
A Rate Splitting Strategy for Mitigating Intra-Cell
Pilot Contamination in Massive MIMO
Christo Kurisummoottil Thomas‡, Bruno Clerckx†, Luca Sanguinetti¶, Dirk Slock ‡
‡EURECOM, Sophia-Antipolis, France, Email: {kurisumm,slock}@eurecom.fr

†Imperial College London, Email: b.clerckx@imperial.ac.uk
¶University of Pisa, Italy, Email: luca.sanguinetti@unipi.it

Abstract—The spectral efficiency (SE) of Massive MIMO
(MaMIMO) systems is affected by low quality channel estimates.
Rate-Splitting (RS) has recently gained some interest in multi-
user multiple antenna systems as an effective means to mitigate
the multi-user interference due to imperfect channel state infor-
mation. This paper investigates the benefits of RS in the downlink
of a single-cell MaMIMO system when all the users use the same
pilot sequence for channel estimation. Novel expressions for the
SE achieved in the downlink by a single-layer RS strategy (that
relies on a single successive interference cancellation at each user
side) are derived and used to design precoding schemes and
power allocation strategies for common and private messages.
Numerical results are used to show that the proposed RS solution
achieves higher spectral efficiency that conventional MaMIMO
with maximum ratio precoding.

I. INTRODUCTION

Massive MIMO (MaMIMO) is a wireless technology where
the base stations (BSs) are equipped with a large number M
of antennas to serve a multitude of single-antenna K user
equipments (UEs) by spatial multiplexing [1]. The acquisition
of channel state information (CSI) is the limiting factor in
MaMIMO [1]. In a time-division duplex (TDD) mode, channel
reciprocity allows to acquire all the necessary CSI for uplink
(UL) and downlink (DL) transmissions from a finite number of
UL pilot signals [1]. Thanks to the intense research performed
over the last decade, MaMIMO is today a mature technology
[2], [3], which has been adopted into the 5G NR standard [4].

One phenomenon that is tightly connected with MaMIMO is
pilot contamination, which can be briefly explained as follows
[1]. UEs that transmit the same pilot signal contaminate each
others’ channel estimates. This ”pilot interference” not only
reduces the CSI quality but also creates the so-called ”coher-
ent interference”, which has been believed to fundamentally
limit the spectral efficiency (SE) of MaMIMO, even when
M →∞ [1], [2]. Recently, [5] showed that with optimal signal
processing and spatially correlated channels, the SE increases
without bound as M → ∞ while K is fixed. The fact that
there is no fundamental SE limit does not imply that the pilot
contamination effect disappears; there is still an SE loss caused
by estimation errors and interference rejection [6]. The aim of
this paper is to deal with this effect for a finite M .

Observe that, when the estimation error variance decays
with the signal-to-noise-ratio (SNR) as O(SNR−δ) for some
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0 ≤ δ < 1, conventional precoding techniques result in a sum
degrees of freedom (DoF) of Kδ. This in turn reveals that as
δ → 0 (implies constant channel estimation error), the system
becomes interference limited. A possible solution to this issue
is to take a rate splitting (RS) approach [7] that splits the
UEs’ messages into common and private parts, encode the
commmon parts into a common stream, and private parts into
private streams and superpose in a non-orthogonal manner the
common stream on top of all private streams. The common
stream is drawn from a codebook shared by all UEs and is
intended to one only, but is decodable by all UEs. On the
other hand, the private streams are to be decoded by the
corresponding UEs only. The sum DoF achieved by RS in the
DL is 1+(K−1)δ [8], which is higher than Kδ and matches
the upper bound obtained from the Aligned Image Sets in [9].
Interestingly, RS not only achieves the optimal sum-DoF but
the entire DoF region of the K-UE channel with imperfect
CSI [10].

Motivated by the above results, the design and optimization
of RS at finite values of SNR has been investigated and was
found to provide significant benefits in the DL with imperfect
CSI, compared to multi-user MIMO and NOMA [8], [11],
[12], but also to Dirty Paper Coding [13]. The application of
RS to an FDD MaMIMO system has been investigated in [14],
[15]. Particularly, [14] shows that a two-layer RS architecture,
so-called hierarchical RS (HRS), can bring significant benefits
in MaMIMO.

In this paper, we focus on a TDD single-cell MaMIMO
network and assume that all the UEs use the same pilot
signal for channel estimation. Novel expressions for the SE
achieved in the DL by a single-layer RS strategy are derived
by applying the hardening bound to both common and private
messages [2]. A maximum ratio (MR) precoding scheme is
used for private streams while a precoder based on a weighted
combination of the channel estimates of all UEs is adopted for
the common stream. A novel algorithm is proposed to allocate
the power among the common and private streams.

