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Abstract
While fuzz testing proved to be a very effective technique

to find software bugs, open challenges still exist. One of the
its main limitations is the fact that popular coverage-guided
designs are optimized to reach different parts of the program
under test, but struggle when reachability alone is insufficient
to trigger a vulnerability. In reality, many bugs require
a specific program state that involve not only the control
flow, but also the values of some of the program variables.
Unfortunately, alternative exploration strategies that have been
proposed in the past to capture the program state are of little
help in practice, as they immediately result in a state explosion.

In this paper, we propose a new feedback mechanism that
augments code coverage by taking into account the usual
values and relationships among program variables. For this
purpose, we learn likely invariants over variables at the basic-
block level, and partition the program state space accordingly.
Our feedback can distinguish when an input violates one or
more invariants and reward it, thus refining the program state
approximation that code coverage normally offers.

We implemented our technique in a prototype called
INVSCOV, developed on top of LLVM and AFL++. Our ex-
periments show that our approach can find more, and different,
bugs with respect to fuzzers that use a pure code-coverage
feedback. Furthermore, they led to the discovery of two
vulnerabilities in a library tested daily on OSS-Fuzz, and still
present at the time in its latest version.

1 Introduction
Thanks to its success in discovering software bugs, Fuzz
Testing (or fuzzing) has rapidly become one of the most popular
forms of security testing. While its original goal was simply
to randomly generate unexpected or invalid inputs, today’s
fuzzers always rely on some form of heuristics to guide their
exploration. The most popular of these strategies is, by far,
Coverage-Guided Fuzzing (CGF), in which the fuzzer selects
inputs that try to increase some coverage metric computed
over program code—typically, the number of unique edges in

the control flow graph. Consequently, a large body of research
has focused on overcoming the limitations of coverage-guided
fuzzers, for instance by proposing techniques to solve complex
path constraints [82] [66] [77] [69] [5], by reducing the
large number of invalid testcases generated by random
mutations [65] [59] [3] [6] [28], or by focusing the exploration
on more ‘promising’ parts of the program [58] [57] [9].

While these improvements have considerably decreased the
time required to visit different parts of the target application,
it is important to understand that code coverage alone is a
necessary but not sufficient condition to discover bugs. In fact,
a bug is triggered only when i.) program execution reaches
a given instruction, and ii.) the state of the application satisfies
certain conditions. In rare cases, there are no conditions on the
state, as it is the case for most of the bugs in the LAVA-M [22]
dataset—which were artificially created to be triggered by
simply reaching a certain point in the target applications [38].

On the one hand, this aspect is very important because the
use of code coverage to reward the exploration results in the fact
that fuzzers do not have any incentives to explore more states
for an already observed set of control-flow facts (e.g., branches
and their frequencies). Thus, it is considerably harder for
existing tools to detect bugs that involve complex constraints
over the program state. On the other hand, the simple solution
of rewarding fuzzers for exploring new states (state coverage)
is also a poor strategy, which often decreases the bug detection
rate. This is due to the fact that, for non-trivial applications,
the number of possible program states is often infinite.

Therefore, special techniques are needed to reduce the
program state into something more manageable to explore
during testing, while still preserving the fuzzer’s ability to
trigger potential bugs. To date, few works have tried to find
such compromise. For instance, some fuzzers approximate
the program state by using more sensitive feedbacks, like
code coverage enriched with call stack information, or even
with values loaded and stored from memory. This second
approach, as shown in [79], better approximates the program
state coverage by taking into account not only the control flow
but also the values in the program state, but is less efficient



than others in finding bugs as it incurs into the state explosion
problem mentioned above.

To capture richer state information while avoiding the
state explosion problem, researchers have also looked at
human-assisted solutions. For instance, FUZZFACTORY [60]
lets the developers define their domain-specific objectives and
then adds waypoints that reward a fuzzer when a generated
testcase makes progress towards those objectives (e.g., when
more bits are identical among two comparison operands).

At the time of writing, the most successful approximation
of the program state coverage is achieved by targeting only
certain program points selected by a human expert, as recently
proposed in [4]. In the work, portions of the state space are
manually annotated and the feedback function is modified
to explore such space more thoroughly. We believe that the
automation of this process may be a crucial topic in future
research in this field.

Our Approach. In this paper, we propose a new feedback for
Fuzz Testing that takes into account, alongside code coverage,
also some interesting portions of the program states in a fully
automated manner and without incurring state explosion.

The key idea is to augment edge coverage—the most
widely-adopted and successful code coverage metric used
by fuzzers—with information about local divergences from
‘usual’ variable values. To this end, we mine likely invariants
on program variables by executing an input corpus (such as the
queue extracted from a previous CGF campaign) and learning
constraints on the values and relationships of those variables
over all the observed executions. It is important to note that
execution-based invariant mining produces constraints that
do not necessarily model properties of the program, but rather
local characteristics of the analyzed input corpus [25]: hence,
constraints may be violated under different inputs.

Our intuition is that these local properties represent an in-
teresting abstraction of the program state. We thus define a
new feedback function that treats an edge differently when the
incoming basic block sees one or more variable values that vio-
late a likely invariant. This approach increases the sensitivity of
a standard CGF system, rewarding the exploration of program
states that code coverage alone would not be able to distinguish.

We develop a set of heuristics to produce and refine
invariants, and techniques to effectively instrument programs
with a low-performance overhead—a very important metric in
fuzzing. We implement them into a prototype called INVSCOV
on top of LLVM [43] and the AFL++ [30] fuzzer.

Our experiments, conducted over a set of programs
frequently tested by other fuzzers, suggest that our feedback,
by succinctly taking into account information about usual
program state in addition to control flows, can uncover both
more and different bugs than classic CGF approaches.

Contributions. In summary, the main contributions of this
paper are:

• A new feedback that combines control flows with an

abstraction of the program state from mined invariants;
• A prototype implementation of our approach based on

LLVM and AFL++ called INVSCOV;
• An evaluation of the effectiveness of our approach

against classic and context-sensitive edge coverage.

We share the INVSCOV prototype as Free and Open Source
Software at https://github.com/eurecom-s3/invscov.

2 Background

This section covers key concepts of invariant mining and Fuzz
Testing techniques that are pivotal to our proposal.

2.1 Program Properties and Invariants
Property-based testing is a software testing methodology in
which some form of specification of the program’s properties
drives the testing process. Such specification simultaneously
defines what behaviors are valid and serves as basis for
generating testcases [27].

The correctness oracle can be embedded in the target
program itself in the form of a set of assertions that check the
validity of each invariant, i.e., a property that according to
the specification must always hold at that program point [26].
Testcases can then be generated by aiming at violating the
invariant assertions.

Since delegating the identification of program properties
to the developers can be a daunting prospect, automation has
been the subject of a large body of previous works in the field.
Automated invariant learning is also a widely explored topic
in other areas, for instance for memory error detection [37]
(we will discuss some of these alternative lines of work in
more details in §6.1).

Invariants can be discovered by conducting static code
analysis: for instance, RCORE [32] builds on abstract inter-
pretation [14] and monitors invariants at run-time to detect
program state corruption from memory errors. Generally,
such invariants are sound and incur limited false positives,
yet the inherent over-approximation of static analysis may
generate invariants too coarse to discriminate program states
in an effective manner for high-level analysis.

Therefore, a more precise way to discover invariants, which
also produces them in greater quantity, consists of inspecting
the program state at run-time. For this reason, approaches
like [35], [24], and [61] build on information gathered during
the execution, in a dynamic fashion. The downside of dynamic
approaches is that, unlike static ones, they produce likely
invariants, i.e., invariants that hold for the analyzed traces
but may not hold for all inputs. Hence, they may result in
false positives when the learned invariants capture only local
properties of the observed executions.

