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Abstract—This study considers the channel covariance conver-
sion problem, which consists in estimating the spatial covariance
matrix of a wireless channel by exploiting measurements obtained
on a different carrier frequency and stationarity properties of
the propagation environment across sufficiently close frequency
bands. The first contribution given in this study is a modelling
framework based on infinite dimensional Hilbert spaces that
unifies a plethora of classical and novel covariance models
with different degrees of complexity and generality, while still
effectively capturing important properties of the propagation
environment and of the antenna array. Given this framework,
this study addresses the channel covariance conversion problem
by proposing two simple yet effective algorithms based on set-
theoretic methods that outperform existing model-based ap-
proaches both in terms of accuracy and complexity. In particular,
the first algorithm is implementable as a simple matrix-vector
multiplication. Moreover, in contrast to the aforementioned ap-
proaches, both algorithms can be applied to general propagation
and array models such as dual-polarized antenna arrays, making
them suitable for modern 5G and beyond systems.

Index Terms—Massive MIMO, FDD, spatial covariance,
Hilbert spaces, dual-polarized array

I. INTRODUCTION

THE ability of base stations (BSs) to estimate in real-
time channel second-order statistics in the form of spatial

covariance matrix is of fundamental importance for modern
multiple-input multiple-output (MIMO) wireless communi-
cation systems adopting massive MIMO technologies [1],
[2]. The benefits of this ability have been identified under
several contexts, including resource allocation, interference
suppression, channel state information (CSI) aquisition, and
user localization [3]–[8]. The key idea underlying most of the
rich literature on covariance-aided transmission schemes is that
practical massive MIMO channels are strongly correlated [5]–
[7], [9], [10], and that this correlation can be exploited to
represent the channels of multiple user equipment (UE) on
different lower-dimensional subspaces.
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The seminal study [6] shows that spatial covariance in-
formation is essential to make massive MIMO technologies
practically appealing also for frequency division duplex (FDD)
mode, which is severely limited by the channel feedback
overhead under the classical yet unrealistic spatially uncor-
related fading assumption. More generally, statistical CSI is
relevant to enhance or even replace instantaneous CSI in
all system setups where the latter is much more difficult to
obtain due to time and/or resources constraints. In fact, as a
first approximation, statistical CSI is stable for a time frame
TWSS over which the propagation environment can be assumed
stationary, which is typically several orders of magnitude
larger than the channel coherence time [5], [6].

Nevertheless, efficient downlink (DL) covariance estimation
for FDD systems is far from being trivial. For example,
traditional closed-loop schemes based on DL training and
covariance feedback from the UEs at intervals corresponding
to TWSS may still experience excessive overhead, especially
for regimes with a large number of BS antennas and with
nonnegligible mobility. To overcome this limitation, many
authors have considered an alternative approach based on
estimating the downlink (DL) covariance matrix from uplink
(UL) channel measurements [11]–[16]. Although efficient es-
timation of large covariance matrices from limited training
samples is a challenging problem in itself, we neglect this
aspect in this work and focus on the so-called covariance
conversion problem, defined as the problem of estimating the
DL covariance matrix from the UL covariance matrix, which
is assumed to be known with sufficiently high accuracy at
the BS. Note that the UL covariance matrix is in practice
much easier to estimate for massive MIMO systems since UL
channel estimation consumes dramatically less resources [2].

Specifically, our contributions to the covariance conversion
problem are the following:1

• To address the problem with a high degree of generality,
we provide a framework based on the theory of infinite
dimensional Hilbert spaces that allows us to represent in
a unified way different channel spatial covariance models.
The framework captures relevant aspects of the propagation
environment and of the antenna array design. In particular,
our framework covers novel covariance expressions for

1Part of the results given by this manuscript was presented at IEEE ICASSP
2018 [17] and at IEEE GlobalSIP 2018 [18]. This manuscript completes and
extends [17], [18] by providing a unified presentation, details of derivations,
extensions to different channel and system models, and updated comparison
with existing literature.
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dual-polarized antenna arrays, which, to the best of our
knowledge, have not been available in the literature.

• Under the aforementioned modelling framework, we pro-
pose two general and efficient algorithms for covariance
conversion with different accuracy and complexity. They
exploit a statistical form of channel reciprocity for FDD
systems called angular reciprocity, here specialized by as-
suming frequency invariance of the so called angular power
spectrum (APS). This type of reciprocity is at the core of
most related schemes addressing the covariance conversion
problem, and it is detailed in the following sections.

A. Structure of the paper and preliminaries

This paper is organized as follows: In Section II, we present
general models for channel covariance matrices and their
unified representation in infinite dimensional Hilbert spaces.
The derivations of these models from various popular channel
models and system setups are provided in Section V. In
Section III, we describe the proposed algorithms for covari-
ance conversion. Specific implementations for uniform linear
arrays (ULAs) and uniform planar arrays (UPAs) are discussed
in Section IV. The performance of the proposed algorithms
are then evaluated via numerical simulations in Section VI.
Finally, the advantages of the proposed covariance conversion
algorithms over competing approaches, including the benefits
and potentials of the developed covariance modelling frame-
work, are discussed in Section VII.

Hereafter, we use the following notation. The operators
(·)T and (·)H denote respectively the transpose and Hermi-
tian transpose of matrices and vectors, and ‖ · ‖F is the
Frobenius norm. By R+ we denote the set of nonnegative
real numbers, and j is the imaginary unit. We use <[·] and
=[·] to denote, respectively, the real and imaginary parts. The
standard vectorization operator, i.e. the operator that stacks
column-wise the elements of a matrix A into a column
vector, is denoted by vec(A). The set of all square Lebesgue
integrable functions over a measurable set I ⊂ R is denoted
by L2[I]. We denote by (H, 〈·, ·〉) a Hilbert space with inner
product 〈·, ·〉 and induced norm ‖x‖ :=

√
〈x, x〉. Given a

Hilbert space, we denote by x(i) ⇀ x a sequence
(
x(i)
)
i∈N

weakly convergent to a point x, i.e., a sequence satisfying
(∀y ∈ H) limi→∞〈x(i), y〉 = 〈x, y〉. Furthermore, we recall
the following relevant property (see, e.g., [19, Ex. 1.4-3]):

Property 1. Let (H1, 〈·, ·〉1) and (H2, 〈·, ·〉2) be two Hilbert
spaces. Then (H, 〈·, ·〉), where H := H1 ×H2 with sum and
scalar multiplication (∀(x1, x2) ∈ H), (∀(y1, y2) ∈ H)

(x1, x2) + (y1, y2) := (x1 + y1, x2 + y2),

(∀k ∈ R) k(x1, x2) := (kx1, kx2),

and where (∀(x1, x2) ∈ H), (∀(y1, y2) ∈ H)

〈(x1, x2), (y1, y2)〉 := 〈x1, y1〉1 + 〈x2, y2〉2,

is also a Hilbert space.

Finally, whenever necessary, we use the notation Af , f ∈
{u,d}, to empathize the frequency dependency of a matrix A,
where u and d denote the UL and DL frequency, respectively.

II. CHANNEL COVARIANCE MODELS USING INFINITE
DIMENSIONAL HILBERT SPACES

The objective of this section is to provide a general approach
to channel spatial covariance modelling based on the abstract
framework of infinite dimensional Hilbert spaces [19]–[22].
Specifically, we first review and extend popular covariance
models with different degrees of complexity and generality.
Then, by leveraging on Hilbert space theory, we show the
existence of a unified representation that rigorously describes
the impacts of the propagation environment and of the antenna
array in a compact form.

A. System model

We consider a MIMO wireless channel between a BS with
N antennas and a UE with U antennas. We denote by H[t] ∈
CN×U a sample2 of the random channel matrix between the
BS and an arbitrary user at time t ∈ Z. We recall that this
model is suitable for describing either narrow-band systems
or wide-band multi-carrier systems, e.g., orthogonal frequency
division multiplexing (OFDM) systems [23], [24].

We assume H[t] to be a random process correlated both in
time and in the spatial domain, with spatial covariance matrix

(∀t ∈ Z) R[t] := E
[
vec(H[t]− H̄[t])vec(H[t]− H̄[t])H

]
,

where H̄[t] := E [H[t]] is the channel mean. By the so
called windowed-WSS assumption, we assume that, for a time
window of length TWSS, we can approximate the channel as a
wide-sense stationary (WSS) process [24], which implies that
R[t] and H̄[t] can be assumed constant for TWSS time slots.
Furthermore, we define the coherence block interval Lc as the
minimum lag l such that H[t] and H[t+ l] can be considered
independent. In narrow-band systems, Lc is usually set equal
to the channel coherence time Tc, expressed in discrete time.
In wide-band OFDM systems it is usually given by the product
Lc ≈ TcBc, where Bc denotes the coherence bandwidth.
Moreover, we assume TWSS � Lc, which is a reasonable
assumption for relatively low-mobility scenarios [5], [10], and
is at the core of most literature on wireless networks [1], [2],
[23], [24]. Throughout this work, we focus on realizations
R := R[t], where the time-index is omitted for brevity because
of the time invariance of R[t] over a time window TWSS, and
we consider w.l.o.g. H̄[t] = 0 since R[t] depends only on the
zero-mean fading process H[t]− H̄[t].

