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ABSTRACT
Vehicles are expected to generate and consume an increasing amount
of data, but how to perform risk reasoning over relevant data is still
not yet solved. Location, time of day and driver behavior change
the risk dynamically and make risk assessment challenging. This
paper introduces a new paradigm, transferring information from
raw sensed data to knowledge and explores the knowledge of risk
reasoning through vehicular maneuver conflicts. In particular, we
conduct a simulation study to analyze the driving data and ex-
tract the knowledge of risky road users and risky locations. We
use knowledge to facilitate reduced volume and share it through
a Vehicular Knowledge Network (VKN) for better traffic planning
and safer driving.

CCS CONCEPTS
• Computing methodologies → Reasoning about belief and
knowledge; • Networks→ Ad hoc networks; Cloud computing.
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1 INTRODUCTION
Vehicles are expected to generate a significant amount of raw sensor
data. The more connected devices get involved, the more raw data is
generated which eventually results in big data. However, delivering
all raw data and in-network traffic is highly redundant or sometimes
unnecessary. On the other hand, having more networking infras-
tructures with rich resources, is not feasible since increased data
may consume the available computing and networking resources
rapidly.

In light of these facts, it is obvious that urgent solutions are
required. Some standardization bodies have already defined mecha-
nisms to exchange the information among vehicles and roadside
infrastructures which facilitate the reduced volume of data. For
example, ETSI standardizes the information sharing through Co-
operative Awareness Message and Local Dynamic Map (LDM) [1].
The information is defined as a group of one or more pieces of raw
data that are processed to be meaningful [7, 8, 20]. However, multi-
ple applications running on the on-board unit of the vehicle may
execute redundant computation in parallel to interpret a similar
set of information (e.g., multiple vehicles may want to calculate
the risk of collision based on the position and speed information of
vehicles in the vicinity).

This paper leverages the concept of Knowledge to tackle the
above limitations and achieve the full potential of sensing, comput-
ing, and networking. We propose to convert data generated and
exchanged among vehicles into knowledge about traffic events,
environment, driving conditions, congestion, etc. We introduced
a Knowledge Layer on top of existing networks to extract, store
and exchange knowledge from collected data, and form a Vehicular
Knowledge Network (VKN) [5]. One example application of VKN
is risk reasoning. Vehicles are expected to generate and consume
an increasing amount of data, but how to perform risk reasoning
over relevant data is still not yet solved. Location, time of day and
anomalous driver behavior change the risk dynamically and make
risk assessment challenging. In this paper, we propose risk reason-
ing by VKN where vehicular maneuver conflicts are analyzed to
extract the knowledge of risky road users and risky locations. We
further utilize the knowledge to facilitate reduced volume and share
it through the VKN for better traffic planning and safer driving.
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Table 1: Related Work on Knowledge Networking and Knowledge Oriented Applications

Ref. Purpose Knowledge Method(s) Application
[13] Resource Utilization Network Selection Optimization Access Network Selection
[24] Network Management Optimal Links and Paths Optimization UAV Network Management
[23] Understanding Human Mobility Socioeconomic Activities Clustering Urban Area Planning
[10] Caching Utilization Content Election Machine Learning Edge Caching
[21] Parking Lot Monitoring Parking Availability Machine Learning End-to-End Parking
[12] Increasing Online Course Completion Rate The Most Promising Course Machine Learning Course Recommendation

The rest of the paper is organized as follows. Section 2 presents
the recent research effort in knowledge networking and knowledge
oriented applications. Section 3 describes the system model. Sec-
tion 4 introduces risk reasoning through VKN. Section 5 provides
the performance evaluation of risk reasoning via extensive simu-
lations. Finally, concluding remarks and future work are given in
Section 6

2 RELATEDWORK
Recent research works have studied some key features in the real-
ization of knowledge networking as well as knowledge oriented
applications as summarized in Table 1.