In this work we build upon this well-known coverage
problem [26] and turn it into an advantage for driving a fuzzer.
We do that by starting from a corpus of testcases that—as it
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is the case with real applications—cannot be representative
of all program states, then we modify a fuzzer to make it more
sensitive to behaviors that diverge from the likely invariants
obtained from the initial corpus. In this case, the fact that
the learned invariants capture properties of the observed
executions instead of properties of the program itself is the key
intuition we use to generate a more diverse set of input values.

2.2 Fuzz Testing
Fuzz Testing, or fuzzing, is a family of software testing tech-
niques first proposed in the ’80s. Recently, fuzzing tech-
niques saw significant improvements in their effectiveness,
and contributed to the discovery of many security vulnerabili-
ties [62] [50]. Nonetheless, the key idea behind Fuzz Testing
research remained simple: repeatedly execute the program
under test by using randomly generated inputs, usually cho-
sen to be either unexpected or invalid. Fuzzing tools monitor
a program for failures, such as invalid memory accesses or
out-of-memory crashes, and report to the user the inputs that
triggered such behaviors.

The most naive embodiment of fuzzing just provides random
inputs to the program under test without any knowledge about
its characteristics (e.g., input format) or the program execution.
This approach, albeit still effective in testing legacy code [54],
has obvious limitations. Therefore, many different solutions
have been proposed over the past decades [50] [62] to increase
the effectiveness in bug finding far beyond naive fuzzing. We
can group these techniques according to the following three
criteria: 1) the amount of information they require to know
from the program, 2) the technique they use to generate new
testcases, and 3) the feedback they use to guide the exploration.

According to the first criterion, we can distinguish three
main categories of fuzzers:

• White-box fuzzers, which build a full picture of the pro-
gram using program analyses. Concolic executors like
SAGE [33] and SYMCC [66] belong to this category, as
they collect a model of the program in terms of logic con-
straints during the execution. The cost of such white-box
analyses, however, may often be untenable [62];

• Black-box fuzzers, which blindly generate random inputs
for testing. They can access knowledge about the input
format, but generate inputs regardless of how the program
implementation looks like [80] [52];

• Grey-box fuzzers, which fall halfway between the two
previous categories. They access limited information
provided by a lightweight instrumentation applied to the
program under test, blending the program analysis and
testing stages [62]. An example of such information is
the code coverage extracted from a testcase by systems
like AFL [83] and LIBFUZZER [46].

According to our second criterion, we can distinguish
instead fuzzers based on their input generation methodology.

The two most commonly used approaches in this respect
are generational and mutational fuzzers. A generational
fuzzer creates new testcases from scratch, either randomly
or by relying on some form of format specification—like a
grammar [40] or a domain specific language [23]. Mutational
fuzzers instead derive new testcases from a set of prior
testcases by mutation; the mutations can be generic [83],
target-specific [78], or driven by a user-supplied [3] [65] or
inferred [6] [28] format specification.

Finally, by using our third and last criterion, fuzzers
can be divided according to the information they use to
drive their exploration, which we call Feedback. A popular
and very effective technique is coverage-guided fuzzing,
which uses code coverage as feedback to drive the testcase
generation. Previous studies have shown that coverage-based
fuzzers are often one order of magnitude more effective at
discovering bugs [19]. As also other forms of feedback are
possible, we will refer more in general to this fuzzing design
as Feedback-Driven Fuzz Testing.

2.2.1 Feedback-Driven Fuzz Testing

In short, when a CGF solution generates a testcase that triggers
a previously unexplored portion of the program, it deems the
testcase as interesting and adds it to a queue of inputs (dubbed
seeds) maintained for further processing. By combining
this technique with a mutational approach, we obtain an
evolutionary algorithm driven by code exploration.

Code coverage can be measured in different ways, for
instance by considering basic blocks alone or by including
entire calling contexts [79]. By far, the most popular criterion
used for coverage-guided fuzzers is edge coverage, which max-
imizes the number of edges visited in the control flow graph
(CFG) of program functions. Fuzzers like AFL [83] extend
pure edge coverage by also including a hit count for edges (i.e.,
how many times a testcase exercises them) to better approxi-
mate the program state. Recently, ANKOU developed this idea
further by adding coverage-equivalent testcases to the queue
depending on the results of an online principal component
analysis for hit count differences between executions.

As we anticipated in §2.2, other metrics are possible for
driving fuzzer evolution. FUZZFACTORY [60] recently studied
several alternatives, such as the fact that the size of memory
allocations can be a useful feedback to expose out-of-memory
bugs, while the number of identical bits in the operands of a
comparison instruction [45] can help in circumventing fuzzing
roadblocks (§6.2). In short, all these feedback techniques act
as shortcuts to domain-specific testing goals for which code
coverage is not an adequate description.

A more general approach would be to consider, alongside
control flow decisions, also data flow information regarding
the program state. The most naive embodiment of this
feedback—and to the best of our knowledge also the sole to
date—is the ‘memory’ feedback, where every newly observed
data values from memory load and store operations are



1 i n t w a v l i k e _ m s a d p c m _ i n i t ( SF_PRIVATE
* psf , i n t b l o c k a l i g n , i n t s a m p l e s p e r b l o c k )

2 { MSADPCM_PRIVATE *pms ;
3 u n s i g n e d i n t pmss i ze ;
4 / / L i k e l y I n v a r i a n t s :
5 / / − b l o c k a l i g n ∈ { 0 , 2 , 256 }
6 / / − b l o c k a l i g n < s a m p l e s p e r b l o c k
7 . . .
8 pmss i ze = s i z e o f (MSADPCM_PRIVATE) + b l o c k a l i g n

+ 3 * psf−>s f . c h a n n e l s * s a m p l e s p e r b l o c k ;
9 . . .

10 pms−>samples = pms−>dummydata ; / / a r r a y i n pms
11 pms−>b l o c k = ( u n s i g n e d c h a r * ) ( pms−>dummydata

+ psf−>s f . c h a n n e l s * s a m p l e s p e r b l o c k ) ;
12 pms−>c h a n n e l s = ps f−>s f . c h a n n e l s ;
13 pms−> b l o c k s i z e = b l o c k a l i g n ;
14 . . .
15 }

Listing 1: Excerpt of wavlike_msadpcm_init() initialization code.

1 s t a t i c i n t msadpcm_decode_block
( SF_PRIVATE * psf , MSADPCM_PRIVATE *pms )

2 {
3 . . .
4 s a m p l e i n d x = 2 * pms−>c h a n n e l s ;
5 / / L i k e l y I n v a r i a n t s :
6 / / − pms−> b l o c k s i z e == 256
7 w h i l e ( b l o c k i n d x < pms−> b l o c k s i z e )
8 { b y t e c o d e = pms−>b l o c k [ b l o c k i n d x ++] ;
9 pms−>samples [ s a m p l e i n d x ++]

= ( b y t e c o d e >> 4) & 0x0F ; / / heap o v e r f l o w bug
10

pms−>samples [ s a m p l e i n d x ++] = b y t e c o d e & 0x0F ;
11 } ;
12 . . .
13 }

Listing 2: Vulnerable code found in msadpcm_decode_block().

considered as novelty factor for the fuzzer. Unfortunately, this
solution easily leads to state explosion [79].

3 Methodology

In this section, we present the intuition behind our approach by
using an example of a real-world vulnerability we discovered
during our experiments. The vulnerability is a heap overflow
in the WAV file format parsing of libsndfile, a popular
library to operate on audio files. Listings 1 and 2 show the
affected code. Specifically, the vulnerability is located in
the msadpcm_decode_block function of file ms_adpcm.c,
reported here at line 9 in Listing 2.

