
Journal of Computer and Communications, 2021, 9, 174-190
https://www.scirp.org/journal/jcc

ISSN Online: 2327-5227
ISSN Print: 2327-5219

DOI: 10.4236/jcc.2021.96010 Jun. 29, 2021 174 Journal of Computer and Communications

Inmap-t: Leveraging TTCN-3 to Test the
Security Impact of Intra Network Elements

Antonino Vitale1, Marc Dacier2*

1Digital Security Department, EURECOM, Biot, France
2KAUST—Resilient Computing and Cybersecurity Center (RC3), King Abdullah University of Science and Technology, Thuwal,
Kingdom of Saudi Arabia

Abstract
This paper rejuvenates the notion of conformance testing in order to assess
the security of networks. It leverages the Testing and Test Control Notation
Version 3 (TTCN-3) by applying it to a redefined notion of System under
Test (SUT). Instead of testing, as it is classically done, a software/firmware/
hardware element, an intangible object, namely the network, is tested in order
to infer some of its security properties. After a brief introduction of TTCN-3
and Titan, its compilation and execution environment, a couple of use cases
are provided to illustrate the feasibility of the approach. The pros and cons of
using TTCN-3 to implement a scalable and flexible network testing environ-
ment are discussed.

Keywords
TTCN-3, Network Security, Conformance Testing, Deep Packet Inspection,
Firewall

1. Introduction

This paper explores the usability of the Testing and Test Control Notation Ver-
sion 3 (TTCN-3 [1]) to infer the presence of security related devices in a net-
work. TTCN-3 is a standard maintained by ETSI that offers a modular testing
language and an independent execution environment. Both are used and sup-
ported by a large community, very active in various industries. It is mostly used
to assess the quality and conformance of a given implementation of a client or
server for a specific protocol. Instead of testing a specific piece of software, the
idea is to test the properties of an intangible object, namely the network connec-

*Work partly performed whilst this author was with EURECOM.

How to cite this paper: Vitale, A. and Daci-
er, M. (2021) Inmap-t: Leveraging TTCN-3
to Test the Security Impact of Intra Net-
work Elements. Journal of Computer and
Communications, 9, 174-190.
https://doi.org/10.4236/jcc.2021.96010

Received: May 24, 2021
Accepted: June 26, 2021
Published: June 29, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jcc
https://doi.org/10.4236/jcc.2021.96010
https://www.scirp.org/
https://orcid.org/0000-0003-3206-2030
https://doi.org/10.4236/jcc.2021.96010
http://creativecommons.org/licenses/by/4.0/

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 175 Journal of Computer and Communications

tion taking place between two communicating parties. More precisely, the pro-
posal is made to use TTCN-3 to detect the existence of communication artefacts
generated by security devices, such as an Intrusion Prevention System (IPS) [2]
or a firewall [3], to name only two. The novel contribution is thus to redefine the
classical notion of System Under Test (SUT) and to leverage TTCN-3 in a new
way to assess some network security properties.

In order to present these ideas, this article is structured as follows. Section 2
motivates this work by explaining the role of a number of devices that could ex-
ist on a path between two communicating parties and the security implications
of their existences. Section 3 reviews the state of the art related to TTCN-3 on
one hand and, on the other hand, to the various approaches related to the testing
of network security properties. Section 4 (resp. 5), in order for this document to
be self-contained, provides a brief introduction to TTCN-3 (resp. to Titan, its
compilation and execution environment). Section 6 shows, thanks to three dis-
tinct test cases how TTCN-3 can be used to detect the presence of the devices in-
troduced earlier. Section 7, discusses the pros and cons of this approach based
on the lessons learned and Section 8 concludes the paper.

2. Motivation

“The Network is the Computer” was Sun Microsystems’ vision in the 80’s as de-
fined, in 1984, by John Gage, the 21st employee of that company. The fact that
the Cloudflare company has recently registered the trademark for that very same
phrase [4] is emblematic of the regained importance of the network in every-
one’s daily lives. There is not a single meaningful application which, at some
point, does not need to connect to another machine, somewhere on the Internet.
It is thus of the uttermost importance to ensure the quality, availability, reliabili-
ty, performability and security of network connections between machines.

There is a large community of experts that have been very active and success-
ful in monitoring, assessing and improving the four first of these properties. The
achievements of the network measurement community are to numerous to be
mentioned here.

On the security front, things are very different and, somehow, for good rea-
sons. The security aspects of the network itself have barely been considered be-
cause, following the seminal Dolev-Yao model [5], the presence of so called “ac-
tive observers” is always assumed within the network. Security protocols have to
be designed to resist against them by ensuring end-to-end security properties. It
is the sole responsibility of the two edge devices to do what is necessary to en-
sure a secure communication. That is a sound and reasonable design assumption
but, in practice, very few real world protocols resist to a powerful “active ob-
server” as it requires strong, unbreakable, mutual authentication of both end de-
vices which is difficult to achieve in practice.

Furthermore, one observes a growing number of devices that interfere, at var-
ious layers, with some aspects of these connections. In the same way that traffic
shaping devices [6] can, positively or negatively, influence the performances of a

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 176 Journal of Computer and Communications

network connection, several devices exist that can alter its security. Specifically,
devices such as firewalls [3] [7], web proxies [8], deep packet inspection tools
[9], intrusion prevention systems [2], to only name the most well known ones,
are of concern here. All these devices, and many others, can, and usually do,
break the end-to-end assumption made about a client-server communication,
even encrypted ones sometimes. Their deployment is usually done to improve
network security but they are double-edged swords since they can also be dep-
loyed surreptitiously by an attacker for malicious purposes anywhere in the In-
ternet to observe or modify data in transit.

Last but not least, many protocols are vulnerable to man in the middle attacks
at various layers of the protocol stack, as clearly laid out in the 2016 survey by
Conti et al. [10] (ARP, DHCP, IP, TCP, DNS, HTTP, etc.).

