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Abstract—Biometric systems are nowadays employed across
a broad range of applications. They provide high security and
efficiency and, in many cases, are user friendly. Despite these and
other advantages, biometric systems in general and Automatic
speaker verification (ASV) systems in particular can be vulner-
able to attack presentations. The most recent ASVSpoof 2019
competition showed that most forms of attacks can be detected
reliably with ensemble classifier-based presentation attack detec-
tion (PAD) approaches. These, though, depend fundamentally
upon the complementarity of systems in the ensemble. With
the motivation to increase the generalisability of PAD solutions,
this paper reports our exploration of texture descriptors applied
to the analysis of speech spectrogram images. In particular,
we propose a common fisher vector feature space based on a
generative model. Experimental results show the soundness of our
approach: at most, 16 in 100 bona fide presentations are rejected
whereas only one in 100 attack presentations are accepted.

I. INTRODUCTION

In the last decades, biometric systems have experienced a
broad development since they provide high security, efficiency,
and in many cases they are more user friendly than the
traditional credential-based access control systems. In spite of
those advantages, they are vulnerable to attack presentations,
which can be easily carried out by a non-authorised individual
without having enough computational knowledge [1]. Those,
in which biometric systems, are commonly deployed are in
turn employed to gain access to several applications such
as bank accounts, to unlock smartphones, or to circumvent
a border control. Specifically, Automatic Speaker Verifica-
tion (ASV) systems have shown a verification performance
deterioration when different Presentation Attack Instruments
(PAIs) such as replay, voice conversion, speech synthesis and
impersonation are launched [2].

In order to deal with those security threats, several Presenta-
tion Attack Detection (PAD) approaches have been proposed.
These methods try to determine whether a given sample stems
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from a live subject (i.e., it is a bona fide presentation, BP)
or from a synthetic replica (i.e., it is an attack presentation,
AP). According to the last ASVSpoof 2019 competition [3],
the top Deep Neural Networks (DNN)-based PAD techniques
have achieved a remarkable detection performance to spot
PAI species which can be either known or unknown a priori
in training time. In spite of the promising results reported,
those methods are time-consuming, hence being unsuitable for
lightweight security applications, e.g. for smartphones.

To overcome the aforementioned drawbacks, very few
works have explored texture-based representation for audio
PAD. Alegre et al. [2] proposed a PAD method based on the
combination of Local Binary Patterns (LBP) and one-class
classifiers. Even if the proposed algorithm reported a poor
detection performance for some unknown attacks such as voice
conversion, this work showed the generalisation capability
of the proposed texture-based representation for audio PAD.
Motivated by that fact, we explore in this work several image
processing texture descriptors in combination with a Support
Vector Machine (SVM), which have been successfully em-
ployed for fingerprint [4] and face [5] PAD. SVMs are popular
as classifiers since they perform well in high-dimensional
spaces and avoid over-fitting. In order to improve the gen-
eralisation capability of the analysed texture descriptors, we
also utilise the Fisher Vector (FV) representation, which has
shown remarkable results for unknown fingerprint [6] and
face [7] PAD. By assuming that the unknown attacks share
more texture, shape, and appearance features with known PAI
species than with BP samples, the FV representation defines
a common feature space from the parameters learned by an
unsupervised Gaussian Mixture Model (GMM) in order to deal
with the generalisation to unknown attacks.

The remainder of this paper is organised as follows. The
speech-to-image domain transformation techniques are pre-
sented in Sect. II. Sect. III briefly describes the texture descrip-
tors analysed in this work. Sect. IV describes the experimental
protocol and Sect. V presents the results. Finally, conclusions
and future work directions are presented in Sect. VI.



a) audio signal sample

b) image representation

Fig. 1. A speech sample together with its texture image representation.