B. Angular reciprocity

In general, the channel H[t] depends on the carrier fre-
quency, hence classical channel reciprocity where the UL
channel Hu[t] and the DL channel Hd[t] satisfy (∀t ∈ Z)
Hu[t] = Hd[t] cannot be assumed for FDD systems. However,
by representing the channel via directional models, a weaker
form of channel reciprocity in the so-called angular domain
can be assumed. For example, by considering single-antenna
UEs (i.e. U = 1), 2D propagation, and unpolarized antenna

2With an abuse of notation, in this work we do not typographically
differentiate random variables from their realizations. The interpretation that
should be applied will be clear from the context.
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arrays, a classical model for the UL and DL spatial covariance
matrices Ru and Rd gives3 [4], [5], [10], [25]–[27]

(∀f ∈ {u,d}) Rf =

∫
Ω

ρ(θ)af (θ)af (θ)Hdθ, (1)

where ρ : Ω → R+ is the angular power spectrum (APS)
describing the received or transmitted power4 in a given
physical direction θ ∈ Ω ⊆ [−π, π], and au : Ω → CN×1,
ad : Ω → CN×1 are the frequency dependent antenna array
responses. The angular reciprocity is modeled by assuming
that the APS, unlike the array response, is frequency invari-
ant. This assumption is motivated by several measurement
campaigns (see for example [24], [28]), where, for typical
duplex gaps (10-100 MHz), the APS is shown to exhibit strong
frequency correlation properties. In Section V we also justify
this assumption analytically by considering popular channel
models in the literature.

C. Directional covariance models for realistic systems

The covariance model (1), owing to its simplicity, is still
very popular in the scientific literature, but the increasing
complexity of modern wireless communication systems (e.g.,
the 4G and 5G architectures) has demanded channel models
able to describe real propagation phenomena more accurately
(see, for example, the relatively recent 3GPP technical report
[29]).

Therefore, to address the limitations of (1), in the following
we illustrate several directional models for the spatial covari-
ance matrices that consider wave propagation in 3D environ-
ments, dual-polarized antenna arrays, and multi-antenna UEs.
For generality and to avoid unnecessary technical digressions,
in this section we do not specify the underlying model for
H[t]. However, the proposed models are formally justified later
in Section V.

1) 3D propagation: We assume single-antenna UEs, and
unpolarized antenna arrays. The model in (1) can be readily
extended to include 3D propagation as follows:

(∀f ∈ {u,d}) Rf =

∫
Ω

ρ(θ)af (θ)af (θ)Hdθ, (2)

where θ ∈ Ω ⊆ [−π, π] × [0, π] represents the azimuth
and the zenith in a spherical coordinate system. A detailed
justification of the above expression for narrow-band and
wide-band OFDM systems is given in Section V-A and Section
V-B, respectively.

2) Dual-polarized antenna arrays: We assume single-
antenna UEs and 3D propagation. To include dual-polarized
antenna arrays, we model the UL and DL covariance matrices
as follows: (∀f ∈ {u,d})

Rf =

∫
Ω

ρV (θ)afV (θ)afV (θ)Hdθ +

∫
Ω

ρH(θ)afH(θ)afH(θ)Hdθ,

(3)

3Throughout this work, integrals involving vectors and matrices should be
understood coordinate-wise.

4Note that this physical interpretation refers only to the signal components
originating the zero-mean fading process, i.e., it does not consider the channel
mean, which typically corresponds to a line-of-sight component.

where Af : Ω → CN×2 : θ 7→ [afV (θ),afH(θ)] is the dual
polarized antenna array response of the BS, and where the
functions ρV , ρH : Ω → R+, here denominated respectively
as vertical angular power spectrum (V-APS) and horizon-
tal angular power spectrum (H-APS), describe the received
or transmitted angular power spectra for the vertically and
horizontally polarized waves. Expression (3) is derived in
Section V-C by considering a popular channel model for
dual-polarized antenna arrays following [29]. Intuitively, this
model assumes the two polarizations to fade independently, as
discussed in detail in Section V-C. Furthermore, Section V-C
also briefly discusses how a slightly more general model than
(3) can be used to include the case of dependent fading across
polarizations, which is not considered here for simplicity.

3) Multi-antenna UEs: We assume 3D propagation, and
polarized antenna-arrays. Directional expressions for the full
covariance matrix Rf are difficult to obtain. Nevertheless, in
many applications the second-order statistics of the channel
can be partially described by using the receive and transmit
covariance matrices, which are given by [24]

Ru
RX := E

[
Hu[t]Hu[t]H

]
, Ru

TX := E
[
Hu[t]HHu[t]

]
,

Rd
RX := E

[
Hd[t]HHd[t]

]
, Rd

TX := E
[
Hd[t]Hd[t]H

]
.

By focusing on Ru
RX and on Rd

TX, which intuitively describe
the channel statistics “seen” from the BS point of view, we
consider the following models:

Ru
RX = R̃u, Rd

TX = R̃d, (4)

where R̃f (f ∈ {u,d}) is given by the right-hand side of
either (2) for the unpolarized case or (3) for the dual-polarized
case. The above expressions are justified in Section V-D. Note
that similar expressions for Rd

RX and Ru
TX can be obtained

by switching the role of BS and UE.
As a last important remark, we assume that all the functions

defined in this section are square-integrable. More precisely,
we assume ρ, ρV , ρH ∈ L2(Ω). Similarly, by letting a to be
an arbitrary entry of au, ad, Au, Ad, we assume <[a],=[a] ∈
L2(Ω). Note that this assumption is reasonable, because in
real-world systems these functions are typically continuous
and bounded on a compact domain owing to their physical
meaning in terms of transmit or received power for a given
direction.

D. Unified representation using Hilbert spaces

The common characteristic of all spatial covariance models
(1), (2), (3), and (4) illustrated in the previous sections is that
they are given by integral expressions involving essentially
two terms:
• A term that is frequency invariant, referred in general to

as APS, which describes the distribution of the received
or transmitted power in the angular domain Ω.

• A term that is frequency dependent, which describes the
BS antenna array response in the angular domain Ω.

The frequency invariance property of the APS is motivated
by channel reciprocity in the angular-domain, as discussed in
Section II-B. Furthermore, we point out that these terms are
also time invariant. In particular, the APS is assumed to be



4

TABLE I: Mapping rules for channel covariance modeling
using infinite dimensional Hilbert spaces.

Unpolarized Dual-polarized

ρ ∈ H := L2(Ω) ρ = (ρV , ρH) ∈ H := L2(Ω)× L2(Ω)

〈x, y〉 :=
∫
Ω x(θ)y(θ)dθ

〈x, y〉 :=
∫
Ω xV (θ)yV (θ)dθ

+
∫
Ω xH(θ)yH(θ)dθ

gfm(θ) := Tm(af (θ)af (θ)H)

gfm :=
(
gfm,V , g

f
m,H

)
gfm,p(θ) := Tm

(
af
p(θ)af

p(θ)H
)

p = V,H

constant over a time window TWSS as described in Section
II-A. The important feature of these models is that they are
able to pinpoint some effects of the propagation environment,
which is relatively robust to frequency changes, and of the
antenna array. Interestingly, this general description can be
formalized in a unified way. To this end, let us consider the
equivalent vectorized real representation rf := T (Rf ) of the
matrices5 Rf ∈ CN×N given by the bijective map

T : CN×N → RM : X 7→ vec ([<[X] =[X]]) ,

where M := 2N2. Let us further denote by Tm(X) the mth
element of T (X). We can now unify the expressions for the
different channel covariance models as follows.

Remark 1. The expressions (1), (2), (3), and (4) correspond to
a system of linear equations in a suitable infinite dimensional
Hilbert space (H, 〈·, ·〉) of the form

rfm = 〈ρ, gfm〉, m = 1, . . . ,M, f ∈ {u,d}, (5)

where rfm := Tm(Rf ), and where ρ, gfm ∈ H. The rules for
mapping (1), (2), (3), and (4) to the corresponding expressions
in the chosen Hilbert space are given in Table I.

Notice that since covariance matrices are Hermitian sym-
metric, the number of different equations in (5) are at most N2.
It is possible to modify the map T such that all the duplicated
equations of (5) are removed, but we omit this trivial operation
for notational simplicity.