Thus, in practice, the “active observers” of the Dolev-Yao model can exist un-
der many forms but protocols that are vulnerable to them are still largely used
without being even able to test for the presence of such adversary!

Clearly, what is lacking is a generic framework capable of testing the security
properties of a network connection between two end points. On one hand, such
a framework could enable the users to verify that known security mechanisms
are present and properly configured (e.g. the firewall is up and running and im-
plements NATing properly). On the other hand, it could also detect the presence
of unknown entities interfering between two endpoints (e.g. the HTTP traffic
received is different from the one sent by the server).

Proposing such a framework is the intent of this work. More specifically, it
shows how to leverage the TTCN-3 environment to run test campaigns to detect
either that known devices are configured properly or to detect the presence of
malicious ones.

3. Review of the State of the Art

The origins of TTCN-3 are almost 40 years old, starting with the ISO/IEC stan-
dard 9646: OSI Conformance Testing Methodology and Framework (CTMF)
[11]. The interested reader is referred to the historical review by Grawoski et al.
[12] to discover the various iterations that have led to today’s version of TTCN-3
[1]. TTCN-3 is presented in Section 4 but, for the sake of completeness, it is
worth mentioning that some competitors exist to this framework such as [13]
[14] [15] but reviewing them falls outside the scope of this paper.

TTCN-3 conformance test suites exist for a number of important protocols
(eg. SIP [16], RIP [17] or WIMAX [18]). Many papers have been published on
how to use TTCN-3, in particular during the first decade of the 21st century,
mostly in networking venues, to introduce the environment and explain how it
could be used to test correct implementations of protocols and distributed sys-
tems [19] [20] [21] [22]. It has also been considered by some authors outside the
scope of conformance testing. For instance, Brezinski did propose to derive in-
trusion detection rules from the TTCN-3 conformance tests [23]. Others have
shown how to use it as a fuzzing tool for various protocols [24] [25] or as a pe-

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 177 Journal of Computer and Communications

netration testing tool against web services [26]. To the best knowledge of the
authors, no one has proposed to use TTCN-3 to test the network itself as we
propose in this work.

On the security front, several initiatives have existed over the years to assess
Internet security. The most famous ones are the various darknets, honeypots and
honeynets that have been deployed over the years to assess the threats landscape,
thanks to passive measurements [27] [28] [29] [30] [31]. A couple of other initi-
atives, have used active measurements techniques such as Shodan [32] and Cen-
sys [33]. All these systems focus on the devices on the edge of the network and
ignore those within it.

A notable exception exists with the body of knowledge accumulated to detect
proxies on the Internet [34] [35] [36]. These works have highlighted the exis-
tence of the “active observers” by using techniques specifically designed for this
specific threat.

To conclude, it is important to mention the very interesting Netalyzer plat-
form. Even if it initially aimed at performing end systems measurements [37]
[38], in a second stage, that platform has shown its ability to detect specific ele-
ments within the network [35] [39]. Unfortunately, the platform has been shut-
down in March 2019, preventing the authors from investigating the possibility to
leverage it for their goal.

4. TTCN-3: Main Concepts
4.1. Introduction to TTCN-3

Simply speaking, TTCN-3 is a standardized framework defined to verify the
conformance of a given implementation with respect to the specification of a
communication protocol. In TTCN-3 parlance, a System Under Test (SUT) is
the software to be tested. The test itself consists in exchanging messages with the
SUT and in verifying that the replies are consistent with the specification.
TTCN-3 provides all the communication, testing mechanisms and tools to carry
out such test campaigns. TTCN-3 defines so called interfaces for the various
components to communicate together, including with the SUT. Test campaigns
are made of test cases written using the TTCN-3 language. A TTCN-3 program
is referred to as an Abstract Test Suite (ATS). It expresses the configuration and
behavior of an abstract test system, which is composed of a set of concurrently
executing test components. A test case evaluates a single property of the protocol
by means of an exchange of messages. Each test case produces a so called ver-
dict. Writing the test cases is the responsibility of the test designer but TTCN-3
takes care of all the other operations such as the initial configuration, communi-
cation between modules, collection of the verdicts, etc. On top of that, TTCN-3
offers a number of functionalities to the test designer to easily handle issues such
as concurrency, time management, event handling, etc.

TTCN-3 offers several modes, respectively called Single, Parallel and Distri-
buted modes.

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 178 Journal of Computer and Communications

● In Single mode, there is only one component participating in the execution
of the test campaign.

● In Parallel mode, several components run in an asynchronous way and
communicate together.

● The Distributed mode corresponds to the parallel mode when the partici-
pating components do not run on the same machine.

4.2. TTCN-3 Core Language

The standardized testing language defined within TTCN-3 [1] has the look and
feel of a regular programming language. It provides a well-defined syntax for the
definition of tests independent of any application domain. A few important
terms are defined here below. They will be used throughout this document,
namely:
● A component is a user specified entity, which contains user-defined ports,

via which the component can interact with other components and the SUT.
Among the various components involved in a test campaign, some have a
specific role, namely:

- The Main Test Component (MTC) is unique and mandatory for each test
campaign. It is created at the beginning of the test campaign and when its
execution is over, the test campaign also ends. The MTC coordinates the cre-
ation of the needed other components, possibly on remote devices.

- A Parallel Test Component (PTC) is created, as per the MTC instruction, to
help it in carrying out the test cases.

- The Test System Interface (TSI) component (also referred to as the system
component) is an abstract interface to the SUT. It is used by the other com-
ponents in order to obtain some information from the SUT (e.g., its IP ad-
dress, the content of a log file, etc.).

● Port: each component owns at least one port that is an interface towards the
outer world. Two components can communicate with each other if they own
the same type of port and if their ports are connected. The port definition in-
cludes the protocol supported to exchange data in a bidirectional flow. There
are “Ethernet” ports but also “IP”, “TCP”, “HTTP” ones and several others.

