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Abstract

This year, the PicSOM and EURECOM teams participated only in the Video to Text Description (VTT), Description Generation
subtask. Both groups submitted one or two runs labeled as a ”MeMAD” submission, stemming from a joint EU H2020 research
project with that name. In total, the PicSOM team submitted four runs and EURECOM one run. The goal of the PicSOM
submissions was to study the effect of using either image or video features or both. The goal of the EURECOM submission was
to experiment with the use of Curriculum Learning in video captioning. The submitted five runs are as follows:
• PICSOM.1-MEMAD.PRIMARY: uses ResNet and I3D features for initialising the LSTM generator, and is trained on MS

COCO + TGIF using self-critical loss,
• PICSOM.2-MEMAD: uses I3D features as initialisation, and is trained on TGIF using self-critical loss,
• PICSOM.3: uses ResNet features as initialisation, and is trained on MS COCO + TGIF using self-critical loss,
• PICSOM.4: is the same as PICSOM.1-MEMAD.PRIMARY except that the loss function used is cross-entropy,
• EURECOM.MEMAD.PRIMARY: uses I3D features to initialize a GRU generator, and is trained on TGIF + MSR-VTT +

MSVD with cross-entropy and curriculum learning.
The runs aim at comparing the use of cross-entropy and self-critical training loss functions and to showing whether one can
successfully use both still image and video features even when the COCO dataset does not allow the extractions of I3D video
features. Based on the results of the runs, it seems that using both video and still image features, one can obtain better captioning
results than with either one of the single modalities alone. The Curriculum Learning process proposed does not seem to be
beneficial.

I. INTRODUCTION

In this notebook paper, we describe the PicSOM and EU-
RECOM teams’ experiments for the TRECVID 2019 evalua-
tion [1]. We participated only in the Video to Text Description
(VTT) subtask Description Generation. Our approaches are
variations of the “Show and tell” model [2], augmented with
a richer set of contextual features [3], self-critical training [4]
and Curriculum Learning [5]. Both teams’ systems have
been used to produce the runs presented in this paper. The
captioning models are described in more detail in Section II
and their used training loss functions in Section III. Then, we
describe the features in Section IV and the datasets used for
training in Section V. Our experiments, submitted runs and
results are discussed in Section VI and conclusions are drawn
in Section VII.

II. NEURAL CAPTIONING MODELS

In our experiments we have used two different Python-based
software projects for caption generation. The PicSOM team’s

DeepCaption, uses the PyTorch library, whereas EURECOM’s
CLCaption approach is based on using the TensorFlow library.

A. DeepCaption

The PicSOM team’s LSTM [6] model has been imple-
mented in PyTorch and is available as open source.1 The
features are translated to the hidden size of the LSTM by
using a fully connected layer. We apply dropout and batch
normalization [7] at this layer. As the loss function, we
similarly use cross entropy, in addition to Reinforcement
Learning with self-critical loss function [4] in order to fine-
tune a well-performing model. The fine-tuning is implemented
either by switching to the self-critical loss in training time or
by specifying a pre-trained model to load and fine-tune.

B. CLCaption

For EURECOM’s first participation in the TRECVID VTT
captioning task, we submitted a run based on a model trained

1https://github.com/aalto-cbir/DeepCaption



by Curriculum Learning [8]. We implemented our model using
the TensorFlow framework for Python [9].

The idea behind Curriculum Learning is to present data
during training in an ascending order of difficulty: first epochs
are based on easy samples, and after each epoch, more
difficult samples are added to training data. We computed a
difficulty score for a given sample composed of a video and
a corresponding caption as follows: the caption is translated
into a list of indices (the bigger the indices the less frequent
the corresponding word), the score of the sample is then
the maximum index of its caption. Once samples have been
scored, we trained the model starting with an easy subset of
the training set, and adding after each epoch more complex
samples.

Video features have been extracted with an I3D neural
network [10], input to a fully connected layer and then
processed by a GRU [11] to generate captions. Cross-entropy
loss has been used for training the model.

III. TRAINING LOSS FUNCTIONS

In order to train the architecture so that its output distribu-
tion approximates the target distribution at each decoding step
t, several optimisation objectives are used. Recent progress on
sequence training enables new optimisation paradigms, which
are applied and compared in this work.

A. Cross-entropy
Traditionally, the teacher forcing algorithm [5] is the most

common method to maximise the log-likelihood of a model
output X to match the ground truth y = {y1, y2, · · · , yT }. It
minimises the cross-entropy objective

LCE = �
TX

t=1

log p✓ (yt | yt�1,ht�1, X) , (1)

where ht�1 is the hidden state of the RNN from the previous
step and p✓ the probability of an output parametrized by ✓.
In the inference time, the output can be produced simply by
greedy sampling of the sequence being generated.

B. Self-critical
Lately, Reinforcement Learning ideas have been used to op-

timise a captioning system based on recurrent neural network
language models. Such a system can be seen as an agent taking
actions according to a policy ⇡✓ and outputting a word ŷt as
an action.

