
User-centric optimization of caching and
recommendations in edge cache networks

Dimitra Tsigkari and Thrasyvoulos Spyropoulos
EURECOM, Biot, France

Email: {dimitra.tsigkari, thrasyvoulos.spyropoulos}@eurecom.fr

Abstract—On streaming platforms such as Youtube and Netflix,
recommendations influence a large share of content consumption.
In this context, user experience depends on both the quality of the
recommendations (QoR) and the quality of service (QoS) of the
delivered content. However, network decisions (such as caching)
affecting QoS are usually made without explicit knowledge of
the recommender’s actions. Similarly, recommendation decisions
are made without considering the potential delivery quality of
the recommended content. In this paper, we propose to jointly
optimize caching and recommendations in a generic network of
caches, towards maximizing the quality of experience (QoE). This
coincides with the recent trend for large content providers to also
act as Content Delivery Network (CDN) owners. We formulate
this joint optimization problem and prove that it can be approx-
imated up to a constant. To the best of our knowledge, this is the
first polynomial algorithm to achieve a constant approximation
ratio for the joint problem. Our numerical experiments show
important performance gains of the proposed algorithm over
baseline schemes and existing algorithms.

I. INTRODUCTION

A. Motivation

With the growing use of video on demand services, it can
be expected that users await high quality of service (QoS).
In particular, it has been shown that, on video streaming
platforms, low bitrate can result in an increase in abandonment
rate [1]. To this end, placing contents in caches close to the
user can ensure high bitrate, short initial delay, etc. for the
delivered content. Moreover, it is increasingly understood that
the user’s overall quality of experience (QoE) largely depends
on both the QoS of the delivery and the interest of the user
in the delivered content [2]. Meanwhile, the recommendation
systems employed by these platforms significantly shape user
requests; in Netflix, for example, 80% of requests come from
the recommendations to the user [3]. The traditional role
of a recommendation system has been to make personalized
recommendations to the user based solely on content interest,
i.e., propose contents from a large catalogue that best match
her interests. However, the QoS, e.g., where the content is
cached and whether this allows the recommended content to
be delivered at low or high streaming quality, is not usually
considered by most recommenders.

At first glance, content caching and recommendation sys-
tems appear to be independent, since they are usually gov-
erned by two different entities: Content Providers (CP) and
network provider, or CP and 3rd party Content Delivery
Networks (CDN). However, major CPs like Netflix and
Google have recently started partnering with Internet Service

Providers (ISPs) to implement their own caches inside the
network: Netflix Open Connect and Google Global Cache.
This allows the same entity to control and coordinate both
content caching and recommendations, towards ensuring high
user experience and minimizing delivery costs.

Some recent works study the problem of optimizing caching
and/or recommendation policies by taking into account their
interplay [4]–[9]. However, many of these works still focus on
one side of the problem, e.g., caching-friendly recommenda-
tions [5], [9], or recommendation-aware caching policies [6].
Works that do try to control both the caching and recommen-
dation policies are usually based on heuristics [7], [8]. Hence,
a formal joint treatment of the two problems is largely missing.

B. Our approach and contributions

The main goal of this paper is to formulate and study the
problem of optimizing both sets of control variables jointly: (i)
what content to store at each cache (in a network of caches),
and (ii) what content to recommend to each user, based on the
user’s location in the caching network and the user’s predicted
preferences for contents. Our main contributions are:
• We introduce a simple yet generic metric of QoE for a

recommendation-driven content application that depends
on the content placement (a proxy of QoS) and the quality
of recommendations that appear to the users. Based
on this model, we formulate the problem of optimally
choosing both sets of variables towards maximizing the
aggregate users’ QoE.

• While such joint caching and recommendation problems
have been shown before to be NP-hard, to the best of our
knowledge, we provide the first polynomial algorithm for
the problem that has an approximation guarantee (in fact
a constant one) for both equal and variable-sized contents.

• We investigate the performance of our algorithm through
both synthetic and real data, and compare it with the state-
of-the-art. Our results validate the theoretical guarantees
and demonstrate that significant performance gains can
be achieved with respect to baseline policies and to the
best existing heuristics for the joint problem.

II. PROBLEM SETUP

A. Caching Network

We consider a set of C caches with capacity Cj , j =
1, . . . , C and a content catalogue K. We assume that Cj � |K|,
as is common in most caching setups. We will consider both



equal-sized and variable-sized contents. For the latter, the
size of content i ∈ K is denoted by σi. In our model, the
caches are filled or updated during off-peak hours. Therefore,
in what follows, all the problem parameters are considered to
be known for the time period between two cache updates, as
is common in caching-related works, e.g., [10].

Definition 1 (Caching variable). We let xij be the binary
variable, where xij = 1 when the content i is cached in cache
j, and xij = 0 otherwise. We denote the corresponding matrix
by X = {xij}i,j .

We consider a set U of users, each of which has access to a
subset of caches. We denote this set by C(u) for user u ∈ U . A
request for content i by user u is served by one of the caches
belonging to C(u) where the requested content is stored, i.e.,
by one of the caches of the set {j : j ∈ C(u) and xij = 1}.
The access to a cache could be over multiple links (as in
hierarchical caching or in Information-centric networking)
or direct (e.g., wireless connectivity to a nearby small cell
[10]). For the purposes of our analysis, such networks can
be represented as a generic bipartite graph between users
and (associated) caches, as shown in Fig. 1. Specifically, we
assume that every edge of this graph has a weight suj , which
denotes the expected streaming rate that can be supported
between user u and cache j. This rate may differ from cache
to cache, and may depend on channel quality, number of hops,
scheduling policy, congestion level, etc.