● A module corresponds to a compilation unit in traditional programming
languages. It is divided into a definition and a control part. The former con-
tains top-level definitions, such as type, data, constant, port, component,
function and test cases. The latter defines the execution sequence of the test
cases defined in the first part.

● Test case: one module consists of at least one test case which is launched in
its control part. A sequence of several test cases defines a test campaign.

● A Verdict is the output of a test case. It can only be one of the five built-in
values, namely: pass, fail, inconc (stands for inconclusive), none (used as ini-
tial value) and error.

Each component generates a log file throughout the execution of the test
campaign. A local verdict for each test case is saved into it. At the end of the test

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 179 Journal of Computer and Communications

campaign, all log files are combined to generate the global verdict file. It con-
tains a global verdict for each test case. The global verdict of a given test case is
defined as the value of the local verdict, for that same case, with the highest
priority among all participating components (including the MTC). The priority
order for the verdicts is defined as follows: none, pass, inconc, fail, error. Error is
the highest priority and none the lowest.

TTCN-3 does not come with any compiler for the language. A compilation
environment, such as Titan [40] is needed to use TTCN-3 in practice. Titan also
provides an execution environment that will, e.g., provide mechanisms under
the hood for the MTC to launch PTCs remotely whenever needed. For this paper
to be self-contained, Titan is briefly introduced in the next Section.

5. Titan: Compilation and Execution Environment for
TTCN-3

5.1. Introduction

Eclipse Titan is a TTCN-3 compilation and execution environment with an Ec-
lipse-based IDE. The user of the tool can develop test cases, test execution logic
and build the executable test suite for several platforms. Titan consists of a core
part, executing in a Unix/Linux-like environment and a set of Eclipse plug-ins.
The latest version of the project is 7.1.0 and dates back from July 2020. There are
submissions as recent as May 2021 on their git website [41], indicating that this
is an active project, supported by, among others, Ericsson, the Swedish compa-
ny, one of the world leaders in communication technology.

It is worth noting that 1) not everything defined in the TTCN-3 standard is
supported by Titan and that 2) Titan introduces a couple of novel concepts to
support the execution environment.

5.2. Titan Compilation Environment

Titan includes a TTCN-3 and ASN.1 Compiler that transforms the TTCN-3
Core Language modules into C++ code. The intermediary C++ files are then
compiled into executable files. During the compilation phase other C++ files will
be included, such as:
● The Base Library which provides other C++ modules required for the cor-

rect compilation of the TTCN-3 Core Language structures and data types;
● The Titan implementation of the Test Ports. They are defined in C++ files.

Titan supports a number of network protocols and provides also the so-called
protocol modules that are APIs to encode/decode streams of bytes to be sent
into test ports. For instance, when using a TCP test port, the HTTP protocol
module simplifies the programmer’s task if in need of sending/receiving
HTTP messages.

The compilation environment can be installed from the Titan git repository
[41]. The TTCN-3 modules compiled in this environment generate an executa-
ble file called the executable test suite. This file contains the test cases but also

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 180 Journal of Computer and Communications

the code required to facilitate the coordination of the execution of the various
components. These other functions constitute the Titan execution environment.

5.3. Titan Execution Environment

To free the test designer from all the issues related to the communication, syn-
chronisation and coordination aspects of a distributed system architecture, Titan
introduces the notions of the Main Controller as well as of a Host Controller.
These elements support the transparent execution environment to run the tests
in the TTCN-3 distributed mode. They are not part of the TTCN-3 standard.

The Main Controller (MC) is a stand-alone program. It must be the first
program to be launched in order to run a test campaign. Once running, it listens
to a TCP port for incoming connections from the hosts that will participate to
the test.

A host tries to establish a connection with the MC as soon as the executable
test suite is launched on that host. This instantiates a Host Controller (HC)
which dies if the connection with the MC fails. Similarly, the HC dies if the con-
nection with the MC is interrupted.

It is clear that the MC must thus first be launched and, then, the various par-
ticipating HCs. This is a manual process not supported by the Titan execution
environment.

The MC keeps track of the connected HCs and determines when to start the
test campaign itself. To do so, the MC chooses one of the connected HCs and
instructs it to create an MTC. The HC accomplishes this by forking its own
process. The child process becomes the MTC. Then, the MC communicates di-
rectly with the MTC to inform it about the test case(s) to be executed. Whenever
a PTC is required for a given test case, the MC instructs the concerned HC to
create one. As for the MTC, the HC forks its own process and the child becomes
the needed PTC.

As can be seen, the executable test suite contains the code for the HC, MTC
and PTC as well as all possible test case(s). Which one(s) to run within a given
test campaign can be defined by means of a Run-Time Configuration File
which contains a number of parameters such as which test case(s) to run, be-
tween which hosts, etc.

5.4. Titan Ports

As eluded to before, Titan supports a number of different protocols by means of
so called ports which are the interfaces used by components to communicate to-
gether. In the context of this work, three of them have been used, namely the
LANL2, the IPL4 and the PIPE ports. Their characteristics are briefly given here
below to ease the presentation of the test cases in the next Section.
● The LANL2 port [42] is a layer 2, i.e. link layer, port. It enables the test de-

signer to send and receive Ethernet II frames. The capture filtering is done by
Libpcap. The headers and content of the upper layers (networking, transport

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 181 Journal of Computer and Communications

and application) must be provided as a sequence of bytes.
● The IPL4 port [43] is a layer 4, i.e. transport layer, port. It is a general pur-

pose, session independent port providing access to several Internet (IPV4
and IPV6) transport layers protocols such as TCP, UDP, SSL/TLS, etc. If the
chosen protocol is connection-oriented then the test port will take care of the
handshake messages.

