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Abstract
Novel Fisher-Information Matrix (FIM) and Cramér-Rao Bound (CRB) expressions for the problem of the ”partially relaxed” Joint Angle and Delay Estimation (JADE) are

derived and analyzed in this paper. In particular, exact closed form expressions of the CRB on the Angles and Times of Arrival of multiple sources are presented. Furthermore,
interesting asymptotic and desirable properties are demonstrated, such as high SNR behaviour and lower bound expressions on the CRBs of Angles and Times of Arrival of
multiple sources. Computer simulations are also given to visualize CRB behaviour in regimes of interest.

Introduction
• Localization has been a challenging topic over the past 70 years. Applications include seismology, radar, sonar, communications, etc.

• Recently, the partial relaxation (PR) framework has been introduced as a novel framework for the Angle-of-Arrival (AoA) problem.

• This paper derives and analyzes the Cramér-Rao Bound (CRB) of the partially-relaxed JADE problem.

Contributions
• The Fisher-Information-Matrix (FIM) and CRB of the partially relaxed JADE problem are derived. Exact closed form expressions are given.

• Some interesting asymptotic properties are revealed, i.e. lower bounds on the CRBs of the AoAs/ToAs are given.

• The cross-correlation CRB between ToA and AoA vanishes exponentially with linear increase of number of subcarriers/antennas.

System Model
Consider an OFDM symbol s(t) composed of M subcarriers and centered at a carrier frequency fc, impinging an antenna array of N antennas via q multipath
components, each arriving at different AoAs {θi}

q
i=1 and ToAs {τi}

q
i=1. In baseband, we could write the lth received OFDM symbol at the nth antenna as:

x(`) = H(θθθ, τττ )γγγ(`) + n(`) (1)

where H(θθθ, τττ ) =
[
h(θ1, τ1) . . . h(θq, τq)

]
is the response of the channel to the ToA/AoAs and γγγ(`) =

[
γ1(`) . . . γq(`)

]
are the multipath complex gains. The

problem is to estimate τττ , θθθ given all observations x(1) . . .x(L).

JADE by Partial Relaxation
We generalize the notion of partial relaxation to the JADE case by optimizing the following cost

arg min
θ,τ,B

∥∥∥PPP⊥[h(θ,τ ) B]R̂
∥∥∥2

(2)

under suitable constraints. In the above cost, we parameterize only one column in terms of the times and angles of arrivals, whereas the other q − 1 columns,
captured by an term B, are relaxed to have an arbitrary structure. The matrix B could be seen as an interference term in which q− 1 sources contribute to, when
beamforming at the remaining one source. For example, in the neighbourhood of (θ1, τ1), the matrix B will play the role of an unstructured approximation of
the last q − 1 columns of H(θθθ, τττ ).

Cramér-Rao Bound for Times and Angles of Arrival
The Fisher-Information Matrix (FIM) measures the quantity of information embedded in random parameters. We find it useful to partition the FIM into smaller
block FIMs to separate the nuisance from parameters of interest as follows

Iβ,β =


Iθ,θ Iθ,τ Iθ,ε Iθ,η
Iτ,θ Iτ,τ Iτ,ε Iτ,η
Iε,θ Iε,τ Iε,ε Iε,η
Iη,θ Iη,τ Iηε Iη,η

 (3)

Iβi,βj =
2L

σ2
Re
(
tr
{

Π
∂HH

∂βi
P⊥H

∂H

∂βj

})
(4)

where Π = PHHR−1HP and P = E
[
γγγ(`)γγγH(`)

]
represents the source covariance matrix. Also ε, η are nuissance vectors that contain the real and imaginary

parts of γγγ(`). Using straightforward manipulations, we can say that

Iθ,θ =
2L

σ2
Π11d

H
θP
⊥
Hdθ Iτ,τ =

2L

σ2
Π11d

H
τ P⊥Hdτ Iθ,τ =

2L

σ2
Re
(
Π11d

H
θP
⊥
Hdτ

)
(5)

where dθ =
da(θ)
dθ ⊗ c(τ ) and dτ = a(θ)⊗ dc(τ )

dτ . Now, taking a look at the (i, j)th entry at the following block matrices, we have

[Iθ,ε]i,j =
2L

σ2
Re
(
tr
{

Πe1d
H
θP
⊥
Hei+1e

H
j+1

})
[Iθ,η]i,j =

2L

σ2
Re
(
tr
{
jΠe1d

H
θP
⊥
Hei+1e

H
j+1

})
(6)