II. FROM SPEECH TO IMAGES DOMAIN

The visualisation of audio/speech signals is key to many
audio analysis tasks, usually involving: (i) time-domain,
(ii) frequency-domain, or (iii) time-frequency-domain repre-
sentations known as spectrograms, which show the signal
amplitude over time at a set of discrete frequencies. Many
time-frequency representations have been proposed, each with
different characteristics. Keeping in mind that an audio signal
can be represented as an image, as shown in Fig. 1, in this
work we focus on the following four time-frequency represen-
tations: (i) short-time Fourier transform (STFT) [8], (ii) linear
frequency cepstral coefficients (LFCC) [9], (iii) constant Q
transform (CQT) [10], and (iv) constant Q cepstral coefficients
(CQCC) [11], [12].

The STFT is a time-frequency decomposition based upon
the application of Fourier analysis to short segments or win-
dows of the audio signal. As such, it is effectively a filter bank
where the bandwidth of each filter is constant and is related
to the window function.

LFCC coefficients are computed from the STFT by applying
the discrete cosine transform (DCT) [8]. Generally, only lower-
order coefficients are retained since they represent the vocal
tract configuration.

The CQT is a perceptually motivated approach to time-
frequency analysis. In contrast to Fourier-based approaches,
the bin frequencies of the filterbank are geometrically dis-
tributed. Compared to the STFT, the CQT has a greater fre-
quency resolution for lower frequencies and a greater temporal
resolution for higher frequencies.

CQCCs stem from the application of cepstral processing to
CQT representations. CQCCs offer a time-frequency resolu-
tion more closely related to that of human perception. These
features were designed specifically for PAD but have also
shown to be beneficial for ASV and utterance verification [13].

III. TEXTURE ANALYSIS BASED APPROACHES

In order to analyse the texture features extracted from the
time-frequency image representations described in Sect. II,
we selected several well-known texture descriptors, which

have been successfully employed for the PAD task across
different modalities such as fingerprint [4] and face [5]: Local
Binary Patterns (LBP) [14], Multi-block LBP (MB-LBP) [15],
Local Phase Quantisation (LPQ) [16], and Binarized Statistical
Image Features (BSIF) [17].

A. Local Binary Patterns

LBP [14] represents an image as a histogram of uniform
patterns which allows capturing shape and texture features
from the image. Specifically, given a circular image patch X
with radii σ and N pixels around the center, the LBP descriptor
is defined over X as:

LBPN,σ =

N−1∑
i=0

f(gi − gc)2i, (1)

where gi with i = 0 . . . N−1 are gray intensity values around
the center gc. In addition, f(gi − gc) is computed as:

f(gi − gc) =
{

1, gi − gc ≥ 0
0, gi − gc < 0

(2)

In order to capture more information and thereby increase
the descriptor distinctiveness, we compute the LBP patterns
for various radii σ and number of neighbors N (i.e., σ = {1,
2, 3} and N = {8, 16, 24}), as in [6].

B. Multi-block Local Binary Patterns

The MB-LBP [15] encodes the intensities of rectangular
regions with the LBP operator, which allows describing several
local structures of an image. Whereas the LBP descriptor
in [14] is defined for each pixel by thresholding the 3 ×
3 neighbourhood pixel values with the center pixel value,
the MB-LBP operator represents each pixel x by comparing
the central rectangle average intensity gx with those of its
neighbourhood rectangles. Therefore, it can detect numerous
image structures such as lines, edges, spots, flat areas, and
corners [15], at different scales and locations. Unlike LBP,
the MB-LBP descriptor can thus capture large scale structures
that may be the dominant features of images, with 256 binary
patterns. In our work, we compute the MB-LBP descriptor for
several rectangle sizes Rx = {3, 5, 7, 9}.

C. Local Phase Quantization

LPQ [16] is a texture descriptor designed to deal with
blurred images. It represents an image patch of size l × l
centred on a pixel x as a 256-histogram by using the local
phase information, extracted by a STFT. Let Fui=1...4

be the
outputs of the STFT for the pixel x using four bi-dimensional
spatial frequency u0, u1, u2 and u3, the LPQ features for
x are defined as a vector whose components are formed by
stacking the real and imaginary part of Fui=1...4

. Subsequently,
the vector elements are quantized using a previously defined
function and then represented as a integer value in the range
[0 . . . 255]. In order to make the LPQ coefficients statistically
independent, a decorrelation step based on whitening trans-
form was performed.