● The PIPE port [44] is a special port that establishes a connection between the
TTCN-3 test executor and the Unix/Linux shell. It offers the test designer a
simple way to execute commands on a machine and retrieve the information
available on stdin, stdout, and stderr.

Whenever a LANL2 test port is used, the component using that port must
know the name of the sending interface and the MAC address of the recipient
(final destination or next hop gateway). These two information are not necessar-
ily known before run time but they can be obtained from the host thanks to the
PIPE port.

Some caution must be taken to initiate a TCP connection thanks to the
LANL2 port. Sending the initial SYN packet is easy. The remote device, assum-
ing it is listening on the targeted port, will then generate a SYN/ACK packet, as
per the usual TCP three ways handshake. The initiating device will not know
what to do with this reply since the LANL2 port has bypassed TCP/IP when
sending the initial frame. No port is listening for the SYN/ACK packet. As a re-
sult, the kernel is very likely to generate a RST packet as a response, which will
kill the TCP connection that is being established. To prevent this from happen-
ing, a specific iptables [45] rule must be inserted during the whole test case to
prevent the emission of the RST packet.

6. Testing the Impact of Intra Network Elements
6.1. Goal

Typically, when using the TTCN-3 framework, the test designer considers the
SUT to be a specific hardware, firmware or software whose implementation
compliance needs to be assessed with respect to a specific protocol specification.

In this work, TTCN-3 and the SUT are looked at from a different view point.
The SUT is an intangible object; it is the connection established between a client
and a server. The goal is to test whether its behavior is consistent with what is
expected from an end-to-end connection. In other words, the goal is to test
whether any element between the two end points is interfering with this connec-
tion and, if yes, how.

Today’s networks contain a number of elements that routinely interfer with
the end-to-end connections, such as:
● A firewall that implements Network Address Translation (NAT) modifies the

IP addresses of packets traversing it;
● A traffic shaper might buffer packets before sending them at different rates,

sometimes concatenating their payloads into bigger packets;

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 182 Journal of Computer and Communications

● An ssh jump host could redirect an incoming connection to a different IP
and, or, destination port;

● A caching proxy could provide clients with responses to their web requests
without talking to the queried server;

● etc.
In the general case, interfering with the expected end-to-end property of a

connection is achieved with the best interest of the client in mind, e.g. to im-
prove security, performance, latency, etc. However such practices are double
edged swords and can also be used by malicious actors, anywhere in between the
two end points in the network, to achieve some nefarious goal. Being able to test,
and explain, such interferences are thus important for two reasons:

1) To verify that all the good elements are acting as they should.
2) To verify that no other element than the good ones is interfering with a

connection.
The goal is thus to leverage the TTCN-3 environment to exchange especially

crafted packets between a client and a server in order to determine whether or
not any element is trying to attack the confidentiality, integrity or availability of
the data in transit.

To achieve this goal, the INMAP-T1 system has been built, named for Intra
Network Mapping with Ttcn3. INMAP-T is made of a number of TTCN-3 test
cases. The space allocated here does not enable a full description of all of them.
Instead of an exhaustive presentation, three representative test cases have been
chosen to exemplify the usage of TTCN-3.

The generic set up is first introduced, followed by a brief presentation of how
to carry out tests thanks to TTCN-3. The discussion is limited to the atomic no-
tion of a test case. Explaining how to combine them within a test campaign to
precisely identify a specific interfering network element lies outside the scope of
this paper.

6.2. Setup

The architecture used is very simple, made of three hosts: one for the MC and
the MTC, one for the Client and one for the Server. The MC and MTC reside on
the same host for the sake of simplicity. Both of them play a coordination role
during the execution of the tests. The MC maintains a TCP connection not only
with the HCs on the client and server machines but also with all the instantiated
components (MTC and PTCs). These connections are used whenever the MTC
commands the creation of a PTC: the MTC sends the request to the MC which
forwards it to the target HC.

6.3. Test Cases

The following three test cases highlight how powerful TTCN-3 is to carry out the
kind of tests of interest within this work.

1) The first test case uses fragmented packets to detect the presence of any

1This name is an indirect reference to the nmap tool [46] that focuses on the edges of the network.

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 183 Journal of Computer and Communications

element that inspects the payload before letting the packets go through.
2) The second compares sequence numbers and leverages the MTC compo-

nent to detect a man in the middle at the transport layer.
3) The third one takes advantage of an exporter to verify that encrypted channels

are not eavesdropped.

6.3.1. Fragmented Packets
Packets in transit between two end points should only be handled at the physi-
cal, link and network layers. They should never be pushed to the transport and
application layers. However, in some cases, an intermediary node must inspect
the content of the payload before letting it pass. This is true, for instance with
Network Based Intrusion Prevention systems [2] when carrying out Deep Packet
Inspection. In such case, the packet goes up to the application layer to be scruti-
nized before being pushed back to the next hop. This is also true for firewalls
who have rules that require the inspection of some TCP header values or of the
application payload. If an IP datagram is split into two fragments, the IP layer
needs to reassemble them in order to extract the layer 4 payload and to pass it
over to the TCP layer which, then, can pass it to the application layer. Depend-
ing on the implementation, that payload, when resent, lies within a single reas-
sembled IP datagram or is split into the two initial fragmented ones.

A test case has been built to detect such possible reassembly, in transit, of
fragmented packets. The LANL2 test port has been used to send the packets be-
cause it enables to modify the datagram header and makes it possible to craft
fragmented packets. Similarly, the server uses the LANL2 test port and has
access to the raw packets sent. If the server receives two fragmented packets, its
local verdict for the test is “Pass” and “Fail” otherwise. The local verdict of the
client as well as of the MTC is always set to “Pass” if no error happens. There-
fore, the global verdict will be uniquely defined by the server since “Fail” has a
higher priority than “Pass”, as explained in Section 4.2 on page 5.

