
Dynamic slicing of RAN resources for
heterogeneous coexisting 5G services

Sihem Bakri, Pantelis A. Frangoudis, and Adlen Ksentini
EURECOM, Sophia Antipolis, France
Email: {name.surname}@eurecom.fr

Abstract—Network slicing is one of the key components allow-
ing to support the envisioned 5G services, which are organized
in three different classes: Enhanced Mobile Broadband (eMBB),
massive Machine Type Communication (mMTC), and Ultra-
Reliable and Low-Latency Communication (URLLC). Network
Slicing relies on the concept of Network Softwarization (Software
Defined Networking - SDN and Network Functions Virtualization
- NFV) to share a common infrastructure and build virtual
instances (slices) of the network tailored to the needs of dif-
ferent 5G services. Although it is straightforward to slice and
isolate computing and network resources for Core Network (CN)
elements, isolating and slicing Radio Access Network (RAN)
resources is still challenging. In this paper, we leverage a two-level
MAC scheduling architecture and provide a resource sharing
algorithm to compute and dynamically adjust the necessary radio
resources to be used by each deployed network slice, covering
eMBB and URLLC slices. Simulation results clearly indicate the
ability of our solution to slice the RAN resources and satisfy the
heterogeneous requirements of both types of network slices.

Index Terms—5G, Network slicing, Scheduling, Radio re-
sources sharing.

I. INTRODUCTION

The network slicing paradigm has been adopted in the de-
sign of current 5G systems as a key technological component.
It aims at sharing the same physical infrastructure (Mobile
Network infrastructure, RAN and Core Network), by creating
virtual instances of the network tailored to application needs.
To build these virtual instances on top of the underlying
physical substrate, Network Slicing uses Network Softwariza-
tion techniques, i.e., Software Defined Networking (SDN),
Network Functions Virtualization (NFV) and Cloud Com-
puting. Network slicing requires sophisticated mechanisms
to share and isolate resources among the coexisting slices.
While the core and transport network resources can be more
easily dimensioned and isolated for each slice, RAN resource
sharing across slices remains a challenge hard to tackle. In [1]
and [2], the concept of a two-level scheduler was introduced,
which aims to share physical radio resources (i.e., physical
Resource Blocks - pRBs) among slices by abstracting pRBs
and using two scheduler levels: The first level is slice-specific,
allowing each slice to use its own internal scheduler, and
schedules each User Equipment (UE) with virtual Resource
Blocks (vRBs). The second level, on the other hand, considers
the slice-specific (virtual) resource assignment and maps it to
actual pRBs. However, since the number of pRBs (NpRB)
is limited, the second-level scheduler controls the number of
pRBs assigned to each slice according to the recommendation
of a Slice Orchestrator (SO). The latter indicates the maximum
number of pRBs to dedicate to each slice, after executing an
intra-slice physical resource sharing algorithm.

However, in the above works it is not detailed how these
values (NpRB) are derived for each slice, knowing that each
slice type has its own characteristics and requirements. For
instance, eMBB (enhanced Mobile Broadband) requests high
bandwidth, while URLLC (Ultra-Reliable and Low-Latency
Communication) aims to minimize latency and maximize
reliability. Rather, the ratio of radio resources to allocate to
each slice is considered static and is decided in a manner
agnostic to the actual application requirements of each slice
in terms of latency and/or throughput. This work fills this
gap by completing the work of [1] and [2] with a dynamic
RAN resource slicing mechanism to derive the value of
NpRB to dedicate to each running slice, according to its
specific requirements and the varying conditions of the radio
environment. The proposed mechanism runs at the SO level,
and relies on monitoring information obtained from the RAN.

Our contributions are the following: In § III, using tools
from queuing theory, we propose an algorithm that derives the
service rate necessary to sustain the latency requirements of a
URLLC slice, which it translates to an initial pRB allocation.
This mechanism relies solely on information obtained from a
slice template provided by the slice owner, and is agnostic to
the channel conditions of each user. Similarly, our mechanism
provides an initial pRB allocation for eMBB slices aiming to
satisfy their throughput requirements. Then, in § IV, we design
a RAN-aware dynamic slicing algorithm that exploits per-user
RAN-level information to more accurately translate the derived
service rate to an appropriate pRB assignment. Simulation
results on the performance of the proposed algorithms follow
in § V.