For example, network selection for mobile users with multiple
network interface cards is explored in [13] . In [24], a Software-
Defined Networking (SDN) enabled monitoring platform is pre-
sented for Unmanned Aerial Vehicles (UAVs) to effectively man-
age the optimal links and paths. The socioeconomic activities are
explored for urban area planning through the analysis of human
mobility in [23]. [10] explored content election strategies to allocate
the cache resources near-optimally for edge caching. The parking
lot monitoring system is investigated for end-to-end parking appli-
cation to predict the parking availability in [21]. [12] proposed a
course recommendation system where the most promising course
according to students is suggested to increase the online course
completion rate.

In terms of knowledge creation method(s), on the other hand,
various techniques have been used. In [13] and [24], knowledge
creation is modeled as multi-criteria decision making that involves
more than one objective and mathematical optimization methods
are applied to optimize objectives simultaneously. Clustering algo-
rithm is used for knowledge extraction where a set of objects (e.g.,
human trajectories) is grouped in same cluster in terms of similarity
(e.g., socioeconomic activities) in [23]. Knowledge, hidden relation-
ship in data, is explored through the machine learning approaches
in [10, 12, 21]. From the existing literature, we observe that there is
a current interest within the scientific community in knowledge
oriented applications. This interest has focused on system manage-
ment for better resource utilization and feedback system to achieve
the user’s objectives. However, to the best of our knowledge, there
is no existing work that addresses either vehicular knowledge or
vehicle knowledge networking.

On the other hand, there exist some recent works in the litera-
ture that aim to perform risk reasoning. Risk reasoning models the
risky behavior to determine safe zones for better traffic planning
and safer driving. The human response to traffic actions is deter-
mined based on risk assessment. In other words, if the riskiness

of the road user and/or location is known, certain maneuvers are
avoided for safety reasons. Prior works in risk reasoning focus on
understanding the driver’s risk tolerance to predict the maneuvers
and characterize the driving styles [6, 9, 19]. The driving data is ex-
plored to identify the risk thresholds in congested traffic scenarios
to navigate autonomous vehicles safely in [15] and [16]. However,
these approaches are not directly applicable to vehicular application
and have the following drawbacks. First, individual risk assessment
based on current traffic enhances the safety of the individual vehicle
and fails to make preventive and proactive decisions to minimize
the threat for all vehicles that are and/or will be affected by the
riskiness. Second, risk computation on these works requires a huge
data set with high fidelity tracking information which may not be
feasible to collect in real-time and it may introduce large delays
and overhead which is not tolerable in time-critical responses.

3 SYSTEM MODEL
Figure-1 illustrates a high-level overview of the proposed vehicular
risk reasoning system. We assume that all vehicles are connected,
and vehicles are equipped with an on-board unit to enable com-
munications (e.g., Dedicated Short Range Communication (DSRC))
and track gaps between each other (e.g., camera, radar, and sonar,
etc.). Vehicles communicate with each other and the remote cloud
and/or the edge server through the vehicle-to-vehicle (V2V) and
vehicle-to-cloud (V2C) communication, respectively. Vehicles have
KL and share their KBs with remote cloud and/or edge server when
they are instructed. Knowledge can be created by a single and/or
cluster of vehicles (e.g., vehicular micro cloud [11]) cooperatively
or it can be created at the edge through collaboratively collected
data from vehicles. The knowledge creation includes all the vehi-
cles inside the cluster but might potentially also be extended to
surrounding vehicles or a specific region. The created knowledge
is associated with a set of knowledge tags and stored in KB.

4 RISK REASONING BY VKN
In this section, we provide an overview of the Knowledge Layer
(KL), the architecture of VKN and risk reasoning incorporating the
vehicular maneuver conflicts to determine the risky road users and
risky locations.

