
Efficient integration of thermal technology
in facial image processing through

interspectral synthesis

Dissertation

submitted to

Sorbonne Université

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

Author:
Khawla MALLAT

Scheduled for defense on
7th of July, 2020

before a committee composed of:

Thesis advisor Prof. Jean-Luc DUGELAY, EURECOM, France
Reviewers Prof. Boulbaba BEN AMOR, IIAI, UAE

Prof. Hazım Kemal EKENEL, Istanbul Technical University, Turkey
Examiners Prof. Bernard MERIALDO, EURECOM, France

Prof. Bernadette DORIZZI, Télécom SudParis, France
Dr. Cécile ICHARD, GTD Internationals, France





Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof.
Jean-Luc Dugelay for providing me with the opportunity to join his team Imaging Security
Group at Eurecom and to work on various interesting topics of research. Working with
Jean-Luc helped me to develop my research skills and to evolve both professionally and
personally during these years of my Ph.D.

Besides my advisor, I would like to thank all the members of my thesis jury committee
for generously offering their time, especially in these difficult circumstances, and for their
insightful comments and suggestions: Dr. Cécile Ichard, Prof. Hazım Kemal Ekenel,
Prof. Boulbaba Ben Amor, Prof. Bernadette Dorizzi and Prof. Bernard Merialdo. A
special thanks goes to Dr. Naser Damer, with whom I had the chance to collaborate, for
his guidance and support.

At Eurecom, I have been fortunate to be surrounded by exceptional colleagues and
wonderful friends that contributed to creating a pleasant working environment, with
whom I have shared many cherishable moments of joy and laughter. I would also like to
thank my lifetime close friends back home for their far-reaching support.

To my partner Jose, I am very grateful to have you in my life. This work would not
have seen the light if it had not been for your ingenious suggestions and your enriching
inputs. Thank you for your consistent encouragement and support and for always pushing
me forward.

Finally, I owe my deepest gratitude to my parents, Rafika and Mohamed, for their
unconditional love, their never-ending sacrifices and their constant motivation, to my
siblings Najwa, Youssef, and Mohamed, for their unwavering support and belief in me,
and to my nieces and nephew, for being the joy of my life.

Antibes, July 2020 Khawla

iii





Abstract

Face biometric systems are now a reality in numerous mainstream applications including
access control, banking, and forensics. Notably, face recognition systems have recently
advanced and achieved striking performances due to the uprise of deep learning and the
abundant, almost endless, amount of available training data. However, these systems,
which are mainly deployed in the visible spectrum, are subject to fail when employed in
unconstrained scenarios. Among the main challenges in visible spectrum based systems,
variable or low illumination conditions have been proved to be some of their major
weaknesses. A promising approach to acquire crisp images in total darkness is to use
thermal imagery. Thermal imaging technology has significantly evolved during the last
couple of decades, mostly thanks to thermal cameras having become more affordable and
user friendly. However, and given that the exploration of thermal imagery is reasonably
new, only a few public databases are available to the research community. This limitation
consequently prevents the impact of deep learning technologies from generating improved
and reliable face recognition systems that operate in the thermal spectrum. A possible
solution relates to the development of technologies that bridge the gap between the
visible and thermal spectrum. In attempting to respond to this necessity, the research
presented in this dissertation aims to explore interspectral synthesis as a direction for
efficient and prompt integration of thermal technology in already deployed face biometric
systems.

As a first contribution, a new database, containing paired visible and thermal face
images, which was acquired with a dual camera that allowed for the simultaneous capture
of face images in both spectra, was collected and made publicly available to foster research
in thermal face image processing. Motivated by the need for fast and straightforward
integration into existing face recognition systems, a following contribution consisted in
proposing a cross-spectrum face recognition framework based on a novel approach of
thermal-to-visible face synthesis in order to estimate the visible face from the thermal
input, when the visible image cannot be provided, e.g. in poorly lit environments. The
proposed approach is based on deep generative models and was trained on a set of
paired visible and thermal data to learn a mapping from the thermal face to its visible
equivalent. After this initial work, another contribution presents the development of
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Abstract

an illumination invariant face recognition system that incorporates a novel, dynamic
quality-weighted fusion of visible and thermal spectrum at the score level. Thanks to the
proposed mechanism, uninterrupted and efficient functioning of a face recognition setup
during day and night time may be ensured.

Motivated by the favorable results achieved in the first part of our research work,
additional contributions presented in this thesis explore the process of interspectral
synthesis in the reverse direction, i.e. from visible to thermal spectrum. Visible-to-
thermal image synthesis was employed to address the shortage of annotated public face
databases in the thermal spectrum, which limits the development of fundamental task
in thermal face image processing. With the scope of this study being focused on the
facial landmark detection task, fully annotated synthesized thermal face databases were
obtained by transforming public annotated visible face databases into thermal spectrum.
Facial landmark detectors trained on the synthesized thermal face databases led to
significant improvements in landmark detection accuracy. A final contribution explored
visible-to-thermal synthesis to study the impact of spoofing attacks on thermal face
biometric systems. The robustness of thermal-based systems lies in the acquisition process
itself as it provides proof of liveness by detecting the heat emitted by the face. A new
thermal attack, at the post-sensor level, is then proposed. Thermal face images, that are
obtained by visible-to-thermal face synthesis, are directly injected into the communication
channel after the sensor. In order to increase the difficulty of the proposed setup, a
scenario where the attacker has a priori knowledge about the spoofing countermeasure
employed by the system is also considered. Such a priori knowledge is exploited in
order to synthesize more threatening attacks for a given countermeasure technique. The
evaluation of spoofing detection systems when facing the proposed attack highlights the
vulnerability of thermal face recognition systems to the proposed indirect attack.

ii



Contents

Acknowledgements iii

Abstract i

List of Figures vii

List of Tables xi

1 Introduction 1
1.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions and thesis outline . . . . . . . . . . . . . . . . . . . . . . . 4

Publications 9

2 Thermal spectrum in facial image processing: literature overview 11
2.1 Spectral imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Electromagnetic spectrum . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Infrared spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Thermal spectrum for facial image processing . . . . . . . . . . . . . . . . 14
2.2.1 Illumination variation . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Expression variation . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Head pose variation . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.4 Eyeglasses challenge . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Presentation attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.6 Disguise and cosmetic makeup . . . . . . . . . . . . . . . . . . . . 19
2.2.7 Facial plastic surgery . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.8 Additional remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Visible and thermal paired face database 23
3.1 Overview of the existing visible and thermal face

databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



Contents

3.1.1 EQUINOX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 UND-X1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 USTC-NVIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 IRIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.5 CARL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Visible and thermal paired face database . . . . . . . . . . . . . . . . . . . 26
3.2.1 Dual Visible and thermal camera - FLIR Duo R . . . . . . . . . . 26
3.2.2 Acquisition setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 The database collection protocol . . . . . . . . . . . . . . . . . . . 27
3.2.4 Access and usage conditions . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Preliminary evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Face recognition in thermal and in visible spectrum . . . . . . . . 31
3.3.3 Comparative study of different levels of fusion . . . . . . . . . . . . 33

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Cross-spectrum face recognition based on thermal-to-visible image syn-
thesis 37
4.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Literature overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Thermal-to-visible image synthesis . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Cascaded refinement network . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Contextual loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Database preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.3 Image synthesis baselines . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Quality assessment of synthesized visible images . . . . . . . . . . . . . . 46
4.5.1 Qualitative assessment . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Quantitative assessment . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Cross-spectrum face recognition evaluation . . . . . . . . . . . . . . . . . 50
4.6.1 Face recognition algorithms . . . . . . . . . . . . . . . . . . . . . . 50
4.6.2 Experimental scenarios . . . . . . . . . . . . . . . . . . . . . . . . 51
4.6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Illumination invariant face recognition based on dynamic quality-weighted
fusion of visible and thermal spectrum 59
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



Contents

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Quality-weighted score fusion . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Scenario description . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Face feature extraction and matching . . . . . . . . . . . . . . . . 62
5.3.3 Quality assessment metrics . . . . . . . . . . . . . . . . . . . . . . 64
5.3.4 Proposed fusion scheme . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4.2 Experimental protocol and results . . . . . . . . . . . . . . . . . . 68

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Facial landmark detection on thermal data through fully annotated
thermal data synthesis 75
6.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Thermal face database synthesis . . . . . . . . . . . . . . . . . . . . . . . 77

6.3.1 Face databases with full facial landmark annotation . . . . . . . . 79
6.3.2 Visible-to-thermal data synthesis . . . . . . . . . . . . . . . . . . . 80

6.4 Facial landmark detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.1 Active appearance model . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.2 Deep alignment network . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.1 Baseline models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5.3 Evaluation protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5.4 Evaluation on low quality thermal face data . . . . . . . . . . . . . 85
6.5.5 Evaluation on high quality thermal face data . . . . . . . . . . . . 88
6.5.6 Qualitative evaluation on thermal samples of different quality . . . 90

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Indirect spoofing attack on thermal face biometric system 95
7.1 Context and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.2 Literature overview: spoofing attacks and thermal spectrum . . . . . . . . 97
7.3 Visible-to-thermal attack synthesis . . . . . . . . . . . . . . . . . . . . . . 99

7.3.1 Generalized approach for attack synthesis . . . . . . . . . . . . . . 99
7.3.2 Customized approach for attack synthesis . . . . . . . . . . . . . . 100
7.3.3 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4 Indirect attack synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7.4.1 CSMAD dataset for indirect attack synthesis . . . . . . . . . . . . 103
7.4.2 Quality assessment of the synthetic attacks . . . . . . . . . . . . . 103

v



Contents

7.5 Evaluation of face spoofing attack detection for indirect synthetic attack . 106
7.5.1 Spoofing attack detection baselines . . . . . . . . . . . . . . . . . . 106
7.5.2 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Conclusion 113
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . . . . 116

Bibliography 119

vi



List of Figures

2.1 Electromagnetic spectrum: bands and their corresponding wavelengths.
Spotlight on the infrared band and the corresponding atmospheric trans-
mittance window. Figure adapted from [24]. . . . . . . . . . . . . . . . . . 12

2.2 Heat emission by the human body predicted by Planck’s law at 305 K [16].
The highlighted part represents the dead zone with no atmospheric infrared
transmission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Face images acquired in different spectra. Figure reproduced from [27]. . . 14
2.4 Face images acquired with sensors of different values of NETD. . . . . . . 15
2.5 Impact of illumination variation on the visible and the thermal spectrum. 16
2.6 Impact of eyeglasses on the visible and the thermal spectrum. . . . . . . . 18
2.7 Presentation attack on the visible and on the thermal spectrum.(a) plain

printed paper (b) wrapped printed paper (c) tablet (d) laptop (e) silicone
mask (a sample from CSMAD database [51]). . . . . . . . . . . . . . . . . 19

2.8 Samples of face disguise extracted from I2BVSD database [56] in visible
and on thermal spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Impact of cosmetic makeup on the visible and thermal spectrum. Figure
extracted from [57]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.10 Thermal image showing pathological veins due to surgical incision. Figure
extracted from [58]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Flir Duo R camera and FLIR UAS mobile app . . . . . . . . . . . . . . . 27
3.2 The database acquisition setup. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Demographics of VIS-TH database: (a) gender, (b) age, and (c) ethnicity. 29
3.4 Illustration of visible and thermal images for various facial variations. . . 29
3.5 Cumulative Match Characteristic curves for various collection scenarios. . 32
3.6 Sensor-level fusion of the visible and thermal spectrum. . . . . . . . . . . 33
3.7 Impact of different fusion levels on the rank-1 recognition rate varying the

weight associated to each spectrum. . . . . . . . . . . . . . . . . . . . . . 35

vii



List of Figures

4.1 Illustration of image synthesis based cross-spectrum thermal-to-visible
face recognition. In this case, the integration of thermal technology in
already deployed face recognition systems only requires the addition of a
thermal-to-visible image synthesis module. . . . . . . . . . . . . . . . . . 39

4.2 The CRN-based multi-scale approach to transform the thermal image into
a visible image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Illustration of the refinement module. As an input, the refinement module
gets the feature map generated by the previous module concatenated with
the thermal image downscaled at the corresponding resolution wi × hi × c. 42

4.4 Illustration of contextual similarity. The patches of image Y are compared
against all patches of image X at high dimensional space. The feature
patch xi in image X that corresponds to the feature patch yj in image Y
is presented at a closer distance in feature space compared to the other
features from image X. This means the contextual similarity between the
two features, linked with the green arrow, is higher than the contextual
similarity between the rest of the sets of features, linked with the blue
arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Selected samples of synthesized face images under challenging scenarios.
(a) Thermal (b) Isola et al. [96] (c) Zhang et al. [84] (d) Ours (e) Ground
truth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Samples of generated images acquired in total darkness. (a) Thermal (b)
Isola et al. [96] (c) Zhang et al. [84] (d) Ours (e) Ground truth . . . . . 48

4.7 ROC curves of cross-spectrum face recognition based on OpenFace system
for selected samples from: (a) expression variation, (b) head pose variation,
(c) occlusion variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 ROC curves of cross-spectrum face recognition based on LightCNN system
for selected samples from: (a) expression variation, (b) head pose variation,
(c) occlusion variation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.9 ROC curves of cross-spectrum face recognition in dark environment: (a)
OpenFace system (b) LightCNN system. . . . . . . . . . . . . . . . . . . . 57

5.1 Illustration of continuous day and night face recognition scenario under
3 different illumination conditions. Condition 1: controlled illumination
environment, condition 2: low illumination environment, condition 3:
extremely poor illumination environment. . . . . . . . . . . . . . . . . . . 63

5.2 Framework of the proposed quality-based score fusion scheme, where
VIS, TH and GVIS denote the visible image, the thermal image and the
synthesized visible image from the thermal capture, respectively. . . . . . 66

5.3 ROC curves in extremely poor illumination environment using LightCNN
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



List of Figures

5.4 ROC curve deduced over all the facial variations in VIS-TH database [105]
using LightCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 ROC curve deduced over all the facial variations in VIS-TH database [105]
using LightCNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 68 facial landmark annotation defined in the context of 300 Faces in-the-
Wild Challenge: the first facial landmark localization Challenge [158]. . . . 80

6.2 Samples of synthesized thermal images from HELEN and LFPW databases. 81
6.3 Inter-ocular distance (IOD) marked in red and circles denoting different

detection error thresholds, green: 0.05, yellow: 0.1, blue: 0.15 times IOD. 84
6.4 Ground truth facial landmark annotation of CSMAD data: facial land-

marks are first detected on the visible images using DLIB [166] followed
by manual verification and correction. The detected landmarks are simply
used as ground truth for thermal images. . . . . . . . . . . . . . . . . . . 85

6.5 Detection rate variation of facial landmark detection models evaluated
on CSMAD database: (a) Active Appearance Model (b) Deep Alignment
Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.6 Qualitative results of the different facial landmark detection models on
samples of CSMAD database.(a): thermal reference, (b): ground truth,
(c):AAM-Aachen, (d): AAM-LFPW, (e): AAM-Helen, (f): DAN-Aachen,
(g) DAN-LFPW, (h): DAN-Helen. . . . . . . . . . . . . . . . . . . . . . . 88

6.7 Detection rate variation of facial landmark detection models evaluated
on the expression subset of the Aachen database: (a) active appearance
model (AAM), (b) deep alignment network (DAN). . . . . . . . . . . . . . 89

6.8 Qualitative results of the different facial landmark detection models on
samples of the expression subset of Aachen database. (a): thermal
reference, (b): ground truth , (c):AAM-Aachen, (d): AAM-LFPW, (e):
AAM-Helen, (f): DAN-Aachen, (g) DAN-LFPW, (h): DAN-Helen. . . . 91

6.9 Qualitative results of facial landmark detection on samples of different
thermal face databases, using DAN-Aachen in row 2 and DAN-Helen
in row 3. (a): UND-X1 database [62, 63, 64], (b): thermal database of
Military University of Technology in Warsaw (UTW) [154] (c): samples
from the High resolution version of VIS-TH database. . . . . . . . . . . . 92

7.1 Attacks on biometric sample in a face biometric system. . . . . . . . . . . 96
7.2 Presentation attacks in visible and thermal spectrum. . . . . . . . . . . . 98
7.3 Diagram of the proposed approach to perform visible-to-thermal attack

synthesis. The highlighted blocks of the diagram illustrate the introduced
loss for the customized approach. . . . . . . . . . . . . . . . . . . . . . . . 101

ix



List of Figures

7.4 Samples of presentation attack of CSMAD database in visible and thermal
spectrum. (a) worn masks (b) standing masks. . . . . . . . . . . . . . . . 104

7.5 Samples of synthetic attacks. (a) visible bona fide (b) thermal bona fide
(c) synthetic attacks using CRN (d) synthetic attacks using CRN+χ2(LBP)
(e) synthetic attacks using CRN+CX(LBP). . . . . . . . . . . . . . . . . . 105

7.6 Score distribution of the MFB baseline for bona fide and attack samples.
(a) silicone mask attack (b) synthetic attack CRN (b) synthetic attack
CRN+χ2(LBP), (c) synthetic attack CRN+CX(LBP) . . . . . . . . . . . 108

7.7 Detection error tradeoff (DET) curves of LBP+LR spoofing attack detec-
tion baseline for different attacks. . . . . . . . . . . . . . . . . . . . . . . . 109

x



List of Tables

2.1 Spectral decomposition of the infrared spectrum according to International
Commission on Illumination [25]. . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Existing face databases acquired in both visible and thermal spectra. . . . 25
3.2 Rank-1 recognition under expression and illumination variations. . . . . . 31
3.3 Rank-1 recognition under pose and occlusion variations. . . . . . . . . . . 31

4.1 PSNR and SSIM reported on synthesized visible images obtained using
our proposed approach as well as the image synthesis baselines. . . . . . . 50

4.2 Distribution of the database across the defined subsets. . . . . . . . . . . 52
4.3 Cross-spectrum face recognition accuracy across multiple facial variations

using OpenFace system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Cross-spectrum face recognition accuracy across multiple facial variations

using LightCNN system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Cross-spectrum face recognition accuracy in operative scenario where

samples were acquired in total darkness. . . . . . . . . . . . . . . . . . . . 57

5.1 Rank-1 recognition across multiple facial variations using LightCNN and
LBP face recognition algorithm. . . . . . . . . . . . . . . . . . . . . . . . 71

6.1 Properties of face databases used in this chapter. . . . . . . . . . . . . . . 78
6.2 Average NRMSE (± standard deviation) reported on CSMAD database. . 85
6.3 Average NRMSE (± standard deviation) reported on the expression subset

of Aachen database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Quality assessment of the synthetic attacks in terms of PSNR and SSIM. 106
7.2 Equal error rate (%) of face spoofing attack detection evaluated on the

proposed attacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

xi





Chapter 1

Introduction

1.1 Context and motivation

Biometric recognition is rapidly emerging as a reliable and fast tool of identity management
by analyzing physical and behavioral characteristics specific to each individual that are
distinctive, permanent, and universal. While until very recently fingerprint was known
to be the most prevalent form of biometrics in commercial biometric systems [1], face
biometrics is now taking over to establish itself as a more convenient and accessible
alternative. The face represents the most natural and intuitive mean of recognition by
humans, and the information conveyed in the face is especially rich and diverse. Unlike
iris, hand geometry and hand veins biometric systems, face recognition does not require
costly and high accuracy acquisition sensors. Furthermore, face recognition does not
involve physical interaction with the end-user, thereby facilitating the identification
of target subjects from relatively great distances without the target’s cooperation, a
significant asset for law enforcement and security applications.

Over three decades of extensive research has led to a massive deployment of face
recognition systems along with substantial gains and improvements in performance. This
is due to a variety of factors that include the steady hardware developments and the
outbreak of abundant face data at the disposal of researchers. Face recognition systems
span nowadays a wide range of vertical industries including banking, border control,
healthcare, and security applications. Following the explosion in the ubiquity of smart
devices equipped with camera sensors, face recognition is now breaking into the Internet
of Things market.

Despite its worldwide deployment and its growing popularity, face recognition systems
are still prone to fail when employed in unconstrained conditions. Face recognition systems
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Chapter 1. Introduction

are exclusively deployed using 2D and/or 3D acquisition sensors operating solely in the
visible spectrum that suffers from various limitations. Among the main challenges
confronted by visible face recognition systems, variable or low illumination conditions
have been proved to be some of the major weaknesses of such systems [2, 3, 4], due
to the reflective nature of the visible spectrum. Furthermore, head pose [5], facial
expression [6], makeup [7] are only some of the other challenges that decrease the
reliability of visible face recognition systems. Moreover, visible face recognition systems
are also threatened by presentation attacks that endeavor to spoof the system and gain
unauthorized access [8,9,10,11]. Some prompt actions have been taken such as requiring
an eye blink, smile, or other visual reaction to prove the liveness of the user, yet this can
be easily tricked using video replay attacks. Presentation attack detection [12,13,14] is
still a very active research area, although visible face recognition systems are extensively
implemented for border and access control and surveillance systems. Thereby, it is
necessary to seek solutions that are cost-effective and easy to integrate with existing face
recognition systems.

Thermal face recognition has emerged as a promising complement to visible face
recognition, as it provides efficient solutions to tackle the challenges encountered by
systems based on the visible spectrum. Thermal face images are invariant to light changes
due to the fact that the radiation detected by the thermal sensor is directly emitted
by the human face [15], and not reflected as it is the case for the visible spectrum.
Therefore, it is possible to acquire a crisp thermal image without any external source of
illumination, based on subtle temperature differences. Moreover, the sensitivity of visible
face recognition systems to head pose, facial expression, and makeup variations is partly
due to the change of the reflectance of visible light, this is however not an issue in the
thermal spectrum. Thereby, thermal face recognition systems are less affected by these
variations [16]. Additionally, thermal technology can be used as a presentation attack
detection tool, as it provides evidence of the user’s liveness by simple acquisition.

