the
number of users that need to communicate feedback (CSIT). Parameter γ is
fixed at value γ = 1

10
and number of antennas are L = 5 for every plotted

scenario. We can see that by simply increasing the number of users, the
resulting increase in the CSI cost, for the MS algorithm, to allow for the
same fraction to be transmitted, increases in an accelerated manner.

while with KT = 4 such cooperating base-stations, this gain could be achieved
with subpacketization S20 =

(
10000/20
20/20

)
= 500.

If the library is now reduced to the most popular N = 1000 movies (and
without taking into consideration the cost of cache-misses due to not caching
the tail of unpopular files), then the same 20 GB memory at the receivers would
correspond to γ = 1/50 and to a theoretical caching gain of G = Kγ = 200
additional users served per second per hertz. In this case, having a single
large-MIMO array with LT = 100 antennas, or having KT = 5 cooperating
base-stations with LT = 20 antennas each, would yield a DoF D100(K, γ) = 300
(caching would allow us to serve 200 additional users at a time), at subpacke-
tization

S100 =

(
10000/100

200/100

)
=

(
100

2

)
≈ 5000. (9.7)

9.2 The CSI curse
Example 9.4. Let us assume a transmitter with L = 5 antennas, serving K
users, with each user being equipped with a cache of normalized size γ = 1

10
.

The goal is to understand the CSI requirements of each algorithm, as well
as to compare their ability to reuse existing feedback, and we will do so by

146 CHAPTER 9. CONCLUSION AND OPEN PROBLEMS

comparing the fraction of the overall delivery that can be completed, given a
certain amount of acquired CSI. In particular, let us assume that the allow-
able feedback cost¹ is C, where for example in TDD this can imply receiving
feedback from only C users, corresponding to C uplink and C downlink feed-
back acquisition slots. The comparison will be between the proposed algo-
rithm of [2] (where in Figure 9.1 is denoted as “Low CSI”) and the state-of-art
multi-antenna coded caching algorithms [10,11] (where in Figure 9.1 are de-
noted as “MS”) . We first note that for the proposed algorithm, C needs to
satisfy C ≥ L = 5, while for the state-of-art algorithms, C needs to satisfy
C ≥ L+Kγ = 5 + K

10
.

To understand the ability of the state of art algorithms to reuse feedback,
let us recall from [10,11] that once feedback is acquired for a set of C≥L+Kγ
users, then there are

(Kγ + L)

(
C

L+Kγ

)(
L+Kγ − 1

Kγ

)
(9.8)

transmissions² that can take place without the need for additional feedback.
On the other hand, by observing the proposed algorithm (see Algorithm 4.2),

we can see that having feedback for some subset of C ≥ L users allows for

L ·
(
C

L

)(
K − L

Kγ

)
(9.9)

transmissions. Now comparing Eq. (9.8) with Eq. (9.9), and given that each
transmission in both cases carries the same amount of information, we can
conclude that the new algorithm can serve a much larger portion of the delivery.
Specifically the new algorithm can serve, for a given CSI cost C,

L ·
(
C
L

)(
K−L
Kγ

)
(Kγ + L)

(
C

L+Kγ

)(
L+Kγ−1

Kγ

) (⋆)
≈
(
L+Kγ

L

)L(
K − L

C

)Kγ

times more content than the existing algorithms, where in (⋆) we used the
Sterling approximation (

n

k

)
≈
(n
k

)k
. (9.10)

The comparison of the algorithms is illustrated in Figure 9.1, where we show
the CSI cost needed to complete any fraction of the entire delivery.

For example, delivering the fraction of 10−5 in the case of K =50, we see
that the proposed algorithm requires feedback cost Clow = 7, while the state-
of-art (MS) requires a cost of approximately CMS = 18. This effect is further

¹For simplicity we assume that the coherence block is long enough to fit the transmission
of this particular portion that we aim to complete. In other words, the time frame of this
comparison here is such that we do not have to worry about users having to renew their
CSI because the coherence period has elapsed.

²Where we added the first term in order to match the subpacketization of the proposed
algorithm. As a result, in either of the compared algorithms, one transmission carries the
same amount of information.

9.3. SUBPACKETIZATION SAVINGS AND LOW CSI 147

amplified when we visit cases with higher number of users. Specifically, for
the same fraction 10−5, when the number of users is K = 100 the respective
costs are Clow = 12 and CMS = 52, while in the case of K = 200 receivers,
delivering fraction 10−5 would rise further the aforementioned feedback costs
to Clow = 22 and CMS = 131, respectively.

9.3 Subpacketization savings and low CSI

The work in [80] combined, for the first time, a subpacketization requirement
exponentially smaller than the single-stream setting³, with CSI cost that is
untangled from the number of users and only depends on the number of
antennas. From Remark 4.1 we can see that the number of antennas plays
a pivotal role in the subpacketization reduction. While on the one hand the
CSI cost increases linearly with the number of antennas, on the other hand,
the subpacketization decreases exponentially.

As it clear, when L = 1 there is no subpacketization reductions, but
further increasing the number of antennas provides approximately a factor eL
decrease on the subpacketization (see also Remark 4.1). The subpacketization
reductions are also illustrated in Figure 9.2.

Kγ = 8

Kγ = 9

Kγ = 10

Antennas

101

102

103

104

105

106

5 10 15 20 25 35 40 4530

Subpacketization Reductions

Figure 9.2: The CSI cost that is required to complete a fraction of the delivery
phase. The cost represents the number of users that need to send feedback.
Parameter γ is fixed at value γ = 1

10
.

³This reduction provides even further exponential subpacketization savings compared to
other multi-antenna algorithms, with the notable exception of the algorithms in [56] and
Section 4.2.