By establishing a connection between channel covariance
models and the theory of Hilbert spaces, Remark 1 unfolds a
rich body of modern signal processing tools that can be applied
to wireless communications problems in a unified way. Guided
by this observation, in Section III we derive novel solutions
for the relevant application of channel covariance conversion.
We point out that similar mathematical formalisms have been
already applied to many other wireless communications prob-
lems (see, e.g., [22]). However, to the best of our knowledge,
channel covariance models with a degree of generality such
as in (3) have not been covered before.

III. SET-THEORETIC COVARIANCE CONVERSION

In this section we propose a novel technique to infer Rd

from the observed UL covariance Ru, given the directional
models described in Section II. Throughout this section, we

5Given the equivalence of their expressions, with abuse of notation in what
follows we use Ru and Rd also to denote Ru

RX and Rd
TX respectively.

consider the unified representation of such models in a suitable
infinite dimensional Hilbert space given by Remark 1. The
main idea builds on channel reciprocity in the angular domain,
and it can be summarized into two steps as follows:
1) Given Ru we obtain an estimate ρ̂ of the APS ρ from (5)

and known properties of ρ.
2) We compute an estimate of Rd by using (5) with ρ replaced

by its estimate ρ̂ .
In particular, the APS estimation problem in the first step

is addressed by formalizing it as a convex feasibility problem.
We propose two versions of a set-theoretic approach that differ
in the definition of the solution set, leading to two variants
of the proposed algorithm with different accuracy-complexity
trade-offs. In this work, analytic or experimental knowledge
of the array responses and hence of the functions gfm in (5) is
assumed; this knowledge is cell-independent and it holds for
the entire lifetime of the antenna array. Note that, although
related, APS estimation is different from classical parametric
or nonparametric direction of arrival (DoA) estimation, where
the goal is typically the localization within Ω of a finite set of
radiating sources [30, Chapter 6].

A. Projection onto a linear variety (PLV)

The inverse problem of finding ρ given gu
m and ru

m,
m = 1, . . . ,M is typically ill-posed: Unless strong additional
assumptions on ρ are available, it is generally impossible to
guarantee its perfect recovery from a finite set of measure-
ments. In this study, inspired by the set-theoretic paradigm
[19], [31]–[33], we estimate ρ by solving

find ρ∗ ∈ V := ∩Mm=1Vm 6= ∅, (6)

where Vm := {ρ ∈ H : 〈ρ, gu
m〉 = ru

m} for m = 1, . . . ,M .
Notice that non-emptiness of V is guaranteed6 since it contains
at least the true APS. The above problem is a feasibility prob-
lem involving simple hyperplanes. The set-theoretic paradigm
relies on the notion of feasibility to produce solutions that are
consistent to all information arising from input data [31]. All
the candidate solutions of (6) are equivalent based only on
the information given by ru = T (Ru). However, to keep the
resulting algorithm simple, we choose the unique minimum
norm solution

ρ̂ ∈ arg min
ρ∈V
‖ρ‖,

which corresponds to the orthogonal projection PV (0) of the
zero vector onto the linear variety V . This projection has the
following well-known closed-form expression [20, Chapter 3]:

ρ̂ =

M∑
m=1

αmg
u
m, (7)

where α := [α1 . . . αM ] is any solution to the linear system

ru = Guα, (8)

6This is not necessarily true for imperfect knowledge of Ru (see Sect.
III-C), where non-emptiness should be checked case by case. However, based
on our experiments, this assumption is hardly violated in practice.
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TABLE II: Definition of the cone Z ∈ H and associated
projection PZ : H → H for different choices of Hilbert space.

Unpolarized Dual-polarized
Z := {x ∈ H : (∀θ ∈ Ω)

x(θ) ≥ 0 a.e.}
Z := {(xV , xH) ∈ H : (∀θ ∈ Ω)

xV (θ) ≥ 0, xH(θ) ≥ 0 a.e.}

PZ(x) = x̄

x̄(θ) :=

{
x(θ), if x(θ) ≥ 0

0, otherwise

PZ((xV , xH)) = (x̄V , x̄H)

x̄p(θ) :=

{
xp(θ), if xp(θ) ≥ 0

0, otherwise

p = V,H

where

Gu =


〈gu

1 , g
u
1 〉 〈gu

1 , g
u
2 〉 . . . 〈gu

1 , g
u
M 〉

〈gu
2 , g

u
1 〉 〈gu

2 , g
u
2 〉 . . . 〈gu

2 , g
u
M 〉

...
...

. . .
...

〈gu
M , g

u
1 〉 〈gu

M , g
u
2 〉 . . . 〈gu

M , g
u
M 〉

 .
Note that the linear system in (8) is guaranteed to have at least
one solution (from the projection theorem, all solutions give
the unique projection in (7)).

We then obtain an estimate of Rd by replacing ρ in (5) with
its estimate ρ̂ obtained in (7):

r̂d
m = 〈ρ̂, gd

m〉 =

M∑
l=1

αl〈gu
l , g

d
m〉 m = 1 . . .M, (9)

which can be rewritten in matrix form as

r̂d = Qα,

where r̂d is an estimate of the vector rd = T (Rd), α is a
solution to the linear system (8) given the UL measurements
ru = Guα as mentioned above, and

Q =


〈gd

1 , g
u
1 〉 〈gd

1 , g
u
2 〉 . . . 〈gd

1 , g
u
M 〉

〈gd
2 , g

u
1 〉 〈gd

2 , g
u
2 〉 . . . 〈gd

2 , g
u
M 〉

...
...

. . .
...

〈gd
M , g

u
1 〉 〈gd

M , g
u
2 〉 . . . 〈gd

M , g
u
M 〉

 .
Finally, it can be easily seen that the above algorithm can be
implemented via the following simple operation

rd = Fru, F := Q(Gu)† (10)

where (Gu)† is the Moore-Penrose pseudo-inverse of Gu.
Note that both Gu and Q (and hence F) depend only on
the array responses, and they can thus be computed only once
for the entire system lifetime.

B. Exploiting non-negativity of the APS

In the following, we propose an extension of the previous
algorithm by considering that, being a power spectrum, ρ is
non-negative. More precisely, we solve

find ρ∗ ∈ C := V ∩ Z, (11)

where V is the linear variety defined in (6) and Z is the closed
convex cone of (pairs of) non-negative functions in H. The
formal definition of Z for the Hilbert spaces in Table I is
given in Table II.

A solution to (11) can be found by applying one of the
many existing iterative projection methods for convex feasi-
bility problems available in literature. These methods typically
produce a sequence (ρ(i))i∈N ⊂ H such that ρ(i) ⇀ ρ∗, where
ρ∗ is some point in C. In particular, we use the following
fast iterative method called extrapolated alternating projection
method (EAPM) [34], which produces a sequence (ρ(i))i∈N via

ρ(i+1) = ρ(i) + νKi

[
PV (PZ(ρ(i)))− ρ(i)

]
(∀i ∈ N),

(12)

where ν ∈ (0, 2) is a step size, and Ki is the extrapolation
parameter defined as

Ki =


‖PZ(ρ(i))− ρ(i)‖2

‖PV (PZ(ρ(i)))− ρ(i)‖2
, if ρ(i) 6∈ Z

1, if ρ(i) ∈ Z
.

The initial condition ρ(0) ∈ V can be arbitrary, but here it is
set to ρ(0) = PV (0), the solution proposed in Section III-A.
The projection PV : H → H onto the set V is given by [20,
Chapter 3]

(∀x ∈ H) PV (x) = x−
M∑
m=1

βmg
u
m + PV (0),

with β := [β1 . . . βM ] being a solution to the linear system
b = Guβ where the m-th element of b is given by bm =
〈x, gu

m〉 and Gu is the same as in (8). The projection PZ :
H → H for the given choice of Hilbert space is given in
Table II (see also [19, p. 284]).

Now, by proceeding along the same lines as in Section III-A,
an estimate of Rd can be obtained by letting

r̂d
m = 〈ρ̂, gd

m〉 m = 1, . . . ,M.

where ρ̂ results from (12).
We conclude this section by pointing out that, in contrast

to the PLV algorithm given in Section III-A, each iteration
of EAPM typically requires the online computation of inner
products in the form of integrals. A relatively low-complexity
implementation of EAPM is obtained for example by numer-
ically approximating such integrals as∫

Ω

x(θ)y(θ)dθ ≈
D∑
d=1

x(θd)y(θd)∆d,

where {θ1, . . . ,θD} ⊂ Ω are the elements of a discrete
grid of D samples of the spherical coordinate system Ω, and
where ∆d ∈ R+, d = 1, . . . , D, are some given weighting
coefficients. We remark that the above approximation can be
equivalently interpreted as working in a finite-dimensional
Hilbert space equipped with the standard Euclidean inner
product, and where we replace ρ and gfn by their sampled
versions as similarly done for the NNLS method of [13]. Both
the discussed numerical implementation of EAPM and the
NNLS method produce a solution to a discrete approximation
of (11). Another appealing projection-based alternative is the
variant of the Douglas-Rachford method studied in [35], where
the authors have recently proved convergence in a finite
number of steps for problems as the discrete approximation
of (11).
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C. Imperfect uplink covariance knowledge

The algorithms presented so far assume the perfect knowl-
edge of Ru. In this section instead we consider a practical
scenario in which the BS has access only to the UL sample
covariance

C̄u :=
1

Ns

Ns∑
n=1

Ĥu[n](Ĥu[n])H

computed from a limited number Ns of channel estimates
given by Ĥu[n] = Hu[nLc]+Z[n], where Z[n] is a temporally
white stationary noise process independent of Hu[nLc] and
with E

[
Z[n]Z[n]H

]
=: Σz . It is important to underline that

the samples Hu[nLc] are taken with a spacing equal to the
coherence time Lc, so that they can be considered independent.
This imperfect knowledge leads to a performance degradation
of the proposed algorithms. However, in the following, we
discuss a correction procedure that can be applied to C̄u in
order to mitigate these effects.

