
Fundamental Limits of Shared-Cache
Networks

Dissertation

submitted to

Sorbonne Université

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Emanuele PARRINELLO

Thesis Supervisor: Prof. Petros ELIA

Scheduled for defense on the 23 SEPTEMBER, 2021, before a committee composed of:

Reviewers
Prof. Daniela TUNINETTI University of Illinois at Chicago
Prof. B. Sundar RAJAN Indian Institute of Science

Examiners
Prof. Giuseppe CAIRE Technical University of Berlin
Prof. Marios KOUNTOURIS EURECOM
Prof. Mari KOBAYASHI CentraleSupelec
Prof. Daniela TUNINETTI University of Illinois at Chicago
Prof. B. Sundar RAJAN Indian Institute of Science

Limites Fondamentales des Réseaux
avec Caches Partagés

Thèse

soumise à

Sorbonne Université

pour l’obtention du Grade de Docteur

présentée par:

Emanuele PARRINELLO

Directeur de thèse: Prof. Petros ELIA

Soutenance de thèse prévue le 23 SEP 2021 devant le jury composé de:

Rapporteurs
Prof. Daniela TUNINETTI University of Illinois at Chicago
Prof. B. Sundar RAJAN Indian Institute of Science

Examinateurs
Prof. Giuseppe CAIRE Technical University of Berlin
Prof. Marios KOUNTOURIS EURECOM
Prof. Mari KOBAYASHI CentraleSupelec
Prof. Daniela TUNINETTI University of Illinois at Chicago
Prof. B. Sundar RAJAN Indian Institute of Science

Abstract

In the context of communication networks, the emergence of predictable content has
brought to the fore the use of caching as a fundamental ingredient for handling the
exponential growth in data volumes. At the same time, an information theoretic study
of cache-aided networks, commonly known as coded caching, has revealed the powerful
benefits of combining caching and coded multicasting in allowing for the elusive scaling
of networks. This new caching approach has generated great interest in the research
community, which has done significant work both in terms of novel achievable schemes
and converse bounds for several different cache-aided scenarios. Nevertheless, a lot of
effort is still required towards studying cache-aided settings that captures the essence of
more realistic wireless communication networks, with all their heterogeneities, topological
characteristics, fundamental bottlenecks and practical limitations that often arise from
the random nature of such networks.

One of the major focuses of this thesis is the study of the fundamentals of shared-cache
networks where the communication to users is aided by a small set of caches, each
serving a potentially arbitrary number of users. Our addressed shared-cache setting,
not only captures heterogeneous wireless cellular networks where cache-aided small base
stations coexist with macro base stations, but it can also represent a model for users
requesting multiple files simultaneously. Furthermore, limiting the number of caches to
a much smaller value than the number of users might be inevitable in the presence of
the crippling subpacketization bottleneck of coded caching. That is why we believe that
the study of the shared-cache setting is of critical importance in the development of the
theory and practice of coded caching. For such networks, we will characterize under
some reasonable assumptions the optimal normalized delivery time required to serve all
the users, both in the presence and absence of knowledge of the network topology (i.e.
number of users associated to each cache) during the cache placement phase. We will also
reveal that properly allocating cache memory as a function of the topology is a crucial
ingredient for achieving the fundamental limits of such networks, even in those cases
when it is not possible, during the caching phase, to acquire the knowledge of the exact
topology. In order to show the versatility of our results, we will employ the techniques
developed for the shared-cache networks in the context of coded distributed computing
with heterogeneous resources, for which some information theoretic guarantees will be also
provided. Furthermore, in line with the current trends of employing large antenna arrays
at the base stations, this thesis also studies the caching setting where the main transmitter

i

Abstract

is equipped with multiple antennas, for which we will show exactly how the optimal
linear sum degrees of freedom (DoF) evolves as a function of the number of antennas, the
number of caches and the topology of the network. At the same time, we will also propose
a novel multi-antenna shared-cache-based scheme which has low complexity both in terms
of subpacketization requirements and optimized beamforming design, thus allowing to
serve a large number of cache-aided users with improved rate performance compared
to the classical uncoded approach. Finally, the thesis will also touch upon the topic of
coded caching with users involving heterogeneous Quality-of-Service (QoS) requirements,
where the derived results nicely show how the development of tight converse bounds can
allow the insightful identification of the optimal caching strategy. In the end, this thesis
provides novel information theoretic converses and schemes for a class of settings that we
believe are crucial in the evolution of cache-aided communications. We hope that the
new tools that we developed while constructing these bounds and coding schemes, can
be of use in various future efforts that necessitate the transition from the simplifying
homogeneity and symmetry to the heterogeneity and asymmetry that are indeed at the
core of modern communication networks.