Thermal imagery was initially limited to military use. The first thermal line scanner
was developed in 1947 by the US military and took one hour to produce one single
image [17]. In 1966, the first real-time commercial thermal imager was launched. By
the end of the 1990s, uncooled focal plane arrays with higher resolution were introduced
at reduced prices, which motivated their use in civil applications. These applications
include building and roof inspection, environment control, medical testing and diagnosis,
and art analysis [18]. However, the cost of thermal sensors remained exorbitantly
high and the quality of thermal data was insufficient for the thermal spectrum to
be explored in face recognition applications. During the last decade, driven by the
progress in microelectronics and the dramatic lowering of manufacturing prices, uncooled
microbolometers focal plane arrays are providing high thermal sensitivity and high spatial
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resolution at very competitive prices. This even pertains to some models of smartphones
that are starting to be equipped with thermal imagers [19,20]. Consequently, research
interest in thermal face recognition has significantly grown. However, the data in the
thermal spectrum available for the research community has not increased at a comparable
pace to that of visible spectrum face databases. This is a limitation for thermal spectrum
investigation as a biometric, particularly in the context of the current deep learning-based
trends, which tend to be particularly data-hungry. While visible face databases are
abundant and can lead to the training of highly complex deep neural models, the same
cannot be done, as of the time of writing of this dissertation, for thermal imagery.

While it is obvious that the dropping manufacturing costs in thermal sensors will
eventually make those capturing devices as mainstream as those in the visible spectrum,
security-related scenarios, in which thermal sensors are already a reality, cannot wait
for the available resources in the thermal spectrum to balance with that of the visible
spectrum. For thermal spectrum databases to leverage the potential of those deep
learning-based algorithms, characterisable by their data-needy functioning, methods
that allow exploiting the complementarity of the information that lies in both thermal
and visible spectra need to be developed, motivating the research presented in this
dissertation.

The principal contributions of the presented work are focused on the development
of new advances that lay the ground for efficient and prompt integration of thermal
technology in already commercially deployed face biometric systems. Such contributions
are needed to lead a step up in directing the development of state-of-the-art thermal facial
image processing and sustain the growing usage of the thermal spectrum. Promoting the
integration of thermal technology in existing face biometric systems is based on the use
of interspectral synthesis in both directions. Thermal face images can be transformed
in the visible spectrum, bridging the impact of the aforementioned factors on visible
faces, and can then benefit from the wide range of available facial image processing tools.
Alternatively, it is possible to generate synthetic thermal face images required for the
design and the development of a specific task, by transforming available visible face
databases to the thermal spectrum. The array of the proposed solutions throughout this
thesis prevents the adaptation and re-optimization of available resources to operate on
the thermal spectrum, as well as the extensive collection of thermal face databases, that
can be costly and inefficiently time-consuming.
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1.2 Contributions and thesis outline

The need for the availability of multispectral resources while massive thermal data is not
at the disposal of the research community has motivated the lines of research that are
presented in this dissertation and outlined in the following paragraphs. The contributions
made by the research included in this thesis are then as follows:

Chapter 3

A first contribution is that of Chapter 3, which presents the efforts developed by the
author of this dissertation in collecting a dual visible-thermal, paired-by-design face
database that includes numerous variations in terms of facial expression, head pose,
occlusion, and illumination conditions to replicate real-life, challenging scenarios for
the face recognition state-of-the-art systems. The careful design of this database aims
to foster the research in the field as well as it provides with the foundations on which
the remainder of the works presented in this thesis are built. Besides the design and
discussion of the collection protocol for the database, the results of initial experiments
for its validation in face recognition research were reported.

Part of the work presented in this chapter was published in:

• K. Mallat, J.-L Dugelay, “A benchmark database of visible and thermal
paired face images across multiple variations” in Proc. 17th International
Conference of the Biometrics Special Interest Group BIOSIG, Darmstadt, Germany,
September 2018.

which was awarded the best poster award. The VIS-TH database has since then
been available to the research community and has been downloaded by over 25 teams
worldwide.

Chapter 4

The work presented in Chapter 4 relates to the first application of state-of-the-art
deep generative models to the problem of thermal-to-visible data synthesis. Recent
advances in deep learning have led to the development of deep neural network topologies
capable of generating high-quality transformation between images of significantly different
domains, with our interest being focused on cascaded refinement networks (CRNs) [21].
In particular, our work puts the focus on the application of CRNs to the problem of
cross-spectrum face recognition in highly challenging scenarios, i.e. the absolute darkness
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scenario, by allowing for thermal data to be immediately usable by visible spectrum based
systems through a CRN-based transformation. This contribution prevents the extensive
recollection of enrollment data in the thermal spectrum and the development of reliable
algorithms for thermal face recognition. Results validated the proposed methodology
and opened the door to the exploration of the better use of a CRN-based transformation
to further face image processing related tasks in the remainder of this thesis.

Part of the work presented in this chapter was published in:

• K. Mallat, N. Damer, F. Boutros, A. Kuijper, J.-L Dugelay, “Cross-spectrum
thermal to visible face recognition based on cascaded image synthesis”,
in Proc. 12th IARP International Conference on Biometrics ICB, Crete, Greece,
June 2019.

Chapter 5

Motivated by the positive results in Chapter 4, Chapter 5 reports the investigation of
mechanisms that intelligently incorporate the best attributes of face recognition systems
that work simultaneously on (i) visible images, and on (ii) synthesized thermal-to-visible
images. Whilst the quality achieved by thermal-to-visible face synthesis via the method
reported in Chapter 4 achieves high quality and realism, of particular benefit in scenarios
in which the visible spectrum cannot cope, i.e. in poorly lit environments, the resulting
images are evidently a few steps behind that of the standard, visible spectrum, face images.
The main contribution of this chapter then relates to the development of a novel method
based on a dynamic fusion of matching scores of visible probes and synthesized thermal-
to-visible probes against the visible gallery, via the usage of various quality metrics widely
used in image processing. The proposed method allows for a face recognition system
to smoothly transition between using visible or synthesized thermal-to-visible images
depending on the relevance of each sample determined by a quality score. The presented
contribution enabled the design of an illumination invariant face recognition system, by
exploiting the invariance of the thermal spectrum to illumination changes, without the
requirement of thermal specific face recognition algorithms.

Part of the work presented in this chapter was published in:

• K. Mallat, N. Damer, F. Boutros, J.-L Dugelay, “Robust face authentication
based on dynamic quality-weighted comparison of visible and thermal-
to-visible images to visible enrollments” in Proc. 22nd International Confer-
ence on Information Fusion FUSION, Ottawa, Canada, July 2019.
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Chapter 6

Following, Chapter 6 explores the potential benefit of CRN-based interspectral synthesis
for a task related to, but different than face recognition, that is of facial landmark
detection. The contribution of this work consists of introducing an innovative concept,
that to our knowledge, has not been previously explored in the literature. This novel
concept aims to tackle the shortage of annotated data in the thermal spectrum. Given
the positive results achieved in the experiments included in the other chapters of this
thesis, we propose the leveraging of CRN-based image synthesis in the reverse spectral
direction, i.e. from visible to thermal spectrum, in order to synthesize thermal face
databases and exploit the annotation information provided in the visible spectrum for
facial landmark detection. The presumably higher information domain of the visible
spectrum compared to that of the thermal domain allows for the resulting transformation
to be of extremely high quality. Relating to our new application of interest of facial
landmark detection, the resulting high-quality, synthesized, thermal face databases allow
for the training of facial landmark detectors directly on the thermal spectrum. Facial
landmark detection in the thermal spectrum still remains a challenge, mainly due to
the limited resources of databases with annotated landmarks in the thermal spectrum.
Our proposed approach achieves remarkable results with high facial landmark detection
accuracy evaluated on thermal data of different quality.

Part of the work presented in this chapter was submitted to:

• K. Mallat, J.-L Dugelay “Facial landmark detection on thermal data via
fully annotated visible-to-thermal data synthesis” in Proc. International
Joint Conference on Biometrics IJCB, Houston, USA, September 2020.

Chapter 7

The last contribution, presented in Chapter 7 of this dissertation, relates to a consequence
of the great success that face image processing techniques are acquiring in recent years.
Face recognition systems are now widely used by both public authorities and domestic
users. Consequently, and whilst these methods normally provide an enhanced level of
security in the authentication process for the average user, spoofing attacks have become
increasingly common, attracting wide research interest for face recognition among many
other biometric traits. Thermal imagery is generally considered as a natural spoofing
countermeasure. However, its robustness to spoofing threats lies in the acquisition process
itself. In the work presented in Chapter 7, we take the role of an attacker that intends
to break a thermal face biometric system by short-circuiting the thermal sensor and
injecting a thermal face image in the communication channel between the sensor and the
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subsequent processing module. The proposed attack, performed at the post-sensor level,
is obtained by visible-to-thermal face synthesis. Two spoofing scenarios are studied: (i)
the attacker blindly injects a synthesized thermal image, or (ii) the attacker possesses
prior knowledge about the specific spoofing countermeasure that is being used in the
target system. For the second scenario, a customized interspectral synthesis model, that
incorporates the prior information in the development of visible-to-thermal face synthesis,
is introduced in order to leverage more robust attacks against the targeted spoofing
countermeasures. While initial results in the literature report for thermal imagery to
be a very robust countermeasure to presentation attacks, the work presented in this
dissertation highlights the vulnerability of spoofing countermeasures when confronting
attacks at the post-sensor level. This contribution aims to study the vulnerability of
thermal face biometric systems and the threats it may potentially confront once it is
deployed.

Part of the work presented in this chapter is to be submitted to:

• K. Mallat, J.-L Dugelay, “Indirect synthetic attack on thermal face bio-
metric systems via visible-to-thermal spectrum conversion” (under prepa-
ration).

The overall outline of this thesis is preceded by a literature review relating to facial
image processing and thermal imagery in Chapter 2, and conclusions and future work,
which are presented in Chapter 8.
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Chapter 2

Thermal spectrum in facial image
processing: literature overview

This chapter reveals the motivation behind the usage of the thermal spectrum in facial
image processing. An overview of the literature of relevance to facial image processing
in the thermal spectrum is provided. This includes a review of research works that
study thermal facial image processing under unconstrained scenarios. Further reading
can be found in widely cited survey articles for the thermal spectrum in face biometric
systems [16,22].

2.1 Spectral imaging

Spectral imaging refers to imaging methods which operate in different bands of the
electromagnetic spectrum. In this section, some background fundamentals related to
the electromagnetic spectrum and infrared band are presented. The motivation behind
the usage of the infrared spectrum, in particular the thermal spectrum, in facial image
processing is then defended.

2.1.1 Electromagnetic spectrum

Electromagnetic radiation is a form of energy that propagates through space as elec-
tromagnetic waves carrying packets of energy called photons or light quanta [23]. The
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electromagnetic energy spans a broad range of wavelengths and frequencies, known as
the electromagnetic spectrum. The EM spectrum is usually divided into separate bands,
illustrated in Figure 2.1, based on different characteristics of emission, transmission, and
absorption of each band.
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Figure 2.1: Electromagnetic spectrum: bands and their corresponding wavelengths.
Spotlight on the infrared band and the corresponding atmospheric transmittance window.
Figure adapted from [24].

The visible spectrum is the band of the EM spectrum that is visible to the human eye.
The visible band corresponds to a narrow range of wavelengths spanning from 380nm to
740nm. Each wavelength of the visible light band matches a particular color. In fact,
objects do not have colors, yet they have properties that indicate which wavelengths are
absorbed and which are reflected. The human vision system, much like visible sensors,
are sensitive to the reflected light wavelengths of the scene to construct an image. While
most mammals are also sensitive to visible light, many other species have the ability
to see outside the visible spectrum. Some insects can see in the ultraviolet spectrum,
which enables them to detect nectar in flowers. Also, birds can see in the ultraviolet
spectrum. In fact, they have gender-dependent patterns marked on their feathers that
are only perceptible in ultraviolet light. Other species, such as mosquitoes, bats, and
some snakes, however, can use sub-bands of the infrared spectrum for vision.

2.1.2 Infrared spectrum

Infrared imagery has been widely used mainly due to the advantages it offers over visible
imagery, notably for facial image processing. Face images in the infrared spectrum can
be acquired in any illumination condition. In addition, subcutaneous information of faces
can be extracted using the infrared spectrum. The infrared spectrum is also less sensitive
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to scattering and absorption by smoke, dust, or fog compared to reflected visible light.
According to the International Commission on Illumination [25], it is recommended to
divide the infrared spectrum into four sub-bands as shown in table 2.1:

IR sub-bands Acronym Wavelength

near IR NIR 0.75 - 1.4
short wave IR SWIR 1.4 - 3

medium wave IR MWIR 3 - 5
long wave IR LWIR 8 - 15

Table 2.1: Spectral decomposition of the infrared spectrum according to International
Commission on Illumination [25].

Each sub-band corresponds to a continuous frequency block of the solar spectrum
which are divided by absorption lines of different atmospheric gazes [26], as depicted in
figure 2.1. Most of the infrared spectrum is not usable as it is blocked by the atmosphere.
Also, a window of the infrared spectrum between MWIR and LWIR from 5µm to 8µm
has no atmospheric transmission.

Figure 2.2: Heat emission by the human body predicted by Planck’s law at 305 K [16].
The highlighted part represents the dead zone with no atmospheric infrared transmission.

According to Planck’s law, each body being in the thermal equilibrium emits radiation
in a broad spectral range. In the context of face processing, the difference between different
infrared sub-bands originates as a consequence of the human body’s heat emission, as
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represented in Figure 2.2. Most of the heat energy is emitted in the LWIR range, therefore
it is referred to as the thermal sub-band. To a lesser degree, a significant amount of heat
is also emitted in MWIR sub-band, for this reason, the term ’thermal spectrum’ can
sometimes be extended to include MWIR sub-band. LWIR and MWIR sub-bands can
be used to passively detect thermal emissions of the face without requiring an external
source of illumination. Whereas NIR and SWIR require appropriate illumination as the
facial heat emission is nearly inexistent in these sub-bands. Figure 2.3 displays face
images in the visible spectrum and in different sub-bands of infrared spectrum. NIR,
and SWIR face images seem more similar to the visible spectrum image than MWIR
and LWIR images. This is due to the fact that visible, NIR and SWIR spectra acquire
reflected radiation, whereas MWIR and LWIR acquire emitted radiations of the face.

Visible NIR SWIR MWIR LWIR

Figure 2.3: Face images acquired in different spectra. Figure reproduced from [27].

2.2 Thermal spectrum for facial image processing

The thermal image of a human face presents a unique thermal signature that can be
used for facial recognition [28], as the facial temperature distribution exhibits individual
patterns. Thermal imagery received a lot of attention in face recognition mainly due
to the fact that it relies on passive heat radiation and does not need an illumination
source. The acquisition of a scene depends on the specifications of the thermal sensor,
the emissivity of the different objects present in the scene and the temperature difference
between them. Noise equivalent temperature difference (NETD) identifies the minimum
temperature difference that is required for an object to be separated from the noise, it
means that objects with temperature difference below the NETD value will disappear in
the noise [29]. NETD is considered as the most common measure to characterize the
performance of thermal sensors. Lower values of NETD imply higher sensor performance.
Figure 2.4 displays face images acquired with sensors of different NETD values. One can
observe that the lower the NETD value is, the higher the quality of the image. However,
NETD can be measured using different techniques and under different conditions, which
makes it difficult to compare the performance of thermal sensors directly based on NETD
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values. Thermal sensors equipped with uncooled micro-bolometer focal plane arrays are
generally characterized by NETD values between 30 and 130 mK (millikelvin), whilst
sensors equipped with a cooler may have a NETD value below 20 mK. Although, cooling
devices are extremely expensive.

100mK 50mK 30mK70mK

Figure 2.4: Face images acquired with sensors of different values of NETD.

The usage of the thermal spectrum in facial image processing grants some advantages
over the visible spectrum that can overcome some of the main constraints encountered
by visible face recognition systems. However, the thermal spectrum suffers from various
challenges that originate from the fact that the heat emitted by the human face is affected
by a number of factors. The advantages and limitations of the usage of thermal face
images under real-world challenges are discussed in this section. A literature overview of
the research studies associated with each challenge is presented.

2.2.1 Illumination variation

As previously stated, thermal sensors acquire face images in a passive manner through
sensing the facial thermal emission without the need for an external source of illumination.
This property of the thermal spectrum is the main reason why it has been receiving a
lot of attention in facial image processing. The immunity of the thermal spectrum to
illumination variations tackles the major constrain confronted in visible face recognition.
Figure 2.5 shows the impact of illumination variation on visible and thermal spectra. We
can see that thermal faces can still be acquired even in total darkness.

Several studies [28,30,31,32,33,34,35,36,37] have proposed the use of the thermal
spectrum to overcome the illumination challenge. Socolinsky et al. [30] introduced a
decision-based fusion using a weighted combination of visible and thermal matching scores.
The introduced approach was evaluated in indoor and outdoor scenarios and proved
efficiency in most of the use cases but it failed under extreme illumination conditions.
Bhowmik et al. [31] proposed an optimum level of pixel fusion from visible and thermal
face images by fusing images as a weighted sum and then projected into eigenspace.
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Figure 2.5: Impact of illumination variation on the visible and the thermal spectrum.

The fused eigenfaces are classified using train Multilayer Perceptron. Arandjelovic et
al [32,33,34] debated that the optimal weights in decision level fusion are illumination
related. The authors proposed to fuse matching scores of raw appearance and filtered
appearance of the visible and the thermal spectra. The proposed approach is based
on the observation that if the best matching is achieved in the visible spectrum it is
because the illumination change between the gallery and the probe sample is minor and
more weight should be associated with the visible spectrum and vice versa. A similar
approach was introduced by Moon et al [35] where the fusion of visible and thermal
spectra is performed through representing face images by the coefficients obtained from
a wavelet decomposition. Other studies [36, 37] using wavelet-based fusion schemes were
also proposed.

2.2.2 Expression variation

While facial expression remains a significant challenge for face recognition in the visible
spectrum, the thermal spectrum seems to be less affected by facial expression changes.
Due to the reflective nature of the visible spectrum, facial expression change yields
a change in light distribution across the face resulting from varying surface normals.
This does not impact the thermal spectrum as it detects the heat emitted by the face.
Socolinsky et al. [4] have carried out a comparative study of different face recognition
approaches in visible and thermal spectra. Experiments performed under facial expression
variation showed that face recognition performance on the visible spectrum is always
inferior to the performance on the thermal spectrum. Kong et al. [38] conducted an
extensive study of multi-scale fusion of visible and thermal spectra which showed that
that thermal face recognition performed better than visible face recognition under various
facial expression conditions. Hariharan et al. [39] introduced a data level fusion scheme
that generates an image that contains information from both visible and thermal spectra.
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The approach is based on empirical mode decomposition. Face recognition experiments
proved that the thermal spectrum is not affected by facial expression variation as much
as the visible spectrum. The invariance of the thermal spectrum to facial expression
changes is the reason why emotion recognition is not being widely investigated in the
thermal spectrum.

2.2.3 Head pose variation

Changes in head pose yield to a change of light distribution across the face and the
appearance of shadows that occlude facial features in the visible spectrum. Being invariant
to light changes, the thermal spectrum is less affected by head pose variation compared
to the visible spectrum. Friedrich et al. [28] proved this by comparing image space
differences of the thermal and visible spectrum. Abidi et al. [40] studied the fusion of
visible and thermal spectrum at the data level and at the decision level as a solution for
a robust face recognition against pose variation by exploiting the thermal information.
Pop et al. [41] proposed a score based fusion of visible and thermal spectrum using PCA
feature extraction and nearest neighbor classification. The proposed approach improves
the face recognition performance reported on the visible spectrum.

Being less affected by head pose changes than visible spectrum, several studies [42,43,
44,45] have focused solely on the thermal spectrum to develop solutions of pose invariant
face recognition. Zaeri et al. [42] introduced a new approach for thermal face recognition
based on affine moment invariants technique. Face images are divided into 16 non-
overlapped components. Similarity measures of the feature vectors corresponding to the
different components are fused to obtain a final score. Experimental results have shown
that this technique has delivered robustness against head pose variation. Buddharaju et
al. [45] proposed using the physiological properties of the human face captured in the
thermal spectrum. The proposed approach is based on extracting the vascular network
of the face. To generalize the approach to different head pose variations, the vascular
network was extracted from images of faces in 5 different poses. The branching points of
the skeletonized vascular network are then matched to report face matching scores.

2.2.4 Eyeglasses challenge

Eyeglasses are opaque to the infrared spectrum in the SWIR, MWIR, and LWIR sub-
bands [16], as the eyeglasses block the emitted radiation. Contrarily, the impact of
eyeglasses on the appearance in the visible spectrum is way less significant. Figure 2.6
illustrates the impact of eyeglasses on the visible and the thermal spectrum.
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Figure 2.6: Impact of eyeglasses on the visible and the thermal spectrum.

A lot of efforts were devoted to tackling the eyeglasses challenge in thermal face
recognition. Studies conducted by Gyaourova et al [46] and Singh et al. [47] proposed a
data level fusion technique based on feature selection in visible and thermal spectrum
using a genetic algorithm. Using Haar wavelet and eigen component-based features, the
proposed fusion technique yielded to higher performance compared to pure visible or
pure thermal face matching, specifically when subjects are wearing eyeglasses. Heo et
al. [48] studied fusion techniques at data-level and decision-level, while proposing to
replace the detected eyeglasses with a generic eye template. The eyeglasses replacement
resulted in significant improvement in face recognition performance A similar solution
was proposed by Kong et al. [38] where the eyeglasses are detected and replaced by the
average eye appearance. Wong et al. [49] used the face reconstruction information from
the visible image to replace the eyeglasses patches in the thermal spectrum.

2.2.5 Presentation attacks

One of the main advantages of the thermal spectrum over the visible spectrum in facial
biometric systems is its robustness to presentation attacks. Presentation attack consists
in presenting a fake human biometric sample in an attempt to gain unauthorized access or
evade biometric recognition [50]. Thermal imagery is considered as a natural presentation
attack countermeasure, as it provides evidence of the user’s liveness through simple
acquisition. Generally, the fake artefact is characterized by thermal properties that
are entirely different from those of a human face. Figure 2.7 reveals some examples of
presentation attacks in the visible and thermal spectrum. It can be noted that simple
presentation attacks, from (a) to (d), deliver thermal prints that are practically uniform.
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Although, when a silicone mask is worn by a person it can get heated and present a
similar thermal print to a human face, as shown in Figure 2.7e, yet it delivers an average
temperature much lower than of an average human face.