Finally, we assume that there is a large cache C0 that fits
all the contents, i.e., xi0 = 1 for all i ∈ K, and is accessible
by all users, i.e., C0 ∈ C(u), for all u ∈ U . This could be a
large cache deep in the network. For this reason and w.l.o.g.,
we let su0 < suj , for all j and u, as is commonly assumed
(e.g., in [10]). This setup is generic and could capture a variety
of caching networks, such as femto-caching framework [10],
hierarchical CDN networks [11], etc.

B. Recommendations

A list of Nu recommended contents appears to the user
u ∈ U . This number may vary from user to user depending
on the device used, as is the case in Netflix [3], for example.
The recommendations are personalized and might depend on
various factors such as user ratings (e.g., via collaborative
filtering), past user behavior, etc. [12]. State-of-the-art recom-
menders usually first assign a utility or “score” (or “rank”)
to each content for each user u, and then select the Nu
items with the highest scores [12], [13]. Our model uses these
utilities, denoted by rui ∈ [0, 1], as input to our problem.
For example, this could be the (normalized) predicted score
through collaborative filtering of content i for user u.

Motivated by the discussion in Section I, we assume that
both caching and recommendation decisions are made by the
same entity (e.g., Netflix, Google).

Definition 2 (Recommendation variable). We let yui ∈ {0, 1}
denote the binary variable for content i being recommended to
user u (yui = 1) or not (yui = 0). We denote by Y the |U| ×

|K| matrix of yui. Then, the equation
∑
i∈K yui = Nu, for all

u ∈ U , captures the fact that Nu contents are recommended.

C. User model

The user makes content requests, affected by the aforemen-
tioned recommendations, according to the following model:
• with probability αu the user requests a recommended

content. For simplicity, we assume each of the Nu rec-
ommended items will be chosen with equal probability;

• with probability (1−αu) the user ignores the recommen-
dations and requests a content i of the catalogue with
probability pui.

Essentially, αu captures the percentage of time a user u tends
to follow the recommendations. For example, it is estimated,
on average, that αu = 0.8 on Netflix [3], but it can of
course differ among users. Assuming prior knowledge of the
user’s disposition to follow the recommendations is common
in related works (e.g., [5], [7]) and also in other works on
recommendation systems (e.g., [14]). In practice, αu might
change over longer time intervals both because of intrinsic
changes to user behavior or due to decreasing/increasing trust
in the recommender. Nevertheless, in this work, we assume
that our optimization happens at a smaller time scale, for
which we can assume that the parameter αu is roughly
constant (but it can be recalibrated at longer intervals).

Furthermore, the assumption that each recommended con-
tent will be clicked with equal probability 1/Nu is also
common in related works, and might hold in scenarios where
the recommended items are “unknown” to the user, and hence
she cannot evaluate their utility, before requesting them.

As for the pui, they capture the probability of user u
requesting the content i outside of recommendations (e.g.,
through the search bar). This could be an arbitrary distribution
over the catalogue (e.g., with probability mass only on content
the user already “knows”). Alternatively, given the utilities rui,
a reasonable choice could also be their normalized values:

pui = rui/
∑
k∈K

ruk. (1)

D. Example

To better elucidate our model, we present a small-scale
example and Fig. 1 that illustrates the variables and the
parameters defined. We consider a network of C = 2 caches
of capacity 2, and a large cache C0 containing a catalogue that
consists of |K| = 9 equal-sized contents. As shown, cache 1
contains contents 1 and 4, i.e., x11, x14 = 1 and x1j = 0
for any other content j. There are 3 users present in the
network. An edge between a user u and a cache j means that
user u can fetch a content from cache j and the edge-weight
is the corresponding rate. For example, for user 1, we have
that C(1) = {0, 1}. Note that such an edge might actually
correspond to a path of multiple physical links.

In this example, a single recommendation (Nu = 1) appears
to every user (illustrated by a dashed-line arrow). For example,
the content 4 is recommended to user 1 (i.e., y14 = 1). If user 1



requests it, then it can be streamed from cache 1 at rate s11.
However, if user 1 requests, say, the content 2, this will be
fetched from cache C0 at a (lower) rate s10. Lastly, arrows
from users to recommendations display the probabilities αu.

Fig. 1. Illustration of the example in Section II-D.

E. Quality of experience (QoE)

In the context of media streaming platforms, the user’s
entertainment and contentment with the provided services are
affected by the quality of the recommendations she receives,
i.e., if they are tailored to her tastes or not. On the other hand,
it has been observed that low QoS (e.g., low streaming rates,
rebufferings, etc.) greatly affects user experience and, most
importantly (for CPs), retention/abandonement rates [1]. In
fact, some recent experimental evidence suggests that users
might be willing to tradeoff (some) content relevance for
(better) QoS [2]. In this direction, we model the user quality of
experience as a twofold quantity: one part relates to the quality
of recommendations; the second part relates to the streaming
rate1 experience.

Definition 3 (Quality of Recommendations - QoR). The
quality of recommendations, as perceived by user u, is equal
to
∑
i∈K yuiϕ(rui), where ϕ is any non-decreasing function.

The function ϕ represents the impact of a recommended
content’s utility rui in the overall experience. It could be a
linear function, or a concave function (e.g., log(rui)) to capture
diminishing returns beyond a minimum content utility.

Regarding the impact of streaming rate, the actual experi-
enced rate depends on which cache it is streamed from. We
assume, as in [10], that a content i requested by user u will
be fetched by the “best” connected cache that stores it.

Definition 4 (Ordered streaming rates). If C(u) is the set of
caches that user u has access to, we let su(1) = max{suj , j ∈

1While we call, for simplicity, the value suj the “streaming rate” this could
also correspond to any measure of streaming experience that relates to initial
buffering delay, rebufferings and other phenomena [15].

C(u)} denote the maximum rate for user u. Similarly, su(2)

denotes the second highest rate for u, and so forth2.