ii

Acknowledgements

I want to truly thank a large set of people who helped and supported me during the
journey that lead to this Ph.D. thesis.
First of all, I want to express my deep gratitude to my supervisor Prof. Petros Elia for
giving me the opportunity to pursue this Ph.D. and for his continuous support during
this years. His constructive criticism, along with his deep understanding of the topic
has definitely helped me to successively improve my research work as well as my way of
working/thinking. This Ph.D. work would have not proceeded so fast if he had not been
so generous with his time.
I want to thank all my co-authors, Ayse, Berksan, Adeel, Eleftherios, Antonio, Mohammad,
Pooya and Antti, with whom I collaborated during these years. Their different way of
working, knowledge and opinions have greatly contributed to this thesis and helped me
to grow scientifically.
I am also grateful to all the committee members, Prof. Tuninetti, Prof. Rajan, Prof.Caire,
Prof. Kountouris and Prof. Kobayashi for their time and insightful comments. It was an
honor to present my work to them.
This Ph.D. work concludes my time at EURECOM, which proved to me to be an amazing
work environment where I have met and I have got to know many nice people, with
whom I have been spending a lot of time even outside EURECOM’s walls. I think very
few people have in life the privilege to share the working environment with their closest
friends. That is why I am extremely grateful to my friends Lorenzo, Placido but also
Jonas and Sagar for the time we spent together and their encouraging words during some
difficult times of my Ph.D. life. Big thanks go also to my friend Tryfon for the joyful
time that we have spent together.
To my mum, dad and brother goes my deepest gratitude for their endless love and
constant support. Last but not least, I want to thank immensely Marta, for her love,
support and patience. Her presence at home and the joyful time spent together have
significantly helped me in the last part of my Ph.D.