For our purpose, it is interesting to note that all the
coverage-guided fuzzers we used in our experiments (§5) were
able to reach the vulnerable point in the code without, however,
triggering the bug. Despite the fact that the vulnerable code is
‘easy-to-reach’ and that libsndfile is often used in fuzzing
experiments (including the Google OSS-Fuzz project and
recent research works such as [31] and [81]), the bug was still
present when we ran our experiments.

This is likely due to the fact that to trigger the bug the loop
should write outside the memory pointed by pms->samples,
which references the C99 variable-size array field at the end of
the pms structure. This only happens when the program is in
a specific state, characterized by a small allocation size for the
pms buffer (line 8 in Listing 1) and a pms->blocksize value
(line 13 in Listing 1) sufficiently high to force the loop to write
out of the bounds of the array.

However, none of these requirements can be extracted from
code coverage, as there are no branches in the program that
involve these thresholds. Instead, they both depend on two
input-derived values: blockalign and samplesperblock.
Hence, a CGF-based exploration may easily satisfy one of
the requirements but, without recognizing this as progress
in the program exploration, it would unlikely satisfy both at
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Figure 1: State partitioning for wavlike_msadpcm_init()
induced by the two likely invariants LI1, LI2. The bug can

be exercised only when in partition B (LI1, LI2 both violated).

the same time. In fact, any generated testcase satisfying either
requirement would exercise an “intermediate” program state
closer to the bug, but would not be seen as an interesting one
to add to the queue for more mutations, because in the eyes
of CGF it does not bring novel code coverage.

This example shows the challenge that modern fuzzers
encounter when exploring the state of a program, even for
code that does not entail difficult path conditions to be reached.
State-of-the-art CGF systems can saturate in coverage while
still missing bugs at program points touched in their operation.
Also, they may fail to generate testcases to cover unseen
program points whenever those are reachable only upon
meeting conditions that do not depend on control flow alone.

3.1 Program State Partitions
The core idea of this paper is that we can divide the program
space in different partitions at multiple points in the application
code, by learning likely invariants from executing the program
under test over an initial corpus of inputs.

To continue with our example, let us imagine that we can
fuzz libsndfile for a certain amount of time, e.g., 24h, with
a standard CGF system (we will discuss in §3.4 the effect of



different corpora on the extracted invariants). By investigating
the values of the variables across all seeds saved by the fuzzer,
we would identify two likely invariants for the init function
and one for the vulnerable decoding loop. All invariants are
included as comments in Listings 1 and 2.

It is important to understand that these invariants are
descriptive of the limited number of states that were induced
by the corpus generated by the fuzzer. In other words,
each invariant expresses a condition over the state of the
program that the fuzzer was unable to violate during the
testing experiment. Therefore, our intuition is that we can use
these invariants to divide the program state into a number of
partitions, as depicted in Figure 1 for the init function.

In this case, we can see that the two invariants partition the
space in four non-contiguous areas (A to D in the figure), all
but the first unvisited by the fuzzer. This information allows us
to provide feedback to the fuzzer to explore new abstract states
without incurring into the classic state explosion problem.

Moreover, since these states can be reached only by
violating the invariants we learned over previous executions
of the fuzzer, our intuition is that they are likely to bring
the program into seldom-explored corner cases—where
vulnerabilities may lie undetected for a long time.

To capture this information, the approach presented in this
paper augments the classic edge coverage feedback by using
the violation of likely invariants learned over basic blocks. In
an ideal world, we could learn exact invariants and transform
them in terms of code coverage, allowing pure coverage-based
fuzzers to receive feedback to progress towards these areas.
However, as described in §2.1, current invariant mining
techniques lead to both over or under approximations.

3.2 Using Invariants as Feedback
The common limitation of dynamic invariant detection is that
the resulting invariants often capture local properties of the
test suite more than static properties of the program.

However, for our purpose, this is exactly what we want. In
fact, likely invariants that represent only local properties of
the corpus are interesting because their violation would tip
fuzzers about what value combinations in the program state
are unusual, and ideally the home of bugs.

Therefore, we define our invariant-based feedback as a
combination of edge coverage with the information about
which likely invariants are violated in the source basic block.
To inform the fuzzer about the progress towards interesting
states, we then tweak the classic novelty search algorithm
adopted by most coverage-based systems. In particular, for
each CGF-instrumented control flow graph edge, we make
it generate a different value for the novelty search for each
unique combination of violated invariants. As we will detail
in Section 4.2, we track invariants individually and reward
them independently at each basic block: this choice brings an
unambiguous, implicit encoding of program state partitions.

The invariants ability to partition the program state space
without incurring state explosion is also one of the key insights
of our approach. At each basic block N invariants can partition
the state locally just like N non-parallel lines can divide a
plane into N ∗(N+1)/2+1 regions. In practice, since each
basic block typically manipulates only few variables, N is
usually a very low value (statistics in Appendix A).

Back to our example, for the wavlike_msadpcm_init
function we have two variables involved in the learned invari-
ants: blockalign and samplesperblock. The partition that
triggers the vulnerability is B—the one that sees both invari-
ants violated. Our fuzzer found the bug for a value assignment
{blockalign = 1280, samplesperblock = 8}.

With the enriched sensitivity from our invariant-based
feedback, the fuzzer can violate each invariant separately, save
such testcases for partitions A and D, and for instance splice
the two testcases to generate one that brings the state to B.
More in general, our approach can generate inputs that violate
multiple invariants by either combining or mutating previous
seeds—each violating one or more distinct invariants.

As for the likely invariant involving pms->blocksize in
the buggy function (Listing 2), we observe that violating
it is not a sufficient condition to trigger the bug. The field
is assigned equal to blockalign in Listing 1, but also
samplesperblock has to contribute to expose the bug.

3.3 Pruning the Generated Checks
With our example, we showed how we can use invariants to
partition the program state and how we can then provide this
information as feedback to drive the fuzzer’s exploration.

However, not all invariants are equally useful: while having
more invariants does not affect our methodology (i.e., we
do not lose sensitivity by exposing more partitions), the
extra states they generate can pollute our feedback and the
additional instrumentation can impact the run-time overhead.

Therefore, we designed three classes of pruning rules to
remove invariants that would be fruitless to check either in
light of other available information or because of the nature
of their constituents.

1. The first class of invariants we discard are those that are
impossible to violate. For instance, our likely-invariant
mining system would often learn that unsigned integer
variables are always greater than or equal to zero—which
is not a very useful condition to drive a fuzzer. To identify
these and alike cases, we perform a Value Range Analy-
sis [36] for each function of the program under test. Argu-
ments and global storage are initially seen unconstrained,
and the analysis produces bounds for function variables
that hold for any execution. Using range information,
we instruct our miner to never generate likely invariants
that are logically weaker than the ones found statically.
Since these invariants cannot be violated, we can save the
instrumentation cost required to monitor them.



2. The second class of fruitless invariants are those that
combine unrelated variables. To remove these relation-
ships, we compute Comparability Sets for each function
of the program under test: each variable belongs to only
one such set, and invariants combining variables across
different sets are discarded. We initially create a separate
set for each variable, then use a unification-based policy
by iterating over function instructions and merging the
sets of two variables whenever those occur as operands
for the same statement. Eventually, a comparability set
contains variables that take part in related computations.
Few exceptions apply: for instance, in an array pointer
computation we do not merge the sets of the base and the
index elements as they are not directly related.

3. Whenever different invariants have overlapping
conditions, it is possible to optimize their run-time
verifications by reusing previously computed values. In
particular, we target pairs of likely invariants that share
the same conditions on some of their variables. If the two
invariants concern two program points p and p′ where
p′ can execute only after p, we can use a standard flow-
sensitive analysis to determine whether between p and
p′ there are no intervening re-definitions for any of the
involved variable. In that case, we simply propagate the
value computed at p and save the computation cost at p′.