Let (HS , 〈·, ·〉) be the complex Hilbert space of all N ×
N Hermitian matrices whose inner product is defined by
〈A,B〉 = trace(BHA), and let S+ be the subset of HS
composed by positive semi-definite (PSD) matrices. Similarly
to [36], we use the matrix R̄u := C̄u − Σz to obtain an
estimate of Ru by projecting it onto S+ as follows:

PS+(R̄u) = U∆+UH,

with U and ∆+ obtained from the eigen-decomposition
R̄u = U∆UH , and by defining ∆+ := max(∆,0), which is
a short-hand for an element-wise standard max(·, ·) operator
over real numbers. Note that this procedure is presented in [36]
as the maximum-likelihood (ML) PSD estimate for Gaussian
distributed channel vectors. In this work, this operation is
applied without assuming Gaussian distributed channels. In
fact, regardless of the channel distribution, if R̄u /∈ S+ the
firmly nonexpansiveness property of projections guarantees
that this correction procedure produces a PSD estimate which
is strictly closer to Ru w.r.t. the Hilbertian metric d(A,B) :=
‖A−B‖F = 〈A−B,A−B〉 12 induced by the chosen inner
product.

Moreover, according to the specific array geometry, the
covariance matrix often shows an additional structure on top
of the positive semi-definiteness. Thus, it is reasonable to
further process PS+(R̄u) to restore the envisioned structure.
The description of this procedure is left for the following
sections, because it depends on the particular array model.

IV. IMPLEMENTATION ASPECTS FOR ULA AND UPA

In this section we discuss practical implementation aspects
of the proposed schemes when specialized to uniform linear
arrays (ULAs), and uniform planar arrays (UPAs) with cross-
polarized antenna pairs. The former model is very popular in
the scientific literature due to its simplicity, while the latter is
more relevant for realistic massive MIMO systems.

A. Implementation for uniform linear arrays

In this section we discuss the implementation of the pro-
posed schemes for ULA with N antennas at the BS. Due to
their geometrical properties which do not allow to distinguish
waves in a 3D coordinate system, we consider a 2D propaga-
tion environment Ω ∈ [−π, π]. Recall that the array response
of a ULA is given by

a(θ) =
1√
N

[
1 ej2π

d
λ sin θ . . . ej2π

d
λ (N−1) sin θ

]T
,

where d ∈ R and λ ∈ R denote, respectively, the inter-
antenna spacing and the carrier wavelength. Moreover, since
ULAs are not able to distinguish among a DoA θ and
its reciprocal θ + π, we assume that the APS is confined
to the interval Ω = [−π/2, π/2], which implies 〈f, g〉 =∫ π/2
−π/2 f(θ)g(θ)dθ. This assumption is supported by the fact

that real systems often work with a similar or even narrower
cell sectorization. Furthermore, for ULAs, channel covariance
matrices are Hermitian Toeplitz, so they can be completely
represented by their first columns. For this reason, we can
remove redundant equations in Proposition 1 by redefining
T (X) := vec([<[x1] =[x1]]), where x1 denotes the first
column of X.

1) Analytical expressions for Gu and Q: In the next
proposition we show that for ULAs the matrix Gu and Q
can be computed in closed-form.

Proposition 1. For ULAs, the matrices Gu and Q defined in
Sect. III-A take the following analytical form in terms of the
Bessel function of the first kind, zero order J0 : R→ R:

Gu =
π

2N2

[
G< 0
0 G=

]
Q =

π

2N2

[
Q< 0
0 Q=

]
,

where the elements corresponding to the (n,m)-entries of G<,
G=, Q<,Q= ∈ RN×N are given by

G<,nm = J0(xnm) + J0(ynm), Q<,nm = J0(pnm) + J0(qnm),

G=,nm = J0(xnm)− J0(ynm), Q=,nm = J0(pnm)− J0(qnm),

and where, for n,m = 1, . . . , N ,

xnm = 2π
d

λu
(n−m), pnm = 2πd

(
n− 1

λd
− m− 1

λu

)
,

ynm = 2π
d

λu
(n+m− 2), qnm = 2πd

(
n− 1

λd
+
m− 1

λu

)
.

Proof: The chosen vectorization operator gives

gfm(θ) =
1

N
cos

(
2π

d

λf
(m− 1) sin θ

)
, 1 ≤ m ≤ N,

gfm(θ) =
1

N
sin

(
2π

d

λf
(m−N − 1) sin θ

)
, N < m ≤ 2N.

The proof follows by applying standard product-to-sum
trigonometric identities, and by making use of the integral
representation of the Bessel function

J0(x) =
1

π

∫ π

0

cos(x sin(θ))dθ.
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2) Improving the estimation of the UL covariance matrix:
The direct feeding of either R̄u or the PS+(R̄u) defined in
Section III-C as input to the proposed algorithms may result
in poor performance because the Toeplitz assumption imposed
by the ULA is not satisfied.

To mitigate this problem, a possible approach is to feed as
input the projection of R̄u onto the set T+ := S+ ∩ T , where
T ⊂ HS is the set of Toeplitz matrices, given by

R̂u ∈ arg min
X∈T+

‖X− R̄u‖F. (13)

Since the projections on S+ and T are known [37] and easy
to compute, it is possible to compute R̂u by applying standard
methods such as the Dykstra’s or Haugazeau’s algorithm [21,
Chapter 20]. In this work, we use the approach described in
[37], which solves the following relaxation of (13)

find X∗ ∈ T+ ∩ D, D := {X ∈ HS : ‖X− R̄u‖F ≤ δ},
(14)

where δ is a tunable error tolerance, by using an alternating
projection method producing a sequence convergent to a point
in T+ ∩D. Note that δ should be chosen such that T+ ∩D is
non-empty.

B. Implementation for uniform planar arrays with cross-
polarized antennas

We now consider a UPA with cross-polarized antennas,
defined as a rectangular grid of identical and equispaced
antenna elements, each of them composed of a pair of two
vertically polarized antennas with a polarization slant of ±45◦.
We denote by NV and NH respectively the number of vertical
and horizontal elements, and by d the horizontal and vertical
inter-antenna spacing. We further denote by x(u, v, 1) the
antenna in position (u, v), u = 1, . . . , NV and v = 1, . . . , NH ,
with +45◦ polarization slant, and by x(u, v, 2) the co-located
antenna with −45◦ polarization slant. By arranging every
column h of the channel matrix H as h :=

[
hT

1 hT
2

]T
,

where the channel coefficient for antenna x(u, v, k) corre-
sponds to the nth element of the vector hk ∈ CNVNH , with
n = (u− 1)NH + v, the array response is given by

(∀p ∈ {V,H}), (∀θ ∈ Ω) ap(θ) :=
[
aT
p,1(θ) aT

p,2(θ)
]T
,

ap,1(θ) := ap,1(θ)ejΨ(θ), ap,2(θ) := ap,2(θ)ejΨ(θ),

where aV,1(θ) ∈ R+ and aH,1(θ) ∈ R+ are the vertical and
horizontal radiation pattern of the +45◦ polarized antennas,
aV,2(θ) ∈ R+, aH,2(θ) ∈ R+ the vertical and horizontal
radiation patters for the −45◦ polarized antennas, and where
we used the shorthand

ejΨ(θ) :=
[
ejΨ1(θ) ejΨ2(θ) . . . ejΨNV NH (θ)

]T
,

where Ψn(θ) = Ψn(θ1, θ2) is the geometry-only dependent
phase term of an antenna in position (u, v), given by

Ψ(u−1)NH+v(θ) =

= 2π
d

λ
[(u− 1) cos(θ1) + (v − 1) sin(θ1) sin(θ2)] .