148 CHAPTER 9. CONCLUSION AND OPEN PROBLEMS

L CSI Subpacketization DoF
MN [1] JCS [80] MN [1] JCS [80] MN [1] JCS [80]

12 0 12 1014 8 · 1010 11 20
23 0 23 1014 8 · 108 11 30
34 0 34 1014 3 · 107 11 40

Table 9.1: Comparison of the single-antenna scheme of [1] and the JCS scheme
of [80] in terms of CSI cost, achieved DoF and Subpacketization requirements
for various antenna values for the case of K = 120 users equipped with caches
of fractional size γ = 1

10
.

Subpacketization, CSI cost and DoF

It is interesting to note, that the CSI and subpacketization benefits are pro-
vided with a small DoF reduction which, in practical scenarios where the
cache size is small, will amount to an insignificant performance degradation.

Example 9.5. Let us assume the L-antenna MISO BC with K = 120 single
antenna, cache-aided users, each equipped with a cache of normalized size
γ = 1

10
. For this setting of interest, the algorithm of [1] would require subpack-

etization of S1 =
(
120
10

)
= 1014 and would achieve DoF D1(K, γ) = 11.

Through the use of the algorithm in [80] we can both harness the DoF
benefits of multiple-antennas and at the same time reduce the subpacketiza-
tion. For example, adding 11 antennas i.e. L = 12, would provide the DoF of
DL,JCS(K, γ) = 20, and subpacketization SL,JCS = 8 · 1010, i.e. a reduction of
more than 3 orders of magnitude.

We can see that further increase of the number of the antennas leads to
an increase of the DoF and also reduces the subpacketization. Some further
values are illustrated in Table 9.1.

9.4 Uneven caches and multiple antennas
As we have seen, removing the cache-size unevenness bottleneck in the single
antenna setting is fundamentally impossible when cache-less users are in
the same channel as cache-aided ones, while if all users are cache-aided,
but with uneven cache-sizes, any known single antenna algorithm performs
worse than the homogeneous case.

Examining, though, the multiple antenna channel shows that this perfor-
mance degradation can be completely resolved for a wide range of parame-
ters, even if cache-less users appear in the channel. This shows the vital role
of multiple antenna systems, especially in the transitional period of imple-
menting cache-aided communications, where some users will be able to take
advantage of coded caching, while others won’t.

It is also interesting to note, that when cache-aided users coexist with
cache-less users, even if the homogeneous performance can not be achieved,

9.5. HOW TO RESOLVE THE CSI BOTTLENECK 149

0

2 4 12 146 8 10 16

DoF BoostDelay

Antennas
0

20

40

60

80

100

2

4

6

8

10

12Delay

DoF Boost

Figure 9.3: The improvement in the delay and the DoF boost that are achieved
as a function of the number of antennas for a scenario with K1 = 100 cache-
aided users with normalized cache-size γ1 =

1
20

and K2 = 120 cache-less users.
We can see that the DoF boost slope becomes smaller after L = 7 antennas,
showing that any cache-size unevenness effect has been completely removed,
thus the DoF continues to increase additively instead of multiplicatively.

nonetheless by increasing the number of antennas one can achieve a mul-
tiplicative boost in the performance equal to the number of antennas. This
performance improvement is depicted in Figure 9.3, showing that adding one
more antenna can double the DoF or, else, half the delivery time.

9.5 How to resolve the CSI bottleneck
As discussed in Chapter 4, the cost of feedback acquisition is not only de-
scribed by the cost of transmitting a single vector, but can also be seen to
accumulate because of the rapid introduction of new users that will need to
send CSI. In particular, if we consider a single coherence period and any
multi-antenna Coded Caching algorithm, then in each iteration a new subset
of users is selected, which new user subset will overlap only partially with the
previously selected subset, thus more CSI will be required to accommodate
the transmission.

This effect is a direct consequence of Coded Caching algorithms that
require in each iteration a new user subset to be selected. Furthermore,
we can discern another effect that amplifies the CSI bottleneck i.e., the high
subpacketization.

It is clear that if subfiles were long enough, approximately in the order of
magnitude of the length of the coherence period, then the CSI cost would be
approximately L+Kγ and thus pose a lesser bottleneck. On the other hand,
when each subfile is small then, there are many iterations of the algorithm,
which requires encoding over many user subsets and thus a great amount of
CSI acquisition needs to take place.

150 CHAPTER 9. CONCLUSION AND OPEN PROBLEMS

From the above, it remains clear that the road to reduced CSI algorithms
entails two important elements, namely

• High CSI reuse, and

• Low subpacketization.

9.5.1 Subpacketization - CSI tradeoff
An interesting direction of research lies in the design of algorithms that
can simultaneously achieve low CSI requirements and low Subpacketization.
While this is the ultimate goal nevertheless, it is not clear whether this can
be achieved, thus focus should also be placed in the design of algorithms
that can trade-off the performance of each of these two quantities.

9.5.2 Distributed Computing Bottlenecks
Distributed computing

The distributed computing algorithm of [14, 15], as discussed above, uses
the increased redundancy from mapping (bringing a delay increase in the
mapping phase) to counteract the effect from a high shuffling phase. The
higher the time spent mapping means a higher redundancy at the nodes,
which amounts to a higher multicasting gain (decrease in shuffling) in the
shuffling phase. This creates a trade-off between increasing the redundancy
and decreasing the shuffling cost, which minimizes the total delay when
γ = γ⋆.

It is the case though that when subpacketization becomes too large, the
CMR algorithm cannot increase the shuffling gains, thus the total execution
time will remain almost unaffected, as the redundancy parameter γ increases.
This is depicted in Figure 9.4.