The output of the value-range analysis and the comparability
sets are computed beforehand and passed to the invariant
miner, which takes them into account when generating the
invariants. Overlapping conditions are instead dealt with when
producing the program—augmented with code for checking
invariants—that will undergo the testing process.

3.4 Corpus Selection
For our entire solution to work, we need to be able to
learn likely invariants from a large number of executions
of the program under test. Therefore, like for many other
evolutionary fuzzing techniques, the choice of the initial
corpus of inputs is critical.

An unwise choice can generate invariants that do not de-
scribe with sufficient generality the shape of the variables in the
program state. For instance, it is a common practice in fuzzing
to download many files of a given file format when testing a
parser, but almost all those files are valid files. If we learn likely
invariants from the program executions of such a corpus, we
will bias our invariants on the validity of the file format and, in
some cases, this can be a mistake because we might miss inter-
esting partitions of the program state related to invalid inputs.

As we want to address the problem of finding bugs even
when the fuzzer saturates in coverage [34], a natural choice
is to use as corpus the queue of a coverage-guided fuzzer taken
as soon as that fuzzer shows signs of slowing down in reaching
new coverage points. A violation of an invariant learned over

Figure 2: High-level workflow of invariant-based fuzzing.

such corpus will lead to novel feedback for the fuzzer and
desaturate the search.

To confirm our intuition we downloaded a dataset of valid
files for the programs we tested in §5 and mined likely invari-
ants by using such testcases. We then compared the invariants
extracted from these initial seeds with those obtained using
the queue after a 24h run of a coverage-based fuzzer initially
supplied with the same seeds. In our experiments, we observed
that the invariants extracted only by using the valid files led
to the discovery of 20% fewer unique bugs than with the
invariants extracted from an initial run of a fuzzer.

4 Implementation
In the previous section, we introduced the motivation and the
key ideas behind our approach. However, we intentionally
avoided discussing two important aspects of our solution: i.)
how we define the state we want to capture in our invariants,
and ii.) how we perform the instrumentation of the program
under test to collect the information required by our technique.

Our approach can be implemented in different ways, for
instance by instrumenting the target source code, or by per-
forming binary-level instrumentation via static rewriting [20]
or dynamic translation [17]. While each approach has its own
pros and cons, for our experiments we opted for a compiler-
based implementation of our invariant-based fuzzing using
LLVM [43] and the DAIKON [25] likely-invariants system.

Our prototype is written in C++ and re-uses the fast
intra-procedural integer range analysis of Pereira et al. [68]
for LLVM, which takes an asymptotically linear time to
complete. Figure 2 provides a high-level view of the complete
architecture. We implemented two custom compile-time trans-
formation phases (consisting of roughly 5 KLOC) for LLVM:

1. Learning phase, where we emit logging instrumentation
for program state variables to feed the invariant miner;

2. Instrumentation phase, where we augment the code of



the program under test to evaluate the likely invariants
in a form directly suitable for coverage-guided fuzzers.

In short, during the Learning phase we record all the infor-
mation about the program state required for invariant mining.
We achieve this by running an augmented version of the pro-
gram under test over a corpus of inputs, which can be obtained
in several ways (§3.4; in the experiments described in §5 we
use the seeds generated from a 24h coverage-guided fuzzing
session). For invariant mining we use the DAIKON dynamic
invariant detector, one of the most used dynamic miners: first
presented in 2007, DAIKON is still under active development.

At each instrumentation place, invariant mining faces a
cubic time complexity in the number of constituents (i.e.,
program variables) [26]. However, since our technique is
applied at the level of basic blocks, the number of variables
is practically a small constant, and the total computation cost
for invariant mining becomes linear in the number of basic
blocks in the program.

During the Instrumentation phase, we then encode likely-
invariant information in program functions to expose them
to coverage-guided fuzzers. Our transformed programs can
execute out of the box on any AFL-based fuzzer but, as we elab-
orate in more details in §4.2, we foresee minimal adaptations to
support coverage tracking schemes from other fuzzer families.

4.1 State Invariants Learning
In order to learn the likely invariants, we need to observe the
values of the program state during the execution of the program
over the initial corpus of inputs. To achieve that, we compile
a dedicated version of the program under test that includes
additional instrumentation to collect such values at run-time.

Since our prototype is implemented on top of the Interme-
diate Representation (IR) of LLVM, we can easily expose
the state of the program at the level of each basic block. Also,
the IR allows us to avoid issues with uninitialized values that
affect tracing complex data types at the source code level [1].
For instance, a structure may contain a pointer, and to extract
the present pointed value for tracing purposes its address
must be valid. The original Kvasir front-end of DAIKON
uses expensive dynamic binary instrumentation [17] to read
variables and inspect memory. However, by working at the
IR level, we can just wait until the address appears in a virtual
register as the result of a load operation and use it for tracing.

Another advantage of using an Intermediate Representation
is that, in an IR, instructions are typically expressed in a Single
Static Assignment (SSA) form [70]. SSA entails that each
variable can only be assigned once, and each use must be
reached by a (unique) prior definition.

For simplicity, in our implementation we ignore floating-
point instructions and model the program state by looking
at SSA variables holding integer values. For local variables,
since multiple SSA variables exist in the IR for a single
source-level variable1, we restrict our analysis to those SSA

variables that can be directly connected to a source-level
variable, by using debug metadata from the LLVM front-end.

When a program instead accesses non-local storage or a
field of a non-primitive type, LLVM introduces an SSA vari-
able as result of a load operation for the current contents. By
instrumenting such IR variables, our invariant mining extends
also to global variables, heap storage, and fields of structs.

Moreover, since our goal is not just to model the state
of an application, but to improve the effectiveness of a
security-oriented testing technique, we focus our analysis on
those variables that can have security-related consequences,
according to the following three rules:

• The variable is part of a GetElementPtr instruction2for
pointer computation unless only constant indexes are
involved;

• The variable value is loaded from or stored to memory
by using a Load or Store instruction;

• The variable represents the return value of a function.

To collect the value of each variable we implemented
an LLVM function pass that, alongside instrumenting the
variables of interest with logging machinery, also dumps
at compilation time the Comparability sets and the integer
ranges [68] to support the pruning techniques described in §3.3.

The pass creates a JSON file for each code module to
store information about program points and variables (type,
comparability, and bounds). We then process and merge these
intermediate files from all modules to produce the DAIKON
declaration file3, adding also comparability and range bound
information for the sake of invariant pruning (Section 3.3). We
instruct DAIKON to run the instrumented program over each
input in the corpus and retrieve the values logged for its vari-
ables. We mine our invariants by using the on-demand mode
of DAIKON, which learns incrementally from each execution.

4.2 Program Instrumentation
In the second phase of our approach, we embed the likely
invariants obtained from the Learning phase in the program
under test and add the required AFL instrumentation to drive
the fuzzer. For this, we turn each invariant into a C function that
we compile to LLVM IR and invoke from the program point
of interest. The function takes as arguments the IR values that
are part of the invariant and evaluates them, returning a unique
identifier when the invariant is violated, and zero otherwise.
Listing 3 provides an example of such functions, generated for
an invariant with identifier 123 that checks whether var0 > 1.

To expose the violation of invariants as if there were a code
coverage change, we modify few lines that are part of the

1Special φ-functions regulate the currently visible assignment when it
depends on the CFG basic blocks the program traversed.