iii

Acknowledgements

iv

Contents

Abstract . i

Acknowledgements . iii

Contents . v

Acronyms . ix

Notations . xiii

1 Introduction to Coded Caching 1

1.1 Motivation for Caching . 1

1.1.1 Classical Caching Systems . 2

1.2 Coded Caching . 2

1.2.1 Cache-Aided Shared-Link Broadcast Channel 2

1.2.2 Extensions of the MAN Coded Caching Scheme to Other Settings 6

2 Motivations and Main Contributions 9

2.1 The Emergence of Shared-Cache Networks 9

2.1.1 Storage Allocation in Cache-Aided Networks 13

2.2 Heterogeneities in Cache-Aided Settings 13

2.3 Thesis Outline and Summary of the Main Contributions 14

2.3.1 Shared-Cache Networks . 14

2.3.2 Cache-Aided MISO Broadcast Channel 17

2.3.3 Coded Caching with Heterogeneous Quality-of-Service Requirements 19

2.3.4 Heterogeneous Coded Distributed Computing 20

3 Topology-Agnostic Shared-Cache Networks 23

3.1 System Model and Problem Formulation 23

3.2 Main Results . 25

3.2.1 Topology-Agnostic Shared-Link Coded Caching with Shared Caches 26

3.2.2 Topology-Agnostic Multi-Antenna Coded Caching with Shared

Caches . 27

3.2.3 Interpretation of Results . 28

3.3 General Achievable Scheme for N0 ≤ LΛ 31

3.3.1 Description of the Scheme . 31

v

Contents

3.3.2 Calculation of the Normalized Delivery Time 33

3.3.3 Intuition on the Scheme: Separability and the Parallel Version of

the Multi-Antenna BC with Shared Caches 34

3.3.4 Illustrative Example . 35

3.4 Information Theoretic Converse . 38

3.5 Achievable Scheme for the Uniform Setting with N0 ≥ K
Λ 43

3.5.1 Illustrative Example . 43

3.5.2 Cache Placement Scheme . 45

3.5.3 Delivery Scheme . 45

3.5.4 Calculation of the Normalized Delivery Time 47

3.6 Follow-Up Works . 48

4 Topology-Aware Shared-Cache Networks 49

4.1 System Model and Problem Formulation 49

4.1.1 Problem Definition . 51

4.2 An Illustrative Example of the Scheme for the Topology-Aware Setting . . 52

4.3 Main Results . 54

4.4 Achievability for the Topology-Aware Scenario 58

4.4.1 Memory Allocation and Cache Placement 58

4.4.2 Delivery Scheme . 59

4.4.3 Performance of the Scheme . 60

4.5 Converse for the Topology-Aware Scenario 61

4.6 The Topology-Partially-Aware Scenario 65

4.6.1 Achievable Scheme . 66

4.6.2 Converse Bound . 67

4.7 Numerical Results . 68

5 Multi-Access Shared-Cache Networks 71

5.1 System Model and Problem Definition . 72

5.2 Main Results . 73

5.3 Achievable Scheme for Kγ = 2 . 74

5.3.1 Cache Placement Scheme . 74

5.3.2 Delivery Scheme . 75

5.3.3 Illustrative Example . 77

5.4 Achievable Scheme for K = Kγz + 1 . 79

5.4.1 Cache Placement Scheme . 79

5.4.2 Delivery Scheme . 80

5.4.3 Illustrative Example . 80

5.5 Follow-Up Works . 81

vi

Contents

6 Novel Low-Complexity Scheme for the Cache-Aided MISO BC 83

6.1 The Subpacketization Requirement of Multi-Antenna

Coded Caching Schemes . 83

6.2 System Model and Performance Measure 84

6.2.1 Building the Transmission Vectors 86

6.3 A Cyclic Caching Scheme for Reduced Subpacketization 86

6.3.1 Cache Placement . 87

6.3.2 Content Delivery . 88

6.3.3 Decoding at the Receiver . 90

6.3.4 A Graphical Example . 91

6.3.5 Beamformer Design . 93

6.3.6 Further Reduction in Subpacketization 95

6.4 Complexity and Performance Analysis . 97

6.4.1 Complexity Analysis . 97

6.4.2 Simulation Results . 99

7 Coded Caching with Heterogeneous Quality-of-Service Requirements 105

7.1 Context and Related Works . 105

7.2 System Model and Problem Definition . 106

7.3 Main Results . 107

7.4 Achievable Caching and Delivery Scheme 108

7.4.1 Cache Placement Scheme . 108

7.4.2 Delivery Scheme . 110

7.5 Information Theoretic Converse . 111

8 Heterogeneous Coded Distributed Computing 117

8.1 Introduction . 117

8.1.1 Related Works . 118

8.2 Heterogeneous Distributed Computing Model 119

8.2.1 Map Phase . 120

8.2.2 Shuffle Phase . 121

8.2.3 Reduce Phase . 121

8.2.4 Problem Formulation . 122

8.3 Main Results . 123

8.3.1 Fixed Computation Loads and Fixed Reduce Loads 123

