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Abstract—We consider cache-aided wireless communication
scenarios where each user requests both a file from an a-priori
generated cacheable library (referred to as ‘content’), and an
uncacheable ‘non-content’ message generated at the start of the
communication session. This scenario is easily found in real-world
wireless networks, where the two types of traffic coexist and share
limited radio resources. We focus our investigation on single-
transmitter wireless networks with cache-aided receivers, where
the wireless channel is modelled by a degraded Gaussian broad-
cast channel (GBC). For this setting, we study the (normalized)
delay-rate trade-off, which characterizes the content delivery
time and non-content communication rates that can be achieved
simultaneously. We propose a scheme based on the separation
principle, which isolates the coded caching problem from the
physical layer transmission problem, and prove its information-
theoretic order optimality up to a multiplicative factor of 2.01. A
key insight emerging from our scheme is that substantial amounts
of non-content traffic can be communicated while maintaining
the minimum content delivery time, achieved in the absence of
non-content messages; compliments of ‘topological holes’ arising
from asymmetries in wireless channel gains.

I. INTRODUCTION

Cache-aided architectures have emerged as an essential next
step in the evolution of communication networks. The recent
few years saw a heightened interest in studying the funda-
mental limits of cache-aided networks, initiated by Maddah-
Ali and Niesen in [1]. For an idealized symmetric broadcast
channel (BC), in which cache-equipped users (receivers) are
connected to a server (transmitter) through a noiseless shared
link, Maddah-Ali and Niesen showed that a novel coded
caching and multicasting scheme can serve an arbitrarily
large number of users with finite resources (e.g. time and
bandwidth). The achievable performance in [1], characterized
in terms of the shared link normalized load, was shown to
be order optimal in the information-theoretic sense, within a
multiplicative factor, which was tightened later on in [2].

Wireless caching: The bulk of data traffic nowadays is
generated by wireless and mobile devices, a trend foreseen
to continue and grow in forthcoming years. This has driven
a surge of interest in extending the information-theoretic
coded caching paradigm in [1] to wireless networks, including
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noisy and asymmetric broadcast channels (BCs) [3]–[7], multi-
antenna BCs [8]–[12], device-to-device networks [13] and
interference networks [14]–[16], amongst others.

All above works consider scenarios in which the network
carries a single type of traffic that takes the form of content
drawn from an a-priori generated library. This approach has
been very successful in establishing the fundamental limits of
cache-aided networks, and in gaining insights into the design
of optimal and near optimal schemes. Nevertheless, wireless
data traffic does not comprise of only cacheable content.
Non-content traffic, generated from interactive applications,
gaming, voice and video calls, to name a few examples, also
constitutes a significant portion of traffic (estimated as 40
percent [17]). Moreover, content popularity profiles in reality
are far from static and may change on a daily or even hourly
basis [17]. Therefore, newly generated content can be both in
very high demand as well as not yet available in caches.

This work: Motivated by the mixed nature of traffic, we
initiate the study of cache-aided wireless networks with both
cacheable and and uncacheable types of traffic, represented
by pre-generated content files and instantaneously generated
non-content messages, respectively. We focus on cache-aided
networks where the wireless channel is modelled by a de-
graded Gaussian BC (GBC). The current treatment of content
and non-content transmissions as two independent problems
necessarily leads to orthogonal-access-based schemes, that
schedule the different types of traffic on distinct (orthogonal)
resource blocks. As we will see, this approach is rendered
suboptimal due to the superposition and asymmetric nature of
wireless channels, epitomized through the degraded GBC. In
this work, we propose to treat these two problems jointly.

We study the trade-off between the content delivery time
and non-content communication rates. For tractability, and
to gain useful insights, we focus on generalized normalized
delivery time (GNDT) and generalized degrees of freedom
(GDoF) approximations [11], [18]. We derive an achievable
GNDT-GDoF trade-off and prove its information-theoretic
order optimality, up to a multiplicative factor of 2.01. The
achievability scheme is based on the separation principle [16],
where the coded caching side of the problem is separated from
the physical-layer communication problem; while the converse
is based on a non-trivial extension of the argument in [2].