2https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.
html

3https://plse.cs.washington.edu/daikon/download/doc/
developer/File-formats.html#Declarations

https://llvm.org/doxygen/classllvm_1_1GetElementPtrInst.html
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u n s i g n e d _ _ d a i k o n _ c o n s t r _ 1 2 3 ( i n t va r0 ) {
i f ( ! ( va r0 > 1) )

r e t u r n 123 << 1 ;
r e t u r n 0 ;

}

Listing 3: Example of generated C code from an invariant.
/ / O r i g i n a l AFL edge−c o v e r a g e code
_ _ a f l _ a r e a _ p t r [ c u r _ l o c ^ p r e v _ l o c ] + + ;
p r e v _ l o c = c u r _ l o c >> 1 ;

/ / Extended t o c a p t u r e v i o l a t i o n s o f i n v a r i a n t s
_ _ a f l _ a r e a _ p t r [ c u r _ l o c ^ p r e v _ l o c ] + + ;
p r e v _ l o c = c u r _ l o c >> 1 ;
p r e v _ l o c ^= _ _ d a i k o n _ c o n s t r _ 1 2 3 ( va r0 ) ;
p r e v _ l o c ^= _ _ d a i k o n _ c o n s t r _ 3 2 1 ( var2 , va r3 ) ;

Listing 4:
Classic and Extended AFL instrumentation for edge coverage.

classic AFL instrumentation, as depicted in Listing 4. In the
original code, cur_loc represents the identifier assigned to
the current block, and prev_loc is the right-shifted-by-one
value of the previous block identifier. An edge coverage
event is reported by XOR-ing these two variables and by
incrementing the corresponding entry in the __afl_area_ptr
coverage map. In this way, the code can also capture the
number of times that the edge is executed modulo 256 (map
values are 8-bit unsigned integers).

To include the information about the violated invariants
into the AFL feedback, we encode the identifiers of the
violated invariants into prev_loc by using the XOR operation.
This allows each edge to also capture which invariants were
violated in the source basic block. Listing 4 shows how we
augment edge coverage with the combination of the outcome
of the functions that check the invariants with identifiers 123
and 321. Note that zero is the identity element for XOR, so
edge coverage is unaffected when an invariant is not violated
(i.e., the invariant’s function returns zero).

We insert our instrumentation by using an LLVM Function
pass. During this phase, we also apply the optimization to
remove overlapping conditions, as described in §3.3, by
identifying those invariant evaluations in different blocks that
perform the same checks on the same values. To minimize
their number, and therefore avoid redundant instrumentation
that could slow down the execution, we build the dominator
tree [67] for each function of the target program and emit
the check only at the top-level block in such tree that strictly
dominates all the other blocks in which the same invariant
appears. Thanks to the SSA form, the value returned for the
check is guaranteed to be visible at its dominated blocks, and
therefore we can avoid re-executing the evaluation function.

5 Evaluation

In our experiments we tackle the following research questions:

• RQ1. Are our invariant pruning heuristics effective in
reducing the number of generated checks?

• RQ2. Does our new feedback incur state explosion?
• RQ3. Can our feedback lead a fuzzer to effectively ex-

ploring more program states than code coverage?
• RQ4. Can our feedback uncover more, or just different,

bugs than code coverage?
• RQ5. What run-time overhead does our feedback intro-

duce?

In order to answer these questions, we selected 8 real-world
target programs as subjects for our experiments. We opted for
programs that work on distinct file types and follow different
strategies in the implementation of the parsing stage. In
more detail, cappt and xls2csv look up tokens using large
switch constructs, jasper works on a chunk-based format,
sndfile-info is stream-oriented, pcre2 uses lookup tables,
gm combines different strategies, exiv2 is chunk-based and
uses C++ objects to represent chunks, and bison is an LR
parser. The versions we selected are known to contain bugs
as they are widely used in past works (e.g., [31] [51] [69]) to
test fuzzers. For a rigorous evaluation we also manually de-
duplicate crashes when assessing bug finding capabilities [42].

Note that popular benchmarks like LAVA-M [22] are
not suitable for evaluating our approach, as the bugs they
contain depend exclusively on code reachability guarded by
magic-value (§6.2) comparisons [38]. We also opted not to
use the recent and appealing MAGMA [38] benchmarks, as
their hardwired logging primitives (used to check for ground
truth) split basic blocks and thus conflict with the granularity
of our invariant construction and instrumentation.

To enable reproduction of our results, Table 1 lists the
programs we used in our experiments, their software package
and version, their lines of code, the command line used
to test each program, and the sanitizers [76] enabled at
compilation time. We applied both AddressSanitizer (ASAN)
and UndefinedBehaviourSanitizer (UBSAN) compile-time
instrumentation. However, we had to disable UBSAN for two
applications as it introduced unwanted side-effects that made
them crash even with the simplest test inputs.

Experimental Setup

We ran all experiments on a x86_64 machine equipped with
an Intel® Xeon® Platinum 8260 CPU with a clock of 2.40 GHz.
We used AFL++ version 2.65d as reference fuzzer to study the
benefits of our approach and draw comparisons with the many
configurations AFL++ offers (e.g., alternative mutation and
seed scheduling policies, and context-sensitivity).

We ran each experiment 5 times to reduce the impact of
fuzzing randomness, and report the median value to aggregate
the results. Each experiment had a 48h budget.

Starting from an initial collection of valid files, we ran
AFL++ for 24h and collected its queue as a corpus, which we
used both as corpus for learning the likely invariants and as
initial seeds for all the fuzzers we evaluate in our experiments.
The same configuration was used in [6] for incremental



Program Package KLOC Command line Sanitizers

catppt CATDOC 0.95 7 @@ ASAN, UBSAN
xls2csv CATDOC 0.95 7 @@ ASAN, UBSAN
jasper Jasper 2.0.16 176 -f @@ -t jp2 -T mif -F /dev/null ASAN
sndfile-info libsndfile 1.0.28 79 -cart -instrument -broadcast @@ ASAN, UBSAN
pcre2 (harness) PCRE2 10.00 68 ASAN, UBSAN
gm GraphicsMagick 1.3.31 251 convert @@ /dev/null ASAN, UBSAN
exiv2 Exiv2 0.27.1 80 @@ ASAN, UBSAN
bison Bison 3.3 100 @@ ASAN

Table 1: List of target programs used for the evaluation along with the corresponding
package, the lines of C/C++ code, the command line used for the fuzzers, and the sanitizers used when compiling each program.

Invariant pruning

Program None Learning All

catppt 137 137 (100%) 136 (99%)
xls2csv 453 400 (88%) 396 (87%)
jasper 11459 9144 (80%) 9144 (80%)
sndfile-info 3462 3013 (87%) 2996 (86%)
pcre2 4992 4803 (96%) 4497 (90%)
gm 16173 14362 (89%) 13278 (82%)
exiv2 6040 5534 (91%) 4943 (82%)
bison 9363 6263 (67%) 5983 (64%)

Total 52079 43556 41373
% (w.r.t. Unopt.) 100% 84% 79%

Table 2: Number of generated checks without
any optimization, with optimizations for learning phase only,
and with optimizations for learning & instrumentation phases.

fuzzing runs and allowed CGF fuzzers to approach saturation
in our tests.

Throughout the rest of the section, we will denote with
INVSCOV a fuzzer that uses our invariant-based instrumen-
tation as feedback, with CODECOV a fuzzer that uses classic
edge coverage as feedback, and with CTXCOV a fuzzer that
augments edge coverage with context sensitivity.

5.1 RQ1: Invariant Pruning
To answer the first research question, we measured how the
pruning rules introduced in §3.3 ultimately impact the number
of tests for likely invariants that our system needs to insert into
the program under test.

Table 2 reports the number of checks generated without any
optimization enabled, with only those for the learning phase
(comparability sets and removal of invariants impossible to
violate) enabled, and with also the optimization applied at the
instrumentation phase (overlapping conditions).

The optimizations from the learning phase reduce the
amounts of checks by 14% on average. This resulted in
an average of 1.4 likely invariants generated for each basic
block that accesses one or more profiled variables (§4.1)

in the LLVM IR. Upon adding the overlapping-conditions
optimization from the instrumentation phase, the total number
of invariants decreased by 21%. While the overall reduction
may seem small, according to our experiments the smaller
number of invariants to check at run-time resulted in a 10%
net increase in the performance of the fuzzer.