II. SYSTEM MODEL

We consider a single-cell MaMIMO network where the BS
is equipped with M antennas and serves K UEs. We denote
hi ∈ CM the channel from UE i to the BS, and consider
a correlated Rayleigh block fading model hi ∼ CN (0,Ri)
where Ri ∈ CM×M is the covariance matrix [3, Sec. 2.2]. The
Gaussian distribution is used to model the small-scale fading
variations, while Ri describes the macroscopic propagation



characteristics. The normalized trace βi = 1
M tr(Ri) is the

average channel gain from the BS to UE i.
The UEs are perfectly synchronized and operate according

to a TDD protocol with a data transmission phase and a pilot
phase for channel estimation [3]. We consider the standard
block fading TDD protocol in which each coherence block
consists of τ channel uses, whereof τp are used for UL pilots,
τu for UL data, and τd for DL data, with τ = τp + τu + τd.
Only the DL is considered in this paper, i.e., τu = 0.

A. Channel estimation

We assume that a single pilot sequence of length τp is used.
For a total uplink pilot power of ρtr per UE, the BS obtains
the MMSE estimate of hi as

ĥi = RiQ
−1
( K∑
k=1

hk +
1
√
ρtr

ni

)
∼CN (0,Φi) (1)

where ni ∼ CN (0, IM ) is noise, Φi = RiQ
−1Ri and

Q =
∑K
k=1 Rk + 1

ρtr
IM . The estimation error h̃i = hi −

ĥi ∼ CN (0,Ri −Φi) is independent of ĥi. The mutual
interference generated by the pilot-sharing UEs is known as
pilot contamination and has two main consequences in the
channel estimation process. The first is the reduced estimation
quality, whereas the second is that the estimates {ĥi} become
correlated. If Rk is invertible, we have that [3, Sec. 3.2]

ĥi = RiR
−1
k ĥk (2)

from which it follows that E{ĥiĥH

k} = RiQ
−1Rk.

B. Rate Splitting in Downlink transmissions

The RS scheme is used in the DL for transmission. The
message intended to UE k is split into two parts, Wk =
(Wk0, Wk1). We assume that Wk0 ∈ Wk0 represents the
common part and Wk1 ∈ Wk1 is the private part. All
the common parts are packed into one common message,
Wc = (Wk0, ..., WK0) ∈ Wc, which is encoded into a
common stream ςc using a common codebook. The private
message Wk1 is encoded in the conventional manner into the
private stream ςk. The resulting transmitted DL signal is:

x = wcςc︸︷︷︸
Common message

+

K∑
i=1

wiςi︸︷︷︸
Private messages

(3)

where ςi ∼ CN (0, ρi) is assigned to a precoding vector wi ∈
CM that determines the spatial directivity of the transmission
and satisfies E{‖wi‖2} = 1 so that ρi represents the average
transmit power of UE ∀i. Similarly, ςc ∼ CN (0, ρc) denotes
the common message, which is assigned to a precoding vector
wc ∈ CM with E{‖wc‖2} = 1 so that ρc represents its
average transmit power. We assume that

ρc +

K∑
i=1

ρi ≤ ρT (4)

where ρT is the total transmit power in the DL. The received
signal yk ∈ C at UE k is given by

yk = hH

kwcςc + hH

kwkςk +

K∑
i=1,i6=k

hH

kwiςi + nk (5)

where nk ∼ CN (0, σ2) is the receiver noise. At each UE k,
the common stream is first decoded into Ŵc, by treating the in-
terference from the private streams as noise. Then, successive
interference cancellation (SIC) is performed, which removes
the common message part from the received signal. Further,
the private stream ςk is decoded into Ŵk1 by treating the intra-
cell interference as noise. UE k reconstructs the transmitted
message by extracting Ŵk0 from Ŵc. Further, combining with
the decoded private stream to form Ŵk = (Ŵk0, Ŵk1).