D. Binarized Statistical Image Features

BSIF [17] is a local descriptor based on Independent Com-
ponent Analysis (ICA), which uses pre-learned filters to obtain
statistically meaningful representation of the data. Let X be
an image patch of size l × l and W = {W1, . . . ,WN} a set
of linear filters of the same size as X . Then, we can compute
the binarised responses bi, with i = 1, . . . , N , as:

bi =

{
1

∑
u,vWi(u, v)X(u, v) > 0

0 otherwise
(3)

All the filter responses bi are subsequently stacked to form
a single bit string b of size N per image pixel. Consequently,
that bit string is transformed in a decimal value, and then a
2N histogram for X is computed. This histogram is finally
represented as a 128-component vector [7]. In our work, we
adopt 60 filter sets [17] with different sizes l = {3, 5, 7, 9,
11, 13, 15, 17} and number of filters N = {5, 6, 7, 8, 9, 10,
11, 12} to compute the BSIF descriptors.

E. Fisher Vector encoding

For FV encoding, we build upon the idea proposed by [18],
[19]: a Gaussian Mixture Model (GMM) is used to unsu-
pervisely learn embedding features from a texture descriptor.
Generally, a GMM model based on K-components, which
are represented by their mixture weights (πk), Gaussian
means (µk), and covariance matrix (σk), with k = 1, . . . ,K,
allows discovering semantic sub-groups from known PAI and
BP samples, which could successfully generalise to and hence
enhance the detection of unknown PAI species. Given the
parameters learned by a GMM model, the FV computes
the average first-order and second-order statistics differences
between the texture features and each GMM Gaussian, thereby
yielding a 2Kd dimensional vector (d is the texture feature
dimension). The FV gradient computation between texture fea-
tures extracted from an given unknown sample and the GMM
components represents how its distribution differs from the
distribution of the model. Therefore, a better data distribution
will reveal more discriminative FV common feature space to
detect unknown attacks.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation follows a threefold objective:
i) analyse the detection performance of the texture descriptors
for known and unknown PAD; ii) establish a benchmark
against the speech-based state-of-the-art PAD techniques; and
iii) evaluate the computational cost of our proposal.

A. Databases

The experimental evaluation was conducted over the freely
available ASVSpoof 2019 database [3], [20], which comprises
two assessment scenarios: Logical Access (LAc) and Physical
Access (PAc). Both LAc and PAc databases are partitioned in
three disjoint datasets: training, development, and evaluation.
Whereas the PAIs in the training and development datasets
were built with the same algorithms and capture conditions
(i.e., it is the known attack scenario), PAIs for the evaluation

dataset were generated with different techniques and capture
conditions (i.e., it is the unknown attack scenario).

The LAc partition contains PAI samples which were gen-
erated using 17 different text-to-speech synthesis (TTS) and
voice conversion (VC) technologies: six were designated for
known attack assessment (i.e., A01-A06) and 11 for unknown
attack (i.e., A07-019 with exception of A16 = A04 and A19
= A06 and hence both two attacks are in the training set). In
order to analyse and improve the ASV reliability in different
acoustic environments and replay setups, the training and
development data for the PAc scenario is created under 27
different acoustic and 9 replay configurations. The replay
settings comprise 3 attacker-to-talker (i.e., A, B, C) recording
distances and 3 loudspeaker quality (i.e., A, B, C). The
evaluation dataset is generated in the same manner as training
and development data but with different random acoustic and
replay configurations.

B. Baselines and metrics

In order to establish a fair benchmark, we adopt two PAD
baseline approaches, which use GMM back-end classifier
with either CQCC (B01) or LFCC (B02) features. It should
be noted that whereas the baseline approaches employed a
bi-cluster GMM model for a BP or AP classification, our
analysed FV approach uses it as generative model to fit the
BP and AP data distribution. Based on that fact, we evaluated
several numbers of Gaussian clusters (i.e., K = {64, 128, 256,
512, 1024}) for the FV representation.