5.2 RQ2: State Explosion
The number of testcases maintained in the fuzzer’s queue can
serve well the purpose of verifying whether our technique
would result in an explosion on the number of states the
fuzzer has to track. In fact, the number of stored seeds is
representative of the interesting testcases generated and
therefore of distinct portions explored in the state space that
is visible to the fuzzer. The first two columns of Table 3
report the number of testcases in the fuzzer’s queue after a 48h
session. The growth due to the use of invariants is moderate,
and only accounts for a 62% increase across all programs.

This is very important because an excessively large queue
becomes unmanageable for a fuzzer. Wang et al. [79] studied
queue sizes for two memory-based feedbacks (§2.2.1) and
reported growth factors of 21x and 14x as geometric mean for
the DARPA CGC benchmarks, and peaks of 196x and 512x.
The authors also observed that the relative differences among
most seeds were so small that they were very unlikely to lead
to the discovery of new bugs. On the contrary, more moderate
increases, such as ~8x over edge coverage for feedbacks
focused on control flows (e.g., n-grams, context-sensitivity),
resulted in a profitable end-to-end bug finding.

In most of our programs we measured a growth factor below
2x, except for jasper, for which it was roughly 3x, yet far
behind the numbers that were reported to cause state explosion
in previous studies.

5.3 RQ3: Program State Exploration
Since our main goal is to help the fuzzer to explore various
program states that can lead to bugs, we now look at how our
proposed approach explores the program behaviors that would
be visible to a pure code coverage-based approach.

First of all, we study the (cumulative) edge coverage on



Testcases Edges Violated Checks Exec / Sec

Program INVSCOV CODECOV INVSCOV CODECOV INVSCOV CODECOV INVSCOV CODECOV

catppt 213 119 404 404 40 5 112 101
xls2csv 1358 770 1013 1007 113 13 132 128
jasper 10831 3188 5452 5487 971 462 143 166
sndfile-info 1764 1297 8164 8074 558 214 151 152
pcre2 25534 15205 9831 9502 1524 286 2508 4381
gm 12802 9488 25680 25216 1874 715 63 65
exiv2 7016 5661 31201 31062 712 342 67 59
bison 5019 4419 6703 6700 387 234 57 65

Geo mean 3985 2466 5596 5548 458 134 145 156
% (w.r.t. CODECOV) 162% 100% 101% 100% 342% 100% 93% 100%

Table 3: Median number of testcases stored in the
fuzzers’ queues, edges covered and checks violated by such testcases, and average of the executions per second over 5 trials of 48h.

the original, un-instrumented program collectively exercised
by executing the seeds (i.e., testcases) from the queues of
INVSCOV and CODECOV. Such coverage is a common metric
in fuzzers evaluation, as a fuzzer cannot reveal a bug in a
program point if it first does not explore it at least one time.

In Table 3 (column ‘Edges’) we report the median edge
coverage of AFL++ when using, respectively, invariants or
standard edge coverage as feedback. Overall, the differences
are very small. For most targets, INVSCOV results in
a coverage comparable to CODECOV, showing that our
technique does not result in a decrease of edge coverage.
On some programs, our approach even helped the fuzzer
to increase coverage over the saturated corpus, suggesting
that some code paths may be reached only with the right
combination of conditions over some program state variables.

It is important to remember that the goal of our system is
NOT to increase code coverage, but instead to increase the
state coverage along the paths reached by a fuzzer. Therefore,
we study the number of invariants violated by using our
feedback mechanism compared to the traditional CODECOV,
as a proxy of the improved program state coverage. The
‘Violated Checks’ column in Table 3 shows that AFL++ with
INVSCOV, thanks to our instrumentation mechanism (§4.2),
maintains a set of testcases that violate more invariants than
AFL++ with just CODECOV. Overall, our approach was 3.4x
more effective than pure CODECOV at helping the fuzzer to
visit different partitions of the program state.

5.4 RQ4: Bug Detection
As the ultimate goal of Fuzz Testing is to detect bugs in
programs we now analyze in more details the bugs INVSCOV
could find in our experiments and study their properties.

To compare INVSCOV against classic edge coverage,
we consider additional AFL++ configurations that exercise
different designs in other components of the fuzzer, such as the
scheduling strategies for mutations or seed selection. These
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Figure 3: Venn Diagram showing the bugs DEFAULT
found by either INVSCOV or CODECOV, and by both (gray).

strategies are orthogonal to the feedback function in use. There-
fore, in the end, we expect INVSCOV to outperform CODECOV
independently of other parameters. We believe this type of
multi-pronged experiments allows for a more fair evaluation
to isolate the contribution of the feedback technique alone.

In particular, we selected three AFL++ configurations for
our tests:

• DEFAULT, i.e., the standard configuration of AFL++ used
also for the other research questions;

• MOPT, i.e., AFL++ equipped with the MOPT [47]
mutation scheduler, a powerful technique that dynam-
ically prioritizes mutations according to their expected
efficiency at any time in the execution;

• RARE, i.e., AFL++ scheduling that prioritizes seeds that
exercise paths not along the ‘hot’ regions traversed by
most seeds in the queue. Different, complex embodi-
ments of this idea proved to be effective in a number of
previous works [10] [44] [8].

We run these three state-of-the-art fuzzers on all target
programs for 48h, to simulate a fuzzing campaign with a
medium-small length, as previously used to evaluate fuzzers
in works such as [58] and [6].

For crash de-duplication, we first grouped the reported
crashes by using a standard call-stack hash from the stack



DEFAULT MOPT RARE

Program INVSCOV CODECOV
⋂

INVSCOV CODECOV
⋂

INVSCOV CODECOV
⋂

catppt 3 3 3 3 3 3 3 3 3
xls2csv 17 15 13 18 17 15 17 16 14
jasper 7 5 5 8 5 4 8 4 4
sndfile-info 11 10 10 10 10 10 11 10 10
pcre2 77 35 28 81 52 36 80 48 38
gm 19 14 13 18 14 13 20 14 13
exiv2 8 7 7 8 7 7 8 7 7
bison 5 5 5 5 5 5 5 5 5

Total 147 94 84 151 113 93 152 107 94
% (w.r.t. CODECOV) 156 % 100 % 89 % 134 % 100 % 82 % 142 % 100 % 88 %

Table 4: Median unique bugs found with and without
invariant-based feedback over 5 trials of 48h for each target program and three different fuzzers (DEFAULT, MOPT and RARE).

Program Reached INVSCOV \ CODECOV

catppt 0 0
xls2csv 0 4
jasper 1 2
sndfile-info 1 1
pcre2 41 51
gm 0 6
exiv2 0 1
bison 0 0

Total 43 65

Table 5: Median number of bugs in the set difference
between the INVSCOV and CODECOV bugs (see Table 4)

that are reached in coverage by CODECOV but not triggered.

trace. However, as automatic de-duplication with stack hashes
is generally unsound (it can both under- and over-count [42]
depending on the case), we decided to manually inspect and
triage each testcase.

Table 4 reports how many unique manually deduplicated
bugs each fuzzer found over our set of subject programs4.
The table also reports the intersection between the bugs found
with our approach and with classic edge coverage. This
relationship, summarized for all programs in the Venn diagram
of Figure 3, highlights that guiding fuzzers by using state
invariants not only results in more bugs being discovered, but
also in different bugs5.