II. RELATED WORK

Several works in the literature address the allocation of
resources to Network Slices. In [4], the authors discuss the
dynamic allocation of RAN resources to different tenants (e.g.,
virtual mobile network operators and service providers). They
propose a weighed proportionally fair allocation mechanism,
which aims to ensure the desirable fairness and protection
among the network slices of the different tenants and their
associated users.

The authors of [5] design optimization algorithms for com-
mon scheduling between eMBB and URLLC slice traffic, con-
sidering the dual objectives of maximizing utility for eMBB
traffic while satisfying instantaneous URLLC requests. This
is achieved by dynamically multiplexing the URLLC traffic
through puncturing/superposition of the eMBB Traffic. The
results show that this joint problem has structural properties



that enable clean decomposition, and corresponding algorithms
with theoretical guarantees.

In [6] the authors analyze dynamic resource sharing in
network slicing when tenants (such as mobile operators and/or
services) support inelastic users with minimum rate require-
ments. They propose a network slicing framework combining
(i) admission control, (ii) resource allocation, and (iii) user
dropping, which they study using tools from game theory.

The authors of [7] present algorithms that study the prob-
lem of resource allocation in the context of a slicing-ready
5G network. These algorithms are composed by: i) traffic
analysis and prediction per network slice using the Holt-
Winters forecasting procedure to analyze and predict future
traffic requests associated with a particular network slice,
ii) admission control decisions for network slice requests
using a heuristic algorithm, and iii) adaptive correction of the
forecasting solution based on the measured deviations, using
a proposed network slice scheduler.

The authors of [8] focus on the computational outages that
can occur between RAN functions, aiming to improve the
performance of scheduling and modulation and coding scheme
(MCS) selection functions. The problem, which was shown to
be NP-hard, was formulated as a joint optimization one and
some algorithms to solve it were proposed.

Finally, [9] adopts revenue management models, which have
been introduced in other contexts (airlines, hotels, etc.), in
order to propose a resource allocation model. The authors
propose the concept of slice overbooking to maximize mobile
operators’ revenues, by introducing a hierarchical control
plane to manage the orchestration of slices.

To summarize, despite the fact that all the methods already
proposed have shown relatively good results in the challenge
of dynamic resource allocation, all these methods propose
algorithms for dynamic resource sharing individually or in
combination, which are based on several constraints on users,
operators, etc., which require several information from them,
and which can not always be feasible, optimal and/or accu-
rate. On the other hand, our contribution proposes a simpler
algorithm which is based only on the estimation of the quality
of the channel, as well as it allows to estimate the number of
resources to allocate to each slice, which adds more precision
to the system.

III. ARCHITECTURE AND ASSUMPTIONS

In this work, we envision the same network architecture
model adopted in [1] and [2]. We assume a 5G network which
includes a SO and a set of eNodeBs deployed covering an
area. The role of the SO is to deploy and manage the life
cycle of network slices in the mobile network (RAN and
Core Network). We assume that a SO is responsible for a
region covered by a certain number of eNodeBs. The SO
communicates with the eNodeBs using a southbound protocol,
such as FlexRAN [3], that allows to interact and manage
remotely the eNodeBs. The eNB management process consists
in getting status information on the RAN and appropriately
configuring eNodeBs, e.g., by setting the number of pRBs
to dedicate to each slice. We assume that a set of UEs are
served by/associated with a network slice, spanning a set of

eNodeBs (i.e., different physical locations). The SO receives
from a tenant (owner) a request to instantiate a slice in the
form of a slice template, which indicates the slice type (e.g.,
eMBB, uRLLC, mMTC), its duration, the list of involved UEs,
the (application) data rate (denoted by λ) of the service used in
this slice, and application requirements such as the maximum
tolerated latency. According to this information, the SO derives
the appropriate number of pRBs that fits the needs of the slice,
which will be communicated later to the involved eNodeBs via
the southbound protocol.