4.1 Knowledge Layer
Figure 2 demonstrates the high-level overview of Knowledge Layer
(KL). KL consists of vehicle’s own Knowledge Base (KB) and other
KBs received from other vehicles. KB in each Knowledge Node (KN)
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Figure 1: Maneuver Conflicts in Vehicular Risk Reasoning

On-board unit of a vehicle = “Information/Knowledge Node”

Sensors Application(s)

Other KB(s) Knowledge 
Base (KB)

Knowledge 
Layer

LDM
Information 

Base

Information 
Layer

Figure 2: High Level Overview of the Knowledge Layer

stores the followings: knowledge produced by the vehicle, knowl-
edge received from other KN through the VKN and knowledge
produced by the applications.

KB creates new knowledge by a set of knowledge inference rules,
which take information at the Information Layer and/or the existing
knowledge at the KL as input. The knowledge inference rules are
described in a formal language, such as propositional logic as below:

• 𝑆𝑙𝑖𝑝𝑝𝑒𝑟𝑦_𝑅𝑜𝑎𝑑 ∧ 𝐻𝑖𝑔ℎ_𝑆𝑝𝑒𝑒𝑑 ⇒ 𝐷𝑎𝑛𝑔𝑒𝑟

• 𝑇𝑖𝑚𝑒_𝑖𝑠_6𝑝𝑚 ⇒ 𝐻𝑖𝑔ℎ𝑇𝑟𝑎𝑓 𝑓 𝑖𝑐 ∨ 𝐻𝑜𝑙𝑖𝑑𝑎𝑦

In addition to propositional logic, the knowledge inference rules
can be also represented in other forms, such as first-order logic,
fuzzy logic, Markov Logic Networks, etc. When a new instance of
knowledge is created, it is associated with a set of knowledge tags,
which includes one or more of the following:

• Location tag: describes geographical region(s) that are rele-
vant to the knowledge (e.g., the geographical area or travel
routes that may be affected by road congestion due to a traffic
accident)

• Time tag: describes the period of time for which the knowl-
edge is valid

• Content tag: description of the content of knowledge

• Priority tag: describes importance of knowledge
The KL dynamically creates new knowledge inference rules by

finding patterns in the information and the existing knowledge.

4.2 Vehicular Knowledge Network (VKN)
A KN may distribute knowledge in its own KB to other KNs over
vehicular networks which is defined as VKN and depicted in Fig-
ure 3. VKN intelligently manages distribution of knowledge based
on knowledge tags, associated with each instance of knowledge so
that vehicles can obtain relevant knowledge in a timely fashion.

Data Center

Knowledge Layer

Edge Server Edge Server

KnowledgeKnowledge 
Sharing

Figure 3: Architecture of VKN

Key functionalities of the VKN include the followings:
• Request other KNs for one or more instances of knowledge,
which match a designated set(s) of knowledge tags

• Forward the requests toward appropriate KN(s), which are
expected to have the requested knowledge (e.g., nodes closer
to the geographical region, indicated by the location tags)

• Respond to the requests from other KNs if it has the requested
knowledge in its own KB

• Cache the requested knowledge in its KB while delivering the
requested knowledge

In this paper, we focus on edge/cloud assisted knowledge cre-
ation and distribution of it where the knowledge is created via the
received data and/or information from vehicles at the edge/cloud
layer and the created knowledge is distributed through the V2C
communications. Besides, a straightforward approach would be
sending a query to one or more KNs by specifying a set of knowl-
edge tags. The KNs receiving the request forward it on VKN toward
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the nodes that are more likely to have the requested knowledge.
The next hop is selected based on the set of knowledge tags (e.g.,
KNs that are closer to the region of interest could have more chance
to keep the requested knowledge). The KNs receiving the request
look up its own KB. If a node finds a match, it responds the matched
knowledge back to the first KN over VKN (e.g., by using the reverse
path, followed by the request). While delivering the matched knowl-
edge, KNs on the delivery path may decide to cache the knowledge
in its own KB based on the knowledge tags, associated with the
matched knowledge (e.g., a KN closer to the geographical region,
indicated by the location tag, may cache the knowledge with higher
probability). We leave further exploration in these directions for
future work.