Notably, the fuzzers that use our INVSCOV feedback never
underperformed with respect to the corresponding CODECOV
versions, in all configurations. For two targets, catppt and
bison, all fuzzers found the very same number of bugs,
suggesting that these bugs are easy to trigger without particular
requirements over the program state. Notably, on some of
the targets (sndfile-info, xls2csv, gm, exiv2), the use
of invariants allowed the fuzzer to also discover previously
unknown bugs and vulnerabilities, like the one we used as

running example in §3.
To better understand the bugs that only INVSCOV was

able to uncover, we classify them according to whether or
not CODECOV was able to reach the crash point (obviously,
without triggering it). We report the number of ‘covered but
not triggered’ bugs for CODECOV in Table 5. It is interesting
to observe that the instructions responsible for 43 of the 65
bugs discovered by INVSCOV were reached by CODECOV,
but not triggered due to the lack of the correct combination
of state conditions required to trigger the bug upon reaching
the flawed program point. These types of bugs are particularly
common for pcre2. Since the program is essentially a parser
that makes use of lookup tables, its program states are heavily
data-dependent. The importance of the program state is also
confirmed by the fact that some of the crashing locations were
reached already by the initial input corpus we supplied to the
fuzzers. Thus, our approach shows a clear advantage for those
programs that contain data dependencies in their flows.

For the remaining 21 bugs for which traditional fuzzers
were unable to even reach the vulnerable location, a possible
reason—as we discussed already for Table 3 (§5.3)—could
be the fact that the use of invariants also allowed the fuzzer
to achieve a slightly better code coverage. Indeed, specific
conditions on program state values may be needed not only
to uncover a fault but also to progress the exploration towards
some code regions of the program under test.

As an additional set of experiments, we analyzed the default
configuration of AFL++ with edge coverage augmented by
context-sensitivity6 (CTXCOV), firstly introduced by Chen

4The classes we observe are the typical ones from sanitization with ASAN
and UBSAN (e.g., heap and stack overflow, division by zero). As the bugs
are many, we omit tedious information on their types for brevity.

5INVSCOV may also miss bugs reported by CODECOV within a fixed time
budget because of fuzzing entropy and different seed scheduling choices over
different queues. However, those bugs are still within reach for INVSCOV.

6Fuzzers can use calling-context information, i.e., the sequence of routine
calls concurrently active on the stack when reaching a program location [18].



et al. [11], which turned out to be the form of feedback that
revealed more bugs in the recent analysis of Wang et al. [79].
We report the number of triaged bugs for INVSCOV and
CTXCOV in Table 6, running five 48-h trials with the same
initial corpus of the other experiments.

Our experiments confirm that CTXCOV performs better
than CODECOV (+11%), revealing more unique bugs on
four targets (2 on xls2csv, 6 on pcre2, 1 on exiv2 and gm).
Nonetheless, call-stack information for the context does not
contain explicit information on program data, and INVSCOV
consistently finds more or different bugs than CTXCOV as well
(e.g., +47 on pcre2, +6 on gm2). The number of bugs found
by both slightly improves for two subjects (2 bugs on xls2cov
and pcre2) compared to CODECOV, suggesting that calling-
context information offered AFL++ a different angle based on
call paths to exercise the program states that trigger such bugs.

Finally, we also explored the hybrid scenario (marked
as Combined in Table 6) in which we augmented edge
coverage with both our invariants and context-sensitivity
at once. This combined approach led to the discovery
of another heap vulnerability in libsndfile (function
wavlike_ima_decode_block). While this solution performs
overall slightly worse than invariants alone, we observed
promising peaks on single runs of pcre2 (119 for Combined,
92 for INVSCOV, 47 for CTXCOV), jasper (12-8-6), and
sndfile-info (12-11-10). The downside of combining
multiple feedback refinements is, in fact, that with larger
queues (e.g., +79% on pcre2w.r.t. INVSCOV) the randomness
in seed scheduling impacts which program portions, and
ultimately bugs, get explored in a limited time budget. We
report the complete experimental data in Appendix §A, and
leave the investigation of how to optimize combinations of
this kind to future work.

5.5 RQ5: Run-Time Overhead
As our technique requires adding a more complex instrumenta-
tion to the program under test, it is reasonable to expect a higher
run-time overhead with respect to CODECOV. Following the
approach of the authors of REDQUEEN [5], we measured the
average execution speed of AFL++ when executed on our target
programs for 48h. Table 3 details (in column ‘Exec / Sec’) how
many executions per second INVSCOV and CODECOV were
able to perform. The experiments show that our technique
introduced on average a slowdown of 8%. We believe this to be
a moderate price to pay to increase the ability of fuzzers to ex-
plore more (and more diverse) states of the programs under test.

A counter-intuitive result here is that for some programs
the execution speed measured for INVSCOV is higher than
for CODECOV. The reason is that in some programs many
invariant violations were triggered along fast code paths: as
INVSCOV causes the fuzzer to spend more time on the same
code path if one or more invariants are violated along it, the
fuzzer ultimately focused on those parts and executed the

Program INVSCOV CTXCOV
⋂

Combined

catppt 3 3 3 4
xls2csv 17 17 15 18
jasper 7 5 5 6
sndfile-info 11 10 10 11
pcre2 77 41 30 65
gm 19 15 13 21
exiv2 8 8 7 8
bison 5 5 5 5

Total 147 104 88 138
% (w.r.t. CTXCOV) 141 % 100 % 85 % 133%
% (w.r.t. CODECOV) 156 % 111 % 94 % 147%

Table 6: Median number of bugs found with INVSCOV
and CTXCOV, their intersection, and the bugs found with

a fuzzer Combined that uses both feedbacks simultaneously.

other, slower paths less often than when using CODECOV,
thus benefiting from shorter executions.

5.6 Discussion
The results of our experiments confirmed that our feedback,
by distinguishing when program variables deviate from their
‘usual’ values, improves the sensitivity of a fuzzer for program
states that code coverage alone fails to reward. Out of the 65
buggy program points that only our approach could drive to
a crash, edge coverage alone was able to reach 43 of them,
without however exposing the bug because the program was
not in the correct state. Even when using refined code-based
feedbacks like context-sensitivity, our approach continued to
reveal more and different bugs than CGF.

Our tests also show that our instrumentation is tenable: it
introduces only a moderate 62% growth on the fuzzer’s queue
size (orders of magnitude less than memory feedbacks, and
still smaller than several code-based feedbacks [79]) and it
slows down testcase execution by 8% on average. These costs
are clearly amortized in our experiments by the many more
unique bugs reported by our technique.

Finally, our feedback is not decremental in terms of code
coverage compared to edge coverage and, in some cases, it
can also ‘unlock’ more state-dependent program portions for
further exploration. As briefly experimented in the Combined
scenario, INVSCOV and fine-grained forms of code feedbacks
may also complement each other. Such a fuzzer would be able
to better differentiate and explore those local state properties
that are influenced by control-flow facts (e.g., the call path).

6 Other Related Works

This section covers security-related literature that makes use
of invariants, and techniques orthogonal to our approach that
improve the effectiveness of fuzzing explorations.



6.1 Invariants
Invariants historically play a key role in many development
tasks such as software testing, optimization, and mainte-
nance [26]. In the context of security research, several works
have explored invariants for other problems as well.

In the context of anomaly detection, invariants can act as
oracles for program hardening. Works such as [32] and [75]
instrument programs to block memory corruption exploits in
production, as run-time checking costs turn out to be modest.
Web applications can benefit from similar protection as well,
as explored in [15] with DAIKON and PHP code.

Fault localization is another popular twist. Whenever
multiple invariants turn out to be violated, a typical workflow
to locate the root cause is to study similar inputs to filter out
non-relevant invariants. Some examples are [71], which uses
dynamic backward slicing to remove more invariants, and [7],
which employs a statistical analysis of the learned predicates.

Finally, in §2.1 we have mentioned how invariants in
the form of specifications are pivotal for property-based
testing. QUICKCHECK [12] is probably the most well-known
among such systems. Recently works such as ZEST [59]
and HYPOTHESIS [48] borrows fuzzing concepts like
feedback-driven mutations to improve their efficiency when
testing, respectively, Java and Python codebases.