We can see that for small values of γ, the CMR algorithm can exactly
achieve the theoretical delay Ttot(γ), and can also achieve the exact delay for
large values of γ, simply because

Smax ≤
(

K

Kγ

)
⇔ Smax ≤

(
K −Kγ

Kγ

)
. (9.11)

The reality, though, is that the optimal value γ⋆ lies in some “moderate”
(nor too small, neither too big) region. When this optimal tradeoff point γ⋆

is unreachable by the CMR algorithm, due to subpacketization constraints,
then the algorithm cannot be fine-tuned to achieve the optimal performance.
On the other hand, making use of the GCMR algorithm can achieve this
point, when the cooperation parameter can be large enough to allow for
small subpacketization costs.

As we have seen, in the broadcast scenario of Coded Caching it was re-
quired an increase in the dimensionality in order to achieve a decrease in the

9.5. HOW TO RESOLVE THE CSI BOTTLENECK 151

γ

Tmap + Tshuffle

CMR
GCMR

Figure 9.4: The required combined mapping and shuffle delay as a function of
redundancy parameter γ for the CMR algorithm and the GCMR algorithms.

subpacketization nevertheless, as evident from Section 8.2, this dimension-
ality is inherent in the wireless distributed computing (D2D) setting, while
also it can be achieved easily in the wired distributed computing setting.

Category Unevenness Effect In the following example we will see yet
another aspect — referred to here as the uneven-category effect — which
again has the potential to reduce the CMR gains.

Example 9.6. Let us assume a sorting job that will be completed using the
CMR algorithm by K = 3 computing nodes. For this job we will assume the
redundancy γ = 2

3
, thus the whole dataset will be mapped a total of 2 times

across the nodes, yielding the theoretical gain for the shuffling phase of 2. Let
us, further, assume that the dataset F is comprized of the following elements

F = {24, 27, 3, 27, 18, 2, 8, 16, 28, 28, 4, 29, 28, 14, 24, 4, 12, 27}. (9.12)

The CMR algorithm would need to break this dataset into S = 3 segments
F12, F13, F23 as follows

F12 = {24, 27, 3, 27, 18, 2}
F13 = {8, 16, 28, 28, 4, 29}
F23 = {28, 14, 24, 4, 12, 27}.

and assign them to the nodes.

152 CHAPTER 9. CONCLUSION AND OPEN PROBLEMS

Mapping Phase The mapping phase will produce the following intermediate
values

F 1
12 = {3, 2}

F 2
12 = {18}

F 3
12 = {24, 27, 27}

F 1
13 = {8, 4}

F 2
13 = {16}

F 3
13 = {28, 28, 29}

F 1
23 = {4}

F 2
23 = {14, 12}

F 3
23 = {28, 24, 27}

where we can see the unevenness, in terms of elements which would also
correspond to uneven bit-sizes, of some of the intermediate values.

Shuffle In the shuffling phase, the transmitted messages are the following⁴

Node 1: F 3
12 ⊕ F 2

13 → |F 3
12 ⊕ F 2

13| = 3

Node 2: F 3
12 ⊕ F 1

23 → |F 3
12 ⊕ F 1

23| = 2

Node 3: F 2
13 ⊕ F 1

23 → |F 2
13 ⊕ F 1

23| = 3.

We can notice that many of the above intermediate values have different
numbers of elements, something that creates the need to zero-pad them, which
would mean a much smaller effective shuffling gain. In this specific case, by
adding the amounts of elements that have been transmitted we have the equiv-
alent of 3+2+3

2
= 4 elements that will be communicated, while the theoretical

performance is

f − fγ

Kγ
=

6

2
= 3 (9.13)

which amounts to a “slow-down” of 33%.

⁴We note that intermediate values are not transmitted twice, but instead are broken into
two smaller packets and each node transmits one of those packets. Thus the XOR sizes that
are presented are, in reality, half.

Bibliography

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, pp. 2856–2867, May
2014.

[2] E. Lampiris and P. Elia, “Resolving a feedback bottleneck of multi-
antenna coded caching,” arXiv preprint arXiv:1811.03935, 2018.

[3] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
pp. 8402–8413, Dec 2013.

[4] P. Sermpezis, T. Spyropoulos, L. Vigneri, and T. Giannakas, “Femto-
caching with soft cache hits: Improving performance with related con-
tent recommendation,” in GLOBECOM IEEE Global Communications
Conference, pp. 1–7, Dec 2017.

[5] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis, “Base-
station assisted device-to-device communications for high-throughput
wireless video networks,” IEEE Transactions on Wireless Communica-
tions, vol. 13, pp. 3665–3676, July 2014.

[6] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in 2015 IEEE International Conference on Com-
munications (ICC), pp. 3358–3363, June 2015.

[7] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms
for mobile data caching in small cell networks,” IEEE Transactions on
Communications, vol. 62, pp. 3665–3677, Oct 2014.

[8] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users
than files,” in IEEE International Symposium on Information Theory
(ISIT), pp. 135–139, July 2016.

[9] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” IEEE Trans-
actions on Information Theory, vol. 64, pp. 1281–1296, Feb 2018.

[10] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server
coded caching,” IEEE Transactions on Information Theory, vol. 62,
pp. 7253–7271, Dec 2016.

153

154 BIBLIOGRAPHY

[11] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Funda-
mental limits of cache-aided interference management,” IEEE Trans-
actions on Information Theory, vol. 63, pp. 3092–3107, May 2017.

[12] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching
in wireless D2D networks,” IEEE Transactions on Information Theory,
vol. 62, pp. 849–869, Feb 2016.

[13] Ç. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality
of D2D coded caching with uncoded cache placement and one-shot
delivery,” arXiv preprint arXiv:1901.05921, 2019.

[14] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded MapReduce,”
in 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 964–971, Sep. 2015.

[15] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental
tradeoff between computation and communication in distributed com-
puting,” IEEE Transactions on Information Theory, vol. 64, pp. 109–128,
Jan 2018.