For this antenna array, in contrast to the ULA, the presence
of realistic radiation patterns makes analytical expressions for

Gu and Q difficult to derive. However, we can still identify
the following covariance structure:

Proposition 2. By assuming without loss of generality that
NV ≥ NH , the covariance matrix for the considered UPA
takes on the following block structure:

R =

[
B1 BH

2

B2 B3

]
∈ C2NVNH×2NVNH ,

where every macro-block Bl ∈ CNVNH×NVNH , l = 1, 2, 3, is
Hermitian and it has the following block structure:

Bl =


Bl,1

Bl,2 Bl,1

Bl,3 Bl,2 Bl,1

...
...

...
. . .

Bl,NV . . . Bl,3 Bl,2 Bl,1

 ,

where every block Bl,i ∈ CNH×NH , i = 1, . . . NV has iden-
tical diagonal entries bli, and every block Bl,1 is Hermitian
Toeplitz.

The proof is omitted here but we point out that it follows
directly from the definition of the matrices aV (θ)aV (θ)H

and aH(θ)aH(θ)H of (3). In light of Proposition 2, we can
specialize the proposed algorithms as follows.

1) Efficient covariance vectorization: The covariance ma-
trix R can be fully described by using the blocks Bl,i ∈
CNH×NH , i = 1, . . . NV , l = 1, 2, 3. Furthermore, the blocks
Bl,1 can be represented by only NH complex numbers because
of the Hermitian Toeplitz structure, while the blocks Bl,i,
i 6= 1, can be represented by N2

H−(NH−1) complex numbers
because only one diagonal entry is sufficient. Overall, this
means that it is possible to redefine the map T so that we
can completely reconstruct R by using M = 6(NH + (NV −
1)(N2

H−NH+1)) real numbers, instead of M = 2(NVNH)2.
As a result, the algorithm has substantially lower complexity
compared to the structure-unaware algorithm presented in
Section III-A.

2) Improving the estimation of the UL covariance ma-
trix: Similarly to Section IV-A2, the estimation R̂u of the
covariance matrix Ru obtained from the sample covariance
as described in Section III-C can be further improved by
exploiting its particular structure. In this work, we consider
modified versions of (13) and (14) obtained by replacing
T with the subspace W ⊂ HS of matrices with elements
constrained to be equal according to Proposition 2. Again,
these problems can be efficiently solved by using the same
methods as in Section IV-A2. In fact, it can be easily shown
that the projection PW(X0) ∈ arg minX∈W ‖X − X0‖F is
simply obtained by replacing every element of X0 with the
arithmetic average of all its elements that are constrained to
be equal to that element.

Remark 2 (Alternative covariance model). Arrays with pairs
of co-located cross-polarized antennas have been also con-
sidered in the recent study [38], where, for 2D propagation,
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NV = 1, and single antenna UEs, the authors propose the
following model:

R = E[hhH] =

[
R1 R12

RH
12 R2

]
,

Rk =
∫

Ω
γk(θ)ejΨ(θ)(ejΨ(θ))Hdθ, k = 1, 2,

R12 =
∫

Ω
γ12(θ)ejΨ(θ)(ejΨ(θ))Hdθ,

(15)

where γk : Ω → R+ is again a power spectrum, and
where γ12 : Ω → C is a cross-correlation function. Similar
expressions can be directly obtained from (3) by identifying
γk(θ) := ρV (θ)a2

V,k(θ) + ρH(θ)a2
H,k(θ) and γ12(θ) :=

ρV (θ)aV,1(θ)aV,2(θ) + ρH(θ)aH,1(θ)aH,2(θ). These identifi-
cations can be interpreted as unpolarized models similar to
(1), where only the phase response is made explicit, and
where the radiation patterns are embedded into equivalent
power spectra. The above identifications consider γ12 to be
real-valued and non-negative, and provide a clear physical
meaning to the cross-correlation between h1 and h2, which in-
tuitively differ only in terms of (real-valued and non-negative)
radiation patterns. Furthermore, unlinke (15), the proposed
model (3) fully separates the effect of the impinging wave
and of the antenna array, since the radiation pattern is made
explicit. Note that such property is of interest for all problems
(as the covariance conversion problem considered in here)
where the full array response is known, and hence R can be
determined by estimating (ρV , ρH) rather than (γ1, γ2, γ12).

V. DERIVATION OF DIRECTIONAL CHANNEL COVARIANCE
MODELS FOR REALISTIC SYSTEMS

The goal of this section is to provide formal justifications for
the spatial channel covariance expressions presented in Section
II. To widen as much as possible the domain of application of
the proposed algorithms, we carry a comprehensive analysis of
several popular directional channel models. These models are
presented in a bottom-up fashion, by focusing on different as-
pects with increasing complexity. In particular, we first review
how robust these models are to different channel modelling
philosophies and to different system designs (narrowband or
wideband OFDM). Then, we derive similar expressions for
dual-polarized antenna arrays and multiple antennas at the UE,
which, to the best of the authors knowledge, are not available
in the literature.

A. Narrow-band systems

1) Discrete scattering: Let us consider a narrow-band sys-
tem in a 2D (azimuth-only) environment. A classical expres-
sion for a realization of the channel hf at an arbitrary time
and frequency f ∈ {u,d} is given by [5], [24]:

hf =
1√
Np

Nc∑
c=1

Np∑
i=1

√
αce

jϕicaf (θic) (16)

where the channel vector hf ∈ CN×1 is expressed in terms of
its multipath components, possibly clustered according to the
popular geometry-based stochastic channel model (GSCM),
which generalizes the so called one-ring model used to justify

the traditional i.i.d. Rayleigh fading assumption [24]. The
details are listed in the following.
• Nc denotes the number of clusters and Np the associated

number of subpaths.
• θic ∈ Ω ⊆ [−π, π] is the direction of arrival (DoA) or

the direction of departure (DoD) of subpath i belonging
to cluster c, respectively for the UL and for the DL. It is
assumed to be drawn from a frequency invariant probability
density function fc ∈ L2(Ω).

• αc > 0 is the power of all the subpaths of cluster c.
• af ∈ CN is the frequency dependent BS array response,

with elements afn satisfying <[afn],=[afn] ∈ L2(Ω), ∀n.
• ϕic are the phase shift terms of each path, i.i.d. uniformly

distributed in [−π, π].

Remark 3. We point out that frequency invariance of the
distribution fc is a milder assumption than the frequency
invariance of the realizations θic as sometimes assumed in
the literature relying on angular reciprocity.

The GSCM is particularly suitable for outdoor environ-
ments, where the clusters have the physical meaning of macro-
objects responsible for the main reflections in the cell. For this
reason, a model very similar to (16) is implemented in many
simulators; e.g. the ones compliant with the 3GPP technical
document [39]. The main difference between (16) and the
model proposed by 3GPP is that, in the latter, only a single
DoA/DoD for each cluster is drawn statistically, while the the
remaining subpaths are obtained deterministically from tables.
This is done mainly to reduce the complexity of the simulation.
In this work, instead, the proposed model is kept more general
to not confine subpaths angles into a pre-defined grid, which is
likely to be unrealistic. Moreover, we stress that in this work
we do not specify any type of statistical dependence between
UL and DL realizations of the random variables ϕic and θic.

Furthermore, we point out that (16), in contrast to [39],
does not take into account the time dependent phase term
ej2πνict, where t is the time and νic is the Doppler shift
of subpath i of cluster c, which models the short-term time
evolution of the channel. However, as the focus of this work
is on long-term channel statistics, we consider only a long-
term time evolution model, given in a statistical sense. More
precisely, we model the time evolution of the channel as
follows. The fast time-varying parameters ϕic and θic are
drawn independently and kept fixed at intervals corresponding
to the coherence time Tc (block-fading assumption); the slow
time-varying parameters αc and fc are assumed constant over
a WSS window TWSS � Tc. This model reflects the classical
windowed WSS assumption described in Section II-A.

The next proposition shows the expression for the spatial
channel covariance under the above channel model.

Proposition 3. For f ∈ {u,d}, the covariance matrix Rf :=
E[hf (hf )H] for the channel model in (16), is given by

Rf =

∫
Ω

ρ(θ)af (θ)af (θ)Hdθ,

where the function ρ : Ω → R+ is the angular power
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spectrum7, and it is given by

ρ(θ) :=

Nc∑
c=1

fc(θ)αc. (17)

Proof: The proof follows as a special case of Proposition
5 or 6 shown later and hence it is omitted.

Remark 4. Note that assuming discrete angles θic drawn
from a continuous probability density function fc is different
than assuming discrete spectral components as sometimes
done in related literature. In this work, we do not consider
discrete spectral components, although we do allow for APS
components αcfc with arbitrarily small yet non-zero support.