6.2 Fuzz Testing
Fuzz Testing is an area of wide interest and intense inves-
tigation for academia and industry, with the number of
works that try to improve individual aspects of its techniques
growing massively every year [50]. We believe that, alongside
the feedback mechanisms we discussed in §2.2, the most
significant improvements have involved bypassing techniques
for roadblocks to code coverage, mutation-based generation
for exercising deeper program paths, and catching silent faults.

Luckily, these advancements are orthogonal to our approach.
In §5.3 we already combined, off-the-shelf, several designs
with our ideas, leveraging the flexibility of AFL++.

Roadblocks. Roadblocks are comparison sequences over the
input that standard mutations can hardly satisfy, hence they
limit code exploration. Magic values and checksum fields in
input formats are the two main kinds of roadblocks.

As magic values typically undergo multi-byte comparisons,
and classic structure-blind mutators treat the input as a stream
of bytes, matching all the involved bytes is extremely unlikely.
Solutions may come from using a special-purpose feedback
for partial progress at comparisons [2] [45], concolic execution
for white-box fuzzing [82] [66], or techniques that extract
comparison operands to replace input portions [69] [5].

Typically used for validation in binary formats, checksums
are even more difficult to overcome. Known solutions involve
format-specific mutators or code transformations that detect
and temporarily override checksum checks [5] [63] [28].

Valid Inputs. General-purpose fuzzers can see high rates
of invalid generated inputs. Such inputs typically end up
exercising code from early parsing stages of a program, failing
to reach deeper regions. For exploring such regions effectively,
a fuzzer must thus focus on producing valid inputs.

Works like [65] [3] take a hand-written input format
specification to guide their mutator. Later works tried to
automatically learn an approximate one [6] [28] [53] [81].

A different approach is to constrain the mutator to preserve
input portions that conduct to deeper paths and to further
restrict the values that other input fields can take along them
using, for instance, concolic tracing information [41].

Catching Silent Faults. Most fuzzers seek to expose faults
that may be potential vulnerabilities, yet oftentimes a fault
does not trigger a directly observable failure. For instance, a
one-byte heap read overflow is unlikely to crash a C program.

To catch such bugs, fuzzing users instrument the program
under test with additional tripwires to expose silent faults.
For instance, source-based fuzzers offer the possibility
to instrument programs with sanitizers like ASAN [74].
Others make use of binary-only tripwires to uncover silent
corruptions [55], inserted dynamically [29] or statically [21].

Nonetheless, current sanitizers cannot catch some pure-
logic bugs. In the lack of hand-written assertions, fuzzing to
uncover such bugs automatically is an open field of research.

Hard Targets. Instrumentation, execution, and testcase ad-
ministration are far-from-trivial problems when working with
hard targets [72]. As our approach is concerned only with the
first, our technique is general enough to work with binary-only
frameworks (e.g., binary rewriters, dynamic translators) that
can expose program state values. Binary-level is the only
option when dealing with closed-source targets, like firmware
images executing under whole-system emulation with
emulated peripherals [84] [64] or with re-hosting [13] [49].
More invariant pruning heuristics may, however, be needed
in the absence of debug symbols. Our approach would not be
compatible, instead, with simpler schemes that are breakpoint-
based [56] or use hw-assisted tracing for control flows [73].

7 Limitations and Future Directions

Our approach augments the classic edge coverage feedback
with information on violated likely invariants. As we emit
AFL-compliant instrumentation for the sake of compatibility,
there is a possibility of hash collisions—just like with AFL—
when indexing the shared map for coverage updates. AFL++

offers an alternate link-time instrumentation scheme [39] that
is collision-free but breaks compatibility. We may devise an
INVSCOV variant that benefits from such design, and possibly
explores also split maps for the invariant and edge feedbacks.

On the methodological side, an intrinsic limitation of our
approach is that it is not adaptive. We learn invariants once,
while there could be potential to explore by refining them



as the exploration advances and new value conditions are
observed. A follow-up of our approach would then be to
devise an online invariant mining module. Recent machine
learning advances in anomaly detection like [16] could
offer valid support to this end. We believe that a fuzzer that
adaptively learns the state space partitions over variables
can have a positive practical impact, and potentially help in
desaturating fuzzing campaigns like OSS-Fuzz to catch more
bugs in software already well-tested with CGF solutions.

Finally, as we study data facts at basic-block level, our
likely invariants cannot capture ‘implicit’ relations between
variables that do not get processed together in any block.

8 Conclusion

Using likely invariants as feedback for fuzzers brings novel
ideas to better abstract, and in turn explore program states.
We argued that some bugs may be readily discovered by
taking into account program state conditions that control
flow alone does not entail, accessing seldom-explored corner
cases where vulnerabilities may lie undetected for a long
time. We achieved this goal without incurring the state
explosion problem and with a moderate performance overhead,
amortized by an increased number of found bugs. We hope
that our work can pave the way for more research on program
state approximations to serve as feedback for Fuzz Testing.
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A Appendix
In the following we report supplementary data for some of
the experiments that we discussed throughout §5.

For the first research question, alongside the total number
of invariants we also collected frequency metrics for probes at
function and basic-block level. Due to the dynamic nature of
the invariant mining process, only code actually reached in any
execution from the input corpus can feature invariant checks.
Table 7 reports figures computed over reached code only and
with all our pruning optimizations enabled. While the code
characteristics (most prominently, the varying complexity of
individual functions) are reflected by heterogeneous values
for invariants checked by a single function, when considering
basic blocks we observe rather regular trends, with two peaks
for bison and jasper, due to their basic blocks typically

longer and richer of LLVM IR virtual register manipulations
involving variables of interest for our method.

For the last set of experiments that we conducted for
studying our bug finding capabilities, here we report statistics
on the median queue size for the CTXCOV and Combined
fuzzers (Table 8), and the peak number of unique bugs
identified among the 5 runs we made for each program under
test (Table 9). The context-sensitive feedback benefited from
our invariants as well, yet a larger queue impacts the program
states explored by different runs within the 48h budget.

Program Per Function Per Block Total

catppt 9.78 (14) 1 (137) 137
xls2csv 12.12 (33) 1.15 (349) 400
jasper 29.88 (306) 2.94 (3106) 9144
sndfile-info 20.09 (150) 1.01 (2979) 3013
pcre2 106.73 (45) 1.32 (3651) 4803
gm 28.78 (499) 1.38 (10391) 14362
exiv2 5.31 (1042) 1.17 (4708) 5534
bison 27.23 (230) 2.14 (2922) 6263

Geo mean 20.53 1.41 2784

Table 7: Average number of produced invariants
for each function and basic block with at least one invariant.

The reference baseline is reported between parentheses.

Program INVSCOV CTXCOV Combined

catppt 213 149 281
xls2csv 1358 950 1766
jasper 10831 3528 18057
sndfile-info 1764 1525 2096
pcre2 25534 27227 45705
gm 12802 10928 14302
exiv2 7016 8457 9073
bison 5019 4975 6076

Geo mean 3985 3143 5356

Table 8: Median number of testcases
in the queues of INVSCOV, CTXCOV, and Combined.

Program INVSCOV CTXCOV Combined

catppt 4 3 4
xls2csv 19 19 19
jasper 8 6 12
sndfile-info 11 10 12
pcre2 92 47 119
gm 22 17 21
exiv2 8 8 8
bison 6 5 6

Total 170 115 201

Table 9: Peak number of unique bugs found
by INVSCOV, CTXCOV, and Combined among the 5 runs.

https://github.com/guidovranken/cryptofuzz
https://github.com/guidovranken/cryptofuzz
https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt
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