Notation: For positive integers z1 and z2, with z1 ≤ z2,
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Fig. 1. Cache-aided degraded GBC with content and non-content.

the sets {1, 2, . . . , z1} and {z1, z1 + 1, . . . , z2} are denoted
by [z1] and [z1 : z2], respectively.

(
z2
z1

)
denotes the binomial

coefficient. For a real number a, (a)+ = max{0, a}. The tuple
(a1, . . . , ay, b1, . . . , bz) is denoted by (ai : i∈ [y], bi : i∈ [z]).
For a set A ⊆ RK , cl{A} denotes its closure.

II. SYSTEM MODEL

In the considered K-user wireless network, the transmitter
has access to a content library of N files (N ≥ K), denoted
by F1, . . . , FN , each of size B bits. Each user is equipped
with a cache memory of size MB bits, where M ∈ [0, N ].
The normalized cache size is defined as µ , M

N . The network
operates in two phases: placement and delivery.

1) Placement phase: During this phase, users have access
to the entire library of files to fill the content of their caches.
This occurs without knowledge of future file requests.

2) Delivery phase: Each user k requests a content file
Fdk , where d , (d1, . . . , dK) ∈ [N ]K is the demand tuple.
Moreover, the transmitter generates K non-content messages
W1, . . . ,WK , intended to users 1, . . . ,K, respectively. These
messages are mutually independent and independent of the
content library. During the delivery phase, the transmitter
sends a codeword over the physical channel, while each user
k receives a corresponding noisy signal and tries to recover(
Fdk ,Wk

)
from this signal and the local cache content.

A. Physical channel

The physical channel is a degraded GBC. In the t-th use of
the channel, the input-output relationship is described as:

Yk(t) = hkX(t) + Zk(t) (1)

where X(t) is the input signal; while Yk(t), Zk(t) and hk
are the output signal, zero-mean, unit-variance additive white
Gaussian noise (AWGN) signal, and the channel coefficient
of user k, respectively (all complex). Communication occurs
over T channel uses, in which the transmitter is subject to a
unit average power constraint given by 1

T

∑T
t=1 |X(t)|2 ≤ 1.

For each user k, the signal-to-noise ratio (SNR) is given
by SNRk = |hk|2. For GDoF-GNDT purposes, we have
SNRk = Pαk , where the exponent αk is known as the channel
strength level, while P > 1 is a nominal power parameter
which approaches infinity to define the GDoF limit—see [11],
[18]. We assume, without loss of generality, that strengths are

ordered as 0 < α1 ≤ α2 ≤ · · · ≤ αK = 1. The channel
strength tuple is given by α , (α1, . . . , αK).

B. Codes and performance measures

Files F1, . . . , FN are i.i.d. random variables, each uniformly
distributed over [2bBc]. To define asymptotic limits, we scale
B as B = TRF . Messages W1, . . . ,WK are independent, and
each Wk is uniformly distributed over the set [2bTRkc], where
R , (R1, . . . , RK) are the non-content message rates.

A code (T,RF ,R,M) consists of the above file and
message sets, in addition to appropriately defined caching
functions, as well as channel encoding and decoding functions.
For any code, the probability of decoding error is defined as

Pe,T , max
d∈[N ]K

max
k∈[K]

Pr
{

(F̂dk , Ŵk) 6= (Fdk ,Wk)
}

(2)

where (F̂dk , Ŵk) are the estimates of (Fdk ,Wk) at receiver k.
The error in (2) accounts for the worst-case demand scenario.

