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Abstract: RGB-D cameras are devices able to collect additional information, compared to classical RGB devices, about
the observed scene: its depth (D). This has made RGB-D very suitable for many image processing tasks,
including presentation attack detection (PAD) in face recognition systems. This work aims at demonstrating
that thanks to novel techniques developed in recent years, such as generative adversarial networks (GANs),
face PAD systems based on RGB-D are now vulnerable to logical access attack. In this work, a GAN is trained
to generate a depth map from an input 2D RGB face image. The attacker can then fool the system by injecting
a photo of the authorized user along with the generated depth map. Among all RGB-D devices, this work
focuses on light-field cameras but the proposed framework can be easily adapted for other RGB-D devices.
The GAN is trained on the IST-EURECOM light-field face database (LFFD). The attack is simulated thanks to
the IST lenslet light field face spoofing database (LLFFSD). A third dataset is used to show that the proposed
approach generalizes well on a different face database.

1 INTRODUCTION

RGB-D cameras are a specific type of depth sens-
ing devices that work in association with a RGB
camera, that are able to augment the conventional
image with depth information (related with the dis-
tance to the sensor) in a per-pixel basis (Nunes et al.,
2012). In the past years, novel camera systems like
the Microsoft Kinect or the Asus Xtion sensor that
provide both 2D-texture and dense-depth images be-
came readily available. Although these devices were
born for motion-sensing applications and games, re-
searchers have investigated their use for a number of
other tasks, including face recognition. In more recent
years, another RGB-D device has appeared on the
market, namely the plenoptic or light-field camera.
The plenoptic function is the 7-dimensional function
representing the intensity of the light observed from
every position and direction in 3-dimensional space
(Adelson et al., 1991). Thanks to the plenoptic func-
tion, it is thus possible to define the direction of every
ray in the light-field vector function. As described
in (Ng et al., 2005), a light-field camera is similar to
a traditional 2D RGB camera but has an additional
micro-lens array placed between the main lens and
the imaging sensor. This component allows to ac-
quire multiple representations of the scene, each one

captured from a slightly shifted point of view. Among
other things, the information stored in a light-field im-
age can be used for 3D scene reconstruction. As hap-
pened with the other RGB-D devices, also light-field
imaging has been investigated for face analysis. For
a recent overview on light fields for face analysis, the
reader is referred to (Galdi et al., 2019).

Light fields have proven useful for face recogni-
tion (Sepas-Moghaddam et al., 2018c) (Raghaven-
dra et al., 2013b) (Raghavendra et al., 2013c)
(Raghavendra et al., 2013a) (Raja et al., 2015) (Sepas-
Moghaddam et al., 2017b) (Chiesa and Dugelay,
2018b) (Sepas-Moghaddam et al., 2018a) (Sepas-
Moghaddam et al., 2019). However, there is an-
other field in which the depth information provided by
RGB-D cameras has demonstrated to be very effec-
tive, namely face presentation attack detection (PAD)
(Liu et al., 2019) (Kim et al., 2014) (Raghaven-
dra et al., 2015) (Sepas-Moghaddam et al., 2018b)
(Sepas-Moghaddam et al., 2018d) (Ji et al., 2016)
(Chiesa and Dugelay, 2018a) (Zhu et al., 2020). A
PAD method is any technique that is able to au-
tomatically distinguish between real biometric traits
presented to the sensor and synthetically produced
artefacts containing a biometric trait (Galbally et al.,
2014). Thanks to the depth map, it is extremely easy
to detect presentation attacks on flat surfaces, such as



presenting to the system a face picture of an autho-
rized user printed on paper or displayed on a screen.