C. Spectral efficiency

Characterizing the SE in the DL is hard since it is unclear
how UE k should best estimate the effective precoded channels
hH

kwc and hH

kwk that are needed for decoding the common
signal ςc and the private signal ςk. A common approach in
classical MaMIMO is to resort to the hardening bound [3,
Sec. 4.3]. This bound relies on the assumption that the deter-
ministic average precoded channels E{hH

kwc} and E{hH

kwk}
are known at UE k. The received signals for the common and
private messages can then be expressed as

yk,c = E{hH

kwc}ςc + (hH

kwc − E{hH

kwc}) ςc

+

K∑
i=1

hH

kwiςi + nk (6)

and (after SIC)

yk,p = E{hH

kwk}ςk + (hH

kwk − E{hH

kwk}) ςk

+ (hH

kwc − E{hH

kwc}) ςc +
K∑

i=1,i6=k

hH

kwiςi + nk. (7)

The following bounds can be computed.

Lemma 1. Achievable rates for the common and private
messages of UE k can be computed as

SEk,c =
τd
τ

log2(1 + γk,c) (8)

and
SEk =

τd
τ

log2(1 + γk) (9)

with γk,c and γk given by (11) and (12). The expectations are
computed over channel realizations.

Proof: It can be proved from (6) and (7) by using
standard results in MaMIMO (e.g., [3, App. C.3.6]), which
are omitted for space limitations.

The achievable rate of the common message is defined as

SEc =
τd
τ

log(1 + γlmin,c) (13)

where
lmin = argmink γk,c (14)



γk,c =
ρc|E{hH

kwc}|2
K∑
i=1

ρiE{|hH

kwi|2}+ ρc

(
E{|hH

kwc|2} − |E{hH

kwc}|2
)
+ σ2

(11)

γk =
ρk|E{hH

kwk}|2
K∑
i=1

ρiE{|hH

kwi|2} − ρk|E{hH

kwk}|2 + ρc

(
E{|hH

kwc|2} − |E{hH

kwc}|2
)
+ σ2

(12)

Observe that the above achievable rates can be utilized along
with any precoding scheme. Moreover, each of the expecta-
tions in γk,c and γk can be computed separately by means of
Monte Carlo simulations. Closed forms will be provided next
for the proposed precoding schemes.

III. POWER OPTIMIZATION AND PRECODING DESIGN

A common and popular choice for wk is MR precoding,
defined as

wMR
k =

ĥk√
E{|ĥk|2}

=
ĥk√

tr{Φk}
(15)

which has low computational complexity and allows to com-
pute some of the expectations in closed form. Particularly, we
have that (e.g., [3, App. C.3.7])

|E{hH

kwMR
k }|2 = tr{Φk} (16)

E{|hH

kwMR
i |2} =

tr{RkΦi}+
∣∣∣tr{RkQ

−1Ri}
∣∣∣2

tr{Φi}
. (17)

In the remainder, we assume that MR precoding is used for
private messages. Next, we look for the transmit powers that
maximize the sum SE of the network and design the precoding
vector for the common message.

A. Power optimization

From the above section, the sum SE, for any given precod-
ing scheme, can be computed as:

SE = SEc +
K∑
k=1

SEk (18)

where SEk and SEc are given in (9) and (13), respectively.
The power allocation problem can thus be formulated as:

max
{ρc≥0,ρ≥0}

SEc(ρc,ρ) +
K∑
k=1

SEk(ρc,ρ) (19)

s.t. ρc +

K∑
i=1

ρi ≤ ρT (20)

with ρ = [ρ1, . . . , ρK ]T. Finding the solution to the above
problem is a challenge since it is not in a convex form.
A possible way out consists in using the method in [16],
and linearize the sum SE in (18) using a first order Taylor
series approximation. The optizimation is then carried out by
adopting an iterative approach in which the variables ρc and

Algorithm 1 ILA-WF power allocation

1: initialize t = 0 and ρ(0)c = 0 (no RS) and ρ(0)k = ρT /K. Also,
µ(0) = 1

2
(µ

(0)
u + µ

(0)
l ) with µ

(0)
u = 105 (or some very large

value) and µ(0)
l = 0.

2: repeat
3: for k = 1 to K do
4: compute σ(1,t)

k and σ(2,t)
k

5: use µt to update ptk in (21)
6: end for
7: compute σ(1,t)

c and σ(2,t)
c

8: use µt to update ptc in (22)
9: if ρ(t)c +

∑
k

ρ
(t)
k > ρT then

10: µ
(t+1)
l = µ(t), µ

(t+1)
u = µ

(t)
u

11: else
12: µ

(t+1)
u = µt, µ

(t+1)
l = µ

(t)
l

13: end if
14: update µ(t+1) =

µ
(t+1)
u +µ

(t+1)
l

2
15: update t = t+ 1
16: until convergence

{ρi : i = 1, . . . ,K} are alternatively optimized. In Appendix
A, it is shown that at iteration t the powers must be updated
as follows