Figure 2.7: Presentation attack on the visible and on the thermal spectrum.(a) plain
printed paper (b) wrapped printed paper (c) tablet (d) laptop (e) silicone mask (a sample
from CSMAD database [51]).

Several multispectral databases [51,52, 53] were proposed to study the robustness of
different spectra against presentation attacks. Bhattacharjee et al. [51,54] proposed to
simply use the mean brightness intensity of the thermal face region as a presentation
attack detection score. Despite its simplicity, the proposed approach is proved to be
efficient yielding to high detection accuracies. Agarwal et al. [53] introduced a new
multispectral database of presentation attack and studied the robustness of visible, NIR,
and thermal spectra against these attacks. By evaluating several presentation attack
detection approaches, the thermal spectrum yielded to the highest performance proving
to be the most robust compared to the other spectra. George et al. [52] proposed a
multichannel convolutional neural network using a joint representation from multiple
channels: depth maps, visible, NIR and thermal spectrum, which improved highly the
classification accuracy of attacks from bona fides on account of the robustness of thermal
spectrum to presentation attacks.

2.2.6 Disguise and cosmetic makeup

While images in the visible spectrum can be easily altered by disguise and/or cosmetic
makeup, the thermal spectrum is less affected by these alterations due to the acquisition
of thermal properties.

Disguise is generally acted using various artificial accessories that are marked by a
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different thermal signature than of a human face which can be easily detected on thermal
images [55]. Dhamecha et al. [56] proposed a new database of face disguise in the visible
and thermal spectrum. Samples from the database are presented in Figure 2.8. The
authors also introduced a patch-based classifier for disguise detection. The proposed
approach uses intensity and texture encoders to classify face patches in the visible and
thermal spectrum as biometric or non-biometric. The non-biometric patches are discarded
and local binary pattern (LBP) based face recognition is performed on the biometric
patches.

Figure 2.8: Samples of face disguise extracted from I2BVSD database [56] in visible and
on thermal spectrum.

Unlike disguise that can be easily perceived in the thermal spectrum, cosmetic makeup
hardly affects the thermal signature of a face, as can be seen in Figure 2.9. Therefore,
face recognition can still be performed in the thermal spectrum even in the presence
of facial makeup changes. Short et al. [57] studied the impact of the cosmetic makeup
of different materials on visible and on the thermal spectrum. The authors conducted
face recognition experiments in both spectra and proved that the thermal spectrum has
yielded to higher recognition performances than the visible spectrum.

Figure 2.9: Impact of cosmetic makeup on the visible and thermal spectrum. Figure
extracted from [57].
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2.2.7 Facial plastic surgery

It is acknowledged that facial plastic surgeries can alter the performance of face biometric
systems operating in the visible spectrum. Plastic surgery is generally used for correcting
facial feature irregularities or improving facial appearance. This includes adding or
subtracting skin tissues, adding silicone, redistribute fat, etc. All these procedures
require surgical incisions that cause alteration of blood vessel flow. These alterations
are detectable in the thermal spectrum as cold spots [55]. Figure 2.10 shows a thermal
image of a leg where a cold spot appears indicating a surgical incision.

Figure 2.10: Thermal image showing pathological veins due to surgical incision. Figure
extracted from [58].

2.2.8 Additional remarks

In addition to all the aforementioned advantages that the thermal spectrum grants over
the visible spectrum, the thermal spectrum can differentiate monozygotic twins, while
their appearance in the visible spectrum is nearly identical. Prokoski et al. [59] carried
out a qualitative assessment of similarity in visible and thermal spectrum using a limited
number of samples acquired from monozygotic twins. The difference between the twins
detected in the thermal spectrum is traced back to the complexity of the network of
blood vessels which provides a vascular pattern that is unique to each person including
monozygotic twins.

While its listed advantages are numerous, the thermal spectrum still suffers from
various drawbacks, other than the eyeglasses problem. Thermal face images depend
strongly on the heat pattern emitted by the face, however, this emitted heat can be affected
by a number of factors, such as ambient temperature, physical exercise, postprandial
state, illness, etc; as highlighted in [16]. Consumption of food, alcohol, and caffeine may
also alter the thermal characteristics. Some of these variables produce global changes
to the face. But other variables affect the thermal appearance in a local manner, like
blushing or having a local infected area. This high sensitivity of the thermal images to
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several factors makes extracting discriminative features a difficult task.

Until very recently, thermal technology used to provide extremely expensive sensors
with very low resolution. However these recent years, thermal technology is evolving
rapidly offering competitive prices and higher quality sensors.

2.3 Summary

This chapter defines some background fundamentals of thermal imagery and the moti-
vation behind its usage in facial image processing. In addition, a literature overview of
facial image processing in the thermal spectrum is presented for various unconstrained
scenarios.
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Visible and thermal paired face
database

Although thermal face recognition has recently grown as an active area of research, it
still suffers from a shortage of available thermal databases designed for training and
evaluation of facial image processing that limits its exploration. In an attempt to exploit
the information complementarity provided by visible and thermal spectrum, a novel dual
face database, that is acquired simultaneously in the visible and thermal spectrum, is
introduced. The proposed database includes numerous facial variation such as expression,
head pose, occlusion, and illumination variations as to replicate the challenging scenarios
encountered by face biometric systems. The remainder of the work presented in this
dissertation is based on the database introduced in this chapter.

In this chapter, we introduce the first contribution of the work presented in this
dissertation. Section 3.1 presents an overview of the existing public databases providing
visible and thermal face images. Then, the proposed database that addresses the
lack of variability in the existing ones is introduced in Section 3.2 aiming to develop
face recognition systems robust against real-world challenges. Section 3.3 presents a
preliminary study conducted to assess the performance of the visible and the thermal
spectrum under each variation. Following, a comparative study of different levels of
fusion of the visible and thermal spectrum is conducted to conclude the saliency of each
spectrum under different variations. Finally, a summary of the chapter is presented in
Section 3.4
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3.1 Overview of the existing visible and thermal face
databases

Currently, there are numerous public face databases acquired in the visible spectrum
covering all the possible variations [60]. However, interest in utilizing thermal face
images has grown only recently and thus only a few databases have been provided,
particularly databases that involve simultaneously acquired images in the visible and
thermal spectrum. We present in the following the few public databases containing visible
face images and their thermal counterpart. Table 3.1 summarizes the key descriptors of
the presented databases.

3.1.1 EQUINOX

The "human identification at a distance" [61], collected by Equinox Corp., is the most used
database for evaluating face recognition algorithms based on thermal spectrum. The data
was collected under 3 different lighting conditions (frontal, lateral right, and lateral left),
using a system composed of a visible CCD array and a LWIR microbolometer, capable
of capturing simultaneous co-registered videos. During the acquisition, the subjects were
asked to pronounce some vowels, and then to act out some expressions (smile, frowning,
and surprised).

3.1.2 UND-X1

"UND collection X1 " [62, 63, 64] is a thermal and visible facial database collected by the
University of Notre Dame, using a Merlin uncooled LWIR sensor and a high-resolution
visible color camera. The data was acquired, in multiple sessions, under only two lighting
conditions. For each illumination, two images were taken (neutral face and smiling).

3.1.3 USTC-NVIE

"The natural visible and infrared facial expression database" [65] was collected by the
University of Science and Technology of China, using a DZ-GX25M visible camera and a
SAT-HY6850 thermal camera. Each subject was asked to act out 6 different expressions
and then was exposed to situations provoking these expressions naturally and capture
additional 6 different samples.
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3.1.4 IRIS

IRIS thermal visible face database [66] is a public database collected by Imaging, Robotics
& Intelligent Systems Lab. The data was acquired using a Panasonic WV-CP234 visible
camera and a Raytheon Palm-IR-Pro thermal camera of 7-14µm spectral range. The
database contains face images from 32 subjects asked to perform three different expressions.
Five illumination conditions were considered. The two cameras are placed on a mechanized
setup in a way that 11 images are captured from different viewing angles for each
illumination and expression variation.

3.1.5 CARL

Carl Dataset [67, 68] is a public database collected by the Polytechnical University of
Catalonia. The database contains face images from 41 different subjects in the near-
infrared, thermal, and visible spectrum. The data is acquired using a CMOS image
sensor for the visible spectrum and TESTO 880-3 thermal camera with a spectral range
of 8-14µm. Carl Dataset contains images from 41 subjects using 3 different illumination
setups.

Table 3.1 sums up the key descriptors of the aforementioned databases.

Database Thermal resolution #subjects/#images
# facial variations

Illumination Expression Head pose Occlusion

Equinox [61] 320×240 90/5000 pairs 3 3 1 1

UND-X1 [62,63,64] 312×239 32/2292 pairs 2 2 1 0

USTC-NVIE [65] 320×240 103/3230 pairs 1 2×6 1 0

IRIS [66] 320×240 30/2816 pairs 5 3 11 0

Carl [67,68] 160×120 41/2460 pairs 3 1 1 0

Table 3.1: Existing face databases acquired in both visible and thermal spectra.

We should point out the fact that these databases were focused on different aspects of
studies. The EQUINOX database [61] was collected in a single session, taking into account
3 expression variations and 3 light conditions. UND-X1 database [62,63,64] focused on
studying the time-lapse impact on thermal face recognition performance, the data was
acquired in multiple sessions under two lighting conditions only, with neutral and smiling
expressions. Whereas NVIE database [65] was acquired mainly to investigate the impact
of the thermal spectrum on expression recognition, thus the only variation considered
was facial expression. The IRIS database [66] was designed to cover all the head pose
variations. The CARL database [67, 68] was focused on studying multispectral face
recognition under 3 different illumination conditions. UND-X1, USTC-NVIE, IRIS, and
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CARL databases were collected using different devices to acquire face images in visible
and thermal spectra separately which does not guarantee the simultaneous acquisition
resulting in not having the same face image in the two spectra. However, EQUINOX
database [61] was collected using a sensor capable of capturing simultaneous videos in
both domains. Among all the reviewed databases, the IRIS database seems to cover the
widest range of facial variations. However, the visible and thermal images are taken from
different viewing angles. Lastly, although occlusion variations are still a challenging factor
for face recognition algorithms, none of the databases have considered these variations.

3.2 Visible and thermal paired face database

The collection of a new database of visible face images and their thermal counterpart is
motivated by the limited number of the public face databases providing paired images
acquired simultaneously, and the lack of facial variations considered. In this section, we
present the sensor used in the database collection, the acquisition setup, and a description
of the collection protocol.

3.2.1 Dual Visible and thermal camera - FLIR Duo R

FLIR systems [69], the acronym for forward-looking infrared, is the world’s largest
company specializing in thermal cameras and sensors production. A thermal imaging
camera is a non-invasive instrument that scans and visualizes the temperature distribution
of surfaces of an object rapidly and accurately.

The sensor used in collecting the database, presented in this section, is a newly (at
the time of collection of the database) developed dual-sensor thermal camera FLIR Duo
R by FLIR Systems, featured in Figure 3.1. This camera is designed for unmanned
aerial systems (UAS), but it is well suited for simultaneously capturing images and
videos in both visible and thermal spectrum. The camera can be easily configured and
operated using the FLIR UAS mobile application which allows setting color palettes,
image optimization features, and many other parameters shown in Figure 3.1. The visible
sensor is a CCD sensor with a pixel resolution of 1920×1080. The thermal sensor of
this camera is an uncooled Vanadium Oxide (VoX) microbolometer and has a spectral
response range of 7.5 - 13.5µm with a pixel resolution of 160×120 and a noise equivalent
temperature difference NETD<100mK. We acknowledge that the thermal resolution of
the camera is considerably low. However, Mostafa et al. [70] has proven that high face
recognition rates can be achieved with low resolution 64×64 pixels thermal face images,
making of the camera’s resolution a minor drawback. Moreover, an updated version of
the camera with 640×512 resolution has been released later on, and a high-resolution
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Figure 3.1: Flir Duo R camera and FLIR UAS mobile app

version of the database is currently being collected by this author of this dissertation,
which will be shortly made available to the public.

3.2.2 Acquisition setup

The acquisition setup, illustrated in Figure 3.2, included a white background behind
a chair at a fixed distance of 1m to the camera. The scene was illuminated with a
three-point lighting kit, including a rim light, key light, and fill light, placed to limit
shadows. The ambient temperature of the room was set to 25°C. The room windows were
covered with cardboard to achieve very low illumination conditions when illumination
variations are acquired.

3.2.3 The database collection protocol

50 subjects of different age, sex, and ethnicity volunteered for the collection of the
database. The demographic characteristics of our proposed database are presented in
Figure 3.3.

Before the acquisition process, volunteers were asked to fill and sign consent and
metadata forms approved by the CNIL "Commission nationale de l’informatique et des
libertés" [71]. During the data collection, the camera was set to capture a shot every
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Fluorescent light

Acquisition 
sensor

Subject’s spot

Figure 3.2: The database acquisition setup.

second to limit acquisition errors. Each subject was asked to perform several facial
expressions, to change the head pose, to wear some items like sunglasses and cap, and
finally, the light was varied while the subject stayed in a natural state.

The database includes 21 face images per subject with different facial variations,
resulting in a total of 4200 images. The considered variations are shown in Figure 3.4
and described as follow:

• Expression: 7 pairs captured with standard illumination, frontal pose with different
face expression: neutral, happy, angry, sad, surprised, blinking, yawning.

• Head pose: 4 pairs captured with standard illumination, neutral expression with
different head poses: up, down, right at 30°, left at 30°.

• Occlusion: 5 pairs captured with standard illumination, frontal pose, neutral
expression and varying occlusions: eyeglasses, sunglasses, cap, mouth occluded by
hand, eye occluded by hand.

• Illumination: 5 pairs captured with a frontal pose, neutral expression, and different
illuminations: ambient light, rim light, key light, fill light, all lights on, all lights
off.
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Figure 3.3: Demographics of VIS-TH database: (a) gender, (b) age, and (c) ethnicity.

Figure 3.4: Illustration of visible and thermal images for various facial variations.

3.2.4 Access and usage conditions

The VIS-TH database proposed in this chapter is freely distributed upon request for
standardization and academic research purposes, according to the European General
Data Protection Regulation GDPR∗. The database information and license request can
be accessed at http://vis-th.eurecom.fr/.

∗General Data Protection Regulation https://gdpr-info.eu/
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3.3 Preliminary evaluation

The aim of this section is to present a preliminary evaluation to assess the applicability
of the proposed database. A comparison of the thermal and visible spectrum against
various facial variations introduced in our database is performed. This study will provide
an efficient comparison of the performance of visible and thermal spectrum in the face
recognition application, thanks to the simultaneous acquisition of the data that allowed
to eliminate all other factors that may bias the comparison. Finally, a comparative study
of different levels of fusion of visible and thermal spectra is carried out.

3.3.1 Evaluation protocol

Visible images were subsampled into 160×120 pixels. Faces in both the visible and
thermal spectrum were detected and cropped. Face images were then normalized. Two
benchmark approaches for face recognition were selected for our preliminary evaluation:

Eigenfaces [72] is a holistic approach based on principal component analysis (PCA).
The idea of using principal components to represent human faces was developed by
Sirovich and Kirby [73]. Eigenfaces approach is still considered as a baseline comparison
method to demonstrate the minimum expected performance of a system.

Fisherfaces [74] is based on both principal component analysis (PCA) and linear
discriminant analysis (LDA). Fisherfaces algorithm has achieved high performances on
visible face images. Moreover, Socolinsky et al. [4] have compared holistic face recognition
algorithms and proved that Fisherfaces achieved the highest recognition rate on thermal
face images.

Performing a cross-fold validation, the data has to be split randomly into two subsets,
one will be selected as a training set and the other as a testing set. Reiterating this
process and returning the average performance reports significant results. However, since
our aim is to study the impact of different variations on face recognition performance
for visible and thermal face images, the database was split into 4 subsets, with each
subset associated with a variation: illumination, expression, pose, and occlusion. In
order to test the face recognition performance for each variation, we have repeated the
experiment considering, at each iteration, a different variation subset as training. For
instance, to assess the face recognition performance on visible and on thermal spectrum
under expression variation, the testing set, in this case, is the set containing images
representing all the expression variations and the experiment will be repeated considering
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a different training set at each iteration (illumination, pose, and occlusion).

3.3.2 Face recognition in thermal and in visible spectrum

Table 3.2 and Table 3.3 illustrate the Rank-1 recognition rates of Eigenfaces (PCA)
and Fisherfaces (LDA) algorithms on each spectrum. In addition, cumulative match
characteristic (CMC) curves [75] are presented for visible and thermal spectra under
different variations. A CMC curve shows various probabilities of recognizing a person
depending on how similar their biometric features are to that of other people. Figure 3.5
shows the overall CMC curves for Eigenfaces and Fisherfaces, representing results
aggregated over the visible and thermal spectrum. Each plot of Figure 3.5 represent
CMC curves under different facial variation.

TEST
Illumination Expression

VIS TH VIS TH
PCA LDA PCA LDA PCA LDA PCA LDA

T
R
A
I
N

Illumination N/A N/A N/A N/A 0.703 0.814 0.606 0.96
Expression 0.857 0.733 0.765 0.973 N/A N/A N/A N/A
Pose 0.854 0.66 0.708 0.893 0.617 0.914 0.446 0.891
Occlusion 0.891 0.793 0.725 0.973 0.69 0.957 0.63 0.962
Average 0.867 0.728 0.733 0.946 0.67 0.895 0.56 0.937

Table 3.2: Rank-1 recognition under expression and illumination variations.

TEST
Pose Occlusion

VIS TH VIS TH
PCA LDA PCA LDA PCA LDA PCA LDA

T
R
A
I
N

Illumination 0.352 0.312 0.284 0.365 0.706 0.69 0.45 0.59
Expression 0.296 0.476 0 .268 0.417 0.667 0.83 0.503 0.53
Pose N/A N/A N/A N/A 0.627 0.633 0.36 0.42
Occlusion 0.28 0.38 0.268 0.428 N/A N/A N/A N/A
Average 0.309 0.389 0.273 0.382 0.667 0.719 0.436 0.513

Table 3.3: Rank-1 recognition under pose and occlusion variations.

As can be seen, the thermal spectrum outperforms the visible spectrum when tested
on the illumination variation. This confirms the statement that the thermal spectrum
does not need an external source of illumination to acquire images while the visible
spectrum is highly sensitive to light changes. Similarly, when tested on expression
variation, we note that face recognition performance is particularly higher for the thermal
spectrum compared to the visible spectrum. We believe that this outcome is due to the
reflective nature of the visible spectrum that makes it highly sensitive to light changes
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(a) Illumination variation (b) Expression variation

(c) Head pose variation (d) Occlusion variation

Figure 3.5: Cumulative Match Characteristic curves for various collection scenarios.

unlike the thermal spectrum since changes in facial expressions imply changes in the
distribution of the light across the face surface. Although, when it comes to head pose
variations, we notice that both visible and thermal spectrum perform almost equally at
Rank-1 recognition. Furthermore, the performance obtained by the visible spectrum is
significantly higher than the performance of the thermal spectrum for occlusion variation.
This is due to some limitations of the thermal spectrum. For example, the eyeglasses are
opaque to the thermal wavelengths since they block the heat emitted by the face region
covered by the glasses’ frame and lenses, while on the visible spectrum we can see the eye
details thanks to visible light transmittance in the glass. Comparing the face recognition
performance obtained using the two benchmark face recognition algorithms, we observe
that the performance of the Fisherfaces approach on the thermal spectrum is significantly
higher than the performance of the Eigenfaces method, exclusively for illumination
variation (Figure 3.5a) and to a lower degree for expression variations (Figure 3.5b).
However, this increase in performance is not observed for the visible spectrum. This is
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justified by the fact that intra-class variability in the thermal spectrum is considerably
smaller than intra-class variability in the visible spectrum. Light distribution across
the face changes according to the illumination conditions and to some extent to the
expression conditions, leading to high variability in visible images but not in thermal
images as the thermal spectrum is immune to light changes.

3.3.3 Comparative study of different levels of fusion

In this section, we present early experiments in sensor-level, feature-level, and score-level
fusion to study the impact of different levels of fusion on face recognition rate on the
proposed database and to infer the saliency of each spectrum against each variation.

Preprocessing

One of the main challenges of sensor-level fusion is that it requires high precision in
image registration. The data acquired with the new sensor FLIR Duo R presents a slight
shift. Visible and thermal face images were co-registered using an edge-based image
registration approach inspired from [76].

Schemes of different levels of fusion

In the sensor-level fusion approach, pixels values of visible and thermal images are
weighted and summed to generate fused images. Face recognition experiments are then
performed on the fused face images. Figure 3.6 illustrates a fused image 3.6c resulting
from the average summation of Figure 3.6a and Figure 3.6b. We can observe that the
fused image presents the properties of both visible and thermal spectra.

(a) Visible image (b) Thermal image (c) Fused image

Figure 3.6: Sensor-level fusion of the visible and thermal spectrum.

For feature-level fusion, we compute separately the face subspace from the training set
for each of the spectra. For the testing set, the projection of the gallery and probe faces
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are done onto the corresponding face subspace. Visible features and thermal features are
then fused through weighted summation.

Whereas for score-level fusion, face subspaces are computed separately for the visible
images and its thermal counterpart. Scores, for the visible and the thermal spectra,
are then computed between the gallery and the probe faces. Then, these scores are
normalized, using min-max normalization. Finally, the scores are fused using a weighted
summation.

For the three proposed schemes of fusion, we have varied the weight associated with
the visible spectrum as well as the thermal spectrum, as illustrated in Equation 3.1 where
fused, visible and thermal refer to either the image, the face feature or the matching
score and computed rank-1 recognition for Eigenfaces and Fisherfaces algorithms for
each weight.

fused = Wvisible × visible+ (1−Wthermal)× thermal (3.1)

Experimental results

To study the impact of different levels of fusion on face recognition performance for each
spectrum, we present, in Figure 3.7, the variation of recognition rate according to the
weight associated with the visible and thermal spectrum when tested under different
facial variations.