A number of experiments have been run and have indeed confirmed that such
a test would detect the presence of a number of elements whose existence, oth-
erwise, would remain unknown.

The listing 1 gives a flavor of the TTCN-3 language expressiveness by provid-
ing some excerpts of the code required to create a fragmented packet. Listing 2
shows how the server can read a frame from the wire and in Listing 3 how it can
check whether the received packet is a fragmented one or not.

Listing 1: Creation of fragments by the Client

Listing 2: Reception of a frame by the Server

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 184 Journal of Computer and Communications

Listing 3: Detection of first or second fragment

6.3.2. Sequences Numbers
Sometimes, devices actively violate the end-to-end assumption by acting as a
man in the middle at the transport layer. This is the case, for instance, for several
kinds of proxies. They will pretend to be the server end point for the client and
the client for the server. Two distinct TCP connections exist and the proxy
pushes data from one to the other. It is worth noting that, to remain invisible,
the proxy can spoof the other IP addresses so that its own will never appear in
any of these two TCP connections.

One way to detect the existence of such man in the middle is to compare the
initial sequence number sent by the client and the one received by the server.
Only a very meticulous attacker would pick the very same initial sequence num-
ber for the TCP connection he initiates with the server.

Such a test case has been built by taking advantage of the IPL4 test port this
time. This enables to let the test port takes care of the three way handsakes for
us. The LANL2 test ports are also needed though to extract the sequence num-
bers.

To decide whether the test has failed or not, it is a must to have access to in-
formation that only the client, on one hand, and the server, on the other hand,
possess. Unfortunately, the only information they are normally supposed to send
back to the MTC is their local verdict! This is where the Titan environment
proves to be very resourceful. Indeed, Titan offers some language extensions2
and one of them enables the programmer to let a PTCs return values3 to the
MTC at the end of a test case, together with their local verdict. This feature is
used to let the client (resp. server) send a “Pass” local verdict to the MTC, to-
gether with the initial sequence number sent (resp. received). The MTC com-
pares the two values to produce its own local verdict which will then determine
the final global verdict. Here to, a number of experiments have been run that
have confirmed that most implementations of invisible proxies or man in the
middle attacks did not bother replicating the initial sequence number among
both TCP connections. They can thus be detected by this approach.

6.3.3. Exporter
In the last example, the focus is on encrypted channels, such as the ones in a
SSL/TLS session. The situation considered is one where a very stealthy attacker
would defeat the previous detection and would decrypt the data in transit and,
then, reencrypt it. In theory, this could remain invisible to all. To decrypt the

2TTCN-3 Core Language offers a way to extend its functionalities and features thanks to the exten-
sion [1] clause.
3Loosely speaking. A detailed explanation falls outside the scope of this paper.

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 185 Journal of Computer and Communications

payload, the attacker needs to know the session key. This is possible if he man-
ages to impersonate the server. However, by design of the key establishment
protocols, there will necessarily be two distinct session keys for the connection
from the client to the attacker and from the attacker to the server.

A test case has been built to assess whether or not the encrypted sessions seen
by the client and by the server rely on the same secrets. However, this informa-
tion, for good reasons, is not available to external applications but resides se-
curely within the TLS process memory space. Nevertheless, it is possible to use a
mechanism known as an exporter, defined in the RFC5705 [47] (previously re-
ferred to as a TLS extractor). Thanks to this, it is possible, after a successful TLS
handshake, to extract an hexadecimal value derived from the master secret of the
session. In the absence of a man in the middle attack, the client and the server
must derive the same value.

Listing 4 indicates how to obtain such exporter value when using the IPL4 test
port in TTCN-3. To decide whether the test fails or not, the same technique as in
the previous case is used, by letting the MTC take care of the comparisons of the
two exporter values.

Listing 4: Using the TLS exporter

7. Discussion and Lessons Learned

The vision is to have a number of end points (servers) disseminated around the
world so that clients could, on one hand, test their own equipment when com-
municating to the Internet and, on the other hand, detect the presence of mali-
cious elements on certain routes, possibly sharing that information with a larger
community.

A number of test cases have been implemented, on top of the three described
here above. The examples given aim at letting the reader understand how easily
it could be to test, for instance:
● whether a firewall is correctly configured: which ports are blocked, which

ones are forwarded, whether NATing is enabled, etc.
● whether a DPI is up and running by, e.g., sending a payload that matches a

detection signature which should block the packet.
● whether some unknown device is interfering at any possible layer with a giv-

en connection.
● whether some man in the middle attack is taking place.
● whether some DNS poisoning attack has been realized.
● etc.

Based on the experiments, rejuvenating the concept of SUT by defining it as
being an intangible object, as opposed to, e.g., a server implementation, appears
to offer a lot of opportunities. To do this, TTCN-3 and Titan offer all the func-

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 186 Journal of Computer and Communications

tional blocks needed, not only to define the test campaigns but also to orches-
trate the whole distributed architecture required. However, when running the
experiments, a number of shortcomings appear that need to be addressed in or-
der to build an easy to use and scalable testing environment. The most proble-
matic issues are summarized here after:
● As explained before, the executable test suite must contain, among other

things, the code for all test cases. Adding a single new test case amounts to
change the whole executable, install it on all participating hosts and restart-
ing all components. Not only is this a very costly operation but, worse, nei-
ther TTCN-3 nor Titan do offer a mechanism to implement such software
update.

● The more test cases exist, the bigger the executable test suite becomes. In
particular, the more Titan ports are used, the more code needs to be in-
cluded. As of now, the size of the executable is, roughly, of 17 MBytes. 2/5 of
it comes from the three ports used, 2/5 of it is the code for the MTC, PTC,
etc., the last 1/5 corresponds to code written for the test cases.

● TTCN-3 is a very rich and well defined language but its readability is influ-
enced by its historic ties with the C++ language. This will please those used
to it but may be a show stopper for newcomers.