2) Continuous scattering: Most of simulators and algo-
rithms available in the massive MIMO literature and also those
for problems related to, for example, DoA estimation [30]
rely on discrete scattering models similar to the one presented
in Section V-A1. However some authors (see, for example,
[10]) consider generalizations of the discrete scattering model
described in Section V-A1 by assuming the channel vector
to be formed by a superposition of a continuum of array
responses af (θ), weighted by a continuous function

√
ρ. More

precisely, these generalizations consider

(∀f ∈ {u,d}) hf =

∫
Ω

√
ρ(θ)z(θ)af (θ)dθ, (18)

where ρ : Ω → R+ is the APS describing the received
or transmitted power per unit angle, and where z(θ) is a
white unitary power complex random process in the angular
domain modelling small-scale fading. Angular reciprocity is
here modeled assuming equal APS for UL and DL. The time
evolution of the channel is modelled similarly to Section V-A1,
i.e., z(θ) is drawn independently and kept fixed at intervals
corresponding to the coherence time Tc, while the APS is
assumed constant over a WSS window TWSS � Tc.

The next proposition shows that the expressions for the
covariance matrix for the channel model considered here is
similar to the one considering the discrete scattering model in
Section V-A1.

Proposition 4. [10] For f ∈ {u,d}, the covariance matrix
Rf := E[hf (hf )H] for the channel model in (18) is given by

Rf =

∫
Ω

ρ(θ)af (θ)af (θ)Hdθ. (19)

B. Wide-band OFDM systems

Let us consider a wide-band channel in an under-spread
environment; i.e. with delay spread Ts � Tc, an assumption
that is typically done while designing an OFDM system [23,
Chapter 3.4]. Let us extend the narrow-band GSCM discrete
scattering model (16) by using the same approach proposed
in [24, Chapter 6] and in the 3GPP technical document
[39], denoted as tapped delay line. After sampling, and using
l ∈ N to denote the discrete time index of the lth tap, the

7The name angular power spectrum is justified by its physical interpretation
as a power density

∫
Ω ρ(θ)dθ =

∑
αc.

sampled impulse response in the delay domain, for frequency
f ∈ {u,d}, is given by:

hf [l] =

Nc∑
c=1

hfc δ[l − lc], hfc :=

√
αc
Np

Np∑
i=1

ejϕicaf (θic),

(20)

where δ[l] is the discrete unit sample function, lc ∈ N denotes
the discrete time delay of all the subpaths belonging to cluster
c, which are assumed to be unresolvable in the delay domain
after sampling, and where all the other parameters and random
variables are defined as in Section V-A1. We assume lc to be
equal for UL and DL, and constant over TWSS.

The channel vector in the sub-carrier domain of an OFDM
system is then given by [23, Chapter 3.4]:

(∀f ∈ {u,d}) h̃f [k] =

L−1∑
l=0

hf [l]e
−j

2πkl

Ns , (21)

where L is the impulse response length, Ns is the chosen
OFDM block length, and k = 0, . . . , (Ns − 1) is the sub-
carrier index.

Proposition 5. For f ∈ {u,d}, the covariance matrix in
the sub-carrier domain R̃f [k] := E[h̃[k]f (h̃f [k])H] for the
channel model in (21) is given by

R̃f [k] =

∫
Ω

ρ(θ)af (θ)af (θ)Hdθ, ∀k,

where the APS ρ : Ω→ R+ is given by (17).

Proof: Let us drop for simplicity the UL/DL superscript.
By recalling the channel model in (20), we obtain

R[l, l′] := E
[
h[l]hH[l′]

]
=

Nc∑
c=1

Nc∑
c′=1

E
[
hch

H
c′
]
δ[l − lc]δ[l′ − lc′ ]

(a)
=

Nc∑
c=1

E
[
hch

H
c

]
δ[l − lc]δ[l′ − lc]

=

Nc∑
c=1

E
[
hch

H
c

]
δ[l − lc]δ[l − l′]

(b)
=

Nc∑
c=1

(∫
Ω

αcfc(θ)a(θ)aH(θ)dθ

)
δ[l − lc]δ[l − l′],

where equalities (a) and (b) follow from the property
E
[
ejϕice−jϕi′c′

]
= δ[i − i′]δ[c − c′] due to the uncorrelated

phases of the multipath components, and by further simple
manipulations. By considering now the channel in the sub-
carrier domain defined in (21), we obtain

R̃[k] =

L−1∑
l=0

L−1∑
l′=0

R[l, l′]e−j
2π
Ns
k(l−l′)

=

L−1∑
l=0

Nc∑
c=1

(∫
Ω

αcfc(θ)a(θ)aH(θ)dθ

)
δ[l − lc]

=

∫
Ω

(
Nc∑
c=1

αcfc(θ)

)
a(θ)aH(θ)dθ.
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Remark 5. A similar expression as in Proposition 5 could be
also derived for a continuous scattering modelling philosophy,
by considering an extension of (18) given by

hf [l] =

∫
Ω

√
γ(θ, l)z(θ, l)af (θ)dθ,

where γ : Ω×N→ R+ describes the received or transmitted
power per unit angle on the l-th tap, and where z(θ, l) is a
unitary power complex random process, jointly white in the
angular and delay domain.

C. Realistic propagation and antennas

In this section we extend the simple channel model for
narrow-band systems and discrete scattering of Section V-A1
to a more realistic model which takes into account 3D propa-
gation and dual-polarized antenna arrays, by following closely
[29, Eq. (7.3-22)]. Specifically, we assume the channel vector
hf at an arbitrary time and frequency f ∈ {u,d} to be given
by

hf :=

Nc∑
c=1

hfc , hfc :=

√
αc
Np

Np∑
i=1

Af (θic)MicB(φic)
H,

(22)

where
• Nc denotes the number of clusters and Np the associated

number of subpaths.
• θic and φic are either the DoD and DoA of subpath i of

cluster c for the DL case, or the DoA and DoD of subpath
i of cluster c for the UL case. The directions θic and φic
are defined as tuples taking values in the set Ω ∈ [−π, π]×
[0, π], representing the azimuth and the zenith of a spherical
coordinate system. They are drawn independently from a
frequency invariant joint distribution fc ∈ L2[Ω]× L2[Ω].

• Af : Ω→ CN×2 is the frequency dependent dual-polarized
BS antenna array response. The columns of Af are denoted
by [afV ,a

f
H ] := Af and they describe respectively the array

responses for the vertical and for the horizontal polarization.
• αc > 0 is the power of all subpaths of cluster c.
• B : Ω→ R1×2

+ is the dual-polarized antenna radiation pat-
tern of the UE. It is assumed to be frequency independent.
The columns of B are denoted with [bV , bH ] := B, and they
describe respectively the radiation patterns for the vertical
and for the horizontal polarization. Note that the models
in Section V-A and Section V-B consider omni-directional
antennas at the UE, thus ignoring its angular response.

• The random matrix

Mic :=

 ejϕV V,ic
1√
Kic

ejϕVH,ic

1√
Kic

ejϕHV,ic ejϕHH,ic

 ,
model the fading of the vertical and horizontal polar-
ization as well as of the cross-polarization terms origi-
nated by the polarization changes that the electromagnetic
waves undergo during the propagation. The random phases
{ϕV V,ic, ϕV H,ic, ϕHV,ic, ϕHH,ic} =: ϕ are assumed i.i.d.
uniformly distributed in [−π, π]. The parameters Kic are

the cross-polarization power ratios (XPRs), and they are
assumed to be i.i.d. random variables. This polarization
model is identical to the one suggested by the 3GPP
technical document [29] and by [24, Chapter 7], where the
two polarizations are assumed to fade independently.
We model the time evolution of the channel as follows: the

fast time-varying parameters ϕ, θic, φic, and Kic are drawn
independently and kept fixed at intervals corresponding to the
coherence time Tc; slowly-varying parameters αc and fc are
assumed constant over a WSS window TWSS � Tc.

Proposition 6. For f ∈ {u,d}, the covariance matrix Rf :=
E[hf (hf )H] for the channel model in (22) is given by

Rf =

∫
Ω

ρV (θ)afV (θ)afV (θ)Hdθ +

∫
Ω

ρH(θ)afH(θ)afH(θ)Hdθ

(23)

where the functions ρV , ρH : Ω → R+, here denominated
respectively as “vertical polarization angular power spec-
trum” (V-APS) and “horizontal polarization angular power
spectrum” (H-APS) are given by

ρV (θ) :=

Nc∑
c=1

αc

∫
Ω

fc(θ,φ)

(
b2V (φ) +

1

K
b2H(φ)

)
dφ,

ρH(θ) :=

Nc∑
c=1

αc

∫
Ω

fc(θ,φ)

(
b2H(φ) +

1

K
b2V (φ)

)
dφ,

where 1/K := E[1/Kic] describes the average effect of the
XPRs Kic.