It is instructive to work with the reciprocal of the content
rate RF , which enjoys desirable analytical properties, see [14],
[16]. To this end, we define the delivery time (or delay) as

T ,
1

RF
=
T

B
(3)

which is the number of physical channel uses required
to communicate one bit of content to each user. Given a
memory size M , a delay-rate trade-off tuple is denoted by
(T ,R;M), which is achievable if there exists a sequence of
(T, 1/T ,R,M) codes such that Pe,T → 0 as T → ∞. To
define the GDoF-GNDT limit, the dependency of the rates
and delivery time on P is highlighted, i.e. (T (P ),R(P );M).

We denote a GDoF tuple by r , (r1, . . . , rK), where rk
is the GDoF of user k, while the GNDT is denoted by τ . A
GNDT-GDoF trade-off (τ, r;M) is achievable if there exists
an achievable sequence (T (P ),R(P );M), ∀P , such that

rk = lim
P→∞

Rk(P )

log(P )
, ∀k ∈ [K] (4)

τ = lim
P→∞

T (P ) log(P ). (5)

For any (r;M), the optimal GNDT is defined as

τ?(r;M) , inf
{
τ : (τ, r;M) is achievable

}
. (6)

Similarly, for any (τ ;M), the GDoF region is defined as:

D(τ ;M) = cl
{
r : (τ, r;M) is achievable

}
. (7)

Remark 1. The characterizations obtained in this work all
depend on the normalized memory size µ instead of M . This
is reflected in the arguments of the performance measures in
the following sections, where we also highlight the dependency
on channel strength levels, e.g. τ?(r;µ,α) and D(τ ;µ,α).



III. MAIN RESULT AND INSIGHTS

We start by defining an upper bound for the GNDT.

Definition 1. For any µ, α and r, where the components of
the GDoF tuple r satisfy

∑
i∈[k] ri ≤ αk for all k ∈ [K], we

define τub(r;µ,α) as1

max
k∈[K]

{
1(

αk−
∑
i∈[k] ri

) · conv

((
K

Kµ+1

)
−
(
K−k
Kµ+1

)(
K
Kµ

) )}
(8)

where conv
(
f(Kµ)

)
denotes the lower convex envelope of the

points
{(
Kµ, f(Kµ)

)
: Kµ ∈ [0 : K]

}
.

We are now ready to state the main theorem of this work.

Theorem 1. The GNDT-GDoF trade-off described by
τub(r;µ,α) in (8) is achievable and is within a multiplicative
factor of 2.01 from the optimal trade-off, that is

1

2.01
· τub(r;µ,α) ≤ τ?(r;µ,α) ≤ τub(r;µ,α). (9)

The achievability of Theorem 1 is described in Sections
IV and V, while the converse is presented in Section VI. The
proofs and discussion in this paper focus on the case of integer
Kµ, due to space limitation. The extension to non-integer Kµ
is treated in a longer version of this paper [19].

Next, we draw some insights from the main result.
1) Separation principle: The achievability of τub(r;µ,α)

employs a separation-based strategy, which isolates the coded
caching problem from the physical layer transmission prob-
lem [16]. Caching and generating coded multicast messages
(XORs) are carried out at the bit level in the original Maddah-
Ali and Niesen manner [1]. The physical channel sees

(
K

Kµ+1

)
multicast messages (coded content) and K unicast messages
(non-content), and communicates them jointly using a scheme
based on superposition coding. Different GNDT-GDoF trade-
offs are achieved by tuning the underlying physical layer
power allocation and GDoF assignment problems.

2) Absence of non-content messages: As a special case of
Theorem 1, we recover the result in [7], where it was shown
that in the absence of non-content messages, one can achieve

τub(0;µ,α) = max
k∈[K]

{
1

αk
·
(

K
Kµ+1

)
−
(
K−k
Kµ+1

)(
K
Kµ

) }
. (10)

The order optimality of τub(0;µ,α) up to a multiplicative
factor of 4.02 is also proved in [7], which we tighten in
Theorem 1. In addition to strengthening the result of [7], our
new achievability proof gives an operational interpretation of
τub(0;µ,α) in terms of separation and the multiple multicast
GDoF region of the underlying degraded GBC.