ρ
(t)
k =

(
1

µ(t) + σ
(2,t)
k

− 1

σ
(1,t)
k

)+

(21)

and

ρ(t)c =

(
1

µ(t) + σ
(2,t)
c

− 1

σ
(1,t)
c

)+

(22)

where (x)+ = max(x, 0) and the quantities {σ(1,t)
k , σ

(1,t)
c }

and {σ(2,t)
k , σ

(2,t)
c } are defined in Appendix A. The former

represent the signal powers of private and common messages
at iteration t, respectively, while the latter can be interpreted
as the corresponding leakage powers. This is why (21) and
(22) are called interference leakage-aware water-filling (ILA-
WF) power allocations [17]. Note that the Lagrange multiplier
µ(t) needs to satisfy the power constraint in (20) and can be
computed by a bisection method [18]. The entire procedure is
summarized through Algorithm 1.

As done for γk,c and γk, we observe that all the quantities
involved in the computation of {σ(1)

k , σ
(1)
c } and {σ(2)

k , σ
(2)
c }

are deterministic and can be computed by means of Monte
Carlo simulations for any choice of the precoding scheme for
the common message. Closed form expressions are provided
below for a MR-inspired precoding scheme.



B. Precoding design for common message

The optimal design of the precoding vector wc for the
common message requires to solve a multi-objective problem
involving γlmin,c and {γi : ∀i}. To overcome this issue, we
assume that the difference E{|hH

kwc|2}− |E{hH

kwc}|2 in (11)
is small so that it can be neglected. The precoding vector is
then suboptimally selected as the solution to the following
problem:

max
wc

min
k
πk|E{hH

kwc}|2 s.t. E{‖wc‖2} = 1 (23)

where
πk =

1
K∑
i=1

ρiE{|hH

kwi|2}+ σ2

. (24)

Following [14], we heuristically select wc as a linear combi-
nation of the estimated channel vectors {ĥi : ∀i}:

wc = α

K∑
i=1

aiĥi (25)

where α is needed to satisfy the constraint E{‖wc‖2} = 1.
Plugging (25) into E{hH

kwc}, we may rewrite (23) as:

max
{ai}

min
k
πk

∣∣∣∣∣
K∑
i=1

aitr{RiQ
−1Rk}

∣∣∣∣∣
2

(26)

where we have neglected the scaling factor α2. We now
observe that (26) can be reformulated as a geometric program-
ming problem [18]:

max
t>0

t, s.t. aTui ≤ t, ∀ i = 1, ..,K (27)

where we have defined a = [a1, ..., aK ]T and ui =
[ui(1), . . . , ui(K)]T with entries ui(k) = tr{RiQ

−1Rk}.
Once the solution a? to (27) is computed, the optimal w?

c

is obtained as:

w?
c =

K∑
i=1

a?i ĥi√
K∑
i=1

K∑
j=1

a?i a
?
j tr{RiQ−1Rj}

. (28)

The expectations that depend on w?
c can be computed in closed

form as follows. By using (2) into (28) yields

E{hH

kw?
c} =

K∑
i=1

a?i tr{RiQ
−1Rk}√

K∑
i=1

K∑
j=1

a?i a
?
j tr{RiQ−1Rj}

. (29)

To compute E{|hH

kw?
c |2}, observe that it can be rewritten as

E{|hH

kw?
c |2} =

1
K∑
i=1

K∑
j=1

a?i a
?
j tr{RiQ−1Rj}

×

 K∑
i=1

(a?i )
2E{|ĥH

i hk|2}+
K∑
i=1

K∑
j=1,j 6=i

a?i a
?
jE{hH

k ĥiĥjhk}

 .

(30)

The first term in (30) becomes (e.g., [3, Eq. (C.65)])

E{|ĥH

i hk|2} = tr{RkΦi}+
∣∣∣tr{RkQ

−1Ri}
∣∣∣2 (31)

while the second one in (30) reduces to

E{hH

k ĥiĥ
H

j hk}
(a)
= E{hH

k ĥiĥ
H

i R−1i Rjhk} (32)
(b)
= tr

{
R−1i RjE{ĥkĥH

k ĥiĥ
H

i }
}

+ tr
{

R−1i RjE{h̃kh̃H

k}E{ĥiĥH

i }
}

(33)