One proposed approach is the self-critical algorithm [4],
where the output at inference time of the model ŷgi,t is used,
normally applying greedy search. The sequences are scored
using a reward function r. Thanks to the properties of this
optimisation, NLP metrics can be used as reward to affect
the actual loss. In our case, CIDErD [12] is used. The final
objective reads

L✓ = 1
N

PN
i=1

P
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g
i,T )

⌘ . (2)

IV. FEATURES

Table I summarizes the features used in our experiments
and their dimensionalities.

TABLE I
SUMMARY OF THE FEATURES USED IN OUR EXPERIMENTS.

abbr. feature dim. modality

rn CNN ResNet 4096 image
fr Faster R-CNN 80 image

i3d I3D 2048 video

A. CNN

We are using pre-trained CNN features from ResNet 101
and 152. The 2048-dimensional features from the pool5 layer
average to five crops from the original and horizontally flipped
images. These features have then been concatenated together
and are referred to as “rn” in Table I and later in this paper.
When applied to a video object, we have used the middlemost
frame of the video.

B. FasterRCNN

The existence of certain objects in the visual scene has
an effect on sentence formation and influences the adjectives
used in human sentences. To extract this information, we
use an object detector, specifically the Faster Region-based
Convolutional Neural Network (R-CNN) [13]. This network
predicts the object locations as bounding boxes and object
detection scores of the 80 object categories of Microsoft
Common Objects in Common Context (MS-COCO) database.2
In our current approach we, however, ignore the location
information and encode the object detection scores on the
image level. We obtain thus an 80-dimensional feature vector
using the detection score for each category, and refer to it
as “fr”. When applied to a video object, we have used the
middlemost frame of the video.

C. I3D

To encode video features, the PicSOM team adopted Inflated
3D Convolutional Network (I3D) [10]. It builds upon already
competent image recognition models (2D) and inflates the
filters and kernels to 3D, thus creating an additional temporal
dimension. Concretely, the base network used is ImageNet-
pretrained Inception-V1 [14] using two streams [15]. The
videos were first resampled to 25 frames per second as in the
original I3D paper and 128 frames were taken from the center.
For DeepCaption, the extractor is applied convolutionally over
the whole video and the output is average-pooled in order to
produce a 2048-dimensional feature vector.

Regarding CLCaption, features have been extracted before
the softmax layer, thus obtaining a 600-dimensional features
vector. These features have then been input to the CLCaption
model.

2http://cocodataset.org/



V. TRAINING DATA

Table II gives a summary of the databases and the features
we have extracted for them. In Tables II and III, we have
shortened the dataset names with one letter abbreviations.

TABLE II
SUMMARY OF THE TRAINING DATASETS USED IN OUR EXPERIMENTS.

dataset items captions features

C COCO 82,783 img 414,113 rn fr
M MSR-VTT 6,513 vid 130,260 rn i3d
T TGIF 125,713 vid 125,713 rn fr i3d
V MSVD 1,969 vid 80,800 rn i3d

A. COCO
The Microsoft Common Objects in COntext (MS COCO)

dataset [16] has 2,500,000 labeled instances in 328,000 im-
ages, consisting on 80 object categories. COCO is focused on
non-iconic views (or non-canonical perspectives) of objects,
contextual reasoning between objects, and precise 2D local-
ization of objects.

B. MSR-VTT
The MSR-Video to Text (MSR-VTT) dataset [17] provides

10,000 web video clips with 41.2 hours and 200,000 clip-
sentence pairs in total, covering a comprehensive list of 20
categories and a wide variety of video content. Each clip was
annotated with about 20 natural sentences. Additionally, the
audio channel is provided too.

C. TGIF
The Tumblr GIF (TGIF) dataset [18] contains 100,000

animated GIFs and 120,000 natural language sentences. This
dataset aims to provide motion information involved between
image sequences (or frames).

D. MSVD
The Microsoft Research Video Description Corpus

(MSVD) [19] consists of 85,000 English video description
sentences and more than 1,000 for a dozen more languages. It
contains a set of 2,089 videos, showing a single, unambiguous
action or event.

VI. EXPERIMENTS AND RESULTS

During the development stage, the PicSOM team ran a
number of experiments to select the best combinations of
features and training datasets. We evaluated our results using
the previously released ground truth of TRECVID VTT 2018
test set. The four runs submitted are identified as “p-19-s1”
to “p-19-s4” in Table III. The runs “p-18-s2” and “p-18-a3”
we created using our best model in the last year’s submissions
and the best model we experimented with after the last year’s
workshop, respectively.

Runs identified as “p-19-s1” and “p-19-s4” use I3D video
features extracted from the TGIF dataset. We used also the
COCO dataset for training the models for those runs, but
because we could not extract I3D video features from the still

images of that dataset, we used the average value of the I3D
feature vectors of the TGIF dataset for each COCO image.