[16] S. Li, S. Supittayapornpong, M. A. Maddah-Ali, and S. Avestimehr,
“Coded terasort,” in IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 389–398, May 2017.

[17] K. Wan, D. Tuninetti, M. Ji, and P. Piantanida, “Fundamental limits of
distributed data shuffling,” in 2018 56th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), pp. 662–669, Oct
2018.

[18] L. Song, C. Fragouli, and T. Zhao, “A pliable index coding approach to
data shuffling,” in 2017 IEEE International Symposium on Information
Theory (ISIT), pp. 2558–2562, IEEE, 2017.

[19] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Caching in combina-
tion networks,” in 49th Asilomar Conference on Signals, Systems and
Computers, pp. 1269–1273, Nov 2015.

[20] L. Tang and A. Ramamoorthy, “Coded caching for networks with the
resolvability property,” in IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 420–424, July 2016.

[21] A. A. Zewail and A. Yener, “Coded caching for combination networks
with cache-aided relays,” in IEEE International Symposium on Infor-
mation Theory (ISIT), pp. 2433–2437, June 2017.

[22] M. Ji, M. F. Wong, A. M. Tulino, J. Llorca, G. Caire, M. Effros, and
M. Langberg, “On the fundamental limits of caching in combination
networks,” in IEEE 16th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), pp. 695–699, June
2015.

BIBLIOGRAPHY 155

[23] J. Zhang and O. Simeone, “Fundamental limits of cloud and cache-
aided interference management with multi-antenna edge nodes,” IEEE
Transactions on Information Theory, pp. 1–1, 2019.

[24] J. S. P. Roig, F. Tosato, and D. Gündüz, “Storage-latency trade-off in
cache-aided fog radio access networks,” in IEEE International Confer-
ence on Communications (ICC), pp. 1–6, May 2018.

[25] A. Roushdy, A. S. Motahari, M. Nafie, and D. Gündüz, “Cache-aided
fog radio access networks with partial connectivity,” in IEEE Wireless
Communications and Networking Conference (WCNC), pp. 1–6, April
2018.

[26] R. Karasik, O. Simeone, and S. Shamai, “How much can D2D com-
munication reduce content delivery latency in fog networks with edge
caching?,” CoRR, vol. abs/1904.01256, 2019.

[27] S. P. Shariatpanahi, J. Zhang, O. Simeone, B. H. Khalaj, and
M. A. Maddah-Ali, “Cloud-aided interference management with cache-
enabled edge nodes and users,” CoRR, vol. abs/1901.06698, 2019.

[28] M. Tao, D. Gündüz, F. Xu, and J. S. P. Roig, “Content caching and de-
livery in wireless radio access networks,” IEEE Transactions on Com-
munications, pp. 1–1, 2019.

[29] F. Xu and M. Tao, “Fundamental limits of decentralized caching in
fog-rans with wireless fronthaul,” in IEEE International Symposium
on Information Theory (ISIT), pp. 1430–1434, June 2018.

[30] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Transactions on Information The-
ory, vol. 62, pp. 3212–3229, June 2016.

[31] J. Hachem, N. Karamchandani, and S. Diggavi, “Multi-level coded
caching,” in IEEE International Symposium on Information Theory,
pp. 56–60, June 2014.

[32] J. Hachem, N. Karamchandani, and S. N. Diggavi, “Coded caching for
multi-level popularity and access,” IEEE Transactions on Information
Theory, vol. 63, pp. 3108–3141, May 2017.

[33] A. Sengupta, R. Tandon, and T. C. Clancy, “Improved approximation
of storage-rate tradeoff for caching via new outer bounds,” in IEEE
International Symposium on Information Theory (ISIT), pp. 1691–1695,
June 2015.

[34] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for coded
caching,” IEEE Transactions on Information Theory, vol. 63, pp. 4388–
4413, July 2017.

156 BIBLIOGRAPHY

[35] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of un-
coded cache placement,” in IEEE Information Theory Workshop (ITW),
pp. 161–165, Sep. 2016.

[36] C. Wang, S. Saeedi Bidokhti, and M. Wigger, “Improved converses
and gap results for coded caching,” IEEE Transactions on Information
Theory, vol. 64, pp. 7051–7062, Nov 2018.

[37] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the
rate-memory tradeoff in cache networks within a factor of 2,” IEEE
Transactions on Information Theory, vol. 65, pp. 647–663, Jan 2019.

[38] M. Cheng, J. Jiang, Q. Yan, and X. Tang, “Constructions of Coded
Caching schemes with flexible memory size,” IEEE Transactions on
Communications, vol. 67, pp. 4166–4176, June 2019.

[39] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis.,
“Finite-length analysis of caching-aided coded multicasting,” IEEE
Transactions on Information Theory, vol. 62, pp. 5524–5537, Oct 2016.

[40] S.-E. Elayoubi and J. Roberts, “Performance and cost effectiveness of
caching in mobile access networks,” in Proceedings of the 2Nd ACM
Conference on Information-Centric Networking, ACM-ICN ’15, (New
York, NY, USA), pp. 79–88, ACM, 2015.

[41] S. P. Shariatpanahi, G. Caire, and B. Hossein Khalaj, “Physical-layer
schemes for wireless coded caching,” IEEE Transactions on Information
Theory, vol. 65, pp. 2792–2807, May 2019.

[42] J. S. P. Roig, D. Gündüz, and F. Tosato, “Interference networks with
caches at both ends,” in IEEE International Conference on Communi-
cations (ICC), pp. 1–6, May 2017.

[43] A. Tolli, S. P. Shariatpanahi, J. Kaleva, and B. Khalaj, “Multicast beam-
former design for coded caching,” in IEEE International Symposium on
Information Theory (ISIT), pp. 1914–1918, June 2018.