By definition, su|C(u)| = su0, for every u ∈ U , since we
assumed that su0 < suj , for all j = 1, . . . , C.

In the following lemma, the expected streaming rate is given
as a function of the caching policy (xij), the recommendations
(yui) and the content popularities (pui).

Lemma 1 (Quality of Service - QoS). The rate at which user
u ∈ U will download content i ∈ K upon request (for a given
cache allocation X) is equal to:

su(X, i) :=

|C(u)|∑
j=1

[
su(j)xi(j)

j−1∏
l=1

(1− xi(l))
]
, (2)

where xi(j) are similarly the caching variables assuming a
rate-based ordering. Moreover, the expected streaming rate
(that measures the QoS) for a user u is equal to:

su = αu
∑
i∈K

yui
Nu

|C(u)|∑
j=1

[
su(j)xi(j)

j−1∏
l=1

(1− xi(l))
]

+(1− αu)
∑
i∈K

pui

|C(u)|∑
j=1

[
su(j)xi(j)

j−1∏
l=1

(1− xi(l))
]
. (3)

Proof. For a requested content i ∈ K, the term
∏j−1
l=1 (1 −

xi(l))xi(j) captures the fact that i will be retrieved by the
cache (j) (i.e., the cache with the j-th highest rate) for lack of
any other cache with higher rate in C(u) where the content is
cached (i.e., xi(l) = 0, l < j). Then, this request will be served
to the user at rate su(j). Of course, if i is not cached in any
cache, then it will be retrieved by the large cache C0, which
is ranked last, resulting in low streaming rate. Essentially,
su(X, i) is the highest rate associated to content i for user
u among all the locations where i is cached.

Then, the formula of su easily follows by taking into
account the user model explained in Section II-C.

Remark 1. When estimating the QoS, instead of suj we can
consider ψ(suj) for any non-decreasing function ψ of suj .
Thus, we can calculate su by replacing su(j) with ψ(su(j)).
W.l.o.g. and for the sake of simplicity, we assumed here that
ψ is the identity function, i.e., ψ(suj) = suj . Note also that if
we let ψ(suj) = 1 if j ∈ C(u)\C0 and ψ(suj) = 0 otherwise,
then (3) will estimate the cache hit rate per user for the (small)
caches: upon a request, it counts 1 if the content is cached and
therefore, retrieved from a small cache nearby.

Definition 5 (QoE function). The quality of experience for
user u ∈ U as a function of the caching and recommendation
variables is defined as su + βu

∑
i∈K yuiϕ(rui) , where su

is given by (3) and βu > 0 is a tuning parameter. Then the
aggregate quality of experience over all users is equal to:

f(X,Y ) :=
∑
u∈U

[
su + βu

∑
i∈K

yuiϕ(rui)
]
. (4)

2As the rates suj are sorted for every user, the notation su(k)u , k =
1, . . . , |C(u)|, is more appropriate. For simplicity, we drop the sub-index u.



Modeling QoE in this fashion implies a tradeoff between
QoS and QoR, as evidenced in the earlier discussed works.
The value of βu, which might differ from user to user, captures
the importance of each factor. High βu means user u is more
sensitive to recommendation quality, while low βu that she
is more sensitive to streaming quality. It is beyond the scope
of this paper to investigate good choices for βu or ϕ (or ψ in
Remark 1). Instead, our focus is to propose efficient algorithms
for any values and conforming functions.

TABLE I
IMPORTANT NOTATION

Notation Description
K catalogue of contents
U set of users in the network
C0 large cache containing the entire catalogue
C number of caches in the network (C0 is excluded)
Cj capacity of cache j, j = 1, · · · , C
C(u) set of caches that user u communicates with
rui utility of content i for user u
suj streaming rate between user u and cache j
σi size of content i
Nu number of recommended contents for the user u
αu prob. that user u follows the recommendations
pui prob. that user u requests content i while not

following the recommendations
xij caching variable, xij = 1 when content i is cached

in cache j, and xij = 0 otherwise
yui recommendation variable, yui = 1 when content i

is recommended to user u, and yui = 0 otherwise

F. Joint recommendation and caching

We ask the following question: How can we make caching
and recommendation decisions in order to maximize QoE?

To better understand the tradeoffs involved, we present a
toy example depicted in Fig. 2, and two “naive” policies:

Policy C, for “Conservative”. This policy caches the Cj most
popular contents (among all users connected to the cache j);
it then recommends to each user u the Nu contents with the
highest utility for this user, regardless of whether they are
cached or not. In fact, this policy captures today’s status quo.

Policy A, for “Aggressive”. This policy has the same caching
policy as policy C, but recommends only cached contents (the
most relevant to user u among them). It is closer to cache-
friendly recommendation policies like the one proposed in [6].

Note that both policies take the caching and recommenda-
tion decisions separately. In this example, we will attempt to
show the benefits of a policy that jointly takes these decisions.

Referring to Fig. 2, suppose we have a catalogue of 4 equal-
sized contents and 3 users, all connected to the large cache C0

(not shown in the figure, for simplicity) that contains all files
and a smaller cache C1 of capacity 1. All users can download
a content from C1 with rate 3 Mbps while the rate from C0 is
2 Mbps. We assume that the number of recommended items
is Nu = 1 and αu = 1 for all users, i.e., user requests are
based exclusively on recommendations. We depict the utilities
rui for each content i and user u on the right side.

Fig. 2. Toy example presented in Section II-F. On the left: illustration of the
network together with the caching and recommendation decisions made by
the A, C, and J policies. On the right: the matrix of content utilities per user.