● The TTCN-3 standard defines a single way to establish the global verdict,
based on priorities among local verdicts, as explained in the text. It is possi-
ble, as shown in the text, to come around this limitation by implementing a
decision function within the MTC based on values provided by the other
elements and by forcing them all to generate a “Pass” verdict. This is a prac-
tical solution but definitely not an elegant one.

All these issues could possibly be addressed by “wrapping” the TTCN-3 envi-
ronment within another one providing the missing functionalities. A first at-
tempt at doing this has been achieved by one of the authors in [48]. Further
work needs to be done in order to decide whether this is the right way to go or if,
instead, it is preferable to recreate a new environment, from scratch, specifically
tailored at network testing, inspired by the many good ideas and concepts from
TTCN-3.

8. Conclusion

In this work, the rationales for testing the security properties of an end-to-end
connection between a client and a server have been presented. The standardized
TTCN-3 environment, while not designed for such tasks, could be leveraged by
redefining the notion of SUT, as shown in the text. A couple of exemplary use
cases demonstrate the feasibility and the expressive power of the proposed ap-
proach. The pros and cons are discussed, of using TTCN-3 vs. building a new
framework that would include the missing functionalities while benefiting from
the well thought of architecture and concepts implemented over the years in
TTCN-3 and Titan.

https://doi.org/10.4236/jcc.2021.96010

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 187 Journal of Computer and Communications

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] ETSI (2016) Methods for Testing and Specification (MTS): The Testing and Test

Control Notation Version 3; Part 1: Ttcn-3 Core Language. Vol. ETSI ES 201 873-1
V4.8.1, ETSI, Sophia Antipolis.

[2] Stiawan, D., Abdullah, A.H. and Idris, M.Y. (2010) The Trends of Intrusion Preven-
tion System Network. 2010 2nd International Conference on Education Technology
and Computer, Shanghai, 22-24 June 2010, V4-217-V4-221.
https://doi.org/10.1109/ICETC.2010.5529697

[3] Cheswick, W.R., Bellovin, S.M. and Rubin, A.D. (2003) Firewalls and Internet Secu-
rity: Repelling the Wily Hacker. Addison-Wesley Professional, Boston.

[4] Vallurupalli, D. (2019) Cloudflare Registers Trademark for the Network Is the
Computer. Technical Report, Press Release, Cloud-Flare, San Francisco.

[5] Dolev, D. and Yao, A. (1983) On the Security of Public Key Protocols. IEEE Trans-
actions on Information Theory, 29, 198-208.
https://doi.org/10.1109/TIT.1983.1056650

[6] Armitage, G. (2000) Quality of Service in IP Networks. SAMS Publishing, Indian-
apolis.

[7] Ioannidism S., Keromytis, A.D., Bellovin, S.M. and Smith, J.M. (2000) Implement-
ing a Distributed Firewall. Proceedings of the 7th ACM Conference on Computer
and Communications Security, Athens, November 2000, 190-199.
https://doi.org/10.1145/352600.353052

[8] Fielding, R. and Reschke, J. (2014) Hypertext Transfer Protocol (http/1.1): Message
Syntax and Routing. RFC 7230, Internet Requests for Comments, RFC Editor.
http://www.rfc-editor.org/rfc/rfc7230.txt
https://doi.org/10.17487/rfc7230

[9] Debar, H., Dacier, M. and Wespi, A. (2000) A Revised Taxonomy for Intru-
sion-Detection Systems. Annales des telecommunications, 55, 361-378.

[10] Conti, M., Dragoni, N. and Lesyk, V. (2016) A Survey of Man in the Middle Attacks.
IEEE Communications Surveys Tutorials, 18, 2027-2051.
https://doi.org/10.1109/COMST.2016.2548426

[11] ISO/IEC 9646 (1991) Information Technology; Conformance Testing Methodology
and Framework (Parts 1-7). International Standard IS9646. International Organiza-
tion for Standardization, Geneva.

[12] Grabowski, J., Schieferdecker, I. and Ulrich, A. (2014) History, Status, and Recent
Trends of the Testing and Test Control Notation Version 3 (TTCN-3). Internation-
al Journal on Software Tools for Technology Transfer, 16, 215-225.
https://doi.org/10.1007/s10009-014-0302-9

[13] Wu, J., Yang, L. and Luo, X. (2008) Jata: A Language for Distributed Component
Testing. 2008 15th Asia-Pacific Software Engineering Conference, Beijing, 3-5 De-
cember 2008, 145-152. https://doi.org/10.1109/APSEC.2008.27

[14] Gorringe, C., Seavey, M. and Lopes, T. (2011) An Overview of the ATML Family
and Related Standards. 2011 IEEE AUTOTESTCON, Baltimore, 12-15 September
2011, 117-123. https://doi.org/10.1109/AUTEST.2011.6058783

https://doi.org/10.4236/jcc.2021.96010
https://doi.org/10.1109/ICETC.2010.5529697
https://doi.org/10.1109/TIT.1983.1056650
https://doi.org/10.1145/352600.353052
http://www.rfc-editor.org/rfc/rfc7230.txt
https://doi.org/10.17487/rfc7230
https://doi.org/10.1109/COMST.2016.2548426
https://doi.org/10.1007/s10009-014-0302-9
https://doi.org/10.1109/APSEC.2008.27
https://doi.org/10.1109/AUTEST.2011.6058783

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 188 Journal of Computer and Communications

[15] Baker, P., Dai, Z.R., Grabowski, J., Schieferdecker, I. and Williams, C. (2007) Mod-
el-Driven Testing: Using the UML Testing Profile. Springer-Verlag, Berlin, Heidel-
berg. http://doi.org/10.1007/978-3-540-72563-3

[16] ETSI (2006) Conformance Test Specification for SIP (IETF RFC 3261). ETSI, TS
102 027. ETSI, Sophia Antipolis.