Proof: Let us drop for simplicity the UL/DL superscripts.
By recalling the channel model in (22), and by computing
expectations over the random phases ϕ conditioned on the
random angles θ := {θic}, φ := {φic}, and on the random
XPRs K := {Kic}, we obtain

R′cc′ := E[hch
H
c′ |θ,φ,K]

=

√
αcαc′

Np

Np∑
i=1

Np∑
i′=1

A(θic)Xic,i′c′A(θi′c′)
H,

where

Xic,i′c′ :=E
[
MicB(φic)

HB(φi′c′)M
H
i′c′

∣∣θ,φ,K]

=

b2V (φic) +
bH(φic)

2

Kic
0

0 b2H(φic) +
bV (φic)

2

Kic


× δ[i− i′]δ[c− c′].

The expression for Xic,i′c′ is due to the phases ϕ being i.i.d.
uniform, and its derivation is similar to that in Section V-B.
Since there is no correlation among different multipath com-
ponents, by averaging over the XPRs K conditioned over the
random angles θ and φ, we obtain

R′′cc := E[R′cc|θ,φ]

=
αc
Np

Np∑
i=1

Np∑
i′=1

A(θic)E[Xic,i′c|φ]A(θic)
H
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=
αc
Np

Np∑
i=1

A(θic)E[Xic,ic|φ]A(θic)
H

=
αc
Np

Np∑
i=1

(
b2V (φic) +

b2H(φic)

K

)
aV (θic)aV (θic)

H

+
αc
Np

Np∑
i=1

(
b2H(φic) +

b2V (φic)

K

)
aH(θic)aH(θic)

H,

where we define 1/K := E[1/Kic]. By letting now

b̃2V (φ) := b2V (φ) +
b2H(φ)

K
, b̃2H(φ) := b2H(φ) +

b2V (φ)

K
,

and again since there is no correlation among different multi-
path components, we obtain

R =

Nc∑
c=1

E [R′′cc]

=

Nc∑
c=1

[ ∫
Ω

∫
Ω

αcfc(θ,φ)b̃2V (φ)aV (θ)aV (θ)Hdθdφ

+

∫
Ω

∫
Ω

αcfc(θ,φ)b̃2H(φ)aH(θ)aH(θ)Hdθdφ

]
=

∫
Ω

[
Nc∑
c=1

αc

∫
Ω

fc(θ,φ)b̃2V (φ)dφ

]
aV (θ)aV (θ)Hdθ

+

∫
Ω

[
Nc∑
c=1

αc

∫
Ω

fc(θ,φ)b̃2H(φ)dφ

]
aH(θ)aH(θ)Hdθ,

and the expression (23) is proved.

Remark 6. If the two polarizations do not fade independently,
the resulting covariance model have additional terms of the
type

∫
Ω
ρV H(θ)aV (θ)aH(θ)Hdθ modelling cross-correlation

among the two polarizations. The resulting expression is
still representable in an infinite dimensional Hilbert space
similarly to Section II-D. However, for simplicity, in this work
we do not consider this scenario.

Remark 7. By following a similar approach as in Sections
V-A2 and V-B, expressions of the type in (23) can be derived
also by considering a continuous scattering model and/or
OFDM. The details are omitted due to space limitations.

D. Multi-antenna UEs

Let us consider the directional channel model (22) extended
to the multi-antenna UE case as follows [29, Eq. (7.3-22)]:

Hf =

Nc∑
c=1

Hf
c , Hf

c :=

√
αc
Np

Np∑
i=1

Af (θic)MicB
f (φic)

H,

(24)

∀f ∈ {u,d}, where all the quantities are identical to (22), ex-
cept for the effect of the UE that is now modeled by using the
frequency dependent dual-polarized antenna array responses
Bf : Ω → CU×2. The columns of Bf are denoted by
[bfV ,b

f
H ], and they describe respectively the array responses

for the vertical and for the horizontal polarization. We also de-
fine ‖bV (φ)‖2 := ‖bfV (φ)‖2 and ‖bH(φ)‖2 := ‖bfH(φ)‖2,

which are assumed to be frequency invariant because they do
not depend on the phase response of the array, but just on the
magnitude (i.e. the radiation pattern) for each antenna element,
which is generally assumed to be frequency independent.

Proposition 7. The UL receive covariance matrix Ru
RX :=

E[Hu(Hu)H] and the DL transmit covariance matrix Rd
TX :=

E[Hd(Hd)H] for the channel model in (24) are given by

Ru
RX =

∫
Ω

ρV (θ)au
V (θ)au

V (θ)Hdθ +

∫
Ω

ρH(θ)au
H(θ)au

H(θ)Hdθ,

Rd
TX =

∫
Ω

ρV (θ)ad
V (θ)ad

V (θ)Hdθ +

∫
Ω

ρH(θ)ad
H(θ)ad

H(θ)Hdθ,

where the functions ρV , ρH : Ω→ R+ are given by

ρV (θ) :=

Nc∑
c=1

αc

∫
Ω

fc(θ,φ)

(
‖bV (φ)‖2 +

1

K
‖bH(φ)‖2

)
dφ,

ρH(θ) :=

Nc∑
c=1

αc

∫
Ω

fc(θ,φ)

(
‖bH(φ)‖2 +

1

K
‖bV (φ)‖2

)
dφ,

and where 1/K := E[1/Kic].

Proof: (sketch) Let us drop the UL and DL superscripts
for simplicity. By focusing on the expression for the matrix
E[HHH], the proof is identical to the one presented in Section
V-C, by replacing bV (φ)2 and bH(φ)2 with ‖bV (φ)‖2 and
‖bH(φ)‖2, respectively.

VI. PERFORMANCE EVALUATION

A. Comparison with state-of-the-art techniques

For simplicity, in this first numerical evaluation, we assume
the following correlated Rayleigh channel model:

hu[t] ∼ CN (0,Ru), hd[t] ∼ CN (0,Rd),

with spatial covariance matrices Ru and Rd given by (1).
We simulate a simple 2D model for the APS inspired by the
GSCM channel model described in Section V-A1, where ρ
is assumed to be composed by a weighted superposition of
probability density functions ρ(θ) =

∑Q
q=1 fq(θ)αq . As an

example, in the following we assume Gaussian distributions
fq ∼ N

(
φq,∆

2
q

)
with φq uniformly drawn from [−π/3, π/3]

and standard deviation (also called angular spread) ∆q uni-
formly drawn from [3◦, 8◦], weights αq uniformly drawn from
[0, 1] and further normalized such that

∑Q
q=1 αq = 1, and Q

uniformly drawn from {1, 2, 3, 4, 5}. These statistical quanti-
ties are introduced to emulate the effect of different scattering
patterns corresponding to random user locations. A ULA is
assumed for the BS operating at UL/DL carrier wavelengths
of λ = 3 ·108/fc with fc = 1.8 Ghz and 1.9 Ghz respectively.
The antenna spacing d is set to half UL wavelength. The BS
is assumed to have access only to a UL sample covariance
matrix computed from Ns = 1000 noisy channel estimates as
described in Sections III-C, with Σz = σ2

zI and noise power
computed from a given SNRest := 1

Nσ2
z

.
The performance of the two algorithms defined in Sect.

III-A and III-B are compared with the algorithms proposed
in [11], [12], and [15], referred, respectively, to splines-
based, Fourier-based, and dictionary-based. The DL sample
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Fig. 1: Comparison of different DL covariance estimators vs number of BS antennas N.

covariance, obtained with the same number of samples and
SNR as for the UL, is used as a baseline. For fairness, all
the sample covariances used in this comparison are corrected
with the Toeplitzation procedure outlined in Sect. IV-A2. The
accuracy of an estimate R̂ of R is evaluated in terms of the
mean square error MSE := E[e2(R, R̂)], where e(·, ·) is a
given error metric. In particular, we consider:

• The normalized Euclidean distance
e(R, R̂) := ‖R− R̂‖F /‖R‖F .

• [14], [40] The affine invariant distance in the Riemannian
space of PSD matrices e(R, R̂) := ‖ log(R

1
2 R̂−1R

1
2 )‖F .

• [40] The Grassmanian distance between the principal
subspaces Up,Ûp defined from R, R̂ by considering their
eigenvectors corresponding to the minimum number p of
largest eigenvalues λn satisfying

∑p
n=1 λn/

∑N
n=1 λn ≥

95%. The metric is then e(R, R̂) :=
√∑p

n=1 γ
2
n, where

cos(γn) are the eigenvalues of UH
p Ûp. This metric is partic-

ularly meaningful for the massive MIMO channel estimation
problem, where a reliable signal subspace knowledge plays
a crucial role.

The statistical mean is then obtained by Monte-Carlo simu-
lations. For every Monte-Carlo run, a new APS and SNRest

level ∈ [10, 30] (dB) are drawn.