Both policies A and C will cache the item with the highest
aggregate utility, i.e., content 1. Policy A would recommend
this cached item to all users. Policy C would instead recom-
mend the item with highest utility per user, namely contents
2, 3, and 4 respectively. It is easy to see that policy C
would lead to better QoR, while policy A to better streaming
rate. Nevertheless, neither policy is optimal with respect to
maximizing the QoE (as defined in (4)).

A better option would be to cache content 2, observing that
this would then facilitate the recommender. More precisely,
it allows one to recommend content 2 to both users 1 and
3, achieving cache hits for them with maximum or close to
maximum QoR (for user 1 and 3 respectively). Instead, for
user 2, the content 3 is recommended (with utility r23 = 0.5),
since content 2 would seriously degrade the user’s QoR (r22

= 0.05 only). This policy, which we refer to as “J” for Joint
in Fig. 2, outperforms policies A and C, in this example, in
terms of QoE (for any beta and conforming φ functions).

In this example, it is easy to see how to outperform the
simple policies A and C (even find the optimal one). However,
this task becomes significantly harder for larger scenarios.

III. PROBLEM FORMULATION AND ANALYSIS

The optimization problem we are targeting is the following:

QoE problem.

maximize
X,Y

f(X,Y )

subject to
∑
i∈K

σixij ≤ Cj for every j = 1, . . . , C; (5)∑
i∈K

yui = Nu for every u ∈ U ; (6)

xij , yui ∈ {0, 1}, (7)

where, according to Eq. (2), (3), and (4), f(X,Y ) is equal to∑
u∈U

∑
i∈K

[
αu
yui
Nu

su(X, i)+(1−αu) pui su(X, i)+βuyuiϕ(rui)
]

and su(X, i) :=
∑|C(u)|
j=1

[
su(j) xi(j)

∏j−1
l=1 (1 − xi(l))

]
. The

constraints in (5) are the capacity constraints for every cache.
In the case of equal-sized contents, (5) suggests that no more
than Cj items can fit in cache j, and the constraints in (6)



suggest that each user receives Nu recommendations. Finally,
as expressed in (7), xij and yui are binary/decision variables.

Lemma 2. The QoE problem is NP-hard.

Proof. A simple instance of the QoE problem is the femto-
caching problem in [10] which is NP-hard.

A. Intuition on joint optimization

As we saw in Lemma 2, even just the caching part (i.e.,
maximizing in variable X) of the QoE problem is hard to
solve. For this simpler problem, the authors in [10] propose
algorithms with approximation guarantees by exploiting sub-
modularity properties (for definition, see [16]) of the objective.
However, these algorithms do not account for the recommen-
dation part of the QoE problem (variable Y ) and therefore, the
approximation guarantees do not extend to the joint problem.

One could be tempted to extend the methodology in [10]
by using both sets of variables X and Y as the ground set.
However, the authors of [7] prove that a subcase of the QoE
problem (when βu = 0) is not submodular in X and Y .

Furthermore, the authors of [6] consider problem variants
where the caching decision is ”recommendation-aware”. They
manage to retrieve submodularity properties and use the
methodology of [10] to derive efficient algorithms with ap-
proximation guarantees. However, their objective and problem
setup does not contain recommendation variables. It is thus
significantly different than the QoE problem. Finally, a brief
qualitative comparison of these works can be found in Table II.

TABLE II
STATE-OF-THE-ART WORKS ON CACHING AND/OR RECOMMENDATIONS

Related Variables How many Approx.
Works Caching Recomm. caches? guarantees
[10] 3 7 Network 3
[6] 3 7∗ Network 3
[7] 3 3 Single cache 7

This work 3 3 Network 3
∗In [6], although the problem formulation does not contain any recommendation
variable, the caching variable is “recommendation-aware”.

This discussion raises the question of whether the QoE
problem can be efficiently approximated and how. In the
next section, we prove that this is indeed the case. By first
considering something akin to a primal decomposition [17] of
the original problem: rather than handling variables X and Y
at the same time as the ground set, we show that:

(i) for the problem on variables Y , i.e., fixing variables X
(“inner” problem), the global maximizer can be found
efficiently;

(ii) the problem on variables X (“outer” problem), given the
global maximizer of Y , is in fact submodular.

This property will allow us to devise a combined algorithm for
the joint problem that is polynomial in the problem size and,
somewhat surprisingly, retains the approximation guarantees
of the much simpler ”caching-only” problems in [10] and [6].

B. Towards efficient algorithms

The key to our methodology is the following lemma.

Lemma 3. The QoE problem is equivalent to the problem:

Outer problem.

maximize
X

f∗(X) := f(X, argmax
Y

f(X,Y )) (8)

subject to (5), (6), and (7).

The equivalence of the two problems follows straightfor-
wardly from the well known identity [18]:

max
X,Y

f(X,Y ) = max
X

(max
Y

f(X,Y )). (9)

1) Inner problem and algorithm: The first step is to find
a closed-form expression for f∗ for any cache allocation,
i.e., matrix X . Hence, given X , the problem of choosing
the recommendation policy, i.e., matrix Y , is the problem of
finding f∗(X), as defined in (8). We formulate this problem:

Inner problem.

maximize
Y

f(X,Y )

subject to (6) and yui ∈ {0, 1}.

The following lemma will help us tackle the inner problem.

Lemma 4. If F ∗u (X) := max
Y

(
su + βu

∑
i∈K yuiϕ(rui)

)
, for

any u and any placement X , then f∗(X) =
∑
u∈U F

∗
u (X).

Proof. The inner problem can be decoupled into |U| prob-
lems since, given a cache allocation X , the recommendation
decisions (variable Y ) for a user do not interfere with the
decisions for the other users. Note also that the constraint in
(6) is decoupled for every user.

By (2) in Lemma 1, we can write F ∗u (X) as follows.