4.3 Risk Reasoning
In this paper, we examine how vehicles can quantify the risk level
in their environment by analyzing vehicular maneuver conflicts
through the VKN. To have safer driving, the riskiness of vehicles
should be identified, and this knowledge can be utilized to enhance
the driver assistance system or to tune the conservativeness of
autonomous vehicles while navigating on the roads. It has been
shown that car-following behavior is significantly impacted and
traffic conflicts occur when drivers show anomalous behaviors [17,
22]. A traffic conflict is defined as an observable event that may end
in an accident unless one of the involved road users slows down,
changes lanes, or decelerates/accelerates to avoid collision [18].

There are four types of vehicular maneuver conflicts; crossing,
merging, sequential and diverging. The behavior of the involved
road users is different for each type of maneuver conflict. The
conflict scenarios are illustrated in Figure-1 and explained in detail
next.

(1) Crossing conflicts occur when involved participants from
different directions attempt to cross at the same location and
at the same time (i.e., at traffic lights).

(2) When involved road users move into a single lane from the
different lane and/or directions, merge conflict may occur.
Merge conflict can create artificial traffic congestion and it
is one of the bottlenecks in traffic planning.

(3) When consecutive road users (i.e., follower and leader) vi-
olate the safe following distance (e.g., following vehicles
is traveling faster than the leader), the sequential conflicts
occur.

(4) When the flow of traffic is separated into different directions,
diverging conflict may occur. The diverging road user slows
down which may affect the fast-moving traffic.

In risk reasoning, Algorithm-1 is run by vehicles to asses the
risk levels. It has been shown that conflict indicators can capture
the severity of the situation successfully within a shorter period of
time [14–16]. In the proposed risk reasoning application, vehicles
track the maneuver conflict indicator of other road users and log the
corresponding safety surrogate measures (Line 1-3). Whenever the
safety measurement is below a predetermined threshold, the infor-
mation is created with vehicle identification, location, and conflict
type tags and stored in LDM Information Base. The information is
then shared with the edge and/or cloud by V2C communications

Time-To-Collision (TTC)

B

AAA

AAA

Sequential Conflict

BB

TTC < 3 sec

Merging/Crossing/Diverging Conflict

t1 t2

Post Encroachment Time (PET)

PET < 2 sec

difference of the A’s conflict area exit 
time t1 and B’s conflict area entry time t2

Vehicle Conflict Area

Figure 4: Maneuver Conflict Indicator

Algorithm 1: VKN Assisted Risk Reasoning
1 when detect any type of maneuver conflict do
2 Utilize the vehicle id, location and conflict type;
3 Create the information and share it with edge/cloud;
4 when want to quantify the risk levels do
5 Specify the knowledge tags (e.g. conflict type);
6 Send a request to edge/cloud;
7 Retrieve the Knowledge correlated to specified tags;
8 Determine risky road user(s), and risky location(s);

(Line 3). Figure-4 represents the implemented proximity based ma-
neuver conflict indicators. Vehicles use the Time-to-Collision (TTC)
and Post Encroachment Time (PET) to determine the maneuver
conflicts. It has been demonstrated that spacing between two con-
secutive vehicles plays a vital role in ensuring safe driving condi-
tions [3] and safe driving conditions are achieved when the TTC
and PET equal to 3 and 2 seconds, respectively. The TTC is used
for sequential conflict determination and the cases in which the
follower is faster than the leader are identified. If the measured TTC
value is less than the 3 seconds threshold then the case is marked
as a sequential conflict. To determine the merging, crossing, and
diverging conflicts, on the other hand, the PET is adapted. The PET
is defined as the difference of the vehicle A’s conflict area exit time
𝑡1 and vehicle B’s conflict area entry time 𝑡2. Whenever the PET
value decreases below the 2 seconds threshold, the active maneuver
is marked as a conflict. Whenever a vehicle wants to quantify the
risk levels, it sends a request to the edge and/or cloud, specifying
a set of knowledge tags (i.e., identification and/or location tags)
(Line 5-6). The edge and/or cloud leverages the received maneuver
conflict information and applies the hierarchical clustering accord-
ing to conflict type to create the knowledge. The knowledge is
risky road users (e.g., abnormal drivers) and the clusters of risky
locations (e.g., conflicting zones). Then, the knowledge is shared
with vehicles through V2C communications (Line 7-8).
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5 PERFORMANCE EVALUATION
We have evaluated the performance of risk reasoning by VKN
through simulation experiments. The goal of the simulations is
to analyze vehicular maneuver conflicts to extract the knowledge
of risky road users and risky locations. We employed the traffic
simulator Simulation of Urban Mobility (SUMO) [2] and simulate
theMonaco SUMOTraffic (MoST) [4] scenario to generate a realistic
vehicle probe data set. MoST covers a city region spanning over 70
km2 and includes 20 traffic assignment zones, more than 150 stops
and 20 routes where realistic vehicle mobility is simulated based on
public statistics on road traffic. Table 2 lists all the other simulation
parameters.