3) Achievable GDoF under minimum GNDT: Theorem 1
suggests that in scenarios with asymmetric channel strengths,
the order-optimal GNDT in (10), achieved by eliminating non-
content messages, can be maintained while simultaneously

1Throughout this work, we use the convention
(n
k

)
= 0, for all n < k.
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Fig. 2. Received signal power levels in a 3-user degraded GBC with a
multiple multicast message set, where each message Wij is intended
to users i and j (group size 2). Top levels represent signals transmitted
with higher powers, received by all users above their respective noise
levels (bottom end of each bar). Bottom levels represent signals
transmitted with lower powers, heard by sufficiently strong users
and corrupted by noise (hence clipped) at weaker users. Multicast
messages (coloured levels) can carry coded content (e.g. µ = 1/3).
Uncoloured signal levels are unoccupied, representing topological
holes for communicating non-content messages (Corollary 1).

achieving non-zero GDoF for (some) non-content messages.
To see this, let us define user k? (bottleneck user in [7]) as

k? , arg max
k∈[K]

{(
K

Kµ+1

)
−
(
K−k
Kµ+1

)
αk

}
. (11)

For example, in the illustrations shown in Fig. 2 (where K = 3
and Kµ + 1 = 2), we have k? = 1 when α1

2 ≤
α3

3 (subfig.
(a)), and k? = 2 when α1

2 > α3

3 (subfig. (b)).
From (8), it follows that achieving τub(0;µ,α) through the

proposed strategy requires setting rk = 0 for all k ∈ [k?].
However, users in [k? + 1 : K] can achieve non-zero non-
content GDoF without affecting the GNDT in (10), by com-
municating through the ‘topological holes’ arising from the
asymmetry in channel strength levels. These achievable non-
content GDoF tuples are described below.

Corollary 1. A trade-off τub(r;µ,α) = τub(0;µ,α) is
achievable for all r that satisfy rk = 0,∀k ∈ [k?], and

rk?+1 + · · ·+ rk ≤ αk − αk? ·

((
K

Kµ+1

)
−
(
K−k
Kµ+1

)(
K

Kµ+1

)
−
(
K−k?
Kµ+1

)) ,
∀k ∈ [k? + 1 : K]. (12)

Examples that illustrate Corollary 1 in terms of signal power
levels (i.e. exponents of P ) are shown in Fig. 2.

4) GDoF region: Theorem 1 yields the following corollary.

Corollary 2. The GDoF region D(τ ;µ,α) satisfies:

Din(τ ;µ,α) ⊆ D(τ ;µ,α) ⊆ Din(2.01 · τ ;µ,α) (13)

where Din(τ ;µ,α) is the set of all tuples r ∈ RK+ satisfying

∑
i∈[k]

ri+
1

τ
·conv

((
K

Kµ+1

)
−
(
K−k
Kµ+1

)(
K
Kµ

) )
≤ αk, ∀k ∈ [K]. (14)

As one would hope, the above GNDT-GDoF-based results
serve as an initial step towards approximate characterizations
of the optimal delay-rate trade-off at finite P (see [19]).



IV. PHYSICAL CHANNEL

Here we focus on the degraded GBC with no caches and
with a unicast message set and a multiple multicast message
set. The latter message set is referred to as the σ-multicast
message set, where σ ∈ [2 : K] is the size of the corresponding
multicast groups. This channel model is at the heart of the
separation architecture—unicast messages carry non-content
traffic, while multicast messages carry coded content traffic.
The results in this section will help us establish the GNDT of
the scheme we present the in the following section.