In this work, we consider that a network slice is either
eMBB or URLLC; hence, we propose two corresponding
mechanisms to estimate the NpRB needed by each slice. Note
that although the 5G system considers three types of slices, in
this paper we considered only two of them; resource allocation
for eMBB and mMTC may follow the same mechanisms
and algorithms. The main difference lies between eMBB and
uRLLC, as the first one seeks high data rate, while the second
requires low latency. The proposed algorithm first derives an
initial estimation of the number of pRBs necessary using the
information obtained from the slice template. Then, a dynamic
algorithm is used to tune NpRB periodically according to the
feedback obtained from the eNBs via the southbound protocol.
In this section, we will detail the first step for each network
slice type considered (eMBB and URLLC).

A. eMBB slice

An eMBB slice requires high data rate, which will represent
the main objective when estimating NpRB . In the first step, we
start by estimating the maximum number of required pRBs for
each eNodeB i (NpRBmax(i)), using the information provided
by the slice owner, i.e., the data rate per user required by the
application running on top of the slice (dApp/user), and the
number of users (Nusers(i)) of the network slice connected
to eNodeB i, which can be retrieved from the eNodeB via the
southbound control protocol. The main constraint to satisfy is
that the number of pRBs NpRBmax(i) to dedicate periodically
for an eMBB slice at each eNodeB should be (greater than or)
equal to the aggregate data rate needed by the slice application
for all users connected to it; this is captured in (1).

NpRBmax(i) ∗ dpRB = Nusers(i) ∗ dApp/user. (1)

Indeed, the equation indicates that the NpRBmax(i) allowed
to a slice on a given eNodeB i should cover the needed
slice’s applications (i.e., the number of active users Nusers(i)
multiplied by the data rate required by the application). Here
we consider that dApp/user is the same for all users. We further
assume that dpRB is the maximum data rate provided by one
pRB, and that it is the same for all users. In this first step,
we consider that this rate is the maximum achievable by the
radio system for ideal channel conditions, i.e., the maximum
possible Channel Quality Indicator (CQI) value of 15, and the
corresponding MCS and transport block size as specified in
the standard [10].

Once each NpRBmax(i) is computed using (1), it is com-
municated via the southbound protocol to the corresponding
eNodeBs.



B. URLLC slice

Knowing that a URLLC slice includes all services requiring
ultra-low latency, the aim when deriving NpRBmax is to keep
latency below a maximum threshold (Latmax) indicated in
the slice template provided by the slice owner. To do that, we
need to derive a model that estimates the latency experienced
by URLLC packets at the eNodeB queue.

Given that each slice has its own downlink queue at the
eNodeB [1], all packets belonging to the slice share the same
queue. Therefore, to estimate the latency of the packets, we
propose to model the slice queue at the eNB as an M/M/1/K
one. The traffic arrival rate follows a Poisson distribution with
intensity λ, the service rate µ is exponential and the queue has
a size of K. Here, the value of λ corresponds to the traffic
rate of the application running on top of the slice, while the
service rate µ depends on the scheduling process at the MAC
layer. To derive λ and µ we can use the following formulas:

µ =
NpRB ∗ dpRB

avg packet size
(2)

λ =
Nusers ∗ dApp/user

avg packet size
, (3)

with avg packet size denoting the average packet size of the
URLLC application, and dApp/user having the same value for
all slice users. To estimate the latency of URLLC packets,
we apply Little’s law. The latter assumes that whatever the
distribution of the arrival rate, the average time a user spends in
a queue depends on the number of active users Nusers and the
traffic intensity (i.e., λ). As the number of users corresponds
in our case to the number of packets (Npacket) of the URLLC
service waiting in the queue, Little’s law is used as follows to
derive the time a packet spends in the queue:

Tw =
Npacket

λ
(4)

As we assumed that the URLLC queue is modeled as
M/M/1/K, Npacket can be derived as follows:

Npacket =
1− ρ

1− ρK+1

K∑
k=0

kρk (5)

where ρ = λ
µ . Since µ corresponds to the service rate of

the URLLC queue, and depends on the number of resources
dedicated to the URLLC slice, it can be derived using (2). By
assuming that Latmax is the maximum tolerated latency by a
URLLC slice, Tw should be less than or equal to this value:

Tw ≤ Latmax. (6)

We substitute Tw by its value given by (4), obtaining the
following expression:

Npacket

λ
=

1−λ
µ

1−(λ
µ )K+1

∑K
k=0 k(

λ
µ )

k

λ
≤ Latmax (7)

Therefore, we need to find a value of µ, noted µopt, that
ensures at least a latency equal to Latmax for URLLC.