[44] L. Zheng and D. N. C. Tse, “Communication on the Grassmann mani-
fold: a geometric approach to the noncoherent multiple-antenna chan-
nel,” IEEE Transactions on Information Theory, vol. 48, pp. 359–383,
Feb 2002.

[45] S. A. Jafar and S. Vishwanath, “Generalized Degrees of Freedom of the
symmetric Gaussian K user Interference Channel,” IEEE Transactions
on Information Theory, vol. 56, pp. 3297–3303, July 2010.

[46] A. Gholami Davoodi and S. A. Jafar, “Aligned image sets under channel
uncertainty: Settling conjectures on the collapse of degrees of freedom
under finite precision CSIT,” IEEE Transactions on Information Theory,
vol. 62, pp. 5603–5618, Oct 2016.

BIBLIOGRAPHY 157

[47] E. Lampiris and P. Elia, “Achieving full multiplexing and unbounded
caching gains with bounded feedback resources,” in IEEE International
Symposium on Information Theory (ISIT), pp. 1440–1444, June 2018.

[48] A. D. Wyner, “Shannon-theoretic approach to a gaussian cellular
multiple-access channel,” IEEE Transactions on Information Theory,
vol. 40, pp. 1713–1727, Nov 1994.

[49] A. Gholami Davoodi and S. A. Jafar, “Generalized degrees of freedom of
the symmetric k user interference channel under finite precision CSIT,”
IEEE Transactions on Information Theory, vol. 63, pp. 6561–6572, Oct
2017.

[50] O. O’Malley, “Terabyte sort on apache hadoop,” Available online at:
http://sortbenchmark.org/Yahoo-Hadoop.pdf, pp. 1–3, May 2008.

[51] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Transactions on Net-
working, vol. 23, pp. 1029–1040, Aug 2015.

[52] Q. Yan, M. Cheng, X. Tang, and Q. Chen, “On the placement delivery
array design for centralized coded caching scheme,” IEEE Transactions
on Information Theory, vol. 63, pp. 5821–5833, Sep. 2017.

[53] L. Tang and A. Ramamoorthy, “Coded caching schemes with reduced
subpacketization from linear block codes,” IEEE Transactions on In-
formation Theory, vol. 64, pp. 3099–3120, April 2018.

[54] C. Shangguan, Y. Zhang, and G. Ge, “Centralized coded caching
schemes: A hypergraph theoretical approach,” IEEE Transactions on
Information Theory, vol. 64, pp. 5755–5766, Aug 2018.

[55] K. Shanmugam, A. M. Tulino, and A. G. Dimakis, “Coded caching
with linear subpacketization is possible using Ruzsa-Szeméredi graphs,”
in 2017 IEEE International Symposium on Information Theory (ISIT),
pp. 1237–1241, June 2017.

[56] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts
coded-caching gains for finite file sizes,” IEEE Journal on Selected Ar-
eas in Communications (JSAC), vol. 36, pp. 1176–1188, June 2018.

[57] A. Lozano, R. W. Heath Jr, and J. G. Andrews, “Fundamental limits of
cooperation,” arXiv preprint arXiv:1204.0011, 2012.

[58] G. Caire and S. Shamai, “On the achievable throughput of a multi-
antenna gaussian broadcast channel,” IEEE Transactions on Informa-
tion Theory, vol. 49, no. 7, pp. 1691–1706, 2003.

158 BIBLIOGRAPHY

[59] S. A. Jafar and A. J. Goldsmith, “Isotropic fading vector broadcast
channels: The scalar upper bound and loss in degrees of freedom,”
IEEE Transactions on Information Theory, vol. 51, no. 3, pp. 848–857,
2005.

[60] C. Huang, S. A. Jafar, S. Shamai, and S. Vishwanath, “On degrees of
freedom region of MIMO networks without channel state information
at transmitters,” IEEE Transactions on Information Theory, vol. 58,
no. 2, pp. 849–857, 2012.

[61] A. Lapidoth, S. Shamai, and M. Wigger, “On the capacity of
fading MIMO Broadcast Channels with imperfect transmitter side-
information,” arXiv preprint cs/0605079, 2006.

[62] C. S. Vaze and M. K. Varanasi, “The degree-of-freedom regions of
MIMO Broadcast, Interference, and cognitive radio channels with
no CSIT,” IEEE Transactions on Information Theory, vol. 58, no. 8,
pp. 5354–5374, 2012.

[63] H. Weingarten, S. Shamai, and G. Kramer, “On the compound MIMO
Broadcast Channel,” in Proceedings of Annual Information Theory and
Applications Workshop UCSD, Citeseer, 2007.

[64] T. Gou, S. A. Jafar, C. Wang, et al., “On the degrees of freedom of finite
state compound wireless networks.,” IEEE Trans. Information Theory,
vol. 57, no. 6, pp. 3286–3308, 2011.

[65] M. A. Maddah-Ali, “On the degrees of freedom of the compound MISO
Broadcast Channels with finite states,” in International Symposium on
Information Theory Proceedings (ISIT), pp. 2273–2277, IEEE, 2010.

[66] M. Maddah-Ali and D. Tse, “Completely stale transmitter channel state
information is still very useful,” Information Theory, IEEE Transac-
tions on, 2012.

[67] S. A. Jafar, “Blind interference alignment,” IEEE Journal of Selected
Topics in Signal Processing, vol. 6, no. 3, pp. 216–227, 2012.

[68] S. Yang, M. Kobayashi, D. Gesbert, and X. Yi, “Degrees of Freedom
of time correlated MISO broadcast channel with delayed CSIT,” IEEE
Transactions on Information Theory, vol. 59, no. 1, pp. 315–328, 2013.