A. Unicast and σ-multicast message sets

The unicast message set is given by {Wk : k ∈ [K]}, where
each message Wk has a GDoF of rk; while the σ-multicast
message set is given by {WS : S ⊆ [K], |S| = σ}, where each
message WS has a GDoF of rS . For any σ and α, the GDoF
region of this channel is denoted by DPHY(σ,α). We defined
Σ , {S ⊆ [K] : |S| = σ} as the set of all σ-multicast groups,
where |Σ| =

(
K
σ

)
. Moreover, we introduce a family of subsets

of Σ given by {Σi : i ∈ [K−σ+ 1]}, where Σi is defined as:

Σi , {S ∈ Σ : min{S} = i} . (15)

It can be verified that {Σi : i ∈ [K − σ+ 1]} is a partition of
Σ, that is ∪i∈[K−σ+1]Σi = Σ and Σi ∩ Σj = ∅, ∀i 6= j. We
are now ready to present a characterization of DPHY(σ,α).

Theorem 2. The GDoF region DPHY(σ,α) is given by all

tuples (rk : k ∈ [K], rS : S ∈ Σ) ∈ RK+(Kσ)
+ that satisfy∑

i∈[k]

ri +
∑

S∈∪i∈[k]Σi

rS ≤ αk, ∀k ∈ [K − σ + 1]

∑
i∈[k]

ri +
∑
S∈Σ

rS ≤ αk, ∀k ∈ [K − σ + 2 : K].
(16)

The above GDoF region is achieved using a scheme based
on power control with superposition coding and successive
decoding. The proof is presented in the longer version [19].

Theorem 2 is intuitively interpreted as follows. User 1
recovers all messages in {W1,WS : S ∈ Σ1}, bounding the
sum-GDoF of such messages by α1. Due to the degradedness,
user 2 can recover whatever user 1 recovers, and must also
decode for messages in {W2,WS : S ∈ Σ2}. This bounds the
sum-GDoF of {W1,W2,WS : S ∈ Σ1∪Σ2} by α2. The same
argument applies to all users up to user K − σ + 1. Beyond
user K − σ + 1, each user k in [K − σ + 2 : K] can recover
{W1, . . . ,Wk−1,WS : S ∈ Σ}, and must additionally decode
for Wk, yielding the bounds in the second line of (16).

B. Symmetric σ-multicast GDoF

We are interested in a lower dimensional projection of
DPHY(σ,α), denoted by DPHY

sym (σ,α), capturing the symmet-

ric σ-multicast GDoF rsym , minS∈Σ rS . From Theorem 2,
DPHY

sym (σ,α) is given by (rk : i ∈ [K], rsym) that satisfy:∑
i∈[k]

ri+

∣∣∣∣ ⋃
i∈[k]

Σi

∣∣∣∣ · rsym ≤ αk,∀k ∈ [K − σ + 1]

∑
i∈[k]

ri+|Σ| · rsym ≤ αk,∀k ∈ [K − σ + 2 : K].
(17)

It can be verified that the following identity holds∣∣∣∣ ⋃
i∈[k]

Σi

∣∣∣∣=∑
i∈[k]

|Σi|=
(
K

σ

)
−
(
K − k
σ

)
,∀k ∈ [K − σ + 1]

which leads us to the following corollary.

Corollary 3. The GDoF region DPHY
sym (σ,α) is described by:∑

i∈[k]

ri+

[(
K

σ

)
−
(
K − k
σ

)]
· rsym ≤ αk,∀k ∈ [K]. (18)

From DPHY
sym (σ,α) in the above corollary, it follows that

for any feasible unicast GDoF tuple r = (rk : k ∈ [K]), the
maximum achievable symmetric multicast GDoF is given by

r?sym = min
k∈[K]

{(
αk −

∑
i∈[k] ri

)(
K
σ

)
−
(
K−k
σ

) }
. (19)

V. ACHIEVABILITY

Equipped with the GDoF characterization for the unicast
and σ-multicast physical channel, the achievability part of
Theorem 1 will follow from a scheme that adheres to the
separation principle. Recall that we focus on integer values
of Kµ, drawn from [0 : K].