For illumination variation, it is already proved that face recognition systems based
on the thermal spectrum perform better than the system based on the visible spectrum.
However, in particular, for sensor-level fusion, we have perceived when we have added
the visible information the recognition rate has relatively increased and that is due to
the textural information that the visible spectrum provides. Although after a certain
threshold, the more visible information we consider, the more the performance decreases.
This observation can be justified by the fact that the visible spectrum is highly sensitive
to illumination changes. Figure 3.7b illustrates the impact of fusion levels on recogni-
tion rate under expression variation. We observe that score-level fusion provides the
highest performance rates. However, the performance has hardly increased compared
to the performance of thermal-based face recognition. Considering now the recognition
performance when tested under head pose variation featured in Figure 3.7c, it is noted
that the performance has drastically increased when the two spectra were uniformly
fused. Particularly, the highest performance rates were registered when sensor fusion
was applied. We believe this improvement is due to the combination in the image level
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(a) Illumination variation (b) Expression variation

(c) Head pose variation (d) Occlusion variation

Figure 3.7: Impact of different fusion levels on the rank-1 recognition rate varying the
weight associated to each spectrum.

of the textural information of the visible spectrum and the invariance of the thermal
spectrum to light distribution across the face. Whereas for occlusion variation, a reverse
behaviour is observed when compared to illumination variation. The poor performance
of the thermal spectrum when tested under occlusion variation is due to the fact that
certain objects, i.e occlusions, block the heat emission.

Overall, when a spectrum performs considerably higher than the other, we did not
obtain significant improvement in the performance of face recognition when applying
fusion. Also, it is perceptible that score-level fusion provides better results than sensor-
level fusion. This observation can be justified by the fact that fusing images from different
spectra can result in altering the information provided by each, in particular when one
spectrum fails under specific conditions, as it is the case of low illumination for visible
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spectrum and eyeglasses for thermal spectrum.

3.4 Summary

A new database of face images acquired simultaneously in thermal and visible spectra,
aiming to cover a wider range of facial variations compliant with hands-on scenarios, is
introduced in this chapter. The proposed database is publicly available∗ upon request
according to the GDPR regulation. A preliminary evaluation is presented to assess the
applicability of the proposed database to the face recognition task and to determine
the performance of state-of-the-art benchmark face recognition approaches for both
visible and thermal spectrum. In addition, a comparative study of different fusion levels
was conducted to gauge the saliency of each spectrum in improving face recognition
performance.

∗VIS-TH database: http://vis-th.eurecom.fr/
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Chapter 4

Cross-spectrum face recognition
based on thermal-to-visible image
synthesis

Face synthesis from thermal to visible spectrum is fundamental to perform cross-spectrum
face recognition as it simplifies the integration of thermal technology in already deployed
face recognition systems and enables manual face verification. In this chapter, a new
solution based on cascaded refinement networks is proposed. This method generates
synthesized visible images of high visual quality without requiring large amounts of
training data. By employing a contextual loss function during training, the proposed
network is inherently scale and rotation invariant. We discuss the visual perception,
followed by a qualitative evaluation of the synthesized visible faces in comparison with
recent works. We also provide an evaluation in terms of cross-spectrum face recognition,
where the synthesized faces are compared against a gallery in visible spectrum using two
state-of-the-art deep learning-based face recognition algorithms. The evaluation results
show the efficiency of the proposed approach and pave the way to its exploration for
further facial image processing tasks.

The remainder of this chapter is organized as follows. Motivations that drove to
this work are presented in Section 4.1. The proposed approach for thermal-to-visible
image synthesis is introduced in Section 4.2. Section 4.4 details the adopted experimental
setup. A qualitative and quantitative assessment of the synthesized visible images is
presented in Section 4.5. Following, an evaluation of the proposed approach in terms of
cross-spectrum face recognition is reported in Section 4.6. The chapter is summarized in
Section 4.7.
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4.1 Context and motivation

While thermal face processing [15, 45, 77, 78, 79] has evolved during the last two decades,
the deployment of thermal technology remains a step behind compared to technologies
deployed in the visible light spectrum. The motivation behind the work presented in
this chapter relates to the need for a prompt and straightforward integration of thermal
sensors in already deployed face recognition systems. However, enrollment data of these
existing systems are commonly acquired exclusively in the visible light spectrum. The
recollection of enrollment samples in the thermal spectrum would be costly in terms of
time, efforts, and financial and storage resources, and is thus an unrealistic alternative to
thermal face recognition deployment. Many studies [27,80,81,82,83,84,85] have attempted
to match thermal face images against visible face enrollment samples. Considering the
large difference between the visible and the thermal spectra, several efforts have been
made to try to overcome this gap. These can be categorized into three aspects: latent
subspace, domain invariant features and, image synthesis.

Latent subspace approaches aim to project faces acquired in both spectra into one
common underlying subspace, in which the relevance of thermal-to-visible data can
be directly measured. Choi et al. [82] [27] used Partial Least Squares Discriminant
Analysis (PLS-DA) to learn the mapping between thermal and visible face images. Safraz
et al. [80] used a multilayer fully-connected feed-forward neural network to learn the
non-linear mapping between the two modalities over the training set while preserving the
identity information. The second approach to perform cross-spectrum face recognition
seeks to extract domain invariant features, that are only related to face identity. Chen
et al. [83] introduced a thermal-to-visible matching framework based on hidden factor
analysis used to extract the identity features of a person across different spectra. Image
synthesis approaches aim to convert a face image from one spectrum to another, so that
face matching can be carried out in the same domain. In this work, we focus on an
image synthesis strategy for cross-spectrum face recognition, consisting of generating
visible images from thermal captures that will be matched against a gallery of visible
faces. This approach bridges the spectrum gap at the image preprocessing, as illustrated
in Figure 4.1, without requiring modification on inner modules of the face recognition
system. Opting for this strategy is essential to enabling the integration of thermal face
data in existing face recognition systems, as well as manual face verification by human
examiners.
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Figure 4.1: Illustration of image synthesis based cross-spectrum thermal-to-visible face
recognition. In this case, the integration of thermal technology in already deployed face
recognition systems only requires the addition of a thermal-to-visible image synthesis
module.

4.2 Literature overview

The first attempts to investigate face synthesis from thermal to visible spectrum were
conducted by Li et al. [81]. Their work presented a learning-based framework that takes
advantage of the local linearity in the spatial domain of the image as well as in the image
manifolds. Then, they apply Markov random fields to organize the image patches and
improve the estimated visible face images. Dou et al. [86] used Canonical Correlation
Analysis (CCA) to extract the features in order to find one-to-one mapping between
thermal and visible faces. The relationship between the two feature spaces in which the
visible features are inferred from the corresponding thermal features is then learnt using
locally linear regression. Finally, locally linear embedding is utilized to reconstruct the
visible face from the converted thermal features.

In the wake of the recent advances in deep learning, several works were based on
Generative Adversarial Neural networks (GAN) to synthesize visible images not only
from thermal inputs [87, 88], but also from near-infrared [89, 90], and polarimetric
data [84, 91]. GANs, first introduced by I. Goodefellow in [92], can learn to generate
from any distribution of data through a contest of two neural networks: a generator
and a discriminator. The generator aims to maximize the probability of making the
discriminator classify its output as real. While the discriminator pushes the generator to
generate more realistic data.

Different models can also be used for similar conversion. For example, Deep Con-
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volutional Generative Adversarial Network (DCGAN) [93] and Boundary Equilibrium
Generative Adversarial Networks (BEGAN) [94]. DCGAN introduced the Convolution
Neural Network (CNN) into the discriminator and the generator. BEGAN introduced
an equilibrium factor that controls the model training by balancing the discriminator
and generator. These GAN models significantly improved the training stability, but they
did not improve the generated image quality. However, and notwithstanding the more
complex resulting topologies, some GAN-based approaches such as Cycle-Consistent
Adversarial Networks (CycleGAN) [95] and Image-to-Image Translation with Condi-
tional Adversarial Nets (Pix2Pix) [96] succeeded at generating higher resolution images.
CycleGAN consists of four neural networks (two generators and two discriminators).
Training such a big model is computationally costly and requires large databases, that
are unavailable for an application like the one dealt with in this chapter, to achieve
satisfactory results.

Zhang et al. [84] considered synthesizing colored faces from thermal images with
various head poses and occlusion with eyeglasses. This work used Conditional GANs
inspired from the Pix2Pix system [96], but coupled with a closed-set face recognition
loss that led to preserve the face identity information. A cross-spectrum face recognition
evaluation is performed, using the pre-trained MatConvNet VGG-based model [97],
and reported a performance improvement of 14.88% compared to the Pix2Pix [96]
system’s reported performance. A recent work by Wang et al. [88] derived from the
CycleGAN model [95] incorporated a facial landmark detector loss that depicts face
identity preserving features. This system was evaluated using a FaceNet model [98]
pre-trained on publicly available visible datasets, and improved cross-spectrum face
recognition performance by 3% compared to the original CycleGAN system. However,
this work is different from our framework in that its aim is to generate visible face images
in grayscale, and it also discarded face generation under challenging conditions such as
head pose and occlusion.

4.3 Thermal-to-visible image synthesis

To generate images from the thermal to the visible spectrum, we propose to base our
approach on cascaded refinement networks (CRNs) [21]. We chose the CRN as the basic
block for our image synthesis as it considers multi-scale information and is based on
training a limited number of parameters. This allows for a higher resolution generation
and less data size dependency in comparison to solutions based on GANs. Chen at al. [21]
have adopted pixel-to-pixel loss, perceptual loss [99], to train the CRN model. We, on
the other hand, used contextual loss [100], which compares regions of images based on
semantic meaning. In this section, we first present the CRN network architecture. Then,
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we introduce the contextual loss function.

4.3.1 Cascaded refinement network

Cascaded refinement network was first presented in [21] to synthesize photographic images
from semantic layouts. The presented architecture scales seamlessly to high-resolution
images, obtaining 2-mega pixels photo-realistic images from 2D semantic label maps.
The challenge addressed in [21] lies in the attempt to generate detailed photographic
images from simple semantic label maps. Thermal-to-visible image synthesis can be seen
as a similar problem to the one dealt with in [21], as our objective is to generate highly
informative images in the visible spectrum from a less informative domain as the thermal
spectrum since it lacks texture and color information.

CRN is a feed-forward convolutional neural network that consists of inter-connected
refinement modules. The first module considers the lowest resolution space (4×4 in our
case) and takes as input the thermal image downsampled to 4×4. A feature map is
generated by the first module and then upscaled using a simple bilinear upsampling. The
next module receives as input the upscaled feature map concatenated with the thermal
image downsampled to the corresponding resolution. The image resolution is duplicated
in the successive modules until the last module (128x128 in our case), matching the
target image resolution. An illustration of the image synthesis approach using CRN is
shown in Figure 4.2. The input thermal images are processed at different scales and
fed into the next level in the cascade along with the thermal image at the next scale.
Finally, the targeted image (visible in this case) is synthesized. Figure 4.3 portrays a
single refinement module. Each refinement module consists of only three layers, input,
intermediate, and output layer, and handles a given resolution. The global structure
of the visible face is generated at low resolutions while local details are progressively
refined.
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Figure 4.2: The CRN-based multi-scale approach to transform the thermal image into a
visible image.
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Figure 4.3: Illustration of the refinement module. As an input, the refinement module
gets the feature map generated by the previous module concatenated with the thermal
image downscaled at the corresponding resolution wi × hi × c.

4.3.2 Contextual loss

To control the training of our CRN network, we used the contextual loss function [100].
This choice is based on our need for: a) a loss function that is robust to not well aligned
(as in our use-case where input face images are not uniformly aligned), and b) neglect
outliers at the pixel level (in comparison to pixel-level loss [96, 101]). Gramm loss [102]
can satisfy the two aforementioned conditions, however, unlike in the contextual loss, it
does not constrain the content of the generated image as it describes the image globally.

The contextual loss function aims to compare regions with similar semantic details
while preserving the context of the entire image. Contextual loss is based on a contextual
similarity measure. Two images X and Y are considered contextually similar if their
corresponding sets of features are similar. Figure 4.4 presents a simplified illustration of
the idea behind measuring contextual similarity. The feature yj is contextually similar
to feature xi if the distance between the two features is particularly small compared to
the rest of the features in image X. This problem can be posed as the nearest neighbor
search in image X for each feature yj . Put differently, the contextual similarity is high
when there is one-to-one matching of feature sets, while it is low when for a feature yj
it exists a set of features xi that are almost equally similar to yj . Accordingly, features
xi and yj are contextually similar if dij � dkj , while ∀k 6= i and dij denotes the Cosine
distance between features xi and yj . To highlight the similarity of features xi and yj in
comparison to the other features xk, distances are normalized as follow:

d̃ij = dij
minkdkj + ε

(4.1)

where ε = 1e− 5. Distances are converted into similarity as:
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wij = e

(
1− ˜dij

h

)
(4.2)

where h > 0 denotes the bandwidth parameter. Normalization of the contextual
similarity is then applied so that it becomes robust to scale variation:

CXij = wij∑
k wkj

(4.3)

Finally, the contextual similarity between images X and Y , given N feature points, is
formulated as:

CX(X,Y ) = 1
N

∑
i

max
j
CXij (4.4)

Reference image X Processed image Y Feature space
x

i
y

i

Figure 4.4: Illustration of contextual similarity. The patches of image Y are compared
against all patches of image X at high dimensional space. The feature patch xi in image
X that corresponds to the feature patch yj in image Y is presented at a closer distance in
feature space compared to the other features from image X. This means the contextual
similarity between the two features, linked with the green arrow, is higher than the
contextual similarity between the rest of the sets of features, linked with the blue arrows.

The loss function of thermal-to-visible image synthesis should be able to transform
the image from thermal to visible spectrum while preserving the facial attributes. Our
loss function can then be modeled as a combination of two losses: style loss and content
loss, as defined by Gatys et. al [102]. The style loss is computed between the synthesized
visible image and the ground truth visible image. Minimizing the style loss manages
to generate artificial images with the same properties as the target visible image. The
content loss is computed between the input thermal image and the synthesized visible
image. The content loss aims at preserving details of facial attributes. Using contextual
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loss allows to tolerate some local deformations that are required to perform the thermal-
to-visible style transferring. Both losses were calculated between image embeddings
extracted by a pre-trained VGG19 [103] network trained on the ImageNet database [104].
The total loss is calculated as given in [100] and formulated as:

LCX(ITH , IV IS , G) =λ1(− log(CX(Φls(G(ITH)),Φls(IV IS))))+

λ2(− log(CX(Φlc(G(ITH)),Φlc(ITH)))),
(4.5)

where ITH , IV IS , and G are the input thermal image, reference visible image, and
the generator (i.e. thermal-to-visible image synthesis module) respectively. CX is the
rotation and scale-invariant contextual similarity [100]. Φ is a perceptual network, VGG19
in our work. Φlc(x), Φls(x) are the embeddings vectors extracted from the image x
at layer lc and ls of the perceptual network respectively. Here lc is the conv4_2 layer
representing the content layer and ls is the conv3_2 and conv4_2 layers representing the
style layers, as motivated in [102]. Feature sets are considered as 5×5 patches extracted
with stride of 2 from the content and style layers.

4.4 Experimental setup

In this section, we present the preprocessing steps we applied to the database used for
the development and the evaluation of our proposed solution. Then, we introduce our
implementation details set to perform thermal-to-visible image synthesis. Finally, we
present the baselines models of image synthesis to which our approach is compared.

4.4.1 Database preprocessing

We used the VIS-TH face database [105], presented in chapter 3, for the development and
the evaluation of our solution. As stated, the pixel resolution of face images in the visible
spectrum is 1920×1080 pixels and in the thermal spectrum is 160×120 pixels. Images,
from both visible and thermal spectrum, were normalized and sampled to 128 × 128.
Enabling an evaluation of our solution in hands-on scenarios, and considering that face
alignment in the thermal spectrum still remains a challenge itself, the face images were
not aligned, thus they contained slight variable shifts.

4.4.2 Implementation details

In our implementation, the training was run for 40 epochs, batch size of one, and 1e-4
learning rate. The weights assigned to each term of the loss function are set to λ1 = 0.01
and λ2 = 0.99 by checking the resulting synthesized image visually. Moreover, the pairs of
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input thermal image and reference visible images are of identical faces that are acquired
simultaneously, and thus the loss weighted by λ2 maintains the structural details of the
source image.

Face images from 45 subjects, except for the ones acquired in total darkness, were
used for training the face synthesis network. The thermal face images from the remaining
5 subjects were fed to the trained model to synthesize the visible images. This experiment
was performed 10 times in order to cover all the images contained in the database without
overlapping the test and train images or identities.

4.4.3 Image synthesis baselines

In order to assess the efficiency of our proposed approach to perform thermal-to-visible
image synthesis, we have selected two baseline models. The two selected baselines are
based on GANs, as it is the most used generative model since it was introduced in 2014
by Goodfellow et al [92]. The first baseline is the renowned Pix2Pix model, proposed by
Isola et al. [96] to perform image to image translation. The second baseline is TV-GAN
model presented by Zhang et al. [84]. This baseline is more adapted to our framework
where the proposed model aims to synthesize visible face images from thermal inputs.

Isola et al. [96] , referred to as Pix2Pix, learns the mapping from one domain to
another, by training a conditional GAN using a least absolute deviations (L1) loss
function. The generator is based on the U-Net [106] architecture, an encoder-decoder
with skipped connections between mirrored layers in the encoder and decoder stacks. At
the same time, the discriminator aims to classify real images from generated ones. The
Pix2Pix model has been extensively used for a variety of tasks and applications. The
training was run for 85 epochs, batch size of one, and 2e-4 learning rate.

Zhang et al. [84] , have designed a network, called TV-GAN, notably to generate
visible face images from thermal captures. This work is inspired by Pix2Pix [96], as
it uses the same exact network for the generator. However, the authors proposed a
multi-task discriminator, that does not only classify real from generated images but also
performs a closed-set face recognition with which they can compute an identity loss. This
aims to generate visible images while preserving identity information from the thermal
inputs. The introduction of identity loss in the GAN training was inspired by Tran et
al. [107]. The training was run for 65 epochs, batch size of one, and 2e-4 learning rate.
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4.5 Quality assessment of synthesized visible images

The human visual cortex is exclusively trained on scenes that spans visible light wave-
length detected by the human eye, much similarly to existing face recognition systems.
Consequently, humans present a very limited ability to interpret thermal images. The
motivation behind thermal-to-visible image synthesis is not only limited to perform
cross-spectrum face recognition, it is also driven by the need to convert images from
thermal to visible spectrum so that it can be interpreted by humans. Visual quality
assessment is then necessary. In this section, we present firstly a qualitative assessment
of synthesized visible images. Then, a quantitative evaluation is reported by comparing
the synthesized images to the reference visible images.

4.5.1 Qualitative assessment

The images in Figure 5.1 illustrate, in each row, a sample from different facial variations
of synthesized visible face images from thermal inputs. Column (a) shows the input
thermal faces. In columns (b) to (d), we present visible faces synthesized using the
Pix2Pix model by Isola et al. [96], the TV-GAN model by Zhang et al. [84] and finally our
model based on cascaded refinement network, respectively. The last column (e) shows
the ground truth visible faces.

The different face images with frontal face pose were synthesized with satisfying visual
quality. Although we note that our proposed model has succeeded in generating more
informative details (e.g. eyes, mouth) compared to the Pix2Pix and TV-GAN results, it
does not always generate the correct attributes such as skin color and gender. We can
observe that all synthesized visible faces differ in skin color from the ground-truth images,
and this applies to all synthesis models. This is due to the fact that thermal images
do not contain texture and color information, thus, it is difficult to infer the skin color
tone from the thermal signatures. Another visual distortion can be noted on the visible
samples synthesized by our proposed model in the second and the fourth row of Figure 5.1.
These samples show some added facial hair around the mouth and the jaw area. This
observation can be reasoned by the unbalanced distribution of gender representation
within the training data. Third and sixth rows display samples from different head poses,
where we can observe major artefacts in the synthesized visible faces when compared to
the frontal head pose. As for images acquired with occlusion, illustrated in the fourth
and seventh rows, they were synthesized in relatively good quality. However, we perceive
some confusion in generating faces with eyeglasses. This is justified by the fact that the
training data contains samples with eyeglasses and others with sunglasses that both have
a similar thermal pattern, both blocking the heat emitted by the eyes area. Synthesizing
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(a) (b) (c) (d) (e)

Figure 4.5: Selected samples of synthesized face images under challenging scenarios. (a)
Thermal (b) Isola et al. [96] (c) Zhang et al. [84] (d) Ours (e) Ground truth
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visible images with occlusion by hand was successful, however, with a high level of blur
in the hand region. Overall, it is noteworthy that our proposed model provides visible
faces that are the most visually pleasing compared to Pix2Pix and TV-GAN models.

To highlight the main motivation of this work, we display, in Figure 4.6, samples
that were acquired in operative scenarios of thermal sensors usage, where face images
were captured in total darkness. As expected, the poor or absent illumination does not
impact the synthesized visible images. In fact, we succeeded in synthesizing images with
informative facial attributes that are absent in the visible spectrum.

(a) (b) (c) (d) (e)

Figure 4.6: Samples of generated images acquired in total darkness. (a) Thermal (b)
Isola et al. [96] (c) Zhang et al. [84] (d) Ours (e) Ground truth
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4.5.2 Quantitative assessment

Two quality indices, peak signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM), are selected to assess the visual quality of the synthesized visible images.

Peak signal-to-noise ratio (PSNR) measures the level of degradation of a recon-
structed signal in comparison to the original signal. A higher PSNR value indicates
higher image quality.

PSNR = 10 log10

(
max2

I

MSE

)

MSE(IV IS , G(ITH)) = 1
m× n

m−1∑
i=0

n−1∑
j=0

(G(ITH)(i, j)− IV IS(i, j))2

(4.6)

where MSE is mean square error and maxI is the maximum pixel value of the image
(255 for 8 bits images). IV IS , ITH , G indicate the reference visible image, the input
thermal image, and the image synthesis model, respectively. G(ITH) represents the
synthesized visible face image.

Structure similarity index measure (SSIM) was introduced by Wang et al. [108].
This quality metric is considered more adapted to the human visual system. SSIM
measures image degradation as the perceived alteration of the structural information. Let
us suppose that x and y are two windows extracted from the reference visible face image
IV IS and the synthesized visible image G(ITH), respectively. SSIM is then formulated as:

SSIM(x, y) = (2µxµy)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) (4.7)

where µx and µy are the average of x and y, σ2
x and σ2

y are the variance of x and y,
respectively. c1 and c2 are positive constant to prevent a null denominator.