The experimental evaluation is conducted in compliance
with ISO/IEC 30107-Part 3 [1], analysing two metrics: i)
Attack Presentation Classification Error Rate (APCER) which
is defined as the proportion of APs wrongly classified as
BPs; and ii) Bona Fide Presentation Classification Error Rate
(BPCER): which is defined as the proportion of BPs misclassi-
fied as APs. In addition, we report the Detection Error Trade-
off (DET) curves between both errors, the BPCER values
for several security thresholds (i.e., BPCER10, BPCER20,
BPCER100), and the D-EER. Finally, to evaluate the per-
formance between the proposed PAD approaches and a ASV
system, we report the minimum normalised tandem detection
cost function (t-DCF) [21], which is the primary metric used
for the ASVspoof 2019 challenge1.

V. RESULTS AND DISCUSSION

A. Known attacks

In order to analyse the detection performance, two sets of
experiments were carried out. In the first experiment set, we
optimise the detection performance of our texture descriptors
in terms of the D-EER for different parameter configurations.
Table I shows the D-EER for the best parameter setting over
the development set in the LAc and PAc scenarios. As it may
be observed, among all speech-to-image domain transforma-
tions, the CQT reports the best detection performance, thereby
resulting a mean D-EER of 6.14% and 5.80% for the LAc

1https://www.asvspoof.org/



TABLE I
BENCHMARK IN TERMS OF D-EER(%) OF THE TEXTURE DESCRIPTORS

FOR THE BEST PARAMETER CONFIGURATION PER SPEECH-TO-IMAGE
DOMAIN TRANSFORMATION FOR KNOWN ATTACKS.

CQCC LFCC STFT CQT
LAc PAc LAc PAc LAc PAc LAc PAc

Best BSIF N = 6 N = 8 N = 9 N = 11 N = 12 N = 9 N = 9 N = 9
Parameters l = 17 l = 3 l = 5 l = 7 l = 15 l = 5 l = 17 l = 13

LBP 32.72 16.39 17.39 28.42 10.12 15.50 9.77 7.65
LPQ 20.72 13.80 19.20 43.59 12.66 15.04 9.54 6.05
BSIF 18.53 13.11 14.30 18.08 0.86 11.30 2.11 4.54
MB-LBP 19.68 22.30 16.52 24.28 1.10 12.01 3.12 4.98
avg 22.91 16.40 16.85 28.59 6.19 13.46 6.14 5.80

TABLE II
BENCHMARK OF OUR FV METHOD AND BSIF FOR KNOWN ATTACKS.

CQCC LFCC STFT CQT
K = 512 K = 512 K = 256 K = 512

PAI D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF

L
og

ic
al

A
cc

es
s A01 9.69 0.2973 5.70 0.1749 0.38 0.0101 1.15 0.0454

A02 3.99 0.1202 11.22 0.3195 0.62 0.0201 0.92 0.0294
A03 11.40 0.3503 6.59 0.2065 0.74 0.0225 1.19 0.0388
A04 8.76 0.2650 19.34 0.5258 0.84 0.0282 2.68 0.0804
A05 7.14 0.2260 11.40 0.3374 1.50 0.0516 2.46 0.0715
A06 17.77 0.5044 12.73 0.5850 0.82 0.0278 4.09 0.1331
pooled 10.28 0.3060 13.27 0.3660 0.86 0.0294 2.55 0.0748

K = 256 K = 128 K = 512 K = 256

Ph
ys

ic
al

A
cc

es
s

AA 16.26 0.4332 39.64 0.9045 21.32 0.5416 8.11 0.2038
AB 7.65 0.2184 27.26 0.6930 14.28 0.3763 2.43 0.0702
AC 6.23 0.1743 22.34 0.5767 9.75 0.2530 2.30 0.0671
BA 15.09 0.3859 33.26 0.8107 9.54 0.2334 5.19 0.1291
BB 6.53 0.1814 23.05 0.5933 6.19 0.1568 1.45 0.0373
BC 5.45 0.1502 19.03 0.5069 4.64 0.1141 1.16 0.0352
CA 15.56 0.4072 32.51 0.7987 9.19 0.2299 5.25 0.1365
CB 6.42 0.1719 22.73 0.6009 6.20 0.1566 1.21 0.0341
CC 5.11 0.1374 19.23 0.5136 4.19 0.1105 0.96 0.0275
pooled 9.94 0.2675 27.34 0.6784 11.05 0.2700 3.68 0.0976

and PAc scenarios, respectively. In addition, among the texture
descriptors, the BSIF unveils the best texture features for the
audio PAD task: D-EERs of 0.86% and 4.54% are attained for
the LAc with STFT and PAc with CQT, respectively, thereby
showing its suitability for the audio PAD task.