According to (2), we can extract the number of pRBs (noted
NpRBopt) to dedicate to a URLLC slice as follows:

NpRBopt =
µopt ∗ avg packet size

dpRB
(8)

At this step, we go by the assumption that the value of
dpRB is the same for all UEs, as in the case of eMBB, and
that avg packet size is constant, and aim to solve (7) for µ.
We denote the solution to (7) as µopt.

Deriving µopt analytically is not straightforward. Therefore,
we estimate it numerically using the following simple algo-
rithm.1

Result: µopt

initialization: Mu = [µ1, µ2, ..µL], Mopt = []
for l ← 1:L do

ρ(l) = λ
Mu(l)

Npacket(l) =
1−ρ(l)

1−ρ(l)K+1

∑K
k=0 kρ(l)

k

Tw(l) =
Npacket(l)

λ

if latmax − Tw(l) ≥ ϵ then
Mopt.append(Mu(l))

else
reject Mu(l)

end if
end
µopt = minMopt

Algorithm 1: Calculation of µopt that allows to respect
the latency requirement of a URLLC slice.

The steps of this procedure are as follows: First, we generate
L candidate values for µ and keep them in a vector Mu. The
number of values to generate is limited: For example, since
dpRB is assumed for now fixed, we can generate one µ value
for each possible number of pRBs, which is defined by the
available bandwidth for the given radio technology (e.g, for
a bandwidth of 5Mhz, a maximum of 25 pRBs can be used)
using (2). Then, we calculate Npacket corresponding to each
value of µ and the resulting Tw value, which we compare with
Latmax to check if condition (6) is respected.

Note that we use a latency margin ϵ when we compare Tw

with Latmax to accept or reject a µ value. By appropriately
controlling ϵ, we can ensure that Tw is adequately lower than
the latency threshold Latmax, but also close enough to it
in order not to waste a lot of resources, while respecting
condition (6).

Out of all the µ values that lead to an acceptable latency
(in case there are multiple), we select as the optimal the
one which minimizes the difference between Tw and Latmax,
i.e., the smallest value of Mopt. These steps are illustrated in
Algorithm 1.

Once µopt is obtained, we use (8) to derive the correspond-
ing NpRB to be assigned to a URLLC slice. As for the case of
eMBB, the proposed method needs to be run for each eNodeB
where UEs of the slice are connected to.

1Adaptations of standard numerical techniques such as the Newton-Raphson
and the bisection algorithms are also applicable.



IV. A CHANNEL QUALITY-DRIVEN ALGORITHM FOR
DYNAMIC NpRB ESTIMATION

The initial number of resource blocks calculated per slice
in the previous step is based on the assumption that dpRB is
fixed for all users. However, users experience different channel
conditions, and hence different data rates.

Therefore, we propose to correct the estimation of the
dpRB by using per-UE channel quality reports obtained from
eNodeBs. These reports include the CQI and MCS values
of each UE belonging to a cell. Note that these values are
transmitted to eNodeBs by the UEs in order to be used in the
scheduling process. We organize these CQI values in a matrix
v(j, k), where j is the id of the slice and k is the id of the
UE. Based on the CQI, we can estimate dpRB per UE and
per cell (eNodeB). Indeed, dpRB can be obtained by using the
same tables used by the eNodeB to translate a CQI to a data
rate [10]. Matrix v is then transformed to a matrix of data
rates noted dpRB(j, k), where j and k have the same meaning
as for matrix v.

Algorithm 2 presents the different steps of the dynamic slice
resource allocation procedure. We note that Slice(j) gives
the type of the deployed slice, NpRBopt(i, j) is a matrix that
gives for each cell i the necessary number of pRBs for slice
j, Nusers(i, j) a vector indicating the number of users of a
slice j in cell i, and dApp user(j) the data rate required by
an application (per user) running on top of a slice j. This
algorithm allows to estimate the NpRB allocated to each slice
and for each network cell more accurately: For an eMBB slice,
it sums the necessary resources per UE considering each user’s
individual radio capacity reflected in dpRB(j, k). For URLLC,
it applies (8), using the optimal service rate as computed
by Algorithm 1 to attain latency requirements, and the mean
achievable dpRB across all slice users per eNodeB considering
each user’s channel quality, instead of a fixed optimistic value
for all.