In (Ratha et al., 2001), Ratha et al. identified sev-
eral possible vulnerable points of a biometric recog-
nition system. Figure 1 illustrates a biometric system
pipeline and the possible attacks: (1) an artefact re-
producing a biometric trait such as an artificial fin-
ger may be presented at the sensor, (2) illegally inter-
cepted data may be resubmitted to the system, (3) the
feature extractor may be replaced by a Trojan horse
program that produces pre-determined feature sets,
(4) legitimate feature sets may be replaced with syn-
thetic feature sets, (5) the matcher may be replaced
by a Trojan horse program that always outputs high
scores thereby defying system security, (6) the tem-
plates stored in the database may be modified or re-
moved, or new templates may be introduced in the
database, (7) the data in the communication channel
between various modules of the system may be al-
tered, and (8) the final decision output by the biomet-
ric system may be overridden (Jain et al., 2005). In
this paper, we focus on (2), in which the attacker has
the possibility to directly inject a compromised bio-
metric sample into the system, the latter is also re-
ferred to as “logical access attack”. Injection attacks
allow an attacker to supply untrusted input to a sys-
tem, which gets processed as part of the query.

The aim of this work is to show that thanks to
novel techniques developed in recent years, such as
generative adversarial networks (GANs), face PAD
systems based on RGB-D are now vulnerable to
logical-access attack. A GAN is trained to generate
depth maps from 2D RGB face images. The sim-
ulated attack is thus the following: an attacker only
needs to retrieve a face picture of an authorized user
(e.g. from the web) and generate the corresponding
depth map using the GAN. Both the texture informa-
tion (photo) and the generated depth map are injected
in the system.

The GAN is trained on the IST-EURECOM light-
field face database (LFFD). The attack is simulated
thanks to the IST lenslet light field face spoofing
database (LLFFSD). A third dataset is used to show
that the proposed approach generalizes well on a dif-
ferent face database. According to the ISO/IEC stan-
dards, performance is reported in terms of (i) Attack
Presentation Classification Error Rate (APCER): de-
fined as the proportion of presentation attacks incor-
rectly classified as Bona Fide presentations (ii) Bona
Fide Presentation Classification Error Rate (BPCER):
defined as the proportion of Bona Fide presentations
incorrectly classified as presentation attacks.
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Figure 1: Possible attacks in a biometric recognition system
(adapted from (Jain et al., 2005))

2 Proposed method

In order to demonstrate the vulnerability of RGB-
D based face PAD systems, the following elements
are required: an RGB-D based presentation attack de-
tector; a GAN to generate depth maps from 2D-RGB
face images; a dataset to train the GAN; a dataset to
test the attack.

2.1 Presentation attack detector

The RGB-D face PAD system tested in this work was
especially designed to detect presentation attacks in
light-field based face recognition systems and is pre-
sented in (Chiesa and Dugelay, 2018a). This method
can be used independently of the adopted face recog-
nition algorithm. For example, it can be used in com-
bination with a ”classical” algorithm for face recogni-
tion based on the 2D face picture only, or with an al-
gorithm exploiting the depth information provided by
the RGB-D sensors. For a more detailed description
of the latter, the reader is referred to the references
provided in the introduction.

From a light-field face image it is possible to ob-
tain a pair of RGB image and depth map of the ac-
quired face, where each pixel in the RGB image has
a corresponding depth value in the depth map. As de-
scribed in (Chiesa and Dugelay, 2018a), the analysis
of the depth values at specific face feature points leads
to the detection, with high accuracy, of most of the
tested presentation attacks, decreasing the vulnerabil-
ity of the recognition system. Not only the algorithm
works very well (100% correct detection) on flat pre-
sentation attacks such as printed or screen attack, but
also detects with high accuracy (99,26%− 99,54%)
the presentation attack consisting in wrapping a face
picture around a cylindrical surface, outperforming
other state-of-the-art algorithms.