Figure 1 compares the algorithms for different numbers of
BS antennas N . The performance of both proposed algorithms
approach that of the DL sample covariance estimator as N
grows. Moreover, the performance of both algorithms are
comparable or better (depending on the metric and on the
number of antennas) than the dictionary-based method, which
in principle can achieve extremely high accuracy given that
the dictionary is sufficiently large (here we used only 1000
training samples). However, the proposed algorithms assume
no dictionary, thus they do not require any overhead for
dictionary acquisition. PLV has the same very low complexity
as the Fourier-based method, but it achieves a much better
accuracy. Compared to PLV, EAPM shows better performance,
especially in the low N region, where the prior information
about the positivity of the APS becomes important. However,
the performance gains are achieved at a cost of a higher
complexity.

B. Simulation with realistic channel model

In this section we evaluate the proposed algorithms by
simulating a realistic communication scenario between a BS
equipped with an 8 × 4 cross-polarized antenna array and a
single antenna UE in a typical macro-cell environment, with
system parameters given by Table III. We adopt the multipath
channel model described in Section V-C which follows closely
the simulation guidelines given by [29, Section 7.3], thus
considering propagation in 3D environments and the effects of
polarized antennas. We recall that the results shown here are
valid for both narrow-band systems and for wide-band OFDM
systems. Channel parameters are randomly drawn as follows:
• Cluster powers αc are drawn uniformly from [0, 1] and

further normalized such that
∑Nc
c=1 αc = 1.

• The XPRs values Kic are drawn from a log-Normal distri-
bution with parameters (µXPR, σXPR) = (7, 3)[dB]. This is
identical to the 3GPP model [29, Sect. 7.3, Step 9], with
parameters for 3D-UMa, NLOS propagation.

• The angles θic, φic are generated from the jointly Gaussian
distribution fc(θ,φ) = fBS,c(θ)fUE,c(φ), where fBS,c ∼
N (µBS,σ

2
BSI) and fUE,c ∼ N (µUE,σ

2
UEI), and where the

clusters means and angular spreads

µBS := [µBS,a µBS,z], σ2
BS := [σ2

BS,a σ2
BS,z],

µUE := [µUE,a µUE,z], σ2
UE := [σ2

UE,a σ2
UE,z],

are drawn as follows: µBTS,a, µUE,a are uniformly drawn
from[−2π/3, 2π/3], µBTS,z, µUE,z from [π/4, 3π/4], σBTS,a
from [3◦, 5◦], σUE,a from [5◦, 10◦], σBTS,z from [1◦, 3◦], and
σUE,z from [3◦, 5◦]. This choice of parameters is inspired by
experimental properties of ρV and ρH given by [29], e.g.
the elevation angular spread is usually narrower than the
azimuth one. The adopted procedure has some differences
with that suggested by the 3GPP document [29, Sect. 7.3,
Step 8]. In particular, here all angles are independently

TABLE III: General simulation parameters

Carrier frequency (fc) 1.8 GHz for UL, 1.9 GHz for DL
System type Narrow-band or wide-band OFDM

BS 8x4 cross-polarized UPA
d = λu/2

UE Single antenna, vertically polarized
Antennas radiation pattern 3GPP [29, Section 7.1], 3D-UMa
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drawn, so we do not use the 3GPP simplification in which
only the cluster mean is random, while the subpaths angles
are defined from a predefined table.

• To simulate different UE antenna orientation, the UE an-
tenna array response is given by applying a 3D rotation
to the antenna radiation pattern as described in 3GPP [29,
Sect. 5.1.3], with parameters α, β, γ ∼ U

[
0, π6

]
.

The BS is assumed to have access to the estimated UL
covariance matrix R̂u obtained from Ns = 1000 noisy channel
estimates as described in Section III-C with Σz = σ2

zI and
noise power computed from SNRest := tr{Ru}/(Nσ2

z) = 10
[dB], where N = 2NVNH denotes the number of BS anten-
nas. The estimate R̂u is computed by projecting the sample
covariance matrix as described in Section IV-B2. Furthermore,
the proposed algorithms are implemented by exploiting the
efficient vectorization for UPA described in Section IV-B1.
The accuracy of an estimate R̂d of Rd is evaluated in terms
of the square error SE := e2(Rd, R̂d), where e(·, ·) is a given
error metric defined in Section VI-A. Specifically, we consider
the normalized Frobenius norm and the 90% Grassmanian
principal subspace distance.

To evaluate the proposed algorithms we use as a baseline an
estimate of the DL covariance matrix obtained with the same
technique for the estimation of R̂u, including the correction
step that takes into account the structure of the covariance
matrix for UPA, but using DL pilots. The results are shown in
Figure 2, which shows the empirical cumulative distribution
function (CDF) of the SE for the two chosen metrics, obtained
by drawing independent realizations of the quantities that are
assumed to stay fixed for TWSS (i.e. by drawing a new V-
APS and H-APS). The simulation confirms that the proposed
algorithms are able to provide an accurate DL estimate by
using only UL training, thus it can be used as an effective
solution to the DL channel covariance acquisition problem.

VII. CONCLUDING REMARKS AND FUTURE DIRECTIONS

A. Relation with alternative approaches

The proposed algorithms for covariance conversion present
several advantages with respect to existing approaches avail-
able in the literature, which can be roughly divided into
two main categories, i.e. model-driven methods [11]–[13] and
data-driven methods [14]–[16].

Firstly, the PLV method achieves better or comparable per-
formance than existing model-driven approaches. Moreover, it
can be implemented via simple matrix-vector multiplication,
hence it is at now the best known candidate for low complexity
implementations. Furthermore, in contrast to existing model-
based approaches, both algorithms do not assume any par-
ticular array design, and, in particular, they consider realistic
antenna radiation patterns and dual-polarized array models.

Secondly, in contrast to data-driven methods, the proposed
algorithms do not require any dataset acquisition and train-
ing phase. Although in principle the considered data-driven
approaches [14]–[16] can achieve extremely high accuracies
while being robust to model mismatches, they are in practice
limited by small dataset sizes and sensitive to changes in
distribution between the estimands and the dataset. These
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Fig. 2: Empirical CDF of the squared error (SE)

issues are particularly relevant for all practical applications
where scarce resources and the variability of the propagation
environment (hence, of the distribution of its parameters) do
not allow for timely acquisition of sufficiently large datasets.
As a consequence, we envision that the proposed model-based
approach may be a more robust solution for such settings. As
a final remark, results merging the benefits of the proposed
algorithms and data-driven approaches are reported in [41].

B. Exploiting side information of the APS

In many applications, additional side information about the
APS is available. Clearly, such information can be useful to
obtain better APS estimates. Although this interesting topic
is subject of ongoing work (see e.g. [41]), in this section we
briefly discuss some related aspects that can be directly applied
to the proposed algorithms.

First, note that by separating the real and imaginary part
of Rf , and by working in the space of real functions, the
proposed algorithms already implicitly take into account the
knowledge that the APS is real valued. More interestingly,
if such side information can be expressed in terms of closed
convex sets, the set of candidate solutions of (6) and (12)
can be modified to obtain better APS estimates. For example,
[42] shows that PLV and EAPM can be readily extended so
that (not necessarily perfect) support information of the APS
is taken into account, since support information can be again
expressed as a closed subspace.
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Another interesting feature of the APS is that it is typically
slowly-variant with time. This can be modelled for example
by assuming that the APSs in adjacent TWSS windows are
strongly correlated. Hence, intuitively, side information com-
ing from the APS estimate ρ̃ obtained in the previous TWSS

window could be exploited. A trivial tracking variant of Al-
gorithm 2 can be readily implemented by replacing the initial
condition ρ(0) = PV (0) by ρ(0) = PV (ρ̃). Unfortunately, such
approach is not beneficial for PLV, since PV (PṼ (0)) = PV (0),
where Ṽ denotes the linear variety obtained from the previous
UL covariance matrix.

C. Potentials of the proposed covariance modelling framework

As already discussed, because of its generality, the pro-
posed covariance modelling framework is particularly suitable
for developing solutions which abstract away the particular
array design. For example, the extension of the analytical
performance analysis for covariance conversion given by [13]
to arbitrary array design is left by the authors as an open
problem [13, Sect. VIII]. In contrast, as shown in [42], related
performance bounds can be directly derived by using the
proposed modelling framework, hence readily carrying over
to arbitrary array designs.

More generally, we believe that the interest of the proposed
framework goes beyond the covariance conversion problem
studied in here. Owing to its capability of formally pinpointing
the effects of the propagation environment and of the antenna
array, the proposed framework can be also applied to many
other problems involving statistical description of propagation
in MIMO channels. Examples of further successful applica-
tions include multi-user covariance estimation and favourable-
propagation analysis [43].
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FDD massive MIMO channel covariance conversion with set-theoretic
methods,” Proc. IEEE Global Conf. Communications, 2018.

[43] R. L. G. Cavalcante and S. Stańczak, “Channel covariance estimation
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