[17] Floch, A., Roudaut, F., Sabiguero, A. and Viho, C. (2005) Some Lessons from an
Experiment Using ttcn-3 for the RIPng Testing. IFIP International Conference on
Testing of Communicating Systems, Montreal, 31 May-2 June 2005, 318-332.
https://doi.org/10.1007/11430230_22

[18] ETSI (2009) Conformance Testing for the Network layer of HiperMAN/WiMAX
terminal devices. ETSI TS 102 624, ETSI, Sophia Antipolis.

[19] Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A. and Willcock, C.
(2003) An Introduction to the Testing and Test Control Notation (TTCN-3). Comput-
er Networks, 42, 375-403. https://doi.org/10.1016/S1389-1286(03)00249-4

[20] Yin, X., Wang, Z., Jing, C. and Shi, X. (2008) A TTCN-3-Based Protocol Testing
System and Its Extension. Science in China Series F: Information Sciences, 51, 1703-
1722. https://doi.org/10.1007/s11432-008-0156-4

[21] Schieferdecker, I. (2010) Test Automation with ttcn-3-State of the Art and a Future
Perspective. IFIP International Conference on Testing Software and Systems, Natal,
8-10 November 2010, 1-14. https://doi.org/10.1007/978-3-642-16573-3_1

[22] Lahami, M., Fakhfakh, F., Krichen, M. and Jmaiel, M. (2012) Towards a ttcn-3 Test
System for Runtime Testing of Adaptable and Distributed Systems. IFIP Interna-
tional Conference on Testing Software and Systems, Aalborg, 19-21 November
2012, 71-86. https://doi.org/10.1007/978-3-642-34691-0_7

[23] Brzezinski, K.M. (2007) Intrusion Detection as Passive Testing: Linguistic Support
with ttcn-3. International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, Lucerne, 12-13 July 2007, 79-88.
https://doi.org/10.1007/978-3-540-73614-1_5

[24] Jing, C., Wang, Z., Shi, X., Yin, X. and Wu, J. (2008) Mutation Testing of Protocol
Messages Based on Extended TTCN-3. 22nd International Conference on Advanced
Information Networking and Applications (AINA 2008), Ginowan, 25-28 March
2008, 667-674. https://doi.org/10.1109/AINA.2008.98

[25] Xu, L., Wu, J. and Liu, C. (2009) T3fah: A TTCN-3 Based Fuzzer with Attack Heu-
ristics. 2009 WRI World Congress on Computer Science and Information Engi-
neering, Vol. 7, Los Angeles, 31 March-2 April 2009, 744-749.
https://doi.org/10.1109/csie.2009.706

[26] Stepien, B., Peyton, L. and Xiong, P. (2012) Using TTCN-3 as a Modeling Language
for Web Penetration Testing. 2012 IEEE International Conference on Industrial
Technology, Athens, 19-21 March 2012, 674-681.
https://doi.org/10.1109/ICIT.2012.6210016

[27] Zou, C.C., Gao, L., Gong, W. and Towsley, D. (2003) Monitoring and Early Warn-
ing for Internet Worms. Proceedings of the 10th ACM Conference on Computer
and Communications Security, Washington DC, October 2003, 190-199.
https://doi.org/10.1145/948109.948136

[28] Bailey, M., Cooke, E., Jahanian, F., Nazario, J., Watson, D., et al. (2005) The Internet
Motion Sensor: A Distributed Blackhole Monitoring System. Proceedings of 12th
ISOC Symposium on Network and Distributed Systems Security, San Diego, Febu-
ary 2005, 167-179.

[29] Alata, E., Dacier, M., Deswarte, Y., Kaaâniche, M., Kortchinsky, K., Nicomette, V.,

https://doi.org/10.4236/jcc.2021.96010
http://doi.org/10.1007/978-3-540-72563-3
https://doi.org/10.1007/11430230_22
https://doi.org/10.1016/S1389-1286(03)00249-4
https://doi.org/10.1007/s11432-008-0156-4
https://doi.org/10.1007/978-3-642-16573-3_1
https://doi.org/10.1007/978-3-642-34691-0_7
https://doi.org/10.1007/978-3-540-73614-1_5
https://doi.org/10.1109/AINA.2008.98
https://doi.org/10.1109/CSIE.2009.706
https://doi.org/10.1109/ICIT.2012.6210016
https://doi.org/10.1145/948109.948136

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 189 Journal of Computer and Communications

Pham, V.-H. and Pouget, F. (2006) Collection and Analysis of Attack Data Based on
Honeypots Deployed on the Internet. In: Gollmann, D., Massacci, F. and Yautsiuk-
hin, A., Eds., Quality of Protection, Springer, Boston, 79-91.
https://doi.org/10.1007/978-0-387-36584-8_7

[30] Dacier, M., Pham, V.-H. and Thonnard, O. (2009) The WOMBAT Attack Attribu-
tion Method: Some Results. 2009 International Conference on Information Systems
Security, Kolkata, 14-18 December 2009, 19-37.

[31] Pour, M.S., Bou-Harb, E., Varma, K., Neshenko, N., Pados, D.A. and Choo, K.-K.R.
(2019) Comprehending the IoT Cyber Threat Landscape: A Data Dimensionality
Reduction Technique to Infer and Characterize Internet-Scale IoT Probing Cam-
paigns. Digital Investigation, 28, S40-S49. https://doi.org/10.1016/j.diin.2019.01.014

[32] Matherly, J. (2015) Complete Guide to Shodan. Vol. 1, Shodan, LLC (2016-02-25).

[33] Durumeric, Z., Adrian, D., Mirian, A., Bailey, M. and Halderman, J.A. (2015) A
Search Engine Backed by Internet-Wide Scanning. Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, October
2015, 542-553. https://doi.org/10.1145/2810103.2813703

[34] Reis, C., Gribble, S.D., Kohno, T. and Weaver, N.C. (2008) Detecting in-Flight Page
Changes with Web Tripwires. 5th USENIX Symposium on Networked Systems De-
sign & Implementation, Vol. 8, San Francisco, 16-18 April 2008, 31-44.