In a second set of experiments, we evaluate our FV ap-
proach for the best texture descriptor (i.e., BSIF) for known
attack detection (dev set). Table II shows the FV detection
performance for the best number of Gaussian clusters per
speech-to-image domain transformation. We can first observe
that STFT achieves the same detection performance for the
LAc scenario for the pooled database (i.e., all PAI species)
than the one reported by the single BSIF descriptor: a D-
EER of 0.86%, which is approximately three times lower than
the one attained by the FV encoding with the images in the
CQT domain. Alternatively, a different detection performance
is reported for the PAc scenario where a D-EER of 3.68% for
the CQT outperforms the one attained by STFT (i.e., 11.05%).
Finally, it may be noted that the t-DCF values for both the
STFT on LAc and CQT on PAc are respectively below 0.05
and 0.14, hence indicating that the FV provides a high security
against PAIs to the ASV systems.

TABLE III
BENCHMARK IN TERMS OF D-EER(%) OF THE TEXTURE DESCRIPTORS

FOR UNKNOWN ATTACK DETECTION.

CQCC LFCC STFT CQT

Method LAc PAc LAc PAc LAc PAc LAc PAc

LBP 24.61 17.87 28.30 25.88 22.44 16.26 17.43 7.16
LPQ 25.10 18.83 24.10 29.77 20.06 16.94 16.89 5.65
BSIF 20.35 14.29 18.36 19.74 15.33 11.29 14.73 4.94
MB-LBP 24.84 28.27 20.11 25.20 10.69 13.26 15.48 6.13
avg 23.73 19.82 22.72 25.15 17.27 14.44 16.13 5.97

B. Unknown attacks

As mentioned in Sect. IV, one of goals of this work is
to analyse traditional texture descriptors for unknown attack
detection. To that end, we select the evaluation dataset and
assess the detection performance for the adopted texture de-
scriptors by setting up the same parameters reported for the
known attack experiment.

The corresponding results are presented in Tab. III. We can
note that the BSIF descriptor attains again the best detection
performance for most speech-to-image domain transforma-
tions: a D-EER of 4.94% for PAc, which is close to the
one reported by the known attack scenario (i.e., 3.68%). In
addition, the MB-LBP outperforms the remaining descriptors
for the STFT-LAc scenario, achieving a D-EER of 10.69%.

Based on this fact, we also evaluated the combination
between BSIF and FV for each particular PAI species for
the LAc and PAc scenarios in Tab. IV and established a
benchmark against the baselines B01 and B02. As it can be
observed, the CQT achieves the best detection performance
for the entire set of LAc-PAIs (i.e., a D-EER of 6.83%). In
addition, this outperforms the adopted baselines for the most
challenging PAIs for LAc scenario under the ASVSpoof 2019
challenge [3]: D-EERs of 7.91% and 1.94% are respectively
achieved for A10 and A13, which are two and five times
lower than the ones reported by the baselines. Moreover, their
corresponding t-DCF values are better than the ones attained
by the baselines.

Consequently, for the Physical Access scenario our CQT-
based FV approach attains for the pooled a D-EER of 3.66%,
which is three times lower than the one yielded by the
baselines (i.e., a D-EER of 11.04% for B01 and a D-EER of
13.54% for B02). Furthermore, we outperform the baselines
for most PAI species: a D-EER in the range 1.10-7.64%
together with a t-DCF between 0.03-0.20% unveils a reliable
and secure generalisation capability for this scenario.

Finally, a tSNE visualisation in Fig. 2 shows that most PAI
species share more homogeneous features with each other than
with those bona fide presentations. However, the overlap of
some PAI species such as A17, A18, AA, BA, and CA with
the BP features indicates that the data distribution learned by a
GMM using the BSIF features needs to be improved in order
to get a better generalisable FV common feature space.