(c)
= tr

{
R−1i RjE{ĥkĥH

k ĥiĥ
H

i }
}

+ tr
{
R−1i Rj(Rk −Φk)Φi}

}
(34)

where (a) uses ĥj = RjR
−1
i ĥi (as it follows from (2)), (b)

follows from hk = h̃k + ĥk and the independence between
the estimate ĥk and estimation error h̃k, whereas (c) uses
E{h̃kh̃H

k}E{ĥiĥH
i } = (Rk − Φk)Φi. In Appendix B, it is

shown that

E{ĥkĥH

k ĥiĥ
H

i } = tr{Bik}Φk

+ Φ
1/2
k

(
diag (Bik) + Bik

)
(Φ

1/2
k )

H

(35)

where Bik = (Φ
1/2
k )

H

RiR
−1
k Φ

1/2
k and diag (·) indicates the

main diagonal of the enclosed matrix.
Note that, by using the above expressions and those in (16)

and (17), we can eventually compute in closed form all the
expectations involved in (11) and (12).

IV. SIMULATION RESULTS

To quantify the SE that can be achieved in MaMIMO with
RS, we consider a cell of size 250m × 250m. The UL pilot
power is ρtr = 20 dBm, whereas the noise power in UL and
DL is σ2 = −94 dBm. The samples per coherence block
are τ = 200 with τp = 10. Each BS is equipped with a
uniform linear array with half-wavelength antenna spacing.
Each channel consists of S = 6 scattering clusters, which
are modeled by the Gaussian local scattering model [3, Sec.
2.6]. Hence, the (m1,m2)th element of Ri is

[Ri]m1,m2
= βi×

1

S

S∑
s=1

ejπ(m1−m2) sin(ϕi,s)e−
σ2ϕ
2 (π(m1−m2) cos(ϕi,s))

2

(36)

where βi is the large-scale fading coefficient given by (in dB)

βi|dB = −34.53− 38 log10

(
di

1 km

)
+ Fi (37)

with UEs being placed uniformly at random and di (>= 35m)
represents the distance of UE i from the BS. Fi ∼ N (0, 10)
is the logarithm of the shadow fading between UE i and BS.
Also, let ϕi be the geographical angle to UE i as seen from
the BS. Cluster s is characterized by the randomly generated
nominal angle-of-arrival ϕi,s ∼ U [ϕi− 40◦, ϕi+40◦] and the
angles of the multipath components are Gaussian distributed
around the nominal angle with standard deviation σ2

ϕ = 10◦.
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Fig. 1. Sum SE versus transmit power, with M = 100 and K = 10.
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Fig. 2. Sum SE versus number of antennas with K = 10 and ρT = 20
dBm.

Fig. 1 plots the sum SE as a function of the total transmit
power defined as ρT (in dBm) with M = 100 and K = 10.
Comparisons are made with a classical MaMIMO system with
MR precoding and power allocated through Algorithm 1 with
ρc fixed to 0. As seen, RS improves the sum SE significantly
for values of ρT higher than 5 dBm. Moreover, the sum SE
with RS does not saturate at high ρT values. This in contrast
to what happens without RS, due to pilot contamination.

Fig. 2 illustrates the sum SE as a function of number of
antennas, M , with K = 10 and transmit power ρT = 20
dBm. We observe that the RS scheme does help to mitigate
the pilot contamination effect for a finite number of antennas.

Finally, in Fig. 3 we report the sum SE as a function of
K with M = 100 and ρT = 20 dBm. As K increases, the
gain provided by RS decreases. The larger K, the lower the
common rate since the common message has to be decoded
by all UEs. This issue can be solved by using HRS approach
as in [14]; this is an interesting topic left for future work.

V. CONCLUSIONS

This paper focused on a single-cell MaMIMO system in
which all the UEs use the same pilot signal in the training
phase. To deal with the reduced channel estimation quality,
caused by pilot contamination, a single layer RS approach was
proposed and shown to improve the SE at high SNR values.
However, we remark that much remains to be done, for e.g.
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Fig. 3. Sum SE versus number of UEs with M = 100 and ρT = 20 dBm.

extension of the current work to a multi-cell setting and the
design of an efficient RS message scheme to mitigate the inter-
cell and intra-cell interference.