Note that this algorithm is run periodically by the SO. It
relies on the eNodeBs’ reports obtained also periodically. The
periodicity of running these algorithms is independent from the
scheduling period TTI used at the MAC layer of the eNodeBs.

Result: NpRBopt(i, j)
for each cell i do

for each slice j do
if Slice (j) == eMBB then

NpRBopt(i, j) =
∑k=Nusers(i,j)

k=1
dApp/user(j,k)

dpRB(j,k)
else

if Slice (j) == uRLLC then
NpRBopt(i, j) =

µopt∗avg packet size

1
Nusers(i,j)

k=Nusers(i,j)∑
k=1

dpRB(j,k)

end if
end if

end
end

Algorithm 2: Calculation of NpRB for eMBB and uRLLC
slices for multiple cells

V. PERFORMANCE EVALUATION

A. Scenarios and parameters
To evaluate the performance of the proposed solution, we

extended the Matlab implementation of the two-level scheduler
used in [1]. We mainly modified the SO part to include our
algorithms. In this simulation, we considered two types of
slices, i.e., eMBB and URLLC. Each slice is defined by
the required application data rate, the number of users, the
maximum latency for URLLC, etc.

We simulated different scenarios, where we varied the
number of users of the URLLC slice (NuRLLCusers) while
keeping it fixed for the eMBB slice (NeMBBusers) to 5 users,
and for different channel qualities: (i) medium quality where
the CQI varies from 7 to 9; (ii) good quality where the CQI
varies from 13 to 15. The different channel qualities will
directly affect dpRB, which allows us to see its impact on
the proposed solutions. Note that we simulated the case of
only one eNodeB and one SO. Table I presents the simulation
parameter set in all scenarios:

TABLE I: Simulation parameters

Parameter Values
Slices [uRLLC, eMBB]

Average Packet Size [20, 125] bytes
Data rate [160, 1000] kbit/s

TTI [1, 1] ms
SO interval 1 s

We compared our solution with the one adopted in [1],
which shares the pRBs among the different slices using a
statically selected percentage; in our tests we considered a 50%
slice-dedicated bandwidth (SDB) per slice. It is worth noting
that the number of available pRBs is bounded by the channel
bandwidth. For our simulation, we used a channel bandwidth
of 5Mhz, where 25 pRBs are available. We selected this
number to saturate quickly the channel and show the efficiency
of our solution. For higher bandwidths, the only difference
concerns the threshold from where our solution does not per-
form well. It may happen that the combined number of pRBs
to be allocated to both eMBB and uRLLC exceeds the channel
capacity; hence, we adopted in this implementation a fair share
of the resources, which has been computed as follows. First
we compute ∆ = NpRBmax − (NpRBuRLLC +NpRBeMBB)
that represents the difference between the available number
of pRBs and the requested number of pRBs for both slices.
Then, we reduce the same amount of pRB ( |∆|

2 ) from each
slice, in order to fit the capacity of the channel. Other policies
could be used, such as giving high priority to one slice, by
first satisfying this slice and giving the remaining pRBs to the
other slice. In this paper we use only the fair share of the
channel, leaving other policies for future work.

Finally, we computed three main metrics: the eMBB slice
throughput, the URLLC latency and the variation of NpRB

for each slice. We varied the number of URLLC slice users
from 1 to 20 in the case of the medium-quality channel, and
from 1 to 30 in the case of the good-quality channel, while
fixing the number of eMBB users to 5. The presented results
are averaged after several runs of the simulation.



0

10

20

30

40

50

60

70

80

0 5 10 15 20

L
a
te

n
cy

[m
s]

uRLLC Nusers

Latency using our method lat= 1

Latency using our method lat= 10

Latency using our method lat= 50

Latency using stat ic method for 50%

Latency Threshold= 1

Latency Threshold= 10

Latency Threshold= 50

(a) Medium channel quality.

0

10

20

30

40

50

60

0 5 10 15 20 25 30

L
a
te

n
cy

[m
s]

uRLLC Nusers

Latency using our method lat= 1

Latency using our method lat= 10

Latency using our method lat= 50

Latency using static method for 50%

Latency Threshold= 1

Latency Threshold= 10

Latency Threshold= 50

(b) Good channel quality.