TABLE IV
BENCHMARK WITH THE STATE OF THE ART (B01 AND B02) OF OUR FV METHOD AND BSIF FOR UNKNOWN ATTACKS.

CQCC LFCC STFT CQT B01 B02
K = 512 K = 512 K = 256 K = 512 K = 2 K = 2

PAI D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF D-EER t-DCF

L
og

ic
al

A
cc

es
s

A07 7.80 0.2445 17.78 0.5147 0.31 0.0100 4.45 0.1376 0.00 0.0000 12.86 0.3263
A08 6.62 0.1958 1.75 0.0466 1.25 0.0356 4.60 0.1431 0.04 0.0007 0.37 0.0086
A09 3.23 0.0944 1.16 0.0351 0.30 0.0089 0.89 0.0270 0.14 0.0060 0.00 0.0000
A10 9.29 0.2784 17.35 0.5111 10.81 0.3140 7.91 0.2438 15.16 0.4149 18.97 0.5089
A11 2.18 0.0685 9.32 0.2688 1.40 0.0430 3.41 0.1032 0.08 0.0020 0.12 0.0027
A12 7.08 0.2212 17.21 0.4900 5.84 0.1689 5.08 0.1560 4.74 0.1160 4.92 0.1197
A13 8.30 0.2648 23.91 0.6964 5.01 0.1415 1.94 0.0634 26.15 0.6729 9.57 0.2519
A14 8.83 0.2686 8.74 0.2585 3.15 0.0971 2.05 0.0638 10.85 0.2629 1.22 0.0314
A15 4.56 0.1415 5.13 0.1517 4.32 0.1345 4.48 0.1377 1.26 0.0344 2.22 0.0607
A16 7.54 0.2363 15.22 0.4259 0.74 0.0234 2.04 0.0669 0.00 0.0000 6.31 0.1419
A17 34.39 0.9115 21.22 0.5745 31.20 0.8643 16.62 0.4766 19.62 0.9820 7.71 0.4050
A18 36.08 0.9536 32.19 0.8853 5.94 0.1793 10.28 0.3080 3.81 0.2818 3.58 0.2387
A19 26.94 0.7321 23.08 0.6628 4.62 0.1388 11.49 0.3454 0.04 0.0014 13.94 0.4635
pooled 14.62 0.3691 16.79 0.3837 7.76 0.1881 6.83 0.1926 9.57 0.2366 8.09 0.2116

K = 256 K = 128 K = 512 K = 256 K = 2 K = 2

Ph
ys

ic
al

A
cc

es
s

AA 23.14 0.5396 37.94 0.8827 19.45 0.4954 7.64 0.1985 25.28 0.4975 32.48 0.7359
AB 17.27 0.4162 26.89 0.7049 14.44 0.3714 2.05 0.0548 6.16 0.1751 4.40 0.1295
AC 11.28 0.2859 22.55 0.5913 10.70 0.2772 2.17 0.0594 2.13 0.0529 3.95 0.1121
BA 19.74 0.4967 31.24 0.7644 10.78 0.2785 5.17 0.1360 21.87 0.4658 24.59 0.6011
BB 14.40 0.3679 23.11 0.6132 7.06 0.1877 1.22 0.0341 5.26 0.1483 4.29 0.1252
BC 9.66 0.2517 19.32 0.5157 5.42 0.1458 1.23 0.0336 1.61 0.0433 3.20 0.0888
CA 18.64 0.4709 28.35 0.7084 9.88 0.2568 5.46 0.1408 21.10 0.5025 21.63 0.5524
CB 13.08 0.3358 22.40 0.5926 6.27 0.1692 1.22 0.0335 4.70 0.1360 3.92 0.1194
CC 9.05 0.2383 18.83 0.5087 5.22 0.1382 1.10 0.0308 1.79 0.0461 3.06 0.0895
pooled 15.68 0.3837 26.20 0.6649 11.21 0.2815 3.66 0.0946 11.04 0.2454 13.54 0.3017