Table 7.1 reports the PSNR and SSIM values obtained when comparing the synthesized
visible face images, generated using different image synthesis models, to the ground
truth visible images. The obtained results, ∼17dB for PSNR and ∼0.65 for SSIM, do
not reflect a high fidelity of the synthesized visible images to the ground truth. The
synthesized visible faces are generated from facial thermal signatures, that represent
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different information. Thermal-to-visible image synthesis models aim to reproduce an
estimation of visible light spectrum properties but it cannot predict them accurately,
such as texture, color, and more detailed geometrical information.

Comparing the results obtained for the two baselines, the identity loss term that was
introduced by Zhang et al. [84], to the model proposed by Isola et al. [96] has led to a
slight increase of quality indices. However, a more relatively important improvement is
noted for our proposed model, which aligns with our qualitative assessment of the image
synthesis quality.

PSNR (dB) SSIM

Isola et al. [96] 17.247 (± 2.855) 0.6485 (±0.123)

Zhang et al. [84] 17.257 (±2.897) 0.6509 (±0.125)

Ours 17.8144 (±3.635) 0.6725 (±0.131)

Table 4.1: PSNR and SSIM reported on synthesized visible images obtained using our
proposed approach as well as the image synthesis baselines.

4.6 Cross-spectrum face recognition evaluation

The main motivation of the work presented in this chapter is to provide an efficient and
prompt solution to integrate thermal technology in already deployed face recognition
systems. In this section, we evaluate the efficiency of our proposed approach of thermal-
to-visible image synthesis in context of cross-spectrum face recognition. Firstly, we
introduce the algorithms selected to carry out face recognition experiments. Then, we
define the experimental scenarios that we have considered. Finally, results and discussion
are presented.

4.6.1 Face recognition algorithms

For evaluating the synthesized faces when used in cross-spectrum face recognition task,
we measured the recognition performance of two selected widely-used face recognition
algorithms:

OpenFace [109] is an implementation of face recognition system using deep neural
networks based on Google’s FaceNet [110] architecture. The OpenFace network is trained
using the combination of the two largest public face databases CASIA-WebFace [111]
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and FaceScrub [112]. The training of the OpenFace model was based on triplet loss
minimization. The evaluation of OpenFace model provided competitive performances
compared to previous state-of-the-art systems. We use the OpenFace pretrained model
to map faces into 128-dimension embeddings. Then, the nearest neighbours algorithm is
applied using the Euclidean distance to discriminate matching samples.

LightCNN [113] is a new implementation of CNN for face recognition designed to have
fewer trainable parameters and to handle noisy labels. This network introduces a new
concept of max-out activation in each convolutional layer, called Max-Feature-Map, for
feature filter selection. This network has achieved better performance than CNNs while
reducing computational costs and storage space. When evaluated on the LFW database,
LightCNN achieved face recognition accuracy of 99.33%, outperforming OpenFace that
obtained a 92.92% of accuracy. We used the trained network with 29-layers to obtain
embeddings of 256-dimension from face images. Embeddings extracted from the gallery
and probe templates are compared using cosine similarity.

4.6.2 Experimental scenarios

The performance of our image synthesis solution in cross-spectrum face recognition is
compared to face recognition experiments performed in the following scenarios:

Visible: We perform face recognition in the visible spectrum, by considering the
neutral face image as a gallery and the rest of the facial variations as probe images. This
will report the performance of the selected face recognition algorithms, which will be
considered as an upper bound for the evaluation of the synthesized images. Besides, this
baseline will depict the utility of thermal-to-visible face synthesis in hands-on scenarios,
in particular when the face is acquired in poorly lit environments.

Thermal: Here, we conduct cross-spectrum face recognition without any modifications
applied to the thermal data. Simply put, we consider as a gallery set the neutral face
image acquired in the visible spectrum and as probe set all the other face variations
acquired in the thermal spectrum. This baseline will quantify the gap between the two
spectra.

Isola et al. [96] (Pix2Pix) We perform cross-spectrum face recognition by matching
the synthesized visible faces obtained by the model proposed by Isola et al. [96] against
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the visible face enrollments. It is interesting to compare our approach to this baseline, as
it is considered a benchmark for image synthesis.

Zhang et al. [84] (TV-GAN) Synthesized face images obtained by the model pro-
posed by Zhang et al. [84] are matched against visible face enrollments. The performance
reported by the face recognition algorithms when using the synthesized face images
obtained by TV-GAN will quantify the improvement brought by appending the identity
loss term in the training of the Pix2Pix model. In addition, evaluating the model proposed
by Zhang et al. [84] will lead to a fair comparison of our approach, as both models are
introduced in the same framework, i.e. that of thermal-to-visible image synthesis.

4.6.3 Experimental setup

The database contains in total of 21 different facial variations. Cross-spectrum face
recognition evaluation is performed for the different variations set separately. Therefore,
we have split the database into 5 subsets of as follow:

Neutral 1 sample/subject
Expression 6 samples/subject
Head pose 4 samples/subject
Occlusion 5 samples/subject
Illumination 5 samples/subject

Table 4.2: Distribution of the database across the defined subsets.

The neutral face image acquired in the visible spectrum is considered as an enrollment
sample for all the subjects.

4.6.4 Results

In order to evaluate the synthesized visible face images, we have performed cross-spectrum
face recognition using two different systems. The evaluation experiment consists of
comparing, in the first place, the synthesized neutral face against the ground truth, and
then matching the synthesized faces from each of the facial variation subsets against
the visible neutral face. We report, in Table 4.3 and Table 4.4, the recognition accuracy
of the OpenFace and LightCNN, respectively. To get a deeper understanding of the
performance of the two face recognition systems used to evaluate the results obtained,
we plot the receiver operating characteristic (ROC) curves, in Figure 4.7 and Figure 4.8,
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corresponding to some selected samples from different face variations. It is worth noting
that the LightCNN face recognition system results outperform by far that of OpenFace.

Visible Thermal Isola et al. [96] Zhang et al. [84] Ours
Neutral - 4 8 20 20
Expression 97.66 3.33 7.66 11 17.33
Head Pose 75.5 2.5 4 8 9.5
Occlusion 80 2 7.2 8.4 10
Illumination 80.8 3.2 10.4 11.6 20
Average 86.79 3.01 8.49 10.76 15.37

Table 4.3: Cross-spectrum face recognition accuracy across multiple facial variations
using OpenFace system.

Visible Thermal Isola et al. [96] Zhang et al. [84] Ours
Neutral - 32 48 54 82
Expression 99.66 23 37.33 38.33 67.66
Head Pose 80.5 12.5 14.5 15.5 30
Occlusion 98.8 14.4 16.4 25 44.8
Illumination 87.2 15.6 29.6 35.2 63.6
Average 95.232 19.5 29.166 33.606 57.612

Table 4.4: Cross-spectrum face recognition accuracy across multiple facial variations
using LightCNN system

We note from the reported results that all synthesis models outperformed the system
defined in the thermal scenario, which proves the efficiency of synthesizing visible face
images in reducing the spectral gap between visible and thermal data. TV-GAN reports
better performances than Pix2Pix confirming the efficacy of the identity loss in preserving
the subject identity when synthesizing visible images. Foremost, our proposed solution,
based on CRNs, outperforms all the models by a large margin, particularly observed
on LightCNN results, and that applies to all facial variations. This is mainly due to
the limitations of GANs that are known for being data-hungry. However, our system
succeeded in generating relatively high-quality visible images despite the limited size of
the training data. Furthermore, both Pix2Pix and TV-GAN models are trained using
a L1 loss function, making them very sensitive to image misalignment. Alternatively,
our proposed system uses contextual loss which makes it inherently scale and rotation
invariant.
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The improvements in performance reported by our proposed approach is relatively
higher for neutral, expression, and illumination variations, when compared to the im-
provements in performance reported on occlusion and head pose variations. This is due
to the fact that our proposed model of thermal-to-visible face synthesis, as well as the
two baseline models, are more likely to fail in generating correct facial traits when the
face is presented in a challenging head pose and/or occlusion variations.
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(a) (b)

(c)

Figure 4.7: ROC curves of cross-spectrum face recognition based on OpenFace system
for selected samples from: (a) expression variation, (b) head pose variation, (c) occlusion
variation.
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(a) (b)

(c)
Figure 4.8: ROC curves of cross-spectrum face recognition based on LightCNN system
for selected samples from: (a) expression variation, (b) head pose variation, (c) occlusion
variation.
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Table 4.5 reports the rank-1 recognition of OpenFace and LightCNN face recognition
systems when employed in total darkness. We plot also, in Figure 4.9, the ROC curves of
the two evaluation systems in the absolute dark condition. We can clearly observe that
our proposed model not only outperforms other face synthesis models but also it provides
significantly higher performance compared to the visible spectrum. This affirms the
efficacy of face synthesis from thermal to visible in one of the most challenging scenarios
such as poorly lit environments.

Visible Thermal Isola et al. [96] Zhang et al. [84] Ours
OpenFace 16 2 10 14 22
LightCNN 42 16 28 36 56

Table 4.5: Cross-spectrum face recognition accuracy in operative scenario where samples
were acquired in total darkness.

(a) (b)
Figure 4.9: ROC curves of cross-spectrum face recognition in dark environment: (a)
OpenFace system (b) LightCNN system.

4.7 Summary

Although several efforts have been devoted in recent years for face synthesis from
thermal to visible spectrum, the task remains challenging considering the shortage of the
available data designed for this task. We present, in this chapter, a novel solution based
on cascaded refinement networks, that succeeded in generating color visible images of
satisfying quality, trained on a limited size database. The proposed network is based
on the use of a contextual loss function, enabling it to be inherently scale and rotation
invariant. Despite the existence of challenging facial variations such as occlusions,
expression, head pose, and illumination, our solution has produced the most visually
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pleasing synthesized face images when compared to existing work. We also performed an
evaluation of our solution in cross-spectrum face recognition task. The reported results
have shown that our system outperforms recent face synthesis systems. Underlining the
motivation of face synthesis from thermal to visible spectrum, we have proved that face
recognition performance reported on the synthesized images is significantly higher than
the one reported on the visible spectrum when operated in poorly lit environments, as
it was improved by 37.5% (i.e. from 16% to 22%) and 33.33% (i.e. from 42% to 56%)
evaluated by OpenFace and LightCNN, respectively.
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Chapter 5

Illumination invariant face
recognition based on dynamic
quality-weighted fusion of visible
and thermal spectrum

A new scheme of score level fusion is introduced in this chapter for illumination invariant
face recognition from the visible and thermal spectrum. The work presented in this
chapter explores a direction leading to a fast and smooth integration into existing face
recognition systems and does not require recollection of enrollment data in the thermal
spectrum. This chapter investigates the potential role of the thermal spectrum in
improving face recognition performances when employed under adversarial acquisition
conditions. We consider the context where individuals have been enrolled solely in the
visible spectrum, and their identity will be verified using two sets of probes: visible images
and thermal-to-visible images. The thermal-to-visible face synthesis [114] is performed
using the approach presented in Chapter 4, and face features are extracted and matched
using LightCNN [113] and Local Binary Patterns [115]. The contribution of this work
lies in performing the fusion procedure through several quality measures computed on
both visible and thermal-to-visible synthesized probes and compared to the quality of
visible gallery images, in a way that it determines the relevance of each of the probes in
improving the face recognition performance.

The remainder of this chapter is organized as follows. Motivations leading to this work
are given in section 5.1. A literature overview on visible and thermal spectrum fusion,
followed by a brief review on quality-based fusion for multimodal biometric, is presented in
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Section 5.2. Section 5.3 introduces the proposed dynamic quality-based fusion scheme for
illumination invariant face recognition. Experimental results are presented in Section 5.4.
A summary of the work and findings reported in this chapter are given in Section 5.5.

5.1 Motivation

Our first attempt to synthesize visible face images from thermal inputs [114] took the
first steps towards enabling a prompt and easy integration of thermal sensors in already
deployed face biometric systems. While this work showed improvement in performance
in terms of visual quality [116] and cross-spectrum face recognition compared to some
selected baseline models [84,96], face recognition based solely on the visible spectrum
significantly outperforms systems based on synthesized visible face images when operated
under controlled illumination conditions.

It is undeniable that face recognition performance reported on the synthesized images
is significantly higher than the one reported on the visible spectrum when engaged in
poorly lit environments, as face recognition accuracy was improved by 37.5% [114] for
LightCNN system. However, synthesized visible face images are still a few steps behind
compared to visible images when confronting other sorts of variations. Thermal-to-
visible face synthesis inadvertently generates few artifacts and occasionally some wrong
facial attributes that may alter the face matching process. In an attempt to achieve
an illumination invariant face recognition system operating continuously day and night,
we propose to fuse scores obtained while matching visible face probes with visible face
gallery and the scores obtained by matching thermal-to-visible generated images from
thermal face against the same visible face gallery. Based on the intuition that image
quality can be indicative of the utility of a face sample, we propose to fuse the score of
matching visible face images and synthesized visible face images against visible gallery
images, based on the image quality score of each component.

5.2 Related work

Since the emergence of thermal imagery in biometrics, a lot of efforts have been devoted to
performing visible and thermal fusion in order to achieve improvements in unconstrained
face recognition research. Several studies [46,47] explored the usage of genetic algorithms
(GAs) to select features extracted separately from visible and thermal spectra and perform
fusion at score level. Desa et al. [117] used GAs to find the optimal strategy of feature
fusion at a non-linear transformed domain, exploring two non-linear face subspaces:
Kernel Principle Component Analysis and Kernel Fisher’s Linear Discriminant Analysis.
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Chen et al. [118] used a decision based fuzzy integral fusion of visible and thermal face
recognition results. Buyssens et al. [119] introduced a special type of CNN based on
diabolo network model [120] to extract features from both visible and thermal images
and then fused the matching scores. Hariharan et al. [39] proposed a new data-level
fusion scheme using empirical mode decomposition.

In an attempt to exploit the thermal spectrum for illumination invariant face recogni-
tion, several fusion studies have been proposed. Heo et al. [48] proved the complementarity
of visible and thermal spectrum for illumination invariance by investigation data and
decision level fusion. Arandjelovic et al. [33, 34, 121] presented a multistep fusion scheme,
carried out at the decision level and holistic and local feature level of visible and thermal
faces. Socolinsky et al. [30, 122, 123] proposed a simple decision-based fusion using a
weighted combination of visible and thermal matching scores. The proposed fusion scheme
was evaluated indoors and outdoors, resulting in better face recognition performance in
varying illumination conditions but failing in extreme illumination conditions.

The research objective of this work is to provide a continuous face recognition system
that is invariant to illumination changes. This can be achieved by setting up a visible
and thermal fusion scheme where the weight of each component is assigned by the
corresponding image quality.

Several fusion and modality selection solutions were proposed, in setting multimodal
biometric systems, based on quality assessment of the biometric sample. A good quality
image usually yields a robust matching performance. Fierrez-Aguilar et al. [124] intro-
duced one of the earliest works of biometric quality fusion at the score level, integrating
quality information into a Bayesian statistical model for multimodal biometric classifica-
tion. Using a unimodal biometric system, Vatsa et al. [125] proposed fusing the RGB
channels based on quality scores to improve the performance of iris recognition. Zhou
et al. [126] presented quality based eye recognition by segmenting the eye into iris and
sclera and performing classification on the selected region as reported by its quality.

5.3 Quality-weighted score fusion

In this section, we describe in detail the proposed fusion solution. First, we depict
the continuous day and night face recognition scenario. Then, we define the two face
recognition systems used to compare face samples and obtain their matching scores.
Subsequently, we list the quality assessment metrics considered in this study. Finally, we
describe the proposed quality-weighted fusion scheme.
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5.3.1 Scenario description

The main motivation of this work is to assure a continuous day and night face recognition
while granting an easy integration of thermal sensors in face recognition systems. The
thermal sensor integration is provided by synthesizing visible face images from thermal
inputs and matching the synthesized image against the visible gallery samples [114], as
presented in Chapter 4. As for the continuity of face recognition, it is controlled by the
quality weighted fusion of matching visible faces and synthesized visible faces against
the visible face gallery. Thereby, the participation of each component is indicated by the
corresponding quality score.

Figure 5.1 depicts different gallery samples as well as probe samples in three different
illumination conditions. Probe V IS corresponds to face images acquired in the visible light
spectrum, whereas Probe GV IS represents synthesized visible faces from thermal inputs.
Thermal-to-visible face synthesis model [114] is presented in Chapter 4. Training the
thermal-to-visible face synthesis model was carried out using numerous facial variations
taken in controlled illumination conditions. This model provides a faithful estimation of
the visible information based on the thermal input when it is initially missing in the visible
spectrum. In other words, this step is essential to provide the missing visible information
due to the lack of illumination. In the case of Condition 1 (see Figure 5.1), when
the illumination conditions are controlled, the quality of visible images is undoubtedly
superior to the quality of synthesized visible images. Consequently, it is expected that
the proposed quality-based fusion scheme will leverage the visible spectrum to obtain
accurate face recognition results. While in Condition 2 (see Figure 5.1), some information
in visible face images is missing due to low illumination. In this case, our proposed
solution is supposed to exploit the information provided by the visible images and the
synthesized visible images complementary. In the case of Condition 3 (see Figure 5.1)
however, the visible information is almost completely absent, which may encourage our
proposed fusion system to consider for the most part the information obtained from the
synthesized visible faces.

5.3.2 Face feature extraction and matching

We present here the face comparison systems used to obtain the matching scores on
which the fusion will be applied. We selected a state-of-the-art system based on deep
learning embeddings and a second system based on handcrafted features.

LightCNN [113] is a pretrained model of a light CNN of 29 layers. LightCNN was
used in Chapter 4 and led to better face recognition performances compared to a similar
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Gallery Probe VIS Probe G
VIS

Condition 1 Condition 2 Condition 3

Probe VIS Probe G
VIS

Probe VIS Probe G
VIS

Figure 5.1: Illustration of continuous day and night face recognition scenario under
3 different illumination conditions. Condition 1: controlled illumination environment,
condition 2: low illumination environment, condition 3: extremely poor illumination
environment.
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baseline based on OpenFace [109], and thus it was retained for the work presented in
this chapter as well. 256-dimension embeddings are extracted, using LightCNN, from
gallery and probe samples, and then matched using cosine similarity.

Local Binary Pattern (LBP) was originally introduced by Ojala et al. [115] for
texture analysis, but later on it was thoroughly explored in numerous applications.
Particularly, it has shown its efficiency for face analysis not only in the visible but also
in the thermal spectrum. LBP represents a binary pattern that describes the local
neighborhood of each pixel of the face image. The obtained LBP features are then
concatenated to create a single histogram feature vector of 256-dimensions. Histograms
extracted from the gallery and probe image samples are compared using the χ2 distance
as a dissimilarity measure.

5.3.3 Quality assessment metrics

Most often, the quality of face samples reflects their relevance in providing correct and
accurate recognition with a high matching score. High-quality samples often deliver
highly informative features, yet low-quality samples suffer heavily from noisy data and
missing information. Therefore, selecting quality assessment metrics is very critical in
boosting or lowering recognition performance.

We present, here, a number of selected quality metrics in order to study the impact
of each on face recognition performance.

• Lightening symmetry [127]: it quantifies the symmetry between sub-regions of
an image and can be measured as the difference between the histogram of intensity
in each half sub-region.

• Brightness [128]: is given by the average value of the image intensity histogram.

• Contrast [128, 129]: can be defined as the scale difference between maximum
and minimum intensity values in an image.

• Global Contrast Factor (GCF) [130]: is the weighted sum of local contrast
for various resolutions of the image.

• Exposure [131]: indicates the amount of light in the image and can be measured
using image statistical measures.

• Blur [132]: is based on the fact that sharp images have thin edges and blurry
images have wider edges, blur is expressed as the edge width.
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• Sharpness [129]: is defined as the sum of gradients at every pixel intensity.

5.3.4 Proposed fusion scheme

Figure 5.2 illustrates the proposed asymmetric approach of quality weighted fusion at
score level. Let QVIS, QGVIS and QGallery denote the quality measures of the visible image
probe, the quality of the thermal-to-visible generated image probe, and the quality of
visible gallery image, respectively, obtained using one of the quality assessment metrics
just presented in Section 5.3.3. During recognition, we calculate the quality similarity
scores of the original visible image and the thermal-to-visible synthesized image by
determining the similarity of their quality measures QVIS and QGVIS to QGallery, as
follow:

QSi = e
QGallery−Qi

QGallery , where i ∈ {V IS,GV IS}. (5.1)

Once the quality scores are obtained, they are normalized using min-max normaliza-
tion. Then, we compute the weight to be assigned to each entity, as

wi = QSi
QSV IS +QSGV IS

, i ∈ {V IS,GV IS}. (5.2)

The closer Qi is to QGallery, the higher the weight will be assigned to i. Next, the
face matching scores, denoted by Si, are computed. SV IS is obtained by comparing
the visible image probe to the visible gallery set. SGV IS

are calculated by performing a
face comparison between the synthesized visible image and the visible gallery set. The
obtained matching scores are then normalized. The overall fused score is computed using
the weighted exponential sum rule, as follow:

Sfused =
∑
i

wie
Si , where i ∈ {V IS,GV IS}. (5.3)

Simply put, the quality weight will play a role in determining whether the visible
sample is reliable enough to provide accurate recognition. The quality of visible samples
deteriorates mostly due to lack of illumination. Thereupon, the proposed fusion scheme
will favor the synthesized visible sample as it is estimated from thermal inputs that are
immune to illumination variations. The proposed method is summarized in Algorithm 1.
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Figure 5.2: Framework of the proposed quality-based score fusion scheme, where VIS,
TH and GVIS denote the visible image, the thermal image and the synthesized visible
image from the thermal capture, respectively.
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Algorithm 1: Quality-weighted score fusion

Input Probe Samples: set of samples acquired simultaneously in visible and

thermal spectrum under various facial variations.

Gallery Samples: set of neutral face samples acquired solely in visible

spectrum.

for p ∈ Probe Samples do
V IS ← ReadVisible Image (p)

TH ← ReadThermal Image (p)

GV IS ← Thermal-to-Visible face synthesis (TH) as per chapter 4.