8.3.2 Flexible Computation Loads and Fixed Reduce Loads 124

8.3.3 Flexible Computation Loads and Flexible Reduce Loads 125

8.4 A Novel File Assignment and Shuffle Scheme for Heterogeneous Coded

Distributed Computing . 126

8.4.1 File Assignment Scheme . 126

vii

Contents

8.4.2 Shuffle Scheme . 127

8.4.3 Communication Load . 128

8.5 Converse Bound for the Scenario with Given Reduce Loads and Proof of

Optimality Gap . 128

8.5.1 Lower Bound . 128

8.5.2 Optimality Gap . 132

8.6 Converse Bound for the Scenario with Given Computation and Reduce

Loads . 133

9 Conclusions and Future Directions 135

9.1 Shared-Cache Networks with Single-Antenna Transmitter 135

9.1.1 Topology-Agnostic and Topology-Aware Scenarios 135

9.1.2 Multi-Access Shared-Cache Network 136

9.2 Cache-Aided MISO Broadcast Channel . 137

9.3 Cache-aided Networks with Heterogeneous QoS requirements 138

9.4 Heterogeneous Coded Distributed Computing 138

Appendices 141

A Appendix of Chapter 3 143

A.1 An Illustrative Example for the Converse 143

A.2 Collection of Proofs . 146

A.2.1 Proof of Lemma 1 . 146

A.2.2 Proof of Lemma 2 . 147

A.2.3 Proof of Equation (3.52) . 147

A.2.4 Transition from Equation (3.55) to (3.56) 148

A.2.5 Monotonicity of {ci} . 149

A.2.6 Proof of (3.59) . 149

A.2.7 Proof of Equation (3.19) . 150

A.3 Transition to the Multiple File Request Problem 151

B Appendix of Chapter 4 153

B.1 Equalities with Elementary Symmetric Functions 153

B.2 Convexity of Achievability . 154

B.3 Proof of Lemma 6 . 156

B.4 Proof of Proposition 2 . 162

B.5 Proof of Lemma 7 . 163

B.5.1 Proof of Lemma 14 . 165

B.6 Proof of Theorem 6 . 169

viii

Acronyms

C Proofs of Chapter 6 173

C.1 More Detailed Analysis of the Delivery Phase 173

C.2 Reducing Subpacketization by a Factor of φ2
K,t,α 174

D Appendix of Chapter 8 177

D.1 Proof of Lemma 12 . 177

ix

Acronyms

x

Acronyms and Abbreviations

The acronyms and abbreviations used throughout the manuscript are specified in the
following.

AWGN Additive White Gaussian Noise.
BC Broadcast Channel.
CDN Content Delivery Network.
CSIT Channel State Information at the Transmitter.
D2D Device to Device.
DoF Degrees of Freedom.
IoT Internet of Things.
IP Internet Protocol.
ISP Internet Service Providers,
LHS left hand side.
MAC Multiple Access Channel.
MAN Maddah-Ali and Niesen.
MAIS Maximum Acyclic Induced Subgraph.
MBS Macro Base Station.
MIMO Multiple Input Multiple Output.
MISO Multiple Input Single Output.
MMSE Minimum Mean Square Error.
NDT Normalized Delivery Time.
QoS Quality of Service.
RIS Reconfigurable Intelligent Surfaces.
RHS right hand side.
RX Receiver.
RZF Regularized Zero-Forcing.
SBS Small Base Station.
SCA Successice Convex Approximation.
SIMO Single Input Multiple Output.
SINR Signal to Noise and Interference Ratio.
SNR Signal-to-Noise Ratio.
SISO Single-Input Single-Output.
TDMA Time Division Multiple Access.
TX Transmitter.

xi

Acronyms

UL Uplink.
w.l.o.g. Without loss of generality.
ZF Zero Forcing.

xii

Notations

Vectors are denoted by bold symbols. We use the notation v(i) to denote the i-th entry
of vector v. Whenever needed, sets are considered to be ordered such that T (i) denotes
the i-th element of set T .

N,Z,R,C denote the sets of natural, integer, real and complex numbers,
respectively

[n] denotes the set {1, 2, . . . , n}, i.e. [n] , {1, 2, . . . , n} for n ∈ N
[n]0 denotes the set {0, 1, 2, . . . , n}, i.e. [n]0 , {0, 1, 2, . . . , n} for n ∈ N
2T denotes the powerset of the set T
n|m denotes that n divides integer m for n,m ∈ N
|A| denotes the cardinality of set A
Ac denotes the complement of the set A
A \ B denotes the set difference of sets A,B, i.e. A\B , {τ ∈ A∧ τ 6= B}
CTk denotes the set of all k-combinations of set T , i.e. CTk , {τ : τ ⊆

T , |τ | = k}
P (n, k) denotes the number of k-permutations of n elements, i.e. P (n, k) ,

n!
(n−k)! for n, k ∈ N(

n
k

)
denotes the number of k-combinations of n elements, i.e.