[Iτ,ε]i,j =
2L

σ2
Re
(
tr
{

Πe1d
H
τ P⊥Hei+1e

H
j+1

})
[Iτ,η]i,j =

2L

σ2
Re
(
tr
{
jΠe1d

H
τ P⊥Hei+1e

H
j+1

})
(7)

In compact matrix form, the above could be expressed as

Iθ,ε =
2L

σ2
Re
(

ΠH
21 ⊗ (dH

θP
⊥
HE)

)
Iθ,η =

2L

σ2
Re
(
jΠH

21 ⊗ (dH
θP
⊥
HE)

)
Iτ,ε =

2L

σ2
Re
(

ΠH
21 ⊗ (dH

τ P⊥HE)
)

(8)

Iτ,η =
2L

σ2
Re
(
jΠH

21 ⊗ (dH
τ P⊥HE)

)
Iε,ε = Iη,η =

2L

σ2
Re
(

Π22 ⊗ (EHP⊥HE)
)

Iε,η =
2L

σ2
Re
(
jΠ22 ⊗ (EHP⊥HE)

)
(9)

The Cramer-Rao bound is the inverse of the FIM. In our setting, we can say that

Cββ = I−1
β,β =


Cθθ Cθτ Cθε Cθη
Cτθ Cττ Cτε Cτη
Cεθ Cετ Cεε Cεη
Cηθ Cητ Cηε Cηη

 (10)

Finally, the CRBs of the parameters of interest are given as

Cθθ =
σ2

2αL

dH
τ P⊥Hdτ

(dH
θP
⊥
Hdθ)(d

H
τ P⊥Hdτ )− Re2(dH

θP
⊥
Hdτ )

Cττ =
σ2

2αL

dH
θP
⊥
Hdθ

(dH
θP
⊥
Hdθ)(d

H
τ P⊥Hdτ )− Re2(dH

θP
⊥
Hdτ )

Cθτ = − σ2

2αL

Re(dH
θP
⊥
Hdτ )

(dH
θP
⊥
Hdθ)(d

H
τ P⊥Hdτ )− Re2(dH

θP
⊥
Hdτ )

(11)

where α = ΠΠΠ11 −ΠΠΠH
21ΠΠΠ
−1
22 ΠΠΠ21 is the Schur’s complement of ΠΠΠ w.r.t its block matrix ΠΠΠ22. Notice that when the cross-term Re(dH

θP
⊥
Hdτ ) = 0, the CRB on θ.

Properties and Results
In this section, we discuss some useful insights related to the derived CRBs. First and foremost, we note that the cross-correlation CRB term, Cθτ vanishes in
the large regime (either in space or frequency). This is easily seen as the term Re(dH

θP
⊥
Hdτ ) −→ 0 for large M given a fixed N , or vice versa. Even more, this

regime allows us to lower bound the CRBs on θ and τ , i.e. Cθθ > C∗θθ and Cττ > C∗ττ where C∗θθ = σ2

2αL

(
dH
θP
⊥
Hdθ

)−1 and C∗ττ = σ2

2αL

(
dH
τ P⊥Hdτ

)−1 Secondly,
it is worth noting that the traditional CRB of the Joint Angle and Delay Estimation problem serves as a lower bound on C∗θθ and C∗ττ , i.e. Cθθ > C∗θθ > Ctrad

θθ
and Cττ > C∗ττ > Ctrad

ττ where Ctrad
θθ , Ctrad

ττ are extracted from the following quantity

CRB(θ, τ ) =
σ̄

2

L∑
`=1

Re(BBBH
` FHP⊥HFBBB`) (12)

where σ̄ is the estimation noise variance and F =
[
dθ dτ

]
andBBB` = I2⊗ diag{γγγ(`)}. Note that Ctrad

θθ , Ctrad
ττ is attained only for large N or M and at high SNR

for uncorrelated sources, i.e. when ΓΓΓ is diagonal.

Simulations

Figure 1: CRB Cθθ (left) and Cθτ (right)



Figure 2: Traditional JADE CRB vs PR-JADE CRB for (M = 5, N = 2 on the left) and (M = 100, N = 2 on the right)

Conclusions

•We have extended the CRB of the partial relaxation framework to the case of joint angle and delay estimation (JADE).

• The exact closed form expressions of the Fisher Information Matrix (FIM), as well as the Cramér-rao Bound (CRB) are derived.

• Some interesting asymptotic results are presented, which reveals desired properties and results of the partial relaxation framework, in the context of JADE.
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