QV IS ← QualityEstimation( V IS)

QGV IS
← QualityEstimation (GV IS)

for g ∈ Gallery Samples do
Gallery ← ReadVisible Image (g)

QGallery ← QualityEstimation(Gallery)

QSV IS(p, g)← Quality Similarity Score (QV IS , QGallery) as per Eq.5.1

QSGV IS
(p, g)←Quality Similarity Score (QGV IS

, QGallery) as per Eq.5.1

SV IS(p, g)← Matching Score (V IS,Gallery) as per Sec.5.3.2

SGV IS
(p, g)← Matching Score(GV IS , Gallery) as per Sec.5.3.2

end

end

Min-Max normalization of QSV IS , QSGV IS
, SV IS and SGV IS

Compute weights wV IS and wGV IS
as per Eq.5.2

Sfused ← Quality-weighted score fusion (wV IS , SV IS , wGV IS
SGV IS

) as per Eq.5.3

return the overall fused score Sfused
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5.4 Experiments and results

In this section, we present the data used to perform face recognition based on quality
weighted fusion. Then, we detail the evaluation protocol used to assess the proposed
fusion approach. Finally, we present the obtained results followed by an analysis of the
impact of different quality assessment metrics on face recognition performance.

5.4.1 Database

We used the VIS-TH face database [105], presented in Chapter 3, for the evaluation of
our proposed fusion solution. Three different sets are considered:

• Gallery set: face samples acquired in visible spectrum under controlled illumina-
tion conditions, with a neutral expression and frontal head pose.

• Probe V IS: probe face samples acquired in the visible spectrum under different
facial variations including varying illumination conditions.

• Probe GV IS: probe face samples initially acquired in thermal spectrum under
different facial variations including varying illumination conditions and then con-
verted into the visible spectrum. Thermal-to-visible face synthesis is detailed in
section 4.3 of chapter 4.

5.4.2 Experimental protocol and results

Feature extraction is performed using either LBP or LightCNN. Feature vectors from the
gallery and probe sets are compared to obtain the matching scores of the two components.
In parallel, quality measures are computed using 7 different quality assessment metrics
and quality similarity scores are then deduced. Dynamic quality weighted fusion at score
level is carried out as described in Section 5.3.4. The performance of our proposed fusion
approach is compared to the performance of fusing scores obtained from matching visible
probes and thermal probes against a common visible gallery set.

To highlight the main motivation of thermal spectrum usage in face recognition, we
display, in Figure 5.3, the receiver operating characteristic (ROC) curve of the three
setups aforementioned for face images that were acquired in total darkness. We can
clearly observe that the setup based on thermal-to-visible synthesized images provides
significantly higher performance compared to the setup based on visible images. This
affirms the efficacy of thermal imagery in most of the challenging scenarios, i.e. poorly
lit environments. Also, we note that the setup based on thermal-to-visible synthesized
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images outperforms the thermal-based setup, which proves the efficiency of thermal-
to-visible face synthesis in reducing the spectral gap between the visible and thermal
spectrum.

Figure 5.3: ROC curves in extremely poor illumination environment using LightCNN
system.

Table 5.1 presents the rank-1 recognition of LightCNN and LBP systems reported
over all the facial variations contained in VIS-TH database. In this table, we report
firstly the recognition performance of each of the following setups: matching visible
probe, original thermal probe, and thermal-to-visible synthesized faces against the visible
gallery. We observe that face recognition using the synthesized visible images leads
to better performance than when using thermal images, which proves the efficiency of
thermal-to-visible face synthesis in reducing the gap between visible and thermal spectra.
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Although, the synthesized visible images are still a few steps behind standard visible face
images and that is perceivable mostly for the performance across all the facial variations.

Furthermore, we can evidently perceive that face recognition using deep learning
embeddings (LightCNN) outperforms hand-crafted features (LBP) which confirms the
assertions presented in [133].

To assess the impact of each quality metric used in this Chapter, we report rank-1
recognition of quality weighted fusion of visible images and synthesized visible images
(denoted as (VIS, GVIS) in Table 5.1) for each quality metric, where Q1, Q2, Q3, Q4,
Q5, Q6 and Q7 denote lightning symmetry, brightness, contrast, GCF, exposure, blur
and sharpness, respectively. Qavg refers to using the average quality score of the 7 quality
assessment metrics. Furthermore, quality weighted score fusion of visible face images and
original thermal images (denoted as (VIS,TH) in Table 5.1) is considered as a baseline.
We note that the described fusion scheme using the thermal-to-visible face synthesis
unit outperforms significantly the fusion of visible and thermal images plainly. This
divergence in performance certifies the proficiency of thermal-to-visible face synthesis in
bringing the two spectra closer together. The rank-1 recognition results of LightCNN
system showed that the proposed fusion approach has led to the best performance,
particularly for the global contrast factor quality metric. However, we can determine
that the proposed quality weighted score fusion shows nearly similar performance for all
the quality assessment metrics.

To get a deeper understanding of the performance of our proposed fusion scheme,
we plot the ROC curves, in Figures 5.4 and 5.5. The ROC curve is computed over all
the facial variations contained in the database, so as to demonstrate the efficacy of our
proposed approach in a wide range of operative scenarios. The plot confirms our previous
observations, as we can see that all the considered quality assessment metrics impact the
performance of the fused system similarly. Conclusively, we observe that the proposed
fusion-based approach in this chapter outperforms face recognition operating solely on
visible data. It is fair to admit that the difference of performance is not significantly
large, that is due to the distribution of the variations within the database, as it contains
more samples acquired under controlled illumination conditions compared to only a few
samples acquired under low illumination conditions that highlight the thermal imagery
usage.
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(a) Lightning symmetry (b) Brightness

(c) Contrast (d) Global Contrast Factor (GCF)

Figure 5.4: ROC curve deduced over all the facial variations in VIS-TH database [105]
using LightCNN

.
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(a) Exposure (b) Blur

(c) Sharpness (d) Average

Figure 5.5: ROC curve deduced over all the facial variations in VIS-TH database [105]
using LightCNN

.
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5.5 Summary

Integrating thermal imagery in face recognition systems tackles, particularly, the poor
illumination challenge for the visible spectrum. Therefore, a new scheme of score
level fusion for robust face recognition from visible and thermal face data that enables
straightforward integration in the existing face recognition systems is proposed in this
chapter. The proposed system operates according to the following protocol in face
recognition: individuals have been enrolled solely in the visible spectrum (i.e. gallery)
but can be afterward controlled by dual visible and thermal acquisition (i.e. probe).
Considering that the gap between the visible and thermal spectra is important, it was
necessary to include a step where synthesized visible images are generated from thermal
inputs. This solution benefits from the quality measures of the visible gallery and probe
faces to assign weights for visible and thermal samples in order to provide an illumination
invariant face recognition solution. The results report an interesting improvement in
face recognition performance compared to when using solely visible samples. In addition,
results have proved the efficiency of thermal-to-visible face synthesis in providing more
accurate performance for the face recognition system.
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Chapter 6

Facial landmark detection on
thermal data through fully
annotated thermal data synthesis

Facial landmark detection is a crucial prerequisite for facial image processing. Given
the upswing of deep learning-based approaches, the performance of facial landmark
detection has been significantly improved. However, this uprise is mostly limited to
visible spectrum based face analysis tasks, as there are only a few research works on facial
landmark detection in the thermal spectrum. This limitation is mainly due to the lack of
available thermal face databases that include full facial landmark annotations. In this
chapter, we propose to tackle this data shortage by converting existing face databases,
designed for the facial landmark detection task, from visible to thermal spectrum. By
doing so, facial landmark annotations available in databases collected in the visible
spectrum can be leveraged in their artificially generated, thermal, counterpart. Using the
synthesized thermal databases along with the facial landmark annotations, two different
facial landmark detection models are trained using active appearance models [134] and
deep alignment networks [135]. The evaluation of these models shows accurate facial
landmark detection on real thermal data of different quality. With the need to provide
prompt solutions for thermal face analysis, our proposed framework provides a vehicle to
fuel future research in thermal imagery, not only limited to facial landmark detection
but also extendable to other tasks that require extensive annotation.

The remainder of this chapter is organised as follows. Section 6.1 introduces the
motivation behind this work. Section 6.2 presents the previous work in facial landmark
detection mainly focused on the thermal spectrum. Section 6.3 describes the selected
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databases to synthesize a thermal face database and the employed landmark annotation
standard, followed by a presentation of the proposed approach to perform visible-to-
thermal face synthesis. Section 6.4 introduces two selected approaches used for facial
landmark detection in this work. Section 6.5 reports the experimental setup and the
evaluation protocol followed by results and discussion. A summary is presented in
Section 6.6.

6.1 Context and motivation

Facial landmark detection (FLD) consists of locating predefined landmarks, such as
eye contours, eyebrows, nose, lips in a human face. These detectors provide a shape
representation of the face that captures transformations due to facial expressions and/or
head movement. FLD has drawn a lot of attention during recent times, as it became an
essential requirement to perform a wide range of tasks related to facial image processing,
e.g. face alignment and frontalization [136,137], 3D face reconstruction [136,138], emotion
recognition [139] and lip reading [140]. However, FLD on thermal data has not been
extensively explored yet, and to our knowledge, there are no public facial landmark
detectors available designed for the thermal spectrum. Thermal imagery provides data
with lower spatial resolution and contrast when compared with visible imagery, and it
also lacks textural and geometrical information. Therefore, applying the advances of
FLD designed for visible data to the thermal spectrum may be challenging. Also, the lack
of public thermal face databases available with facial landmark annotations prevents the
thermal spectrum from benefiting from the recent advances in deep learning that have
led to remarkable improvements in FLD performance, including when tested in-the-wild.

In this work, we present a novel concept that aims to tackle the lack of annotated
data in spectra that are less studied than the visible spectrum through interspectral
conversion, with a focus on the thermal spectrum for the FLD task. This proposed
concept will enable a broader exploration of thermal image processing. Thereby, we
provide thermal face databases with full facial landmark annotation through artificial
visible-to-thermal data synthesis using existing visible face databases designed for FLD,
notably LFPW [141] and Helen [142] databases. We explore the possibility of training
different FLD models on the synthesized thermal face data to be robust when tested
on real thermal data. In particular, we used active appearance models [134] and deep
alignment networks [135] to train our facial landmark detectors.
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6.2 Related work

FLD in the visible spectrum has been extensively studied during the few last decades and
it has witnessed great progress. Early works, based on classic parameterized approaches,
include active appearance models [134] and constrained local models [143]. Later on,
FLD approaches based on cascaded shape regression [144,145] were introduced. Recently,
approaches based on deep learning have achieved impressive results, notably Deep
Alignment Network [135] and Style Aggregated Network [146]. A thorough survey of
existing techniques of FLD on visible images and videos can be found in [147].

Very few works have focused on FLD on thermal data despite the attention that is
being drawn to the usage of thermal imagery in face analysis tasks. The first attempts
aimed to perform single landmark detection. Tzeng et al. [148] used video frames to
detect nostrils by tracking the temperature variation due to respiration. Wang et al. [149]
trained a support vector machine (SVM) to perform binary classification of the eye region
based on Haar-like features. Alkali et al. [150] located the temperature maxima as it is
commonly situated in the inner corner of the eyes.

More recent works focused on the face region as a whole and aimed to detect multiple
facial landmark points. Kopaczka et al. [151] trained an active appearance model
using histogram of oriented gradients HOG and Scale-invariant feature transform SIFT
to perform face tracking in thermal videos. This work has been extended [152] by
incorporating the active appearance model into a deep convolutional network to provide
it with a prior shape information. These two approaches were trained on a fully annotated
thermal face database [153] collected by the University of Aachen. This database provides
high spatial resolution data at 1024×768 pixels, with high contrast and noise equivalent
temperature difference (NETD) lower than 30mK, meaning that the sensor with which
the data is acquired is able to identify very small differences of temperature as little as
30mK or lower. These data specifications result in extremely high quality thermal data
much higher than the data provided by the currently available thermal databases and the
affordable thermal sensors available on the market. The high quality of the training data
of the FLD model mentioned above results in a drastic decrease of landmark detection
accuracy when tested on low or medium quality thermal data, which is usually used
nowadays for research and commercial purposes.

6.3 Thermal face database synthesis

Several face databases were used in the work presented in this chapter. As a matter of
convenience, we gathered all the relevant information about these databases, in Table 6.1,
as well as its usage throughout this work.
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6.3. Thermal face database synthesis

In this section, we describe the selected visible face databases provided with landmark
annotation that are used in this work. Then, we describe the approach to perform
visible-to-thermal data synthesis in order to obtain a synthesized thermal face database
with full facial landmark annotations. Finally, we present some samples of the generated
thermal faces.

6.3.1 Face databases with full facial landmark annotation

Numerous visible face databases provided with facial landmark annotation are avail-
able [141,142,155,156,157]. We present, here, the selected databases and the landmark
annotation used in this chapter.

Helen [142]: Helen database contains 2330 face images collected from Flickr. The
database includes a large set of variations including pose, lighting, expression, occlusion,
and individual differences. The facial landmarks were annotated manually using Amazon
Mechanical Turk after an initialisation performed using STASM [?] algorithm.

LFPW [141]: The Labeled Face Parts in-the-wild database contains 1035 images
collected from the web (Flickr, Google, Yahoo...). LFPW database covers the same
variations as the Helen database. The Labeling and facial landmark annotation were
performed by three Amazon Mechanical Turk members.

Facial landmark annotations, used in this work for these databases, were obtained
from those released in the context of the 300 Faces in-the-Wild Challenge: the first facial
landmark localization Challenge [158]. Organized by iBUG∗, the provided annotations
attempted to mitigate the mismatched original annotation criterions present in Helen and
LFPW databases, with 194 and 29 selected landmark points, respectively. This mismatch
in dimensionality motivated the application of a shared semi-supervised approach to
FLD followed by a manual correction, resulting in a common, consistent, 68 facial points
annotation illustrated in Figure 6.1. These annotations, which have been widely used
as the de facto benchmark for landmark detection, were thus used as a reference in the
work presented here.

∗Intelligent Behaviour Understanding Group (iBUG), Department of Computing, Imperial College
London
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Figure 6.1: 68 facial landmark annotation defined in the context of 300 Faces in-the-Wild
Challenge: the first facial landmark localization Challenge [158].

6.3.2 Visible-to-thermal data synthesis

Data synthesis from visible to thermal spectrum was carried out using the approach
presented in Chapter 4. This approach aimed to synthesize visible face images from
thermal inputs to perform synthesis based cross-spectrum face recognition. However, in
our case, we needed to re-train the model presented in [114] to perform face synthesis in
the opposite direction, i.e. from visible to thermal spectrum.

The used approach is based on cascaded refinement networks (CRN) trained using
contextual loss, enabling it to be inherently scale and rotation invariant. During the train-
ing phase of the visible-to-thermal data synthesis model, we used VIS-Th datatabse [105]
introduced in Chapter 3. This database provides thermal images of 160×120 spatial
resolution and NETD<100mK acquired with different facial variations. For training,
one variation acquired in total darkness was discarded, leaving 1000 pairs of face images.
The loss function designed for visible-to-thermal data synthesis is modeled invertedly
compared to the loss function defined in Equation 4.5 of Chapter 3. The style loss is
computed between the generated thermal image and the ground truth thermal image.
Whereas the content loss is computed between the input visible image and the generated
thermal image. The training was run for 40 epochs with a learning rate of 1e-4.

To obtain the synthesized databases from visible to thermal spectrum, the images of
HELEN and LFPW databases are fed to our trained model, which returns the thermal
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version of the input image. Figure 6.2 illustrates some samples of the synthesized thermal
face images and their original counterpart. It is worth noting that the synthesized
thermal images present a realistic pattern of thermal signature. Some details, such as
hair, eyebrows, and teeth, are converted into high pixel values reflecting regions with
lower temperature compared to the face region. In addition, the nose region is generated
slightly darker, as the nose is usually colder than the rest of the face because it is
composed mainly of cartilaginous tissue. Also, eyes contours are generated lighter than
the rest of the face, which reflects a realistic thermal signature as the high temperatures
are usually situated around the eye region. The synthesized images also present some
artefacts as we can observe, in few samples, dark patterns located at arbitrary regions of
the face.

Figure 6.2: Samples of synthesized thermal images from HELEN and LFPW databases.

6.4 Facial landmark detection

In this section, we describe the two selected methods of FLD that will be trained on the
synthesized thermal face databases.

6.4.1 Active appearance model

The first approach used in this work is based on Active Appearance Model [134], con-
sidered as the baseline approach for landmark detection. Active appearance models
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(AAM) were introduced by Cootes et al. [134] for facial image processing. AAM is a
statistical appearance method aiming to model the shape of the face and its appearance
as probabilistic distributions that can be generalized nearly to any face. To train the
FLD model, AAM requires a set of face images with annotation points defining the facial
landmarks. In the training phase, Procrustes analysis [159] is applied to align the set
of landmarks, and the statistical shape and appearance model variations are extracted
using principal component analysis (PCA). Unseen faces can be represented by a linear
combination of the mean shape and the appearance from the training data with weighted
shape and appearance vector.

As to faithfully replicate the AAM approach used to train the FLD model provided
by Aachen University [151], we have trained a dense histogram of gradients HOG
feature-based AAM model fitted using the Inverse-Compositional algorithm [160].

6.4.2 Deep alignment network

The second selected approach is Deep Alignment Network (DAN) [135] as it is the
state-of-the-art in facial landmark detection for visible images. DANs are based on
multi-stage neural networks that perform an iterative process of refinement of landmark
positions. Each stage of a DAN network is a feed-forward neural network that provides a
prediction of the refined facial landmark location. Each stage of a DAN network takes
3 inputs: the original image aligned to an initial estimation of the landmark location
assumed to be the average face shape, the landmark heatmap, and the feature image
provided by the previous stage. The first stage only takes the input image. The stages
of DAN networks are trained consecutively. Each stage is trained until the validation
error stabilises. We have used a two-stage DAN: between the two stages, a similarity
transform is applied to re-align the image to the average face shape. A learning rate of
1e-3 is used with Adam optimizer on mini-batches of sizes 64.

6.5 Experimental setup and results

In this section, we present firstly our two baseline FLD models. Then, we detail
our experimental setup. Finally, we introduce our evaluation protocol followed by a
quantitative and qualitative evaluation on real thermal data of different quality.

6.5.1 Baseline models

We consider as baseline models the facial landmark detectors, described in Section 6.4,
trained on a high quality database provided by Kopaczka et al. [151] from the University
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of Aachen. We will refer, in the remainder of this chapter, to the active appearance model
and deep alignment networks, both trained on the Aachen database, as ‘AAM-Aachen’
and ‘DAN-Aachen’, respectively. The Aachen database includes high-resolution thermal
face images that are manually annotated [153]. Video sequences were acquired using a
thermal camera with a NETD<30mK and a spatial resolution of 1024×768 pixels. 695
frames were extracted and manually annotated with 68 point landmarks. To train the
AAM model described in section 6.4.1, the face images were mirrored and 1272 images
were selected for the training phase, as described in [151].

6.5.2 Experimental setup

The two selected approaches for FLD, described in section 6.4, are trained on the
synthesized thermal face databases Helen and LFPW separately. We refer to AAM
models trained on the synthesized thermal data from Helen and LFPW as ‘’AAM-Helen’
and ‘AAM-LFPW ’ and to DAN models as ‘DAN-Helen’ and ‘DAN-LFPW ’, respectively.

Following the protocol defined in the context of 300 Faces in-the-Wild Challenge: the
first facial landmark localization Challenge [158], we have used 2000 face images from
the Helen database and their corresponding facial landmark annotation files for training.
Whereas for the LFPW database, we have used 811 face images for training our models.

6.5.3 Evaluation protocol

The evaluation of FLD performance is assessed by comparing the estimated landmark
coordinates to the ground truth. The normalized root mean square error (NRMSE), is
computed, point-to-point, to assess the average localization error. NRMSE is considered
as a standard metric to evaluate FLD performance [161] and it consists of the Euclidean
distance between the predicted landmarks and the ground truth landmarks normalized
by a predefined distance. Several normalization distances were defined for facial land-
mark detection evaluation [161, 162, 163, 164, 165]. To maintain consistency with the
setup defined for the 300W competition [158], we performed the normalization with
regards to inter-ocular distance (IOD) which is the distance between the two eye outer
corners as defined in [158]. The normalization process is essential to obtain performance
measurement independent of the face size or image resolution.

The NRMSE, referred to as E, is obtained as follows:

Ek =
√

((x, y)k − (x̄, ȳ)k)2

dnorm
(6.1)
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where (x, y)k denote the ground truth coordinates and (x̄, ȳ)k the estimated coordi-
nates of the kth landmark point. dnorm indicate the normalization distance.

The FLD performances can also be expressed in terms of detection rate. Facial
landmark detection rate is the percentage of landmarks that are correctly detected within
a given error radius. The accepted error radius is determined as a proportion of the IOD.
The detection rate is calculated as follows:

D =
∑K
k=1

∑N
i=1[δ : Eik ≤ threshold]

N ×K
, where δ =

1 if Eik ≤ threshold

0 otherwise
(6.2)

where K denotes the total number of facial landmarks, and N the number of test
images. The threshold indicates the NRMSE value under which a landmark point is
considered correctly localized. The IOD along with detection circles, representing the
allowed error radius, are illustrated in Figure 6.3.

Figure 6.3: Inter-ocular distance (IOD) marked in red and circles denoting different
detection error thresholds, green: 0.05, yellow: 0.1, blue: 0.15 times IOD.
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6.5.4 Evaluation on low quality thermal face data

To evaluate the FLD model on low quality thermal data, the CSMAD database [51]
is chosen, since it provides aligned images in visible and thermal spectrum acquired
simultaneously. The CSMAD database provides thermal images of the spatial resolution
of 320×240 and NETD<70mK. This database is designed for face presentation attack,
however, it is possible to select, for our evaluation, only the bona fide samples resulting in
423 images. The choice of this database is motivated by the fact that this database can
simplify the annotation of the thermal images. The annotation process was performed
automatically using DLIB [166] facial landmark detector on the visible set of the database
and then corrected manually. Given that visible and thermal sets are aligned, the
landmarks detected on the visible set are considered as the ground truth landmark points
for the thermal set, as illustrated in Figure 6.4.

Figure 6.4: Ground truth facial landmark annotation of CSMAD data: facial landmarks
are first detected on the visible images using DLIB [166] followed by manual verification
and correction. The detected landmarks are simply used as ground truth for thermal
images.