The raw light-field images are processed with
the proprietary software Lytro Desktop and for each
image a pair of RGB and depth map is extracted.
The software provides perfectly aligned RGB images
and depth maps so that a depth value is associated



with each pixel of the RGB picture. Landmark de-
tection is performed with the DLIB library (DLIB:
http://dlib.net/), which implements a method for face
detection based on Histogram of Oriented Gradients
(HOG) and a face pose estimator, which also provides
68 face landmarks, based on the algorithm described
in (Kazemi and Sullivan, 2014). In the DLIB imple-
mentation, the pose estimator model is trained on the
database used for the 300 faces In-the-wild challenge
as described in (Sagonas et al., 2016). The algorithm
identifies 68 landmarks for each face. Then, for each
landmark, the corresponding depth value is consid-
ered. In order to smooth eventual noise, the depth
map is convoluted with a 7× 7 pixels average filter.
Landmark Depth Features (LDF) are defined as the
set of depth values corresponding to the 68 landmarks
of the face.

Classification is based on One-Class Support Vec-
tor Machine, a particular classifier trained with sam-
ples belonging to a single class only. The classifier
is trained with the LDFs from the bona fide (genuine
face images) class.

While most of the PAD algorithms presented in
literature, including (Chiesa and Dugelay, 2018a), are
able to detect presentation attacks performed at sen-
sor level, they may be vulnerable to logical access at-
tacks. However, for an attacker it would be still dif-
ficult to retrieve the data to be injected in the system,
that is: a pair RGB image - depth map of the face of an
authorized user. While for systems based on RGB ac-
quisition only a simple picture retrieved from the web
would be enough, in this case the attacker would need
to retrieve or generate the face depth map as well.

In this work we demonstrate that thanks to novel
techniques developed in recent years, such as genera-
tive adversarial networks (GANs), it is now possible
to use the RGB face picture to synthesize a realistic
depth map to be injected in the system and able to
fool the PAD module.

2.2 Conditional GANs

Given a training set, Generative Adversarial Net-
works (GANs) (Goodfellow et al., 2014) learn to gen-
erate new data with the same statistics as the training
set. For example, a GAN trained on photos can gener-
ate new photos that look, at least superficially, authen-
tic to human observers. GANs learn a loss that tries to
classify if the generated output image is real or fake,
while simultaneously training a generative model to
minimize this loss. Because GANs learn a loss that
adapts to the data, they can be applied to a multitude
of tasks that traditionally would require very different
kinds of loss functions (Isola et al., 2017). In (Isola

et al., 2017), Isola et al. present an image-to-image
translation algorithm based on conditional adversar-
ial networks. They made the code publicly available
(Pix2pix: https://phillipi.github.io/pix2pix/), namely
pix2pix, and thus their method has been adopted in
many works.

GANs are generative models that learn a map-
ping from a random-noise vector z to an output im-
age y, G : z→ y (Goodfellow et al., 2014). Condi-
tional GANs learn a mapping from an observed im-
age x and a random-noise vector z to an output im-
age y, G : {x,z} → y. The generator G is trained
to produce outputs that cannot be distinguished from
“real” images by an adversarially trained discrimi-
nator, D, which is trained to detect the generator’s
“fakes”. A key feature of image-to-image translation
is that the input and output differ in surface appear-
ance but both are renderings of the same underlying
structure. Therefore, structure in the input is roughly
aligned with structure in the output (Isola et al., 2017).

The pix2pix translator is thus used in this work to
convert RGB face images in the corresponding depth
maps. An example of such translation is given in Fig-
ure 2.

Figure 2: Image-to-image translation example: on the left
the RGB face image; in the centre the ground truth depth
map obtained with Lytro’s software; and on the right the
generated depth map using pix2pix. Images from the LFFD.
(Sepas-Moghaddam et al., 2017a).

2.3 Datasets

As mentioned before, at least two datasets are needed
for this work: one for training the conditional GAN
(i.e. pix2pix) for generating the face depth maps and
one for testing the logical access attack.