F ∗u (X) = max
Y

(∑
i∈K

yui
( αu
Nu

su(X, i) + βuϕ(rui)
))

+ (1− αu)
∑
i∈K

su(X, i)pui. (10)

Next, we introduce the notion of V-value of a content, which
is its value in terms of the inner problem.

Definition 6 (V-value and ordered V-values). We define, as
V-value of a content i ∈ K for user u ∈ U and for a given
cache allocation X , the quantity

Vui(X) :=
αu
Nu

su(X, i) + βuϕ(rui). (11)

Similar to Def. 4, we define the ordered Vui (sorted in
decreasing order) as the ordered sequence {Vu[k]}k∈K3.

The next lemma states that the optimal solution for the inner
problem is to recommend to every user u the Nu contents with
the highest V-value associated to the cache placement.

3We do not use the same notation as in Def. 4 because the ordering here
is done with respect to the V-value and not the streaming rate. In general,
Vu(k)(X) 6= Vu[k](X), for all u ∈ U and k = 1, . . . |K|.



Lemma 5. For a given cache allocation X , we consider the
matrix Y ′ such that y′u[k] = 1 for k = 1, . . . , Nu, and y′u[k] =
0 otherwise, where [k] is the content index associated to the
k-th highest V-value for any user u ∈ U . Then

F ∗u (X) =

Nu∑
k=1

Vu[k](X) + (1− αu)
∑
i∈K

(
su(X, i)pui

)
and f∗(X) = f(X,Y ′) =

∑
u∈U

F ∗u (X). (12)

Proof. It is straightforward to prove the result above through
contradiction, i.e., assuming some content m with lower V-
value than the Vu[Nu] should have been included instead.

Based on the previous lemma, here is a summary of the
algorithm that finds the solution for the Inner Problem:

Inner algorithm (subroutine)
Input: U , K, Nu, X , {βu}, ϕ, {αu}, {rui}, {suj}

1 Start with empty matrix Y
2 for every user u ∈ U do
3 for every content i ∈ K do
4 Calculate Vui;
5 Sort Vui in decreasing order : {Vu[k]}

|K|
k=1 ;

6 end
7 Set yu[k] = 1 for k = 1, · · · , Nu;
8 end
9 Return Y

2) Complexity of the inner algorithm: The internal for loop
(lines 3−5) consists of |K| calculations. Next, the complexity
for the sorting step is O(log |K|) in a pre-ordered list and the
complexity of the assignment step (line 7) is O(Nu), where
Nu � |K|. Since these steps are repeated for every user, the
total complexity of the inner algorithm is at most O(|U| · |K|).

3) Outer problem and submodularity: We proved that the
optimal Y can be found efficiently for the inner problem, given
any cache allocation X . We will now prove some interesting
properties of the outer problem (defined in Lemma 3) that will
lead us to an algorithm for the QoE problem.

First, we need to extend f∗ as a set function. To do so, we
define the ground set that corresponds to cache allocations.
More precisely, for any matrix X , we define the corresponding
placement PX of cached items in the network by

PX := {(i, j) : xij = 1, i ∈ K, j = 1, . . . , C}.

Essentially, PX consists of the pairs (content, cache) of all
the contents cached in the (small) caches in the network. Note
that, since, by definition, the large cache C0 contains the entire
catalogue (xi0 = 1, for all i ∈ K), X is considered as a
|K| × C matrix. In other words, PX belongs to the set P :=
P (K×{1, . . . , C}), where P (K×{1, . . . , C}) is the powerset
of K × {1, . . . , C}. Inversely, given a placement P , we can
define the corresponding matrix XP such that xij is equal
to 1, for every pair (i, j) in P , and 0 otherwise. Hence, from

now on, X and P will be used interchangeably to denote
the content allocation across the network of caches. We also
define the subset of P representing the storage of the cache
m: P (m) = {(i,m) ∈ P : xim = 1}. We can thus extend the
definitions of F ∗u , f∗, su and Vui to the ground set P .

Lemma 6. The function F ∗u is monotone increasing for all u.

Next, we define the marginal gain of F ∗u and we state an
immediate consequence of Lemma 6.

Corollary 1 (Marginal gain). For a cache placement P , and
a pair (i, j) such that (i, j) 6∈ P , we denote by

∆F ∗u (P, (i, j)) := F ∗u (P ′)− F ∗u (P ), (13)

where P ′ := P ∪ {(i, j)}, the marginal gain of F ∗u at P with
respect to (i, j). Then, ∆F ∗u (P, (i, j)) ≥ 0.

Lemma 7. The set function F ∗u is submodular for all u ∈ U .
Moreover, the set function f∗, as defined in (8), is monotone
increasing and submodular.

The lemma above implies that f∗ has the diminishing
returns property. In other words, as the cache placement set
becomes larger, the benefit of adding a new element (content,
cache) to the set (i.e., the marginal gain) decreases.

We omit the proofs of the Lemmas above due to space
constraints. The detailed proofs can be found in [19].

C. QoE algorithms and guarantees

In the previous section, we managed to prove through
the decomposition in (9) that f∗(X) is submodular for any
cache allocation X . The theory on submodularity optimization
suggests that different greedy algorithm variants give constant
approximations for the outer problem, and thus for the QoE
problem (by Lemma 3). In fact, the factor of approximation
depends on the type of constraints. In particular, in the QoE
problem formulation, the constraints in (5) lead to different
algorithms and approximation guarantees when the contents
are equal-sized, i.e., σi = 1 for all i ∈ K.