[69] T. Gou and S. A. Jafar, “Optimal use of current and outdated channel
state information: Degrees of freedom of the miso bc with mixed csit,”
IEEE Communications Letters, vol. 16, no. 7, pp. 1084–1087, 2012.

[70] J. Chen and P. Elia, “Degrees-of-freedom region of the miso broadcast
channel with general mixed-csit,” arXiv preprint arXiv:1205.3474, 2012.

BIBLIOGRAPHY 159

[71] J. Chen and P. Elia, “Toward the performance vs. feedback tradeoff for
the two-user miso broadcast channel,” IEEE Trans. Inf. Theory, vol. 59,
no. 12, pp. 8336–8356, 2013.

[72] R. Tandon, S. A. Jafar, S. Shamai, and H. V. Poor, “On the synergis-
tic benefits of alternating csit for the miso broadcast channel,” IEEE
Transactions on Information Theory, vol. 59, no. 7, pp. 4106–4128, 2013.

[73] J. S. P. Roig, D. Gündüz, and F. Tosato, “Interference networks with
caches at both ends,” in 2017 IEEE International Conference on Com-
munications (ICC), pp. 1–6, May 2017.

[74] M. Salehi, A. Tölli, S. P. Shariatpanahi, and J. Kaleva,
“Subpacketization-rate trade-off in multi-antenna coded caching,” arXiv
preprint arXiv:1905.04349, 2019.

[75] J. Zhang, F. Engelmann, and P. Elia, “Coded caching for reducing
csit-feedback in wireless communications,” in 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton),
pp. 1099–1105, Sep. 2015.

[76] E. Piovano, H. Joudeh, and B. Clerckx, “On coded caching in the over-
loaded miso broadcast channel,” in IEEE International Symposium on
Information Theory (ISIT), pp. 2795–2799, June 2017.

[77] E. Lampiris, J. Zhang, and P. Elia, “Cache-aided cooperation with no
csit,” in IEEE International Symposium on Information Theory (ISIT),
pp. 2960–2964, June 2017.

[78] E. Piovano, H. Joudeh, and B. Clerckx, “Generalized degrees of freedom
of the symmetric cache-aided miso broadcast channel with partial csit,”
IEEE Transactions on Information Theory, pp. 1–1, 2019.

[79] K. Ngo, S. Yang, and M. Kobayashi, “Scalable content delivery with
coded caching in multi-antenna fading channels,” IEEE Transactions
on Wireless Communications, vol. 17, pp. 548–562, Jan 2018.

[80] E. Lampiris and P. Elia, “Bridging two extremes: Multi-antenna coded
caching with reduced subpacketization and CSIT,” SPAWC, 2019.

[81] E. Lampiris and P. Elia, “Full coded caching gains for cache-less users,”
in IEEE Information Theory Workshop (ITW), pp. 1–5, Nov 2018.

[82] G. Agnarsson and R. Greenlaw, Graph theory: Modeling, applications,
and algorithms. Prentice-Hall, Inc., 2007.

[83] A. Goel, M. Kapralov, and S. Khanna, “Perfect matchings in O(n logn)
time in regular bipartite graphs,” SIAM Journal on Computing, vol. 42,
no. 3, pp. 1392–1404, 2013.

160 BIBLIOGRAPHY

[84] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with
side information,” IEEE Transactions on Information Theory, vol. 57,
pp. 1479–1494, March 2011.

[85] M. Mohammadi Amiri, Q. Yang, and D. Gündüz, “Decentralized caching
and coded delivery with distinct cache capacities,” IEEE Transactions
on Communications, vol. 65, pp. 4657–4669, Nov 2017.

[86] A. Sengupta, R. Tandon, and T. C. Clanc, “Layered caching for het-
erogeneous storage,” in IEEE 50th Asilomar Conference on Signals,
Systems and Computers, 2016.

[87] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded caching for
heterogeneous systems: An optimization perspective,” arXiv preprint
arXiv:1810.08187, 2018.

[88] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Device-to-device coded
caching with heterogeneous cache sizes,” in 2018 IEEE International
Conference on Communications (ICC), pp. 1–6, IEEE, 2018.

[89] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gündüz, “Coded
caching with heterogeneous cache sizes and link qualities: The two-user
case,” arXiv preprint arXiv:1802.02706, 2018.

[90] B. Asadi, L. Ong, and S. J. Johnson, “Centralized caching with unequal
cache sizes,” in IEEE Inf. Theory Workshop (ITW), Nov 2018.

[91] S. Wang, W. Li, X. Tian, and H. Liu, “Fundamental limits of heteroge-
nous cache,” arXiv preprint arXiv:1504.01123, 2015.

[92] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Centralized coded caching
with heterogeneous cache sizes,” in Wireless Communications and Net-
working Conference (WCNC), IEEE, 2017.

[93] K. Fukuda and T. Matsui, “Finding all the perfect matchings in bipartite
graphs,” Applied Mathematics Letters, vol. 7, no. 1, pp. 15 – 18, 1994.

[94] M. Li, L. Ong, and S. J. Johnson, “Improved bounds for multi-sender
index coding,” in IEEE International Symposium on Information Theory
(ISIT), pp. 3060–3064, June 2017.

[95] E. Parrinello, A. Ünsal, and P. Elia, “Coded caching with shared
caches: Fundamental limits with uncoded prefetching,” arXiv preprint
arXiv:1809.09422, 2018.

[96] A. Tölli, S. P. Shariatpanahi, J. Kaleva, and B. Khalaj, “Multi-
antenna interference management for coded caching,” arXiv preprint
arXiv:1711.03364, 2017.

BIBLIOGRAPHY 161

[97] J. Zhao, M. M. Amiri, and D. Gündüz, “A low-complexity
cache-aided multi-antenna content delivery scheme,” arXiv preprint
arXiv:1903.03856, 2019.