1) Cache placement: Each file Fn is divided into
(
K
Kµ

)
equal sized sub-files, i.e.

{
FS
′

n : S ′ ⊆ [K], |S ′| = Kµ
}

. Each
user k then fills its cache memory as in [1], that is:

Uk =
{
FS
′

n : n ∈ [N ],S ′ ⊆ [K], |S ′| = K, k ∈ S ′
}
. (20)

2) Coded multicast messages: Once the K demands are
revealed, the transmitter prepares

(
K

Kµ+1

)
coded multicast

messages, each intended to a unique subset of Kµ+ 1 users.
We use the physical channel notation and set the multicast
group size as σ = Kµ + 1. For each subset of users S ∈ Σ
of size σ, the coded multicast message generated as

WS =
⊕
k∈S

F
S\{k}
dk

. (21)

It follows from [1] that, for each user k, the requested file Fdk
can be successfully recovered from the cache content Uk and
the set of coded multicast messages {WS : S ∈ Σ, k ∈ S}.

3) Transmission: The problem now reduces to delivering
the set of

(
K
σ

)
coded multicast messages, as well as the set

of K unicast messages. This is exactly the joint unicast and
multicast problem discussed in Section IV. For any achievable
tuple (r, rsym) ∈ DPHY

sym (σ,α), each of the non-content unicast
messages achieves its corresponding GDoF in r, while the
achievable content GNDT is given by τ = 1

rsym·( K
σ−1)

. The



normalization factor in τ appears since each coded multicast
message WS has a (normalized) size of 1/

(
K
σ−1

)
. Combining

with (19), the GNDT τub(r;µ,α) is achieved.

VI. CONVERSE

For any distinct demands d, each user k in [K] must recover
both Wk and Fdk from Y Tk and Uk, with a decoding error
that vanishes as T grows large. Therefore, Fano’s inequality
implies H

(
Wk, Fdk |Y Tk , Uk

)
≤ 1 + Pe,T (TRk + B) = TεT .

We define a side information variable Sk which is independent
of Wk. The side information Sk is provided to user k through
a genie, and will be specified further on. It follows that

TRk +H
(
Fdk |Uk, Sk

)
= H

(
Wk

)
+H

(
Fdk |Uk, Sk

)
= H

(
Wk, Fdk |Uk, Sk

)
≤ I
(
Wk, Fdk ;Y Tk |Uk, Sk

)
+ TεT . (22)

We ignore TεT for brevity. From the above single-user bound,
we obtain a bound for any subset of users [s], s ∈ [K], as∑
k∈[s]

H
(
Fdk |Uk, Sk

)
≤
∑
k∈[s]

[
I
(
Wk, Fdk ;Y

T
k |Uk, Sk

)
−TRk

]
. (23)

Next, we apply a symmetrization procedure over file demands
and user orders, required to bound the left-hand-side in (23).

Let p : [s] → [s] be a permutation over the subset of users
[s], and Ps be the corresponding set of all s! user permutations.
Similarly, q : [N ]→ [N ] is a permutation over [N ], and PN is
the corresponding set of all N ! file permutations. For any pair
of permutations (p, q) ∈ Ps×PN , suppose that each user p(k)
demands the file Fq(k). From (23), and by taking an average
over all possible permutations (p, q) ∈ Ps × PN , we obtain

1

s!N !

∑
(p,q)

∑
k∈[s]

H
(
Fq(k)|Up(k), Sp(k)

)
≤ 1

s!N !

∑
(p,q)∑

k∈[s]

[
I
(
Wp(k), Fq(k);Y

T
p(k)|Up(k), Sp(k)

)
− TRp(k)

]
. (24)

We set the side information Sp(k) for each user p(k) as

Sp(k) =
(
Wp(i), Fq(i), Up(i) : i ∈ [k − 1]

)
(25)

consisting of intended messages, demanded files and cache
contents of all users that precede p(k) in the permutation order.
The independence between Sp(k) and Wp(k) is preserved.
Next, we separately bound each side of (24).