1) The case of equal-sized contents: We define a greedy
algorithm that we call the QoE algorithm. This algorithm starts
with a placement P consisting of empty caches (except for the
large cache that contains the entire catalogue) and greedily
fills one by one all the available shots. In every round of
selection, it calculates the marginal gain of f∗ at P with
respect to at most C · |K| elements, i.e., pairs (content, cache).
For every such element (i, j), the Inner Algorithm is called (as
subroutine) and its solution determines the recommendation
decisions corresponding to the cache allocation P ∪(i, j). This
allows us to calculate the marginal gain of f∗ at P with respect
to (i, j) by (13) and (12). Then, the element that maximizes
the marginal gain of f∗ at P is selected and added to P (ties
broken arbitrarily), before the next selection round begins. This
procedure is repeated until all caches are full. The algorithm
is summarized below.

Since the constraints in (5) are matroid constraints, as
in [10], the theory on submodular maximization [16] suggests



QoE algorithm (for equal-sized contents)
Input: C, {Cj},U , K, {Nu}, {suj}, {rui}, {βu}, {αu}

1 Start with empty caches, i.e., P = ∪Cj=1P
(j), where

P (j) = ∅, for all j = 1, . . . , C
2 Outer algorithm:
3 while caches are not full, i.e., |P (j)| < Cj for all j, do
4 for every (not full) cache j = 1, . . . , C, do
5 for every content i ∈ K s.t. (i, j) /∈ P (j), do
6 Estimate ∆f∗ (P, (i, j)) by calling Inner

Algorithm(X); Store ∆f∗ (P, (i, j)) in a
sorted list.

7 end
8 end
9 (η, θ) := argmax(i,j)∆f

∗ (P, (i, j)).
10 Add (η, θ) to P , i.e., P (θ) ← P (θ) ∪ (η, θ).
11 end
12 Return X∗ ↔ P, Y ∗ = f∗(X∗)

that a 1/2-approximation is achievable by the above greedy
algorithm. In particular, if we let OPT denote the optimal
objective function value of the QoE problem with equal-sized
contents, and (X∗, Y ∗) denote the feasible solution given by
the QoE algorithm, then

f(X∗, Y ∗) ≥ 1

2
OPT.

2) The general case of variable-sized contents: The differ-
ence between the two cases is the capacity constraints. In the
general case, the constraints in (5) are knapsack constraints.
However, the QoE algorithm as defined above is oblivious of
the content’s size. We adapt the QoE algorithm so that, in
every round of selection, it adds to the cache the element
(content, cache) that maximizes the ratio of marginal gain
to the content’s size, i.e., ∆f∗(P,(i,j))

σi
, while satisfying the

constraints in (5). We call this algorithm s-QoE algorithm.
However, in the case of variable-sized contents, both QoE

and s-QoE algorithms can perform arbitrarily badly [20].
According to [20], it suffices to choose the maximum objective
function value achieved by the two algorithms in order to
achieve a 1−1/e

2 -approximation. Specifically, if we let OPTs
denote the optimal objective function value of the QoE prob-
lem in the case of variable-sized contents, and (X∗, Y ∗),
(Xs, Ys) denote the feasible solutions given by the QoE and
s-QoE algorithms respectively, then

max{f(X∗, Y ∗), f(Xs, Ys)} ≥
1− 1/e

2
OPTs.

3) Complexity and implementation speed-ups: The com-
plexity of the QoE and the s-QoE algorithms are the same.

The algorithms need to run at most
∑
j∈C |Cj | times in order

to fill all caches. At each iteration, they evaluate the marginal
gain of C ·|K| pairs (cache, content). For every evaluation, they
call the Inner Algorithm of complexity O(|U| · |K|). Then, the
complexity of the sorting step is O(log(C · |K|)) in a pre-
ordered list. Therefore, the total complexity of the QoE and
s-QoE algorithms is O(|U| · |K|2 · C ·

∑
j∈C |Cj |).

Implementation-wise, the method of lazy evaluations [20]
avoids unnecessary calculations in the selection process of the
caching placement. Furthermore, distributed techniques can be
applied for submodular maximization [21]. These techniques
achieve the same approximation guarantees.

D. The case C = 1

In this section, we mention briefly a result for the case where
C = 1, i.e., apart from the large cache C0, there is only one
cache. In this case, we can prove that the QoE problem can
be transformed into an Integer Linear Program (ILP) problem
and, therefore, common optimization methods can be applied
to find the optimal solution for small problem’s instances. This
will be useful in the next section since it allows us to compare
the solution of our algorithm with the optimal joint policy. For
the interested reader, the proof can be found in [19].

IV. PERFORMANCE EVALUATION

In this section we compare the proposed policy (QoE
algorithm) with other policies and validate its theoretical
approximation guarantees. We consider a variety of scenarios.

A. Scenario 1

Firstly, we compare the objective function value achieved by
the QoE algorithm with the optimal one (oracle). For this, we
consider a scenario with a single cache and the large cache C0.
As mentioned in Section III-D, the QoE problem for C = 1
can be transformed into an ILP problem. We use the standard
MATLAB solver to obtain the optimal objective value.

We consider 20 users connected to the cache and a catalogue
of 200 unit-sized contents. We assume that the cache can fit
15 contents and every user receives N = 2 recommendations.
The small size of the scenario is necessary to be able to
calculate the optimal objective value. We will consider much
larger scenarios subsequently. Moreover, the impact of the
recommendations is determined by αu, whose values follow
a uniform distribution between 0.7 and 0.9 (in line with the
statistics gathered on Netflix [3]). In this scenario, we consider
a synthetic dataset for the utilities rui and the popularities
pui. We chose pui such that the aggregate content popularities
over all users, i.e.,

∑
u pui, follow a Zipf distribution (with

parameter 0.6). Then, rui are chosen randomly in [0, 1] such
that their normalized value, i.e., rui/

∑
k ruk, are equal to pui,

for every i ∈ K, as in (1).
In this scenario, we measure the QoS as cache hits, as

explained in Remark 1, and the QoR (Def. 3) by considering
ϕ(rui) = log(rui). For a variety of values of βu = β > 0,
we queried the oracle and we calculated the QoE given by the
proposed algorithm. Table III shows the approximation ratio
that our policy achieves for some values of β.