[35] Weaver, N., Kreibich, C., Dam, M. and Paxson, V. (2014) Here Be Web Proxies. In-
ternational Conference on Passive and Active Network Measurement, Los Angeles,
10-11 March 2014, 183-192. https://doi.org/10.1007/978-3-319-04918-2_18

[36] Miller, S., Curran, K. and Lunney, T. (2015) Traffic Classification for the Detection
of Anonymous Web Proxy Routing. International Journal for Information Security
Research, 5, 538-545. https://doi.org/10.20533/ijisr.2042.4639.2015.0061

[37] Kreibich, C., Weaver, N., Nechaev, B. and Paxson, V. (2010) Netalyzr: Illuminating
the Edge Network. Proceedings of the 10th ACM SIGCOMM Conference on Inter-
net Measurement, Melbourne, November 2010, 246-259.
https://doi.org/10.1145/1879141.1879173

[38] Kreibich, C., Weaver, N., Maier, G., Nechaev, B. and Paxson, V. (2011) Experiences
from Netalyzr with Engaging Users in End-System Measurement. Proceedings of
the 1st ACM SIGCOMM Workshop on Measurements up the Stack, Toronto, Au-
gust 2011, 25-30. https://doi.org/10.1145/2018602.2018609

[39] Weaver, N., Kreibich, C., Nechaev, B. and Paxson, V. (2011) Implications of Neta-
lyzr’s DNS Measurements. Proceedings of the 1st Workshop on Securing and
Trusting Internet Names (SATIN), Teddington, April 2011.

[40] Gergo Ujhelyi, A.K. and Magyari, M (2021) Eclipse Titan Project Page.
https://projects.eclipse.org/projects/tools.titan

[41] Eclipse (2021) titan.core. https://github.com/eclipse/titan.core

[42] Szalai, G. (2019) LANL2 Test Port for TTCN-3 Toolset with TITAN, Description.
Version: 1551-CNL 113 519, Rev. A.
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.LANL2asp/-/blob/master/doc/
LANL2aspCNL1135191551.adoc

[43] Szalai, G. (2019) IPL4asp Test Port for TTCN-3 Toolset with TITAN, Description.
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.IPL4asp/-/blob/master/doc/IP
L4aspDescription.adoc

[44] Szalai, G. (2019) PIPE Test Port for TTCN-3 Toolset with TITAN, Description.
Version: 1551-CNL 113 334, Rev. C.

https://doi.org/10.4236/jcc.2021.96010
https://doi.org/10.1007/978-0-387-36584-8_7
https://doi.org/10.1016/j.diin.2019.01.014
https://doi.org/10.1145/2810103.2813703
https://doi.org/10.1007/978-3-319-04918-2_18
https://doi.org/10.20533/ijisr.2042.4639.2015.0061
https://doi.org/10.1145/1879141.1879173
https://doi.org/10.1145/2018602.2018609
https://projects.eclipse.org/projects/tools.titan
https://github.com/eclipse/titan.core
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.LANL2asp/-/blob/master/doc/LANL2aspCNL1135191551.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.LANL2asp/-/blob/master/doc/LANL2aspCNL1135191551.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.IPL4asp/-/blob/master/doc/IPL4aspDescription.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.IPL4asp/-/blob/master/doc/IPL4aspDescription.adoc

A. Vitale, M. Dacier

DOI: 10.4236/jcc.2021.96010 190 Journal of Computer and Communications

https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.PIPEasp/-/blob/master/doc/PI
PEaspCNL113334 1551.adoc

[45] Eychenne, H. and the Netfilter Core Team (2019) IPTABLES Man Page (1.8.3).
https://ipset.netfilter.org/iptables.man.html

[46] Lyon, G.F. (2008) Nmap Network Scanning: The Official Nmap Project Guide to
Network Discovery and Security Scanning. Insecure.Com LLC (US), California.

[47] Rescorla, E. (2010) Keying Material Exporters for Transport Layer Security (TLS).
Internet Requests for Comments, RFC Editor, RFC 5705.
https://doi.org/10.17487/rfc5705

[48] Vitale, A. (2020) E-WASSI: Evolutionary Worldwide Application for System Secu-
rity and Information. Corso di laurea magistrale in Ingegneria Informatica (Com-
puter Engineering), Politecnico di Torino, Technical Report.
https://webthesis.biblio.polito.it/18191/

https://doi.org/10.4236/jcc.2021.96010
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.PIPEasp/-/blob/master/doc/PIPEaspCNL113334%201551.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.TestPorts.PIPEasp/-/blob/master/doc/PIPEaspCNL113334%201551.adoc
https://ipset.netfilter.org/iptables.man.html
https://doi.org/10.17487/rfc5705
https://webthesis.biblio.polito.it/18191/

	Inmap-t: Leveraging TTCN-3 to Test the Security Impact of Intra Network Elements
	Abstract
	Keywords
	1. Introduction
	2. Motivation
	3. Review of the State of the Art
	4. TTCN-3: Main Concepts
	4.1. Introduction to TTCN-3
	4.2. TTCN-3 Core Language

	5. Titan: Compilation and Execution Environment for TTCN-3
	5.1. Introduction
	5.2. Titan Compilation Environment
	5.3. Titan Execution Environment
	5.4. Titan Ports

	6. Testing the Impact of Intra Network Elements
	6.1. Goal
	6.2. Setup
	6.3. Test Cases
	6.3.1. Fragmented Packets
	6.3.2. Sequences Numbers
	6.3.3. Exporter

	7. Discussion and Lessons Learned
	8. Conclusion
	Conflicts of Interest
	References