(
n
k

)
,

n!
(n−k)!k! for n, k ∈ N

v‖w denotes the concatenation of vector v with vector w
(v‖v)N denotes the concatenation of a vector v with itself N times⊕

denotes the XOR operation
(·)T denotes the transpose operator
(·)H denotes the conjugate transpose operator
round(·) denotes the function rounding a real number to the nearest integer
gcd(·) is the function that gives the greatest common divisor of the input

arguments.
Convk∈X (ak) is a continuous real function that denotes the lower convex envelope

of the points {(k, ak)|k ∈ X}

In each chapter we will introduce more notation that remains confined to that chapter.

xiii

Acronyms

xiv

Chapter 1

Introduction to Coded Caching

1.1 Motivation for Caching

In recent years, the rapid increase and evolution of Internet devices and high bandwidth-
consuming applications has brought an unprecedented exponential growth of mobile data
traffic. In the near future, the explosion of Internet of Things (IoT) and new data-hungry
applications (e.g. Virtual Reality) relying on machine learning and big data will make
the growth of mobile data traffic even more alarming. According to a Cisco [1], in 2022
the mobile data traffic will be seven times higher than the amount in 2017. At the same
time, again according to Cisco forecast (Figure 1.1), more than 80% of all IP traffic
will be video in 2022. We can safely conclude that, video traffic is driving global traffic
growth. Many new promising technologies that aim at increasing the capacity of current
mobile networks, such us multi-cell coordination, network densification, Multiple-Input
Multiple-Output (MIMO) systems, millimeter-waves communication and Reconfigurable
Intelligent Surfaces (RIS) may indeed offer some promising directions, but non exploit
the properties of video traffic.

Figure 1.1 – Source: Cisco VNI Global IP Traffic Forecast, 2017–2022

On-Demand video traffic has a few peculiar characteristics which, if properly exploited,
can significantly help Internet Service Providers (ISP) to reduce their network traffic.
First of all, video content is often not generated in real time and it can therefore be stored

1

Chapter 1. Introduction to Coded Caching

and replicated several times in the networks. Secondly, video traffic is characterized by
a high temporal variability which makes the network congested during the peak hours
and overprovisioned during off-peak times. These attributes and the fact that users’
demands are often limited to a relatively restricted number of popular files are crucial
ingredients that allow caching to be one of the most promising solutions toward reducing
congestion in current and future communication networks. These benefits of caching are
compounded by the still ever increasing storage capabilities of modestly sized devices.
Caching allows us to translate Moore’s law in storage capacities into gains for wired and
wireless networks.

1.1.1 Classical Caching Systems

In content delivery networks (CDNs), caching is a technique that consists in bringing,
during the off-peak hours, the most popular content closer to the users. This has been
traditionally done by replicating this content in storage devices distributed across the
network. In doing so, caching reduces the load of ISP’s networks during the peak-hours,
it balances the traffic of the network over time and it reduces the delay for the end users.
For example, Netflix has been using caching since 2011, when it started to build its
own CDN. Nowadays, almost all Netflix content is served from Netflix-operated caches
installed in the networks of local ISPs. Other examples of CDNs are those by Google,
Akamai and Facebook, while additional examples of different caching systems are the
Domain Name System (DNS), browser caching, computer memory caches and so on.
This traditional caching approach essentially reduces the amount of data requested to
the original server storing the content, thus resulting in what we will refer to as local
caching gain.

In the last years, information theoretic studies on cache networks have revealed some
fundamental insights that have debunked the conventional beliefs about caching that
were keeping locked the true potentials of these networks. In fact, while it was common
to believe that the usefulness of caching is limited to bringing content closer to the users,
different ground-braking information theoretic studies have revealed that the main gain
from using cache networks stems from their ability to communicate content globally.
These fundamental insights were brought to light in the seminal work by Maddah-Ali and
Niesen (MAN) in [2], where the authors proposed Coded Caching as a powerful technique
that is able to unleash so-called global caching gains.