As we saw in Section III-C, the ratio f(X∗, Y ∗)/OPT
cannot be lower than 1/2. We observe that, in practice, the
achieved ratio is much higher than 1/2, close to 1. In fact,
among all the different values we considered (30 in total), the
lowest observed approximation ratio was equal to 0.9757.



Observation 1. Our numerical results validate the theoretical
approximation guarantees of our policy and also suggest a
much better approximation ratio in practice.

TABLE III
APPROXIMATION RATIO (f(X∗, Y ∗)/OPT )

Parameter β 0.01 0.95 1.7 2.5 lower bound:
Approx. ratio 1 0.9757 0.9979 1 0.5

Next, we investigate if this close-to-optimal performance is
reflected in the QoS-QoR tradeoffs. At the same time, we will
compare these tradeoffs with the ones achieved by a proposed
heuristic in the literature for a similar problem [7].

Cache-aware recommendations (CAwR). CAwR [7] makes
caching and recommendation decisions at every cache inde-
pendently. It decomposes the problem into the caching and
recommendation steps. First, given the content preference
distribution for every user (equivalent to the content popularity
distribution pui or content utilities rui of our model) and the
weight every user gives to recommendations (the αu of our
model), the aggregate request probability of every content is
calculated. Then, the Cj items with the highest probability
are cached. Note that, in the case of variable-sized contents,
the cache allocation decisions are made by solving a 0 − 1
knapsack problem, where the “value” of every content is
the aforementioned probability and the “weight” is its size.
Then, in the recommendation step, the recommendations are
made partially by cached contents and by non-cached contents
that are of high utility for the particular user. The balance
between cached and non-cached contents is determined by a
so-called distortion parameter rd ∈ [0, 1), which is similar to
the parameter β of our model.

Fig. 3. Scenario 1, QoR-QoS tradeoff points for some values of β and rd.

Figure 3 depicts the QoS-QoR tradeoffs given by the oracle,
our policy, and CAwR as points in the plane. We obtained
these tradeoffs for a variety of values of β and the distortion
parameter rd. We remind the reader that each of these points
corresponds to a different objective tradeoff, between QoS
and QoR, that a CP might have, i.e., these curves could also
be interpreted as Pareto curves. The QoR values (x-axis) are
normalized with respect to the two “extreme” policies A and
C (defined in Section II-F). For example, QoR = 50% implies

that the QoR value lies in the middle of the interval [RA, RC ],
where RA and RC are the QoR values achieved by policies
A and C respectively. Moreover, the normalized QoS values
(y-axis) give the cache hit rate.

Observation 2. Our policy’s tradeoff curve almost coincides
with the optimal, while it dominates that of CAwR, i.e., our
policy outperforms CAwR in terms of at least QoS or QoR
(or both).

For example, for a desired value of QoS of around 84%,
CaWR achieves 20% QoR and our policy 68%. More im-
portantly, most of the tradeoffs of our policy (e.g., around
80−95% QoR and 70−80% QoS) are not achievable by any
tuning of the CAwR algorithm. Points in the extreme right
lead to the maximum QoR and both policies recommend the
same items, i.e., the ones with the highest utility per user.

B. Scenario 2

We proceed with simulating larger scenarios. For this, we
consider a single cache with 100 connected users. The cata-
logue consists of 6000 equal-sized contents4. The probabilities
αu are chosen randomly in [0.7, 0.9], for all u ∈ U . For this
scenario, we use a real dataset for the matrix of utilities rui:

MovieLens dataset:. The MovieLens dataset [23] is a col-
lection of 5-star movie ratings collected on MovieLens, an
online movie recommendation service. Here, we used a variety
of subsets of the total 20, 000, 263 ratings available in the
original dataset. It is commonly assumed that the utility of a
content for a user is the predicted rating of this user for the
content [13]. Therefore, we interpret the rating as the content
utility. Since the range of ratings is 0.5−5 with 0.5 increments,
we map every rating r to a random number in the interval
(r/5−0.1, r/5]. As is common, this matrix is quite sparse. To
obtain the missing rui ratings we perform matrix completion
through the TFOCS software [24].

1) Equal-sized contents: We assume that the contents are
of unit size and that the cache size is equal to 1% of the
catalogue size. Moreover, N = 5 and pui are the normalized
rui. As before, we measure the QoS as cache hits and the QoR
as
∑
i log(rui). In Figure 4(a), we plot the tradeoffs achieved

by CAwR and our policy for different values of rd and β.

Observation 3. The QoS-QoR tradeoff curve of our policy
dominates that of CAwR even in larger, more realistic scenar-
ios, driven by real datasets.

We notice, for example, that for QoS of value 81%, CAwR
algorithm achieves 16% QoR while our algorithm 42%. Sim-
ilar gains are noticeable in terms of QoS for different values
of QoR. This is an encouraging finding that suggests that the
theoretical gains could also be experienced in practice.

2) Variable-sized contents: So far, we have considered
scenarios with equal sized content (e.g., chunks). Here, we
focus on a scenario with variable-sized contents. The contents’

4Note that according to [22], the total number of titles (movies and TV
shows) available on Netflix in the USA is equal to 5848.



Fig. 4. (a)-(b) QoS-QoR tradeoff points, (c) QoE versus parameter β.

sizes vary from 1 to 15 size units and we adjust the cache
capacity to fit up to 2.3% of the total size of the catalogue∑
i∈K si. For N = 4 and in the same setup as before, we

plot in Fig. 4(b) the tradeoffs achieved by the two policies.
As explained in Section III-C, our policy runs both QoE and
s-QoE algorithms and selects the maximum between the two
objective function values. As expected, the difference between
the tradeoff curves is similar to the one in Fig. 4(a). In
particular, we observe a relative gain of up to 63% in QoR
and up to 15% in QoS of our policy with respect to CAwR.