Fig. 1: Latency vs. the number of URLLC users.

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 5 10 15 20

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

uRLLC Nusers

Throughput using our method lat=1

Throughput using our method lat=10

Throughput using our method lat=50

Throughput using static method 50%

Throughput Threshold

(a) Medium channel quality.

3400

3600

3800

4000

4200

4400

4600

4800

5000

0 5 10 15 20 25 30

T
h
ro

u
g
h
p
u
t

[k
b
p
s]

uRLLC Nusers

Throughput using our method lat= 1

Throughput using our method lat= 10

Throughput using our method lat= 50

Throughput using static method 50%

Throughput Threshold

(b) Good channel quality.

Fig. 2: Throughput vs. the number of URLLC users.

It is worth noting that our main objective is to evaluate the
accuracy of our proposed methods to well estimate the needed
radio resources for each type of slice.

B. Results

Fig. 1a and 1b illustrate the latency experienced by the
uRLLC users for different numbers of NusersuRLLC , and for
two channel qualities, good and medium.

Here we considered different values for Latmax: 1 ms,
10 ms and 50 ms, which reflect different service-level require-
ments. We remark that our algorithm allows to keep the latency
around Latmax, whatever the value of the latter and for both
channel qualities. However, we see that there is a threshold
(i.e., number of URLLC users) beyond which latency exceeds
Latmax; 2, 5 and 14 for the medium channel quality for
Latmax=1 ms, 5 ms and 50 ms respectively, and 15, 22 and
29 for the good channel quality for Latmax=1 ms, 5 ms and
50 ms respectively. The difference between these values is
explained by the fact that good channel quality permits to have
higher NpRB compared with the medium channel quality, thus
accommodating more URLLC users. In addition, we observe
that using a fixed number of pRBs cannot guarantee the very
low latency requirement, as the used value (i.e., 50%) is not
optimal (see Fig. 1a and 1b).

Fig. 2a and 2b show the throughput obtained for the eMBB
slice as a function of the number of the URLLC slice’s users.
We remark the same behaviour as in the precedent figures.

Namely, there is a threshold beyond which the performance
of the slice degrades, particularly in the case of a good
channel quality. Indeed, for the medium channel quality, our
solution cannot guarantee the requested bandwidth (5 users ×
1 Mbps). However, for the good channel quality our solution
guarantees the needed bandwidth until 10 and 25 users when
Latmax=1 ms and 50 ms, respectively. This is expected, as
in the case of Latmax=1 ms the URLLC users need more
pRBs, which strongly affects the eMBB users (see Figures 3b
and 4b). Regarding the static assignment of pRBs, it ensures
always the same throughput (lower than 5mbps), which is not
optimal.

To better understand the obtained results, we have drawn
in Fig. 3 and 4 the number of pRBs (NpRB) estimated and
used by the eNodeBs for each type of slice, and for both
channel qualities. From Fig. 3a and 4a we clearly see that the
estimated value of NpRB is similar to the one communicated to
the eNodeB, until reaching the identified thresholds in Fig. 1a
and 1b. When exceeding these thresholds, the communicated
NpRB to eNodeB are lower than the estimated value. This
is mainly because the channel capacity is exceeded, and the
proposed solution starts using the fair share of pRBs among the
two slices. Hence, it is possible to accommodate the URLLC
requirement for both channel qualities.

Regarding the eMBB slice, where the results are displayed
in Fig. 3b and 4b for both channel qualities, the estimated
NpRB cannot be satisfied in case of medium channel quality,



0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16 18 20

N
p
R

B

uRLLC Nusers

uRLLC NpRB for threshold= 1 after FS

uRLLC NpRB for threshold= 10 after FS

uRLLC NpRB for threshold= 50 after FS

uRLLC NpRB for threshold= 1 estimate

uRLLC NpRB for threshold= 10 estimate

uRLLC NpRB for threshold= 50 estimate

(a) NpRB of uRLLC slice.

10

15

20

25

30

35

40

45

50

0 2 4 6 8 10 12 14 16 18 20

N
p
R

B

uRLLC Nusers

eMBB NpRB for threshold=1 after FS

eMBB NpRB for threshold=10 after FS

eMBB NpRB for threshold=50 after FS

eMBB NpRB real estimate

(b) NpRB of eMBB slice.