[98] A. Destounis, M. Kobayashi, G. Paschos, and A. Ghorbel, “Alpha fair
coded caching,” in 15th International Symposium on Modeling and Op-
timization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), pp. 1–8,
May 2017.

[99] Y. Cao and M. Tao, “Treating content delivery in multi-antenna coded
caching as general message sets transmission: A dof region perspec-
tive,” IEEE Transactions on Wireless Communications, 2019.

[100] A. Ghorbel, M. Kobayashi, and S. Yang, “Content delivery in erasure
broadcast channels with cache and feedback,” IEEE Transactions on
Information Theory, vol. 62, pp. 6407–6422, Nov 2016.

[101] M. Mohammadi Amiri and D. Gündüz, “Cache-aided content delivery
over erasure broadcast channels,” IEEE Transactions on Communica-
tions, vol. 66, pp. 370–381, Jan 2018.

[102] S. Kamel, M. Sarkiss, and M. Wigger, “Decentralized joint cache-
channel coding over erasure broadcast channels,” in IEEE Middle East
and North Africa Communications Conference (MENACOMM), pp. 1–6,
April 2018.

[103] S. Kim, S. Mohajer, and C. Suh, “Coding across heterogeneous paral-
lel erasure broadcast channels is useful,” in 2017 IEEE International
Symposium on Information Theory (ISIT), pp. 1883–1887, June 2017.

[104] S. Saeedi Bidokhti, M. Wigger, and R. Timo, “Noisy broadcast net-
works with receiver caching,” IEEE Transactions on Information The-
ory, vol. 64, pp. 6996–7016, Nov 2018.

[105] L. Zheng, Z. Wang, Q. Yan, Q. Chen, and X. Tang, “On the coded
caching based wireless video transmission scheme,” in IEEE/CIC In-
ternational Conference on Communications in China (ICCC), pp. 1–6,
July 2016.

[106] J. Zhang and P. Elia, “Wireless coded caching: A topological perspec-
tive,” in IEEE International Symposium on Information Theory (ISIT),
pp. 401–405, June 2017.

[107] A. Ghorbel, K. Ngo, R. Combes, M. Kobayashi, and S. Yang, “Oppor-
tunistic content delivery in fading broadcast channels,” in GLOBE-
COM 2017 - 2017 IEEE Global Communications Conference, pp. 1–6,
Dec 2017.

[108] N. D. Sidiropoulos, T. N. Davidson, and Zhi-Quan Luo, “Transmit
beamforming for physical-layer multicasting,” IEEE Transactions on
Signal Processing, vol. 54, pp. 2239–2251, June 2006.

162 BIBLIOGRAPHY

[109] I. Bergel and S. Mohajer, “Cache-aided communications with multiple
antennas at finite SNR,” IEEE Journal on Selected Areas in Communi-
cations, vol. 36, pp. 1682–1691, Aug 2018.

[110] A. D. Wyner, “Shannon-theoretic approach to a gaussian cellular
multiple-access channel,” IEEE Transactions on Information Theory,
vol. 40, pp. 1713–1727, Nov 1994.

[111] E. Lampiris, A. E. Gamal, and P. Elia, “Wyner’s network on caches:
Combining receiver caching with a flexible backhaul,” IEEE Interna-
tional Symposium on Information Theory (ISIT), 2019.

[112] M. Wigger, R. Timo, and S. Shamai, “Complete interference mitigation
through receiver-caching in wyner’s networks,” in IEEE Information
Theory Workshop (ITW), pp. 335–339, Sep. 2016.

[113] F. Xu and M. Tao, “Cache-aided interference management in par-
tially connected wireless networks,” in GLOBECOM 2017 - 2017 IEEE
Global Communications Conference, pp. 1–6, Dec 2017.

[114] X. Yi and G. Caire, “Topological coded caching,” in IEEE International
Symposium on Information Theory (ISIT), pp. 2039–2043, July 2016.

[115] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Cache-
aided interference management in wireless cellular networks,” IEEE
Transactions on Communications, vol. 67, pp. 3376–3387, May 2019.

[116] V. V. Veeravalli and A. El Gamal, Interference Management in Wire-
less Networks: Fundamental Bounds and the Role of Cooperation. Cam-
bridge University Press, 2018.

[117] A. El Gamal and V. V. Veeravalli, “Flexible backhaul design and de-
grees of freedom for linear interference networks,” in IEEE Interna-
tional Symposium on Information Theory, pp. 2694–2698, June 2014.

[118] A. E. Gamal, V. S. Annapureddy, and V. V. Veeravalli, “Degrees of free-
dom (dof) of locally connected interference channels with coordinated
multi-point (comp) transmission,” in IEEE International Conference on
Communications (ICC), pp. 2293–2297, June 2012.

[119] Te Han and K. Kobayashi, “A new achievable rate region for the in-
terference channel,” IEEE Transactions on Information Theory, vol. 27,
pp. 49–60, January 1981.

[120] I. Maric, R. Dabora, and A. J. Goldsmith, “Relaying in the presence
of interference: Achievable rates, interference forwarding, and outer
bounds,” IEEE Transactions on Information Theory, vol. 58, pp. 4342–
4354, July 2012.

BIBLIOGRAPHY 163

[121] E. Parrinello, E. Lampiris, and P. Elia, “Coded distributed computing
with node cooperation substantially increases speedup factors,” in IEEE
International Symposium on Information Theory (ISIT), pp. 1291–1295,
June 2018.

[122] E. Lampiris, D. Jiménez Zorrilla, and P. Elia, “Mapping heterogeneity
does not affect wireless Coded MapReduce,” IEEE International Sym-
posium on Information Theory (ISIT), 2019.

[123] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[124] K. Shim, “MapReduce algorithms for big data analysis,” Proceedings
of the VLDB Endowment, vol. 5, no. 12, pp. 2016–2017, 2012.