Observation 4. The gains of our proposed algorithm are
consistent for all the different scenarios and parameters con-
sidered, including the scenario of variable content sizes.

C. Scenario 3

So far, we studied scenarios with a single cache in order
to be able to compare the performance of the proposed policy
with the related work. We remind the reader that the approxi-
mation guarantees of our policy hold for arbitrary networks of
caches where users might have access to more than one cache.
The algorithm proposed in [10] makes caching decisions
taking into account such coverage overlaps. However, this
problem setup does not contain recommendations. In this
scenario, we evaluate the performance, in terms of QoE, of our
policy and some non-joint policies whose caching decisions
are made according to [10].

A-femto and C-femto policies. They generalize the policies A
and C described in Section II-F in a network of caches. They
both make the caching decisions based on the femto-caching
policy proposed in [10] that takes into account the fact that
users have access to multiple caches in the network. Then, the
recommendations part of the policies A and C is applied.

We consider a cellular network in a square area of 500 m2

with 9 small-cell BS (helpers) and a macro-cell base station
(the large cache of our scenario). A total of 100 users are
placed in the area according to a homogeneous Poisson point
process (in line with the related works [10], [6]), while helpers
are placed in a grid. Helpers’ communication ranges are set
to 200 m, which results in an average of 3.5 helpers per user.

Without loss of generality, we assume that the streaming rate
from the large cache (or macro-cell cache) C0 is 0.5 Mbps,
while the suj rates for edge caches are chosen randomly be-
tween 2 and 15 Mbps5. In fact, the required Internet connection
speed on YouTube [25] is 0.5 Mbps, and the recommended
speed to watch a video in 4K is 20 Mbps.

We consider a subset of 6000 unit-sized contents of the
Movielens dataset, αu, ϕ as in Scenario 2, and ψ being the
identity function. We set the helper’s capacity to 1.5% of the
catalogue size and N = 5.

For different values of β > 0, the achieved QoE of our
policy, the A-femto, and the C-femto policies are shown in
Fig. 4(c). We observe that, for β close to 0, i.e., priority is
given to the QoS, the performance of the A-femto policy and
our policy coincide. This is because both policies make the
same caching and recommendation decisions, i.e., cache and
recommend the most popular items. The QoE achieved by the
C-femto policy is lower since, although it provides the best
QoR, the recommended items are not necessarily among the
cached ones and thus, they need to be retrieved from the large
cache at the cost of lower QoS. In fact, this is illustrated in
small scale in the toy example in Sec. II-F. As β increases,
the priority moves towards QoR, and hence, the performance
of the A-femto policy starts to worsen until it is dominated
by the one of the C-femto policy. Our policy continues to
perform better than both of them as a result of caching and
recommendation orchestration.

Observation 5. The performance gains of the proposed policy
over baseline non-joint policies are prominent in generic
networks of caches as well.

V. RELATED WORK

Caching and recommendations interplay. In the early
work [26], the authors propose heuristic algorithms for rec-
ommendations in P2P networks that take into account both
service cost and user preferences. In [5], the authors propose
a recommendation algorithm that tries to bias requests towards

5As we are interested in capturing both wired (CDN) and wireless (femto-
caching), the physical layer details are beyond the scope of this analysis.



contents in the cache. In a similar spirit, [4] proposes a
reordering of the videos appearing in the YouTube related
videos section by “pushing” the cached items on top of the
list. However, the caching policy in these works is fixed.

Considering now different setups, [6] introduces the concept
of “soft cache hits” that allows the user to choose an alter-
native cached content if the initially requested is not locally
cached. The authors of [6] propose caching policies that are
recommendation-aware while the recommender comes after
the caching decisions. It thus can be seen as a simple decom-
position algorithm. A decomposition of the joint problem is
also proposed in [7] for a problem setup closer to our work.
Targeting cache hit rate maximization, their policy first decides
on caching, accounting for the impact of recommendations,
and then adjusts the recommendations in order to favor cached
items. However, no performance guarantees are given. Finally,
the authors in [8] formulate a joint problem in the different
context of prefetching content over a time-varying channel.

Joint optimization theory. Submodularity-based proofs
for various caching-related problems have flourished since
the seminal paper of [10], where the focus is on one set
of variables (caching). While largely different problems, the
decomposition method and submodularity of the outer problem
followed in our work, is similar in spirit to the combinatorial
methods in [27] and [28].

VI. CONCLUSION

In this paper, we studied the problem of maximization
of users’ QoE through joint caching and recommendation
decisions in a network of caches. This is a problem of great
interest as entities like Netflix can now manage both caching
and recommendations in their network. We expressed user’s
QoE as a balanced sum of QoS (affected by the caching
allocation) and QoR (determined by the recommendations the
user receives). The model we considered is generic since QoS
can be replaced by any caching gain/profit. We proposed the
QoE algorithm that has 1

2 -approximation guarantees (or 1−1/e
2

in the case of contents of heterogeneous sizes). Our numer-
ical results showed that our algorithm outperforms baseline
policies and other proposed schemes in the literature.
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and service costs in swarming systems,” in Proc. IEEE ICC, 2015.

[27] E. M. Craparo, J. P. How, and E. Modiano, “Throughput optimization in
mobile backbone networks,” IEEE Transactions on Mobile Computing,
vol. 10, no. 4, pp. 560–572, Apr. 2011.

[28] T. Lukovszki, M. Rost, and S. Schmid, “Approximate and incremental
network function placement,” Journal of Parallel and Distributed Com-
puting, vol. 120, pp. 159–169, 2018.