Based on evaluation on the TRECVID VTT 2018 test set,
we ended up using a 2-layer LSTM for DeepCaption with
an embedding vector size of 512, and 1024 for the hidden
state dimensionality in all PicSOM team’s runs. Both in the
input translation layer and in the LSTM we applied a dropout
of 0.5. We used Adam optimiser [20] for the self-critical
stage with a learning rate of 5 ⇥ 10�5 and no weight decay.
Additionally, gradient clipping is performed when a range
[�0.1, 0.1] is exceeded. The models were pretrained using
centered RMSprop [21] with a learning rate of 0.001 and
weight decay (L2 penalty) of 10�6.

EURECOM’s CLCaption is based on a GRU with 1024-
dimensional hidden states. The size of the input I3D vectors
is 600. The fully-connected layer output is of dimension 1024.
No dropout nor batch normalization were used. The training
algorithm we used was RMSProp with a learning rate of
0.0001 and mini-batches of size 64. The CLCaption run is
identified as “e-19-e1” in Table III where all experiments are
briefly summarized and their results presented.

The four “setup” columns in Table III specify the sub-
mission type (I=image, V=video, B=both), the loss func-
tion (ce=cross-entropy, sc=self-critical), the features, and the
datasets used in the RNN model training.

The features are concatenations of the following:
rn = CNN ResNet, see IV-A
fr = Faster R-CNN, see IV-B

i3d = I3D, see IV-C
The used datasets are combinations of the following:

C = COCO, see V-A
M = MSR-VTT, see V-B
T = TGIF, see V-C
V = MSVD, see V-D

Our results compared to those of the other submitted runs
are visualized with bar charts for each automatic performance
measure in Figures 1–5.

Fig. 1. METEOR results of our teams and others.



TABLE III
RESULTS OF OUR SUBMISSIONS (P-19-S1,. . . ,4, E-19-E1) AND SOME NOTEWORTHY EARLIER MODELS (P-18-S2, P-18-A3). THE P-* RUNS ARE BY THE

PICSOM TEAM AND THE E-* RUN BY THE EURECOM TEAM.

setup 2018 2019
id t loss feat data METEOR CIDEr CIDErD BLEU METEOR CIDEr CIDErD BLEU STS

p-18-s2 I ce rn+fr C+M 0.1541 0.1657 0.0476 0.0091 0.1773 0.1858 0.0722 0.0207 –
p-18-a3 I ce rn C+T 0.1776 0.1948 0.0700 0.0197 0.1993 0.2174 0.1004 0.0288 –
p-19-s1 B sc rn+i3d C+T 0.2055 0.3025 0.1157 0.0294 0.2285 0.3277 0.1615 0.0385 0.4168
p-19-s2 V sc i3d T 0.1958 0.2718 0.0949 0.0348 0.2139 0.2773 0.1245 0.0379 0.4169
p-19-s3 I sc rn C+T 0.2007 0.2777 0.1074 0.0301 0.2254 0.3130 0.1569 0.0345 0.4282

p-19-s4 B ce rn+i3d C+T 0.1850 0.2190 0.0822 0.0213 0.2049 0.2348 0.1147 0.0319 0.4057
e-19-e1 V ce i3d M+T+V – – – – 0.1743 0.2340 0.0710 0.0068 0.4214

Fig. 2. CIDEr results of our teams and others.

Fig. 3. CIDErD results of our teams and others.

VII. CONCLUSIONS

There were two main research question in the PicSOM
team’s set of four submissions. First, we wanted to compare
the implementations of cross-entropy and self-critical training
loss functions in our DeepCaption code. The results with self-
critical training were better in all measures, but this could
of course be expected based on our and other teams’ earlier
experiments. Based on our observations, however, the use

Fig. 4. BLEU results of our teams and others.

Fig. 5. STS results of our teams and others.

of this loss alone does not imply a straightforward jump in
caption quality as much as the score increment suggests.

Second, we aimed to know whether we could successfully
use both still image and video features even when the COCO
dataset does not allow the extractions of I3D video features.
The trick we applied was to use the average of the I3D video
features extracted from the TGIF dataset for all images in the
COCO dataset. For the COCO images the video features were
thus non-informative, but still allowed us to use two datasets



and two different feature extraction schemes together. The
results of this approach were encouraging as they were better
than those with either dataset or either feature used alone.

Additionally, we could now compared the current per-
formance of the PicSOM team’s DeepCaption model to its
performance in the last year’s evaluation. We have clearly
made substantial progress compared to both the last year’s
submission and to the post-workshop experiments reported in
our previous notebook paper. However, compared to the level
of performance reached by some of the other research groups,
we are still clearly behind as all the groups seem to have
improved from the previous year.

The results obtained by CLCaption are far from standing
comparison with the best runs of TRECVID VTT 2019.
However, multiple ways to improve them can be explored,
such as different scoring methods or finer curriculum learning
algorithms. We will explore these directions to boost the
results of CLCaption.
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