Pix2pix is trained thanks to the IST-
EURECOM Light Field Face Database (LFFD)
(Sepas-Moghaddam et al., 2017a). The LFFD
is a dataset made publicly available (IST:
http://www.img.lx.it.pt/LFFD/, EURECOM:
http://lffd.eurecom.fr/) to serve as basis for the
design, testing and validation of novel light-field
imaging based face recognition systems. The
database consists of 100 subjects, with images
captured by a Lytro ILLUM light-field camera. Two
separate sessions were performed for each subject



with a temporal separation between 1 and 6 months.
The database includes 20 image shots per person in
each of the two sessions, with several facial variations
including expressions, actions, poses, illuminations,
and occlusions.

Figure 3: An example of pictures captured for each subject
in the LFFD (Sepas-Moghaddam et al., 2017a).

The LFFD provides a large set of RGB face im-
ages and corresponding depth maps necessary to train
pix2pix to generate depth maps from RGB face im-
ages. Eight face variations are considered, discarding
occlusions and pose variations.

To test the logical access attack, the IST
Lenslet Light Field Face Spoofing Database
(LLFFSD)(Sepas-Moghaddam et al., 2017c) (Sepas-
Moghaddam et al., 2018e) is used (LLFFSD:
http://www.img.lx.it.pt/LLFFSD/). The LLFFSD is
generated from the IST LFFD, by using the RGB
face images from the LFFD to reproduce presentation
attack items (PAIs), such as printed paper, wrapped
printed paper, laptop, tablet, and two different mobile
phones, for a total of 600 presentation attack images.
The PAIs are then acquired with the same camera
used for LFFD, that is the Lytro ILLUM plenoptic
camera.

A third dataset is used to demonstrate that the pro-
posed approach generalises well on different datasets.
The Visible and Thermal Pair Face Database (VIS-
TH), presented in (Mallat and Dugelay, 2018), is com-
posed by 4200 images of 50 subjects collected with
a dual camera collecting pairs of images in the vis-
ible and the thermal spectra at once. The VIS-TH
database includes 21 face variations, including differ-
ent illumination, expressions, and occlusions. From
this dataset only the RGB face images are selected
and used to generate the PAI pairs to attack the RGB-
D based PAD.

3 Experimental evaluation

3.1 Depth-map generation

The pix2pix network is trained with 700 RGB-D pairs
of face images from the LFFD database. The 700
images are randomly sampled from the set of im-
ages composed by the following face variation sets:
”Smile”, ”Angry”, ”Surprise”, ”Closed eyes”, ”Open
month”, ”High illumination”, and ”Low illumina-
tion”. The images in the ”Neutral” face variation cat-
egory are used for testing. Regarding the parameter
setting of pix2pix, the maximum number of epochs
is set to 100. This number is empirically selected by
considering the trade-off between the generator’s and
discriminator’s loss functions.

Two approaches are adopted to evaluate how simi-
lar to the original the generated depth maps are: (i) by
computing the disparity map between the original and
the generated depth maps; (ii) by attacking the PAD
system with the generated depth maps and consider-
ing the success rate of the attacks.

Approach (ii) is discussed in next Section. Re-
garding (i), the RGB images from the LFFD belong-
ing to ”Neutral” variation set (not used in training) are
processed with the pix2pix network in order to ob-
tain the synthesized depth maps. The disparity map
in Figure 4 shows the comparison between ground-
truth and synthesized depth maps. The disparity map
is obtained by computing the pixel difference over all
original and generated depth maps. Lighter areas in-
dicates a larger difference between the original and
the generated depth map. As can be observed from
the figure, the depth value prediction is less accurate
around the nose and the eyes (lighter color).

3.2 PAD vulnerability assessment

The PAD method (Chiesa and Dugelay, 2018a), is
trained using the bona fide samples belonging to
”Smile”, ”Angry”, ”Surprise”, ”Closed eyes”, ”Open
month”, ”High illumination” and ”Low illumination”
sets not used to train the pix2pix network.