A. Bounding the right-hand-side of (24)

To this end, we present the following lemma.

Lemma 1. For any k and j in [K], such that k ≤ j, we have

I
(
Wk, Fdk ;Y Tk |Uk, Sk

)
≤ I
(
Wk, Fdk ;Y Tj |Uk, Sk

)
. (26)

The inequality in (26) holds due to degradedness. The proof
is omitted for brevity. Using Lemma 1 while focusing on an
arbitrary permutation pair (p, q) ∈ Ps×PN , the corresponding
term on the right-hand-side of (24) is bounded as:∑

k∈[s]

I
(
Wp(k), Fq(k);Y

T
p(k)|Up(k), Sp(k)

)

≤
∑
k∈[s]

I
(
Wp(k), Fq(k);Y

T
s |Up(k), Sp(k)

)
≤
∑
k∈[s]

h
(
Y Ts |Up(k), Sp(k)

)
− h
(
Y Ts |Up(k+1), Sp(k+1)

)
= h

(
Y Ts |Up(1)

)
− h
(
Y Ts |Up(s), Sp(s),Wp(s), Fq(s)

)
= h

(
Y Ts |Up(1)

)
− h
(
ZTs
)

= I
(
XT ;Y Ts |Up(1)

)
≤ T log(1 + Pαs). (27)

As (27) holds for all permutations (p, q) ∈ Ps × PN , and
since in (24) we have

∑
k∈[s]Rp(k) =

∑
k∈[s]Rk for any such

permutation, it follows that each of the inner sums (over k)
on the right-hand-side of (24) is bounded by the same term.
Therefore, the right-hand-side of (24) is bounded above by

T
[

log(1 + Pαs)−
s∑

k=1

Rk

]
. (28)

B. Bounding the left-hand-side of (24)
Each term H

(
Fq(k)|Up(k), Sp(k)

)
is equal to

H
(
Fq(k)|Up(1), . . . , Up(k), Fq(1), . . . , Fq(k−1)

)
, (29)

which holds since messages are independent of files and cache
contents (see (25)). From (29), it can be seen that the left-hand-
side of (24) is in fact a lower bound on the number of bits
that must be delivered (i.e load) in a conventional share-link
setting with s users [2, eq. (30)]. We hence employ the results
and techniques of [2] to obtain:

1

s!N !

∑
(p,q)

∑
k∈[s]

H
(
Fq(k)|Up(k), Sp(k)

)
≥ B

2.01
·
(
N −M
M

(
1− (1−M/N)s

))
(30)

≥ B

2.01
· conv

((
K

Kµ+1

)
−
(
K−s
Kµ+1

)(
K
Kµ

) )
. (31)

Going to within a multiplicative factor of 2.01 from the
decentralized load in (30) holds due to [2, Lem. 3] and [2,
Lem. 1], while (31) follows from the results in [20] (see also
[2, Appendix G] where a similar step is used).

C. Combining bounds
From (24), (28) and (31), and by taking the appropriate

limits T →∞ and P →∞, we obtain
s∑

k=1

rk +
1

2.01 · τ
· conv

((
K

Kµ+1

)
−
(
K−s
Kµ+1

)(
K
Kµ

) )
≤ αs (32)

which holds for any s ∈ [K]. By rearranging the terms in (32)
and taking the tightest of such bounds over all s, we obtain
the desired lower bound on the GNDT in Theorem 1.

VII. CONCLUSION

In this work, we introduced the problem of wireless coded
caching under mixed cacheable content and uncacheable non-
content types of traffic in the context of the degraded GBC.
The extension of this result to other networks, including multi-
transmitter and multi-antenna networks, is of high interest.
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