Given that this database also provides samples in the visible spectrum, we trained
the FLD approaches on the original visible face databases Helen and LFPW. FLD
performance on the original visible database will be considered as a reference. The
comparison of the performance obtained using a thermal-based model with the visible
based model will quantify the discrepancy of the two spectra in terms of FLD.

AAM DAN
Aachen (TH) 0.14349 (±0.105) 0.14595 (±0.052)

LFPW (SynTH) 0.11779 (±0.062) 0.08265 (±0.026)
Helen (SynTH) 0.13200 (±0.057) 0.07309 (±0.022)
LFPW (VIS) 0.04020 (±0.015) 0.04299 (±0.012)
Helen (VIS) 0.045683 (±0.031) 0.03146 (±0.011)

Table 6.2: Average NRMSE (± standard deviation) reported on CSMAD database.
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(a)

(b)

Figure 6.5: Detection rate variation of facial landmark detection models evaluated on
CSMAD database: (a) Active Appearance Model (b) Deep Alignment Network.
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Results, in Table 6.2, show the average and the standard deviation of the localization
error in terms of NRMSE obtained by evaluating the different FLD models on the CSMAD
database. The first column of the table corresponds to the AAM approach trained on
different databases: where ‘TH ’, ‘SynTH ’, and ‘VIS ’ refer to thermal data, synthesized
thermal data, and visible data, respectively. The second column reports the same results
for a DAN-based approach. The localization errors reported by the FLD models trained
and tested on thermal face data is relatively higher than the errors reported by the
model trained and tested on the original visible images. This is mainly due to the
conversion of the face images from the highly informative domain, the visible spectrum,
to a comparatively lower informative domain as the thermal spectrum, resulting in a loss
of information relevant for accurate FLD. We also observe the detection models trained
on synthesized thermal data exhibit considerably lower errors than the models trained on
the Aachen database, which demonstrates the efficiency of our proposed solution. The
reported results prove that a FLD model trained on synthesized thermal face data is
more robust than a model trained on high quality thermal face data, and that is due to
the large gap in data quality between the Aachen database [153] and the current existing
thermal face databases.

The plots, presented in Figure 6.5, illustrate the detection rate that corresponds to a
defined threshold value for FLD models trained on different databases. We swept the
detection threshold from 0.0 to 1.0 with a step of 0.05. We observe that the two facial
landmark detectors trained on the Aachen database, represented by the blue curve, led to
significantly lower detection rates compared to the detectors trained on the synthesized
thermal data. This can be justified by the fact that Aachen models have been trained on
very high resolution, i.e. high contrast images captured with very high thermal sensitivity.
These images are very different from the images provided by the publicly available thermal
face databases, as it is the case for the CSMAD database. In addition, the detection
rates obtained using DANs are considerably higher than the detection rates obtained
using AAM. This confirms the efficacy of deep learning solutions in the FLD task.

Additional qualitative results, presented in Figure 6.6, depict the performance of each
model of FLD on thermal face images with some facial variations. We note that the
facial landmark detectors trained on Aachen database [151], shown in column (c) and
(f), fail to accurately localize most of the facial traits even under the least challenging
variation. However, all the four models trained on the synthesized thermal data provide
more accurate landmark localization. Furthermore, we observe that deep learning-based
detectors (columns (f), (g), and (h)) led to a more meticulous facial landmark localization
compared to the statistical modelling based detector. Besides, deep learning models
seem to be very robust against challenging facial variations such as occlusion by glasses
(rows 2 and 4). These methods managed to predict the facial landmark coordinates that
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.6: Qualitative results of the different facial landmark detection models on samples
of CSMAD database.(a): thermal reference, (b): ground truth, (c):AAM-Aachen, (d):
AAM-LFPW, (e): AAM-Helen, (f): DAN-Aachen, (g) DAN-LFPW, (h): DAN-Helen.

are closer to the ground truth, whereas the AAM based detectors tend to fail once it is
tested on challenging face variations.

6.5.5 Evaluation on high quality thermal face data

For a fair comparison, the FLD models are also evaluated on high quality thermal data.
The Aachen database [153] was extended to include thermal face images depicting facial
expression variations providing 68 points landmark annotation as well. The expression
variation subset of the Aachen database is used for our evaluation. Let us remind here
that the data provided by the Aachen database is characterized by a spatial resolution of
1024×768 pixels and NETD<30mK.

Table 6.3 presents the average and the standard deviation of the localization error
of different FLD models when tested on the expression subset of the Aachen database.
The detection models trained on the Aachen database report lower, but with a slight
difference, localization errors than the detection models trained on synthesized thermal
data. These results are somehow expected as the detection models trained on the Aachen
database are evaluated on data of the same thermal quality acquired with the same
thermal sensor.
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(a)

(b)

Figure 6.7: Detection rate variation of facial landmark detection models evaluated on
the expression subset of the Aachen database: (a) active appearance model (AAM), (b)
deep alignment network (DAN).
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AAM DAN
Aachen (TH) 0.07267 (±0.031) 0.06061 (±0.020)

LFPW (SynTH) 0.09534 (±0.034) 0.07827 (±0.015)
Helen (SynTH) 0.10700 (±0.039) 0.06409 (±0.014)

Table 6.3: Average NRMSE (± standard deviation) reported on the expression subset of
Aachen database.

Detection rates of the different FLD models are illustrated in Figure 6.7. For the AAM
approach, the detection rate reported by the model trained on Aachen data is significantly
higher compared to the models trained on synthesized thermal data. However, for DAN,
we notice that the curve corresponding to the model trained on the Aachen database
overlaps with the curve obtained using the model trained on synthesized thermal data
from Helen, attesting that the two models perform similarly.

Figure 6.8 presents some samples of the expression subset of the Aachen database
portraying the performance of each FLD model. Overall, FLD was less challenging
when applied on high quality than on low quality thermal data, as revealed when we
compare Figure 6.6 and Figure 6.8. For the AAM approach, facial landmark detectors
trained on synthesized data perform slightly poorer than the detectors trained on the
Aachen database. Nevertheless, when using DAN, the three different facial landmark
detectors achieve similar performances as they all succeeded to meticulously locate the
facial landmarks. For some face variations, we can observe that the model trained on the
synthesized thermal Helen database (column (h)) detected adequately some challenging
landmarks, as the bottom lip (row 1) and closed eyes (row 2), whereas the facial landmark
detector trained on Aachen did not manage to correctly predict the localization of these
landmarks (column (f)).

6.5.6 Qualitative evaluation on thermal samples of different quality

Given that there are no public thermal face databases, other than Aachen’s [153], provided
with full facial landmark annotation, further quantitative performance assessment cannot
be performed on more data. Therefore, some qualitative results are illustrated in Figure 6.9
to demonstrate that the facial landmark detector trained on synthesized thermal data can
operate accurately on thermal data of different quality. Results obtained using the DAN
approach trained on Aachen database ‘DAN-Aachen’ are shown in row 1 of Figure 6.9.
We have presented, in row 3, results obtained using the DAN model trained on the
synthesized thermal data from Helen database ‘DAN-Helen’, as it is the best performing
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 6.8: Qualitative results of the different facial landmark detection models on
samples of the expression subset of Aachen database. (a): thermal reference, (b): ground
truth , (c):AAM-Aachen, (d): AAM-LFPW, (e): AAM-Helen, (f): DAN-Aachen, (g)
DAN-LFPW, (h): DAN-Helen.

model.

The presented samples are randomly selected from 3 different databases: (1) UND-X1
database [62, 63, 64] of a spatial resolution of 312×239 pixels and NETD<100mK, (2)
thermal face database provided by the Military University of Technology in Warsaw
(UTW) [154] of a spatial resolution of 640×480 and NETD<50mK, and (3) some samples
from the high resolution version of VIS-TH database [105] acquired in our laboratory
using a thermal sensor of a spatial resolution of 620×512 and NETD<50mK. We can
observe that for all the samples presented, the model trained on the synthesized thermal
data ‘DAN-Helen’ has succeeded to correctly localize the facial landmarks, outperforming
the model trained on Aachen database ‘DAN-Aachen’.

Given all the results and observations presented above, one may conclude that our
proposed concept has managed to obtain a facial landmark detector that can be suitable
for a wide range of thermal image quality.
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(b) (c)(a)

Figure 6.9: Qualitative results of facial landmark detection on samples of different thermal
face databases, using DAN-Aachen in row 2 and DAN-Helen in row 3. (a): UND-X1
database [62, 63, 64], (b): thermal database of Military University of Technology in
Warsaw (UTW) [154] (c): samples from the High resolution version of VIS-TH database.

6.6 Summary

In this chapter, we addressed the lack of public thermal face databases provided with full
annotation for face analysis applications. We introduced an unexplored concept consisting
of converting data from one domain to another to tackle this shortage of annotated
data. Particularly, we proposed to synthesize artificially a thermal face database with
full landmark annotation by converting an existing face database in the visible spectrum,
that has been designed for the facial landmark detection task, to the thermal spectrum.
Two different facial landmark approaches were trained on the synthesized thermal face
data and tested on low quality and then on high quality thermal data, proving the
robustness of the trained models. Our approach was evaluated and compared with two
facial landmark detection baseline models provided by Kopazcka et al [151]. These
baseline models were trained on high quality thermal data that led to a considerable
decrease in performance when tested on thermal face databases that are publicly available.
Conclusively, the facial landmark detection models trained on synthesized thermal data
significantly outperformed the baseline models trained on the Aachen database when
evaluated on lower quality thermal data. Whereas, when tested on high quality thermal
data, our proposed models perform similarly to the baseline models that are more adapted
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for thermal images of such quality.

The best performing model that we have trained on the synthesized thermal face
data has achieved an average localization error of 0.07 and 94.59% of detection rate at q
threshold value of 0.15 when evaluated on low quality thermal data. This facial landmark
detection model will be shortly made publicly available, as facial landmark detection is
an essential step for many face analysis tasks and as of today there are no public facial
landmark detection tools for the thermal spectrum that are available. Interspectral data
synthesis is also reproducible to tackle any lack of available data for tasks that require
extensive annotation.
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Chapter 7

Indirect spoofing attack on
thermal face biometric system

The robustness of the thermal spectrum against spoofing attacks lies in the acquisition
process of thermal properties by the thermal sensor. In this chapter, we propose a
new type of attack on thermal face recognition systems, performed at the post-sensor
level. In the visible spectrum, this attack would be carried out by simply injecting
a face image of the claimed identity into the communication channel right after the
sensor. However, thermal face images are not easy to obtain, unlike visible face images
that are abundantly available on the web. Therefore, we propose to generate synthetic
thermal attacks by converting visible face images into the thermal spectrum. To perform
visible-to-thermal attack synthesis, we use the approach presented in Chapter 6 based
on cascaded refinement networks (CRN) trained using contextual loss as described in
Chapter 4. In a scenario where the imposter has prior knowledge about the specific
spoofing countermeasure used in the the system, we introduce a new loss computed at
the local binary pattern (LBP) maps level to fool a LBP-based spoofing attack detection
algorithm. The threat caused by the proposed attacks is then evaluated using two
existing baselines of spoofing attack detection. The experimental results show that the
new proposed attacks alter the performance of spoofing attack detection and lead to a
higher error compared to the challenging presentation attack using silicone masks.

The remainder of this chapter is organized as follows. The context and motivation of
this work are presented in Section 7.1. Section 7.2 presents the studies carried out for
spoofing attacks on the thermal spectrum. Section 7.3 recalls our approach to generate the
proposed thermal attack, and the modifications we applied to obtain a more challenging
attack for a given spoofing attack detection approach. Section 7.4 details the process
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to generate the proposed synthetic attacks and presents a quality assessment of the
synthesized thermal images. Section 7.5 reports the experimental setup defined for the
evaluation of two existing baselines of spoofing attack detection when confronted with
the proposed attacks, followed by results and discussion. A summary is presented in
Section 7.6.

7.1 Context and motivation

With the growing usage of face biometric systems, it is commonly acknowledged that this
technology is exposed to multiple threats [167,168,169]. Eight different levels of attacks
have been defined in [167, 170]. Considering exclusively the attacks that occur at the
biometric sample level, face biometric systems might be the most vulnerable among all
other biometric systems, as faces are accessible on social networks or through capturing a
photograph at a distance without the victim’s consent. These attacks can be categorized,
as illustrated in Figure 7.1, into: direct or physical access attacks, and indirect or logical
access attacks.

Direct or
Physical access

attack

Indirect or 
Logical access

attack

Sensor
Feature 

extraction
Feature 

matching
Decision
Yes/No

Data 
storage

Spoofing 
countermeasure

Figure 7.1: Attacks on biometric sample in a face biometric system.

Direct or physical access attacks occur at the pre-sensor level and are referred to as
presentation attack. According to ISO/IEC30107 standards [50], presentation attack
is defined as "the presentation of an artifact or of human characteristics to a biometric
capture subsystem in a fashion intended to interfere with system policy". This attack can
be carried out either to impersonate/spoof a genuine user to gain unauthorized access, or
to evade the biometric system by concealing the attacker’s identity. The presented artifact
can consist of a fake biometric sample of the claimed identity, e.g. photographs, masks, etc.,
in spoofing scenarios, or some alteration or falsification [56,171] applied to the imposter’s
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own biometric sample in evasion scenarios. Recent research studies [51,52,53,55,56] have
proved that using thermal imagery might be the most effective solution to presentation
attack detection. The thermal signature of the human face provides evidence of the user’s
liveness. Artifacts presented by the imposter exhibit different thermal characteristics of
those of a face, leading to a straightforward presentation attack detection solution.

Indirect or logical access attack, on the other hand, occurs at the post-sensor level.
For this scenario, it is assumed that the impostor has access to the communication
channel between the sensor and the feature extraction module, as shown in Figure 7.1.
This kind of attack intercepts the face sample acquired by the sensor and substitutes it
with a fake sample of the claimed identity. This attack can be as simple as inserting a
photograph or replaying a video of the victim. Face samples are easy to obtain so as
to spoof conventional visible spectrum based face biometric systems. However, this is
not the case for thermal face biometric systems, as thermal images are not abundantly
available.

While until very recently the deployment of thermal technologies would have been
very expensive to deploy, and thus an unrealistic alternative to presentation attack
detection, the use of thermal imagery is now a reality. It is perhaps for this reason that
thermal imagery is gaining a lot of attention, and starting to be deployed across many
applications requiring high levels of security. Therefore, it is essential to study all the
vulnerabilities of thermal face biometric systems and the threats it may encounter.

7.2 Literature overview: spoofing attacks and thermal spec-
trum

The first attempts of spoofing attacks included techniques as simple as the presentation
of a photograph from the claimed identity on a printed paper or on a mobile device
screen, which can alter the performance of algorithms operating exclusively on 2D images.
Some prompt solutions have been proposed such as requiring an eye blink, smile, or
other visual reactions to prove the liveness of the user, yet this can be easily tricked
using video replay attacks. New sensor based presentation attack countermeasures have
also been considered, as these sensors deliver complementary visual information. 3D
sensors [172,173] merely unravel the lack of depth information when a printed photograph
or a video played on a device is presented. A much more robust sensor against these
attacks is that present in thermal cameras, as it provides proof of the user’s liveness
simply through acquisition [54]. When presenting these aforementioned attacks, the
acquired thermal sample will present some properties that are different from those of
a human face thermal signature. More elaborate and high-cost methods of spoofing
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have later appeared to manufacture 3D masks, which are robust to 3D sensors based
presentation attack detection. Thermal sensors remain highly robust against rigid 3D
mask attacks, as the rigid mask presents a uniform pattern with much lower temperature
than the average human face. However, this robustness can be affected when a flexible
silicone or latex mask based attack is presented, as it can get heated when worn by
the attacker’s face. Recent studies [51, 52, 53] do however show that even though the
robustness of thermal sensor based presentation attack detection drops, thermal modality
remains the most robust among other studied modalities such as visible spectrum, depth
maps, and near-infrared spectrum. Figure 7.2 depicts different types of spoofing attacks.
As for evasion, the attack can consist of face disguise and it can go as far as getting plastic
surgery. While this can practically interfere with visible spectrum based face biometric
systems, thermal technology has been proved to be substantially robust to these attacks
as well [55,56]. Face disguise can easily be detected since the used accessories present
different thermal properties from those of a human face [56]. Thermal imagery can also
identify plastic surgeries, as the resulted alteration of blood vessels appears as cold areas
in the face [55].

Paper mask Fake head Customized rigid
mask

Rigid mask Silicone maskReplay on iPadPrint on A4

Figure 7.2: Presentation attacks in visible and thermal spectrum.

A preliminary study was carried out, by Bhattacharjee et al. [54], to explore the usage
of multi-channel information for presentation attack detection. The study considered,
along with the visible spectrum, data from thermal, near-infrared, and depth channels.
The authors demonstrated that 3D masks and 2D attacks can be easily be detected in
the thermal spectrum by using the mean facial brightness of the face region. In [51],
the authors prove the vulnerability of commercial face recognition systems to custom
silicone masks. They also propose, as a solution for presentation attack detection, to
use the mean facial brightness, as proposed in [54]. Agarwal et al. [53] introduced
a multispectral database of latex mask attacks including visible, near-infrared, and
thermal spectra. The authors performed different experiments for face verification and
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presentation attack detection independently for each spectrum. For presentation attack
detection, they proved that the thermal spectrum is the most robust in comparison to
visible and near-infrared spectra. The best performing system was based on redundant
discrete wavelet transform (RDWT), Haralick features, and support vector machines
(SVM). However, the results reported on the thermal spectrum are questionable since the
thermal data is clearly acquired using FLIR MSX∗ technology which adds visible light
details to the thermal images. George et al. [52] present a new multi-channel database
containing different 2D and 3D attacks. A multi-channel convolutional neural network
(CNN) was proposed in this work for presentation attack detection. In addition, a score
level fusion was performed combining the scores of each channel’s presentation attack
detection algorithm. For the thermal spectrum, a presentation attack detection algorithm,
based on local binary pattern (LBP) feature extraction followed by logistic regression
classification, had outperformed the RDWT-Haralick-SVM baseline proposed by [53].
In [56], a disguise database in visible and thermal spectrum was proposed. The authors
proposed to combine patches from the visible and thermal images for presentation attack
detection.

7.3 Visible-to-thermal attack synthesis

A new attack on thermal face biometric systems is proposed in this work. This attack
occurs at the post-sensor level and is obtained by converting available visible face images
to the thermal spectrum. In this section, we reintroduce the used approach to convert
visible images to the thermal spectrum. A customization of the used approach is later
presented to generate more challenging attacks to a given approach of thermal spectrum
based presentation attack detection. Finally, the implementation details of the proposed
approaches are given.

7.3.1 Generalized approach for attack synthesis

Visible-to-thermal attack synthesis was carried out using the approach presented in
Section 4.5 of Chapter 4. This approach is based on cascaded refinement networks
(CRN) [21] trained using contextual loss [100]. In this case, the data synthesis is
performed from visible to thermal spectrum as it is the case of Chapter 6 of this thesis.
The synthesized attack to be generated is generalized to all spoofing attack detection
algorithms. We reformulate the loss, defined in equation 4.5 in Chapter 4, to adapt it to
visible-to-thermal image synthesis:

∗FLIR MSX: https://www.flir.com/discover/professional-tools/what-is-msx/
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LCRN (IV IS , ITH , G) =λ1(− log(CX(Φls(G(IV IS)),Φls(ITH))))+

λ2(− log(CX(Φlc(G(IV IS)),Φlc(IV IS)))),
(7.1)

Where IV IS , ITH , and G denote the input visible image, the ground truth thermal
image, and the generator (i.e. visible to thermal synthesis model), respectively. Φlc

and Φls refer to the VGG-19 embeddings extracted at content layers level and style
layers level, respectively. CX denote the contextual similarity defined in Equation 4.4 in
Chapter 4. λ1 and λ2 represent two empirically optimized weights associated with the
style and content losses, respectively.

7.3.2 Customized approach for attack synthesis

Here, we explore the scenario in which an imposter has obtained prior information about
the spoofing attack detection approach used in the targeted thermal face biometric
system. Therefore, the generalized approach for attack synthesis will be customized
according to this prior information.

The study, carried out by George et al. in [52], has proven that the spoofing attack
detection algorithm based on LBP feature extraction is outperforming the solution
provided by [53]. Therefore, we consider the LBP based spoofing attack detection as
our target spoofing countermeasure on which the impostor has some prior information.
Consequently, we customized our generalized visible-to-thermal attack synthesis model in
a way that it intends to generate thermal images of which the LBP map is more similar
to the LBP map of thermal ground truth images, or, simply put, more similar to the
LBP map of thermal bona fide samples.
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Figure 7.3: Diagram of the proposed approach to perform visible-to-thermal attack
synthesis. The highlighted blocks of the diagram illustrate the introduced loss for the
customized approach.

In Figure 7.3 the diagram of the different used approaches to perform visible-to-
thermal attack synthesis is illustrated. Our LBP based customization of the CRN model
is highlighted with an underlying light red area. The part of the diagram that is not
highlighted, represents the generalized visible-to-thermal attack synthesis model, where
we observe the loss at content level computed between the input visible image and the
synthetic thermal image, and the loss at style level between the synthetic thermal image
and the thermal ground truth (bona fide) image. In addition to the loss defined for the
generalized visible-to-thermal attack synthesis model, we introduced a new loss that is
computed at the LBP map level. The LBP map is generated using a uniform pattern:
8 sample points in the neighborhood on the circle of radius 1. We propose to compute
this loss function, denoted as Ψ in figure 7.3, in two different ways, as described in the
following:

Ψ=χ2(LBP) The first option is to consider as loss function the LBP histograms
comparison using χ2 distance. The histogram of LBP labels is calculated over the whole
LBP map, resulting in a feature vector of dimension 59. Training the visible-to-thermal
attack synthesis network aims thus to minimize the χ2 distance computed between the
LBP histogram of the synthetic thermal image and the thermal ground truth image. The
total loss of the customized attack synthesis model is formulated as follow:

LTotal(IV is, ITh, G) =α1LCRN (IV is, ITh, G)+

α2Lχ2(LBPhist(G(IV is)), LBPhist(ITh))
(7.2)
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Ψ=CX(LBP) The second option is to use a contextual loss computed on LBP maps,
but solely at style level, as our objective is to generate thermal attacks of which the
LBP maps are closer to the LBP map of thermal bona fide images. We extracted the
VGG-19 embedding vectors from LBP maps of the synthetic thermal image and the
thermal ground truth, at style layers. Consequently, the total loss of the customized
attack synthesis model, in this case, is defined as follow:

LTotal(IV is, ITh, G) =α1LCRN (IV is, ITh, G)+

α2(− log(CX(Φls(LBP (G(IV is))),Φls(LBP (ITh))))
(7.3)

In addition to the annotation defined in the equation 7.1, LBP , and LBPhist denote
the LBP map and the histogram of the LBP map, respectively.