Three testing sets are considered: LFFD, LLFFSD
and VIS-TH. For each of them, the RGB-D pairs are
created using the pix2pix network on the RGB face
images. The pairs are then submitted to the PAD
method. Performance is reported in terms of Attack
Presentation Classification Error Rate (APCER): de-
fined as the proportion of presentation attacks incor-
rectly classified as Bona Fide presentations. The re-
sults are discussed in detail in the following for each
of the three testing sets:



Figure 4: Pixel difference between original and synthesized
depth maps: the lighter pixels around the nose and eyes ar-
eas show that it is more challenging to predict the correct
depth value in those areas.

• LFFD: The testing set consists in face images
from the ”Nautral” category, these images were
not used for training the pix2pix network nor to
train the PAD method. All the generated image
pairs are recognized by the classifier as bona fide.
APCER = 100%.

• LLFFSD: For this dataset, we must draw a dis-
tinction since the ground-truth images already
represents an attack, that is a presentation at-
tack. On the original pairs, the classifier recog-
nizes 100% of the attacks for ”Paper”, ”Laptop”,
”Mobile 1”, and ”Mobile 2” PAIs and 99% of the
”Wrapped Paper” attacks. In order to test the log-
ical access attack, the presentation attack RGB
images are used to synthesize the corresponding
depth maps using pix2pix. The classifier is not
able anymore to detect the attacks and classifies
all samples as bona fide. APCER = 100%.

• VIS-TH: The RGB images from VIS-TH are used
to synthesize the depth maps. Also in this case the
PAD method classifies all samples as bona fide.
APCER = 100%. This test is done to demonstrate
that the proposed approach generalises well on a
different dataset. While the images of the LFFD
and LLFFSD datasets are collected with the same
camera model – the Lytro ILLUM plenoptic cam-
era – the images in VIS-TH are collected with a
different sensor, a dual visible and thermal cam-
era, namely the FLIR Duo R.
Table 1 summarizes the results for the LFFD and

VIS-TH databases. The results for the LLFFSD are
reported in Table 2, in this case the results on the
pairs with generated depth maps are compared with
the PAD results on the original pairs representing pre-
sentation attacks. The results on the LLFFSD are
very interesting as they show that depth maps gen-
erated from re-captured face photos are able to spoof
the PAD system.

APCER
LFFD 100%

VIS-TH 100%
Table 1: Attack presentation classification error rate on the
LFFD and VIS-TH testing sets.

Original Generated
LLFFSD depth maps depth maps

PAI APCER APCER
Paper 0% 100%

Laptop 0% 100%
Mobile 1 0% 100%
Mobile 2 0% 100%

Wrapped paper 1% 100%
Table 2: Attack presentation classification error rate on the
LLFFSD testing set.

4 Conclusions

In this work we demonstrated that recently devel-
oped AI techniques, such as GANs, represent a threat
to RGB-D face recognition systems. A logical access
attack is simulated in order to demonstrate the vulner-
ability of a PAD method that in normal conditions is
able to detect up to 99% of the attack presentations.
While presentation attacks are performed at the sen-
sor level, the considered logical access attack oper-
ates between the acquisition and the feature extraction
module. The pix2pix Conditional Adversarial Net-
work is used to synthesize depth maps from 2D RGB
face images. In this way, an attacker would only need
to retrieve a face picture of an authorized user and
generate the corresponding depth map to bypass the
RGB-D based PAD module. The performances of the
presentation attack detector are tested on the synthe-
size depth maps obtained from three datasets: the IST-
EURECOM Light Field Face Database, the Lenslet
Light Field Face Spoofing Database, and the Visible
and Thermal Pair Face Database. The PAD method
fails to classify the generated depth maps as presen-
tation attacks for all the attempts. Thus, in order to
detect such attack, a PAD module for an RGB-D face
recognition system should incorporate a discrimina-
tor able to distinguish between a real depth map and
a generated one. At the moment, it might be easy to
develop such a discriminator. However, with the con-
tinuous improvement of techniques based on artificial
intelligence, it is easy to foresee that this task may
become increasingly difficult.
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