A road section near the city center is randomly picked up and
we assume vehicles entering this region perform risk reasoning
through the VKN. Each vehicle periodically broadcasts a beacon
message including the position, dynamic state of itself and the
surrounding road objects that are perceived by its on-board sensors
over vehicle-to-X (V2X) networks. Each application running on an
on-board computer unit uses the sensed data and generates the gap
information between vehicles and other road users. The knowledge
is created based on vehicle generated information from on-board
sensors and/or the local information base. It is worth noting that in
our simulation study we focused on the edge and/or cloud assisted
knowledge creation issue. The knowledge in our simulation is risky
road users and risky location in terms of vehicle maneuvers.

Table 2: Simulation Parameters

Parameter Value
Min/Max Speed 20/30 m/s
Simulation Time 14 Hour
Beacon Message Period 1 sec
Time To Collision Threshold 3 sec
Post Encroachment Time Threshold 2 sec
Communication Methods IEEE 802.11p, 4G
IEEE 802.11p Range 300 m

In the simulation, 612 maneuver conflicts are recorded by ve-
hicles. Figure-5 demonstrates the analysis of various maneuver

conflicts by different road users. About 80% of observed maneuver
conflicts are between personal vehicles, while 12% were between
vehicles and pedestrians. Depending on the type of conflict, the
sequential conflict is the most frequent conflict between road users.
Furthermore, the crossing and merging are the two most common
conflict between road participants after sequential conflict, which
depends on road geometry.

Figure 6: Risky Location Analysis

According to location, on the other hand, different types of ma-
neuver conflicts were found to be spread across different locations.
Figure-6 depicts the risky locations (a.k.a conflicting zone) anal-
ysis where the maneuver conflicts are grouped into three zones.
This type of knowledge is important which can effectively assist
in understanding vehicle mobility behavior and traffic planning.
Comparing the risky zones, we note that sequential conflict is more
contiguous in merging areas. This can be explained by the fact that
in merging the road user moves from a larger and less congested
state into a narrower and a more congested state.
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6 CONCLUSION AND FUTUREWORK
In this paper, we propose risk reasoning by VKNwhere vehicles can
quantify the risk levels in their environment and identify the knowl-
edge of risky road users and risky locations in terms of maneuver
conflicts. We show that 80% of maneuver conflicts are between
personal vehicles and the sequential conflict is the most frequent
conflict between the road users. In terms of risky location, on the
other hand, sequential conflict is more contiguous in merging areas.

Future work would concentrate on designing a protocol for the
VKN. Such protocol requires a knowledge lookup system where
vehicles discover the risk levels in their environment through the
submitted knowledge tag queries to the KNs, utilizing a knowledge
routing system to provide a knowledge delivery path allowing
multiple KNs communication. Moreover, we also plan to evaluate
the performance against overall system latency (from the moment
of the knowledge creation to the moment of knowledge delivery)
in different road topologies and traffic conditions.
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