For the remainder of the paper, we refer to the visible-to-thermal attack synthesis
models as CRN, CRN+χ2(LBP), and CRN+CX(LBP) to denote the generalized model,
the customized model combined with LBP histogram comparison using χ2 distance, and
the customized model combined with the contextual loss at style level computed on LBP
maps, respectively.

7.3.3 Implementation details

The different visible-to-thermal attack synthesis models are trained using the VIS-TH
database presented in Chapter 3. One variation was discarded from the database, as it
was acquired in total darkness. Visible and thermal images are re-sampled to 128×128
pixels.

The training of the three proposed models of visible-to-thermal attack synthesis
was performed with a learning rate of 1e-4. The CRN model was run for 40 epochs,
CRN+χ2(LBP) model for 60 epochs and CRN+CX(LBP) model for 90 epochs. The
weights assigned to the different losses α1, α2, λ1 and λ2 were adjusted using grid search.

7.4 Indirect attack synthesis

In this section, the dataset, from which the synthetic thermal attacks are generated, is
first introduced. A quality assessment of the synthetic thermal images is then performed.
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7.4.1 CSMAD dataset for indirect attack synthesis

Choosing the Custom Silicone Mask Attack Dataset (CSMAD) [51] is motivated by the
fact that this dataset contains the most challenging attack on thermal face biometric
systems, and therefore it will be considered as a baseline attack. In other words, the
damage caused by the new attack, which we are proposing in this chapter, on spoofing
attack detection will be quantified and compared to the damage brought by the silicone
masks attack.

The CSMAD contains presentation attacks made of six custom-made silicone masks.
Face images are collected from 14 subjects. Bona fide samples were collected from all
subjects. Extra bona fide samples were acquired for few subjects, for which they wore
eyeglasses. Attack samples were acquired for all 6 masks but worn by different attackers.
Additional attack samples were recorded with the masks attached to their provided
stands. The CSMAD provides bona fide and attack acquisitions, consisting of videos
of 5 to 10 seconds, in the visible, near-infrared and thermal spectrum, and also depth
maps collected simultaneously. The dataset was collected under 4 different illumination
conditions. In our study, we have only considered data from the visible and thermal
spectrum. Figure 7.4 present some attack samples. We can observe, in column (a), when
the mask is worn by the attacker it gets warm, leading to a thermal face sample that
looks more like a real face in terms of temperature. Whereas for the attacks where the
mask is attached to a stand, we can barely differentiate the mask from the background
in the thermal spectrum, as they probably have similar temperatures.

7.4.2 Quality assessment of the synthetic attacks

Bona fide samples from the CSMAD dataset, that are acquired in the visible spectrum,
are simply fed to the visible-to-thermal attack synthesis models presented, in Section 7.3,
to generate the synthetic attack. Two of the illumination conditions were discarded as
they altered the quality of the synthetic images resulting in black areas in the face caused
by missing information due to low illumination.

Figure 7.5 illustrates the synthetic attacks in column (c), (d) and (e). We note
that the synthetic thermal images present realistic patterns of thermal signature. Some
details, such as hair and eyebrows, are converted into low pixel values reflecting regions
with lower temperature compared to the face region. However, we can observe that
the synthetic thermal images, when compared to thermal ground truth in column (b),
present more details in some facial traits such as eyes and mouth. This is expected
as the synthetic thermal images are generated from data with a different source of
information. Comparing the synthetic thermal images generated using the three proposed

103



Chapter 7. Indirect spoofing attack on thermal face biometric system

(a) (b)

Figure 7.4: Samples of presentation attack of CSMAD database in visible and thermal
spectrum. (a) worn masks (b) standing masks.
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(a) (b) (c) (d) (e)

Figure 7.5: Samples of synthetic attacks. (a) visible bona fide (b) thermal bona fide (c)
synthetic attacks using CRN (d) synthetic attacks using CRN+χ2(LBP) (e) synthetic
attacks using CRN+CX(LBP).
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visible-to-thermal attack synthesis models, we note that the three sets of synthetic images
are remarkably similar, even though we can note few minor differences that are almost
not visually perceptible.

PSNR (dB) SSIM

CRN 15.576 (± 4.246) 0.610 (± 0.103)

CRN+χ2(LBP) 15.223 (± 4.594) 0.613 (± 0.123)

CRN+CX(LBP) 15.616 (± 4.208) 0.618 (± 0.107)

Table 7.1: Quality assessment of the synthetic attacks in terms of PSNR and SSIM.

A quality assessment of the synthetic thermal attacks obtained by the different
proposed approaches is performed in terms of peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM). PSNR and SSIM are computed between the
synthetic thermal images and the thermal bona fide samples (ground truth). Table 7.1
reports the PSNR and SSIM results obtained for each visible-to-thermal attack synthesis
model. We acknowledge that the obtained results do not reflect a high fidelity of
the synthetic thermal images to the ground truth. As pointed out for Figure 7.5, the
synthetic attacks are generated from visible face images that provides different information
compared to the thermal spectrum. The visible-to-thermal attack synthesis models aim
to generate thermal-like images but it cannot predict accurately the thermal signature.
The quality assessment provides similar results for the different attack synthesis models
(∼15dB for PSNR and ∼0.6 for SSIM), with the CRN+CX(LBP) model delivering the
highest values of PSNR and SSIM.

7.5 Evaluation of face spoofing attack detection for indi-
rect synthetic attack

In this section, we carry out a performance evaluation of spoofing attack detection when
confronting the new proposed synthetic attack in order to quantify the threat it causes.
First, we present the spoofing attack detection algorithms used for the evaluation. Then,
we introduce our experimental setup followed by the reported results and discussion.

7.5.1 Spoofing attack detection baselines

The selected baselines of spoofing attack detection were introduced in studies of thermal
spectrum robustness against spoofing attacks [51,52,53,54].
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Mean facial brightness (MFB) As defended in [51, 54], mean facial brightness is
a simple but very efficient solution to prove the user’s liveness. This argument can be
endorsed by the fact that face regions are rather bright in the thermal spectrum, while
presentation attacks are quite dark since they are at a significantly lower temperature
than faces. This is also valid for silicone mask attacks since it is expected that the attack
region will be relatively darker than the face region even when worn by the attacker.
Mean facial brightness can be used simply as a spoofing attack detection score.

Local Binary Patterns and Logistic Regression (LBP+LR) Local binary pat-
terns (LBP) are used to represent the texture variation between bona fide samples and
attack samples. Subsequently, logistic regression (LR) is used to build a classifier to
label samples as bona fide or attack. LBP features are normalized before training the LR
model. We have applied normalization to zero mean and unit standard deviation using
parameters extracted only from the bona fide feature set. Given a LR trained model, the
output of this spoofing attack detection is the probability of a sample being a bona fide.

7.5.2 Experiments and results

The performance evaluation of the presented spoofing attack detection baselines is
assessed using the CSMAD dataset along with the synthetic attacks obtained using the
different visible-to-thermal attack synthesis models. The CSMAD dataset provides video
samples that are split into frames. Spoofing attack detection scores are computed at
frame level.

Face regions are cropped by extracting the face coordinates on the visible spectrum
and projecting them on thermal face images. MFB is computed across the face re-
gion. Figure 7.6 illustrates the score distribution of MFB for bona fide samples and
attack samples. The score distribution of bona fide samples is the same for all the
Figures 7.6a, 7.6b, 7.6c and 7.6d, as we have considered the same bona fide set for the 4
sets of attacks. For the silicone mask attacks illustrated in Figure 7.6a, we observe that
the two score distribution are clearly separated, resulting in a 2.3% of equal error rate
(EER). However, the score distribution for the synthetic attack generated by the three
different models of visible-to-thermal attack synthesis significantly overlaps with the score
distribution of bona fide samples. The synthetic attack generated using CRN+χ2(LBP)
model gives the highest equal error rate of 67.7%. The EER reported on all of the three
different synthetic attacks surpasses 50%. Accordingly, we can deduct that the proposed
synthetic attack has led to a terrible failure of the spoofing attack detection solution
based on MFB.
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(a) (b)

(c) (d)

Figure 7.6: Score distribution of the MFB baseline for bona fide and attack samples. (a)
silicone mask attack (b) synthetic attack CRN (b) synthetic attack CRN+χ2(LBP), (c)
synthetic attack CRN+CX(LBP)

For LBP+LR baseline, we split the CSMAD dataset into 14 partitions, each corre-
sponding to a specific subject. For each cross-validation fold, 13 partitions are selected to
train the spoofing attack detection model and the remaining partition is used for testing.
The splitting of the dataset is defined in a way to ensure a disjoint set of subjects so that
the spoofing attack detection model does not learn subject-specific information. Figure 7.7
presents the detection error tradeoff (DET) curves corresponding to each of the studied
attacks. For the silicone mask attack, we observe that the LBP+LR based spoofing attack
detection report a considerably low error, reflecting this solution’s robustness against
silicone mask attacks. The performance of LBP+LR baseline drastically decreases when
dealing with the proposed synthetic attacks. In a scenario of an extremely secure spoofing
attack detection system where almost no impostor will be able to breach the system,
if we permit a false acceptance rate of 0.1% for instance, we will obtain a false alarm
rate of 30-33%. Comparing the performance of the spoofing attack detection solution for
the synthetic attack obtained by the three different models, we note that combining the
CRN model with the loss computed at LBP map level led to more challenging attacks.
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Figure 7.7: Detection error tradeoff (DET) curves of LBP+LR spoofing attack detection
baseline for different attacks.

The EERs of the two reported spoofing attack baselines for the different attacks are
gathered in Table 7.2. It is observable that the proposed synthetic attack represents a
considerably higher threat, in comparison to the silicone mask attack that is considered
so far a challenging attack for the thermal spectrum. The EER has increased from 2.3%
to 67.7% and from 0.21% to 11.6% for MFB and LBP+LR spoofing attack detection,
respectively.
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MFB LBP + LR

Silicone mask attack 2.3 0.21

Synthetic attack CRN 58.5 7.43

Synthetic attack CRN + χ2(LBP) 67.7 9.44

Synthetic attack CRN + CX(LBP) 50.7 11.6

Table 7.2: Equal error rate (%) of face spoofing attack detection evaluated on the
proposed attacks.

When the impostor does not have any a priori knowledge about the spoofing counter-
measure implemented in the system, the performance of the spoofing attack detection
significantly drops when it faces the synthetic attack obtained by the generalized CRN
model. Consequently, the EER increased from 0.21% to 7.43%. Although when the
impostor does indeed have a priori information about the spoofing countermeasure that
is being employed, he can use this information in a way to customize his attack to have
higher chances to breach the system. This scenario is executed for visible-to-thermal
attack synthesis models, CRN + χ2(LBP), and CRN + CX(LBP), where we have used
the LBP map information to better attack the LBP+LR based spoofing attack detection
system. In addition, it is important to highlight that when using a contextual loss at
style level to compute the loss between the LBP maps of the synthetic thermal attack
and the bona fide thermal sample, we have obtained a higher EER (11.6%) compared to
using a LBP histogram comparison using χ2 distance (9.44%).

7.6 Summary

Deploying thermal technology in face biometric systems requires an extensive study of its
implications and the risk it may confront. In this chapter, we proposed a new attack on
thermal face biometric systems, that takes place at the post-sensor level. This thermal
attack is generated through visible-to-thermal attack synthesis of visible face images
that could be available on the social networks or acquired sneakily from a distance.
A quality assessment of the synthetic attacks has been performed by comparing the
synthesized thermal images to thermal bona fide samples. Subsequently, the threat
of the proposed synthetic attack was measured through an evaluation of two existing
spoofing attack detection solutions designed for the thermal spectrum. This evaluation
reported a significant drop in performance of the two used baselines when they face the
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proposed synthetic attack compared to when they confront silicone mask attacks, the
most challenging attack for the thermal spectrum studied so far. A scenario representing
an impostor that has a priori knowledge of the spoofing attack detection solution is also
explored. For the local binary pattern (LBP) based spoofing attack detection system,
we have adjusted the visible-to-thermal attack synthesis model in a way that it aims to
generate thermal images of which the LBP map is closer to the LBP map of thermal
bona fide samples. The obtained synthetic attacks using the customised attack synthesis
models have increased the error rate reported by the targeted spoofing attack detection
approach.

We have proven through this work that, even though it is true that the thermal
spectrum is extremely robust against presentation attacks, this does not deny the fact
that new attacks customized for thermal imagery might act as a serious threat. Spoofing
attack detection approaches based on the detection of human vital signs, such as the
respiratory rate or heart rate, might be an efficient, parallel, solution to counter-defend
against the attacks proposed in this chapter.

111





Chapter 8

Conclusion

This chapter provides a summary of the contributions and findings from the work reported
in this dissertation. This material is reported in Section 8.1. Different directions for
future research are presented in Section 8.2.

8.1 Summary

Conventional visible face recognition systems have greatly evolved during the three
last decades to achieve human-level performances. However, human performance does
not always define an upper bound of what is achievable. The human vision system
is limited by the potential of the visible spectrum that detects reflected radiation in
visible wavelengths. Thereby, visible face recognition systems are heavily affected by the
illumination variation. Thermal imagery provides efficient solutions to the challenges
encountered by visible face recognition systems. The foremost advantage of thermal
imagery lies in its invariance to illumination changes. This is inherent in the nature of
thermal imagery as it detects the radiation emitted by the face. Thermal face recognition
has attracted a lot of attention these last years, however, its progress is still far behind
that of visible face recognition. This is mainly due to the shortage in thermal face
databases and in public resources required for its exploration.

The research work reported in this thesis is centered on the development of novel
methodologies that enable efficient and prompt integration of thermal technology in face
biometric systems. The set of developed methodologies, presented in this dissertation, was
established based on interspectral synthesis that confers the exploitation of complementary
information provided by face images in visible and thermal spectra. The proclivity for
such direction is motivated by the explosion in the usage of thermal technology as the
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need and the investments for security applications grow steadily. The contributions
presented throughout this thesis have promoted an integration of thermal technology
without requiring:

• recollection of face enrollment databases in the thermal spectrum as the legacy
enrollment databases are restrained to the visible spectrum.

• adapted and re-optimized algorithms specifically designed for the thermal spectrum.

• extensive manual annotation and labeling of thermal data that is costly and
time-consuming.

The shortage of public face databases that provide face images in the visible and
thermal spectrum has motivated the first contribution of our work. A new face database,
introduced in Chapter 2, includes face images acquired simultaneously in visible and
in thermal spectrum using a dual sensor. The proposed database has been acquired
with several facial variations in an attempt to reproduce real-life challenging scenarios.
Because of its variation, this database can be used to conduct a wide range of studies
related to facial image processing including occlusion removal, expression, and/or pose
invariant face recognition and soft biometrics. A benchmark evaluation of the database
has been conducted to study the impact of facial variations on tge visible and on thermal
face recognition performance validating the advantages and the limitations of each. The
database has been available upon request for the research community. The remainder of
the contributions reported in this dissertation is built upon the representations provided
by the proposed database.

The contribution, introduced in Chapter 4, relates to our first application of inter-
spectral synthesis and that is to perform cross-spectrum face recognition. Thermal-to-
visible image synthesis is based on cascaded neural networks (CRN) [21]. The training of
CRN was performed using contextual loss [100] that enabled a scale and rotation invariant
transformation. The proposed approach was, qualitatively and quantitatively, evaluated
and compared to the state-of-the-art approach in image translation, Pix2Pix [96], and
to a thermal-to-visible synthesis approach based on generative adversarial networks,
TV-GAN [84], designed for cross-spectrum face recognition. The experimental results
revealed the efficiency of our approach in bridging the gap between the thermal and
visible spectrum compared to the TV-GAN baselines by reporting an average of 56% of
relative improvement in terms of face recognition accuracy. The presented contribution
enables the straightforward integration of thermal technology in deployed face recognition
systems without the need for recollection of face enrollment data in the thermal spectrum,
neither the re-configuration of inner processing modules designed for the visible spectrum.
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The work, presented in Chapter 4, was then extended to develop an illumination-
invariant face recognition system using visible and thermal-to-visible face images. Chap-
ter 5 introduced a new scheme of score level fusion that leverages the more informative
spectrum in given illumination conditions, yielding to a continuous day and night face
recognition. While the reported results in Chapter 4 proved the efficacy of the thermal-
to-visible image synthesis, the quality of the synthesized visible images is still a few steps
behind standard visible images. Based on the intuition that the quality of a sample can
be an indicator of its relevance in providing an accurate recognition, the matching scores
of visible images and thermal-to-visible images against visible gallery are associated with
a quality matching score that compares the quality of the probe sample to the gallery
sample. The proposed fusion scheme was employed in two face recognition systems, the
first based on handcrafted features, i.e. local binary patterns [115], and the second based
on deep neural embeddings extracted using LightCNN model [113]. The experimental
results validate our approach as slight improvements in face recognition accuracy were
reported.

The contribution of the work presented in Chapter 6 consists of introducing a novel
concept, that to our knowledge has not been previously explored, aiming to tackle the
lack of annotated data in domains, other than visible spectrum, that are less studied in
the field of image processing. The proposed solution consists of transferring the data from
one domain, generally visible spectrum, to a target domain and using the converted data
along with the original annotation to train a model designed to perform a determined
task. Particularly in this dissertation, we have considered the thermal spectrum as our
target domain and facial landmark detection as the task to be performed. The data
synthesis method has been adapted to perform visible-to-thermal data transformation.
Two facial landmark detection methods, the first based on active appearance models [134]
and the second based on deep learning technique [135], were trained on the synthesized
thermal databases using the corresponding annotation. The evaluation results have
reported 44% of relative improvement in terms of accuracy detection over the baseline
system.

Chapter 7 presents a new attack on biometric samples at the post-sensor level for
thermal face biometric systems. These systems were proved to be very robust against
spoofing attacks, however, this robustness lies in the process of acquisition characterizing
thermal sensors by detecting the thermal signature of the face. Therefore, the indirect
access attacks, that occur at the post-sensor level, are an irrefutable threat that jeopardises
the security granted by thermal face biometric systems. It is presumed that the attacker
injects, into the thermal face biometric system, a fake thermal face sample representing
the thermal signature of the claimed identity. This type of attack, to the best of our
knowledge, has not yet been explored in literature. Since thermal face images are nearly
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impossible to obtain, we proposed to study the impact of indirect access attacks on the
existing spoofing countermeasures through generating synthetic thermal face images by
transforming images acquired in the visible spectrum to the thermal spectrum. The
scenario, where the impostor has a priori knowledge about the spoofing countermeasure
used in the system and uses this information to adapt his synthetic attack to better
spoof the system, is also considered. The threat of the proposed synthetic attacks is
quantified using existing countermeasure approaches designed for the thermal spectrum.
The experimental results of spoofing attack detection show a relative increase in terms of
equal error rate from 0.21% for silicone mask attack to 11.6% for the proposed synthetic
attack demonstrating the risk it generates.

8.2 Directions for future research

Directions for future research relate to both the extension of the presented work for other
facial image processing tasks as well as the generalization of the proposed methods for
further computer vision applications. Further works include:

• High resolution face paired database in visible and thermal spectrum
As stated in Chapter 3, a high resolution version of the database introduced in
this thesis is being collected. This version of the database is being acquired with
FLIR DUO PRO R sensor, which provides visible images of a spatial resolution
of 4000×3000 and thermal images of a spatial resolution of 640×512 and thermal
sensitivity lower than 50mK. In addition to the variations considered for the first
version of the database, a variety of metadata is also being collected that includes
weight, height, and wrist size that will lay the ground to explore the possibility of
body measurement estimation from face images. The database will also provide
a 1-minute long face videos along with the measurement of heart rate. This will
enable monitoring cardiorespiratory signals using thermal faces. The collection of
this high resolution database is essential for the research community to keep up
with the rapid advancements of thermal imaging technology.

• Spoofing countermeasure for indirect spoofing attack on thermal bio-
metric systems Following the last contribution of this thesis presented in Chapter
7, a spoofing detection solution can be proposed in the thermal spectrum based on
the extraction of subcutaneous information that the thermal face images provide.
One possible direction is the extraction of cardiac signals to prove the user’s liveness.
The new database collection will provide the data required for the development of
such a countermeasure technique. Another solution can be based on the usage of
subcutaneous information provided by the thermal images. Thermal face recogni-
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tion relying on the extraction of subcutaneous features such as vascular network
matching [174] or blood perfusion data [175] can be directly employed.

• Improvement of interspectral face synthesis While the interspectral face
synthesis used for cross-spectrum face recognition yielded a significant improvement
compared to the baseline systems, the synthesized visible face images still present
few artefacts when the face is presented under challenging face variations such
as head pose and occlusions. Other artefacts are related to incorrect estimation
of some facial attributes such as gender and skin color. Improvements will be
explored with the aim of addressing the aforementioned artefacts to provide higher
cross-spectrum face recognition accuracy and enhanced quality face images.

• Application of interspectral synthesis for crowd density estimation The
research work reported in this dissertation has been already proved to be low-
hanging fruit. New projects have started to be proposed basing their research scope
on interspectral image synthesis for applications other than that of facial image
processing. An ongoing project entitled "OKLOS: Continuous anomaly detection in
moving crowds"∗ is drawing its focus on applying thermal-to-visible image synthesis
for video surveillance tasks. This project has been selected by the French research
agency (ANR) in the context of ANR Flash Call for Project: "Security of the 2024
Olympic & Paralympic Games". Thermal-to-visible image synthesis will lay the
foundation for the continuous day and night monitoring and surveillance, by means
of the wide range of available resources in the visible spectrum. These resources
include crowd motion analysis, density detection, and group behavior analysis.

∗OKLOS website: http://oklos.eurecom.fr/
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