C. In depth performance analysis

In order to determine whether the FV encoding together
with BSIF is suitable to yield a secure ASV system, we
evaluated it for several operating points according to the
ISO [1]. Fig. 3 shows the DET curves as well as the BPCER
values for several security thresholds for the LAc and PAc
scenarios over the development and evaluation datasets. As
it should be noted, different behaviours are observed for
both the known and unknown attack detection. Whereas the
FV encoding outperforms only one out of two baselines
approaches in the known attack detection (i.e., dev set) for
the LAc scenario (thin gray line), this shows a considerable
improvement for the PAc scenario. Specifically, it reports
a BPCER100 of 15.24% which outperforms the baselines
results by a relative 81.3%.

On the other hand, for the unknown attack detection (i.e.,
eval set), we can see that, the FV encoding is better than both
baselines: it improves B01 and B02 by a relative 30.46%
for LAc and 81.67% for PAc, thereby confirming the results
shown in Tab. IV and hence its soundness to detect this
frequent type of threat. Finally, it is worth noting that the
combination of BSIF together with the FV representation
reports a similar behaviour for known and unknown attacks
over the PAc scenario (i.e., gray vs. black on the right DET
figure). In particular, for a high security threshold (i.e., a
APCER of 1%), the FV attains a BCPER value of 15.56%

BP
A07
A08
A09
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19

BP
AA
AB
AC
BA
BB
BC
CA
CB
CC

a) LAc-based FV spaces b) PAc-based FV spaces

Fig. 2. t-SNE visualization of common feature spaces learned by the FV-based
approach for the CQT transformation.

for unknown attacks, which is marginally worse than the one
computed for the known attack detection (i.e., 15.24%). Based
on these results, we confirm that the texture characteristics
provided by the CQT domain transformation, captured by the
BSIF descriptors, and finally encoded by the FV, yields a
secure and convenient ASV system.

D. Computational efficiency

In order to evaluate the computational efficiency, we se-
lected the FV encoding for the best parameter configuration
(i.e., CQT) and studied its efficiency for several GMM parame-
ter configurations. In the experiments, a PC with a Intel Core
i7-8750H processor at 2.2GHz, 16GB RAM was employed.
The experimental results report that the FV encoding for K
= 512 clusters is able to detect an attack presentation attempt
in 1.6 sec approximately for CQT samples with a large size
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Fig. 3. DET curves for the best FV parameter configuration against the
baselines for the LAc and PAc scenarios.

in the range 983-1545 × 836 pixels. This result indicates in
turn that the FV approach is suitable to build a real-time audio
PAD system.

VI. CONCLUSION

In this work, we studied the reliability of image texture
analysis to develop a secure ASV system. To that end, four tra-
ditional texture descriptors which have been widely employed
for several PAD tasks were selected. In addition, an application
of the well-known FV encoding to audio PAD was proposed.
This representation allows the definition of semantic groups
given a generative model, such as a GMM.

Experimental results over the ASVSpoof 2019 database
confirmed the soundness of the proposal to detect both the
known and unknown audio attacks. In particular, the texture
characteristics provided by the CQT domain transformation
and captured by the BSIF descriptor, reported a D-EER
of 16.13% and 5.97% for the LAc and PAc scenarios, re-
spectively, in the presence of unknown attacks. These BSIF
descriptors represented in turn in a new common feature space
by the FV approach achieved a relative performance improve-
ment of 57.66% for the unknown attack detection, thereby
outperforming the current audio-based baselines. In addition,
this FV pipeline attained a classification time for large images
of 1.6 sec., approximately. Finally, a security analysis of
our FV proposal confirmed its generalisation capability: a
BPCER100 of 15.56% in the presence of unknown attacks,
which is roughly five times lower than the one attained by the
baselines, results in a secure and convenient ASV system.

As future work research direction, we will investigate a new
generative model to tackle the overlapping issues depicted in
Fig. 2, and hence improve the generalisation capability of the
FV representation. Furthermore, one natural extension of the
work would be to look for fusion strategies among methods
that are complementary to texture-based PAD.
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