Fig. 3: Number of pRBs vs. the number of URLLC users for a medium channel quality.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

N
p
R

B

uRLLC Nusers

uRLLC NpRB for threshold= 1 after FS

uRLLC NpRB for threshold= 10 after FS

uRLLC NpRB for threshold= 50 after FS

uRLLC NpRB for threshold= 1 estimate

uRLLC NpRB for threshold= 10 estimate

uRLLC NpRB for threshold= 50 estimate

(a) NpRB of uRLLC slice.

9

10

11

12

13

14

15

0 5 10 15 20 25 30

N
p
R

B

uRLLC Nusers

eMBB NpRB for threshold= 1 after FS

eMBB NpRB for threshold= 10 after FS

eMBB NpRB for threshold= 50 after FS

eMBB NpRB real estimate

(b) NpRB of eMBB slice.

Fig. 4: Number of pRBs vs. the number of URLLC users for a good channel quality.

and after exceeding the identified threshold in Fig. 2a and 2b
for good channel quality. Furthermore, we remark that the
number of needed NpRB is higher in case of medium channel
quality, which is expected as dpRB in this case is lower than
when channel quality is better; hence more pRBs are needed
to satisfy the throughput of eMBB users.

Overall, these results confirm that the proposed model to
estimate the needed NpRB for eMBB and URLLC employed
by our proposed solution is accurate and permits to solve the
problem of sharing the RAN resources among slices.

VI. CONCLUSION

In this paper, we addressed the problem of slicing and
isolating RAN resources in slicing-ready 5G networks using
the concept of two-level scheduling introduced in [1]. We
proposed two algorithms that estimate the needed RAN re-
sources for two types of 5G slices: eMBB and uRLLC. We
used simulation to evaluate the performance of the proposed
algorithms under different channel conditions. The obtained
results allowed us to verify the accuracy of our algorithms
when estimating the needed pRBs for each type of slice.
The proposed algorithms are used at the slice orchestrator
level and could be easily implemented in a real platform. Our
future work will focus on improving the estimation of the
URLLC algorithm by relaxing the assumptions on the traffic
characteristics, using more general models.

VII. ACKNOWLEDGEMENT

This work was partially supported by the European Union’s
Horizon 2020 Research and Innovation Program under the
5G!Drones (Grant No. 857031) and 5G-TRANSFORMER
(Grant No. 761536) projects.

REFERENCES

[1] A. Ksentini et al., “Providing low latency guarantees for slicing-ready
5G systems via two-level MAC scheduling,” in IEEE Network, Nov.
2018.

[2] A. Ksentini and N. Nikaein, “Towards enforcing Network Slicing on
RAN: Flexibility and Resources abstraction,” in IEEE Communications
Magazine, Jun. 2017.

[3] X. Foukas et al., “FlexRAN: A Flexible and Programmable Platform
for Software-Defined Radio Access Networks,” in Proc. ACM CoNEXT,
2016.

[4] P. Caballero, “Multi-Tenant Radio Access Network Slicing: Statistical
Multiplexing of Spatial Loads,” in IEEE/ACM Transactions on Network-
ing, vol. 25(5), Oct. 2017.

[5] A. Anand et al., “Joint Scheduling of uRLLC and eMBB Traffic in 5G
Wireless Networks,” in Proc. IEEE INFOCOM, 2018.

[6] P. Caballero et al., “Network Slicing for Guaranteed Rate Services: Ad-
mission Control and Resource Allocation Games,” in IEEE Transactions
on Wireless Communications, vol. 17(10), Oct. 2018.

[7] V. Sciancalepore et al., “Mobile Traffic Forecasting for Maximizing 5G
Network Slicing Resource Utilization,” in Proc. IEEE INFOCOM, 2017.

[8] D. Bega et al., “CARES: Computation-aware Scheduling in Virtualized
Radio Access Networks,” in IEEE Transactions on Wireless Communi-
cations, vol. 17(12), 2018.

[9] J. Salvat et al., “Overbooking Network Slices through Yield-driven End-
to-End Orchestration,” in Proc. ACM CoNEXT, 2018.

[10] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
layer procedures, 3GPP TS 36.213, v. 15.2.0, Release 15, Oct. 2018.