APPENDIX A

Let’s consider without loss of any generality the optimiza-
tion of ρ(t)k for given values of {ρ(t)i : ∀i 6= k} and ρ(t)c . For
simplicity, we drop the iteration index t. We begin by rewriting
the SE of UE k as (by explicating its dependence from ρk)

SEk(ρk) =
τd
τ

log2

(
NUMk(ρk)

DENk(ρk)

)
=
τd
τ

(log2 (NUMk(ρk))− log2 (DENk(ρk))) (38)

where DENk(ρk) represents the denominator of γk in (12)
while NUMk(ρk) = DENk(ρk) + ρk|E{hH

kwk}|2. Observe
that − log2 (DENk(ρk)) is a non-concave function of ρk.
By linearizing it around a tentative value ρ̂k, the following
approximation is obtained:

log2 (DENk(ρk)) ≈
E{|hH

kwk|2} − |E{hH

kwk}|2

DENk(ρ̂k)︸ ︷︷ ︸
,αk

(ρk − ρ̂k)

where the terms independent of ρk have been neglected for
simplicity. Similarly, we can rewrite SEi as

SEi(ρk) =
τd
τ

(log2 (NUMi(ρk))− log2 (DENi(ρk))) . (39)

By linearizing both terms around ρ̂k

log2 (NUMi(ρk)) ≈
E{|hH

i wk|2}
NUMi(ρ̂k)

(ρk − ρ̂k) (40)

log2 (DENi(ρk)) ≈
E{|hH

i wk|2}
DENi(ρ̂k)

(ρk − ρ̂k) (41)

we obtain the following approximation for SEi(ρk)

SEi(ρk) ≈
τd
τ

(
E{|hH

i wk|2}
NUMi(ρ̂k)

− E{|hH
i wk|2}

DENi(ρ̂k)

)
︸ ︷︷ ︸

,ζi

(ρk − ρ̂k).



σ
(1)
k =

E{|hH

kwk|2}

σ2 + ρ̂c

(
E{|hH

kwc|2} − |E{hH

kwc}|2
)
+

K∑
i=1,i6=k

ρ̂iE{|hH

kwi|2}
(45)

Following the same approach for the SE of the common
message yields

SEc(ρk) ≈
τd
τ

(
E{|hH

lmin
wk|2}

NUMc,min(ρ̂k)
−

E{|hH

lmin
wk|2}

DENc,min(ρ̂k)

)
︸ ︷︷ ︸

,ζc

(ρk − ρ̂k)

where NUMc,min(ρk) = DENc,min(ρk) + ρc|E{hH

lmin
wc}|2

and DENc,min(ρk) represents the denominator of γlmin,c in
(14). Putting all the above together, an approximation of the
sum SE in (18) is

SE(ρk) =
τd
τ

(
log2 (NUMk(ρk))− σ(2)

k (ρk − ρ̂k)
)

(42)

where

σ
(2)
k = ζc + αk +

K∑
i=1,i6=k

ζi. (43)

Taking the derivative of its Lagrangian (obtained after adding
the power constraint in (20)) and equating it to zero yields

E{|hH

kwk|2}
NUMk(ρk)

− σ(2)
k − µ = 0 (44)

from which one obtain (21) in the text, with σ
(1)
k given in

(45). A similar approach for ρc yields

E{|hH

lmin
wc|2}

NUMc,min(ρc)
− σ(2)

c − µ = 0 (46)

where σ(2)
c can be obtained as done for σ(2)

k in (43); details
are omitted for space limitation. Solving (46) yields (22) in
the text, where σ(1)

c is

σ(1)
c =

E{|hH

lmin
wc|2}

σ2 +
K∑
i=1

ρ̂iE{|hH

lmin
wi|2}

. (47)

APPENDIX B
Rewrite ĥk = Φ

1/2
k c, with c ∼ CN (0, I) and define

the deterministic matrix Bik = (Φ
1/2
k )

H

RiR
−1
k Φ

1/2
k . By

recalling that ĥi = RiR
−1
k ĥk yields

E{ĥkĥH

k ĥiĥ
H

i } = Φ
1/2
k E{ccHBikccH}(Φ1/2

k )
H

. (48)

It then follows that

E {[ccHBikccH]mn} =
M∑
j=1

M∑
l=1

[Bik]ljE {cmc∗l cjc∗n} . (49)

If m = n, then (49) is always zero except for l = j:
M∑
l=1

[Bik]llE
{
|cm|2|cl|2

}
= 3[Bik]mm +

M∑
l=1,l 6=m

[Bik]ll (50)

where we have taken into that E
{
|cm|4

}
= 3. If m 6= n, then

(49) is always zero except for l = m and j = n

[Bik]mnE {cmc∗mcmc∗n} = [Bik]mn. (51)

Putting the above results together yields E{ĥkĥH

k ĥiĥ
H
i } =

tr{Bik}I + diag (Bik) + Bik.
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