[125] A. Kumar, M. Kiran, and B. Prathap, “Verification and validation of
MapReduce program model for parallel k-means algorithm on hadoop
cluster,” in Computing, Communications and Networking Technologies
(ICCCNT), Fourth International Conference on, IEEE, 2013.

[126] J. Dean and S. Ghemawat, “MapReduce: a flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[127] K. Slagter, C.-H. Hsu, Y.-C. Chung, and D. Zhang, “An improved parti-
tioning mechanism for optimizing massive data analysis using MapRe-
duce,” The Journal of Supercomputing, vol. 66, no. 1, pp. 539–555, 2013.

[128] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchan-
dran, “Speeding up distributed machine learning using codes,” IEEE
Transactions on Information Theory, vol. 64, pp. 1514–1529, March 2018.

[129] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The case for evalu-
ating MapReduce performance using workload suites,” in IEEE 19th
Annual International Symposium on Modelling, Analysis, and Simula-
tion of Computer and Telecommunication Systems, pp. 390–399, July
2011.

[130] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding,” arXiv preprint arXiv:1612.03301, 2016.

[131] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017.

[132] K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in Int. Symp. on Inf. Theory (ISIT), IEEE, 2017.

[133] A. B. Das, L. Tang, and A. Ramamoorthy, “C3LES: Codes for coded
computation that leverage stragglers,” arXiv preprint arXiv:1809.06242,
2018.

164 BIBLIOGRAPHY

[134] C. Suh and K. Ramchandran, “Exact-repair MDS codes for distributed
storage using interference alignment,” in Int. Symp. on Inf. Theory
(ISIT), June 2010.

[135] Q. Yu, N. Raviv, J. So, and A. S. Avestimehr, “Lagrange coded comput-
ing: Optimal design for resiliency, security and privacy,” arXiv preprint
arXiv:1806.00939, 2018.

[136] F. Li, J. Chen, and Z. Wang, “Wireless mapreduce distributed comput-
ing,” in 2018 IEEE International Symposium on Information Theory
(ISIT), pp. 1286–1290, June 2018.

[137] J. Zhang and O. Simeone, “Improved latency-communication trade-off
for map-shuffle-reduce systems with stragglers,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 8172–8176, May 2019.

[138] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and commu-
nication: A fundamental tradeoff in distributed computing,” in IEEE
Information Theory Workshop (ITW), pp. 1–5, Nov 2018.

	Introduction
	Coded Caching - A paradigm shift
	Performance of Coded Caching

	Extension to multiple-transmitters
	The Multi-server algorithm

	Extensions of Coded Caching
	Discussion

	Fundamental Limitations of CC
	Theoretical Performance
	Optimality of Coded Caching

	Practical considerations of CC
	Subpacketization bottleneck of coded caching
	Scaling Feedback Costs in Multi-Antenna CC
	Channel Unevenness (Worst-User Effect)
	Cache size unevenness

	Preview of the Results

	Transmitters and Subpacketization
	The road to low-subpacketization
	Multiple Transmitters and Subpacketization
	The role of Transmitters in Subpacketization
	Elevating different coded caching algorithms to the L antenna setting
	Example
	Effective gains and multiplicative boost of effective DoF
	Subpacketization cost of complementing the multiplexing gains
	Effects of cache-aided transmitter-cooperation on coded caching
	Near-optimality of schemes

	Removing the integer constraint
	Conclusion and Final Remarks

	The CSI Bottleneck
	Coded Caching Gains with Low CSIT
	Scheme Description
	Calculating the DoF performance

	Low CSI Single-antenna Subpacketization
	Joint CSIT and Subpacketization Reductions
	Main Result
	Scheme Description

	Cache-size Unevenness and Transmitters
	Main Results
	Cache-aided and cache-less users
	Coexistence of users with different cache sizes

	Description of the Schemes
	Placement and delivery in the presence of cache-less users
	Cache-less users example (2=0)

	Two types of cache-aided users
	Extension to the remaining cases
	Two Type Cache-aided Example

	Bounds and Converses
	Proof of Theorem 5.1
	Converse and gap to optimal of Theorem 5.2
	Proof of Theorem 5.3

	Extension of the cache-aided scheme

	Channel Unevenness Bottleneck
	System Model
	Main Results
	Placement and Delivery Algorithms
	Placement Phase
	Delivery Algorithm
	Decoding at the Users
	Delay calculation

	Bounds and Proofs of Converses
	Optimality Gap of the Performance of Theorem 6.1
	Bound on the difference of Binomials

	Partially Connected Networks
	Wyner's network on caches
	Main Results
	Placement and Delivery of Files with Caching at the Receivers
	Discussion and Concluding Remarks
	No-Caching Schemes
	Proof of Theorem 7.1, Eq. (7.5)
	Memory Sharing

	Transmitter Cooperation with No CSIT
	Coding challenge
	Main Results
	Placement and Delivery Schemes
	Example

	Distributed Computing
	Introduction
	MapReduce
	Emergence of Coded MapReduce: exploiting computing redundancy
	Subpacketization bottleneck of distributed computing
	Heterogeneous Nodes
	Channel model: Distributed computing in a D2D setting
	High-Dimensional CRM in the wired medium
	Related work
	Schemes Preliminaries

	Node Cooperation & Subpacketization
	Node cooperation example

	CMR with Heterogeneous nodes
	Scheme Description
	Mapping Phase
	Shuffling Phase

	Conclusion and Open Problems
	Caching gains under Subpacketization
	The CSI curse
	Subpacketization savings and low CSI
	Uneven caches and multiple antennas
	How to resolve the CSI bottleneck
	Subpacketization - CSI tradeoff
	Distributed Computing Bottlenecks