1.2 Coded Caching

1.2.1 Cache-Aided Shared-Link Broadcast Channel

Coded Caching was proposed for the first time in [2], for a network where a server with
access to a library of N files serves — through a noiseless shared-link channel of capacity
1 file per unit of time — a set of K users, each equipped a storage unit of size M (in
units of files), so that each user can store a fraction γ , M

N of the library. The system

2

Chapter 1. Introduction to Coded Caching

is assumed to operate in two different and sequential phases. The first, referred to as
cache placement phase, consists in filling — during the off-peak hours – the caches with a
fraction of the content of the library without knowledge of the future users’ demands.
The second phase, called delivery phase, occurs when each user in the system requests a
(potentially different) file from the library. The server, then, depending on the requested
files and the content cached at the users, transmits a codeword of duration T , which will
be used by each user, along with the cached content, to recover its requested file. For
this setting, Maddah-Ali and Niesen proposed a cache placement phase that consists of
splitting each file of the library into very small chunks and carefully placing them in the
users’ caches according to a specific combinatorial pattern. This novel cache placement
induces in the delivery phase coded multicasting opportunities that are properly exploited
by a coding scheme that delivers XORs that serve Kγ + 1 users simultaneously. The
work in [2] has shown that irrespective of the user demands, the normalized delivery time
(NDT) cannot be worse than

T ∗MAN =
K(1− γ)

Kγ + 1
, γ ∈

{
0,

1

K
,

2

K
, . . . , 1

}
. (1.1)

If we have a careful look at the NDT in (1.1), we can identify two important quantities.
First of all, we identify the numerator term (1− γ), which is commonly referred to as
local caching gain and which tells us how much of each file has to be transmitted to each
user in additional to the amount that the user has in its own cache. Then, we identify
the denominator term Kγ + 1, which is usually referred to as global caching gain and
which represents the number of users that can be served simultaneously in the delivery
phase. We will also refer to this quantity as the sum degrees of freedom of the network,
which is here defined as

DoF ,
K(1− γ)

T
, (1.2)

reflecting the rate of delivery of the non-cached desired information. This achievable
performance was proved to be information theoretic optimal within a multiplicative factor
of 2 in [3] and exactly optimal under the assumption of uncoded cache placement in [4]
(see also [5]). Here, the term uncoded cache placement refers to any cache placement
strategy that stores the bits of the library in the caches without applying any coding.
It is important to point out that T ∗MAN (K, t) is optimal in terms of the worst-case
performance, while a smaller delivery time can be achieved when a subset of users
have identical requests [5]. Furthermore, the MAN scheme [2] requires that during the
placement phase the server be already aware of the number and identity of the users
that will use the system in the subsequent delivery phase. For this reason, this scheme is
classified as a centralized scheme. In some practical scenarios, the identity of the users
might not be available to the server, which is forced to employ a so-called decentralized
scheme [6]. Before presenting the general scheme achieving the above performance in (1.1),
we present a simple example that helps to convey the idea of the general algorithm in [2].

3

Chapter 1. Introduction to Coded Caching

A Toy Example

Consider a caching network where a server with a library of N = 4 equally-sized files
W (1),W (2),W (3),W (4) serves K = 4 users, each equipped with a cache of size M = 2.
We assume that the channel between the server and the users is noiseless with capacity
equal to one file per unit of time. In the cache placement phase, the MAN scheme in [2]
splits each file of the library in 6 equally-sized subfiles as follows:

W (n) = {W (n)
12 ,W

(n)
13 ,W

(n)
14 ,W

(n)
23 ,W

(n)
24 ,W

(n)
34 },

where each subfile W
(n)
τ , n ∈ [N], τ ⊂ [K], |τ | = 2 has size/duration |W (n)

τ | = 1
6 . Then,

each user k ∈ [4] fills its cache Zk in the following way:

Z1 = {W (n)
12 ,W

(n)
13 ,W

(n)
14 ∀n ∈ [4]},

Z2 = {W (n)
12 ,W

(n)
23 ,W

(n)
24 ∀n ∈ [4]},

Z3 = {W (n)
13 ,W

(n)
23 ,W

(n)
34 ∀n ∈ [4]},

Z4 = {W (n)
14 ,W

(n)
24 ,W

(n)
34 ∀n ∈ [4]}.

We observe that, because of the above cache placement, when each user will place
a request to the server, she will have to retrieve from the library only 3 out of the 6
subfiles that compose the requested file, regardless of the specific request. Let us now
assume that in the delivery phase each user requests a different file so that users 1, 2, 3, 4
request files W (1),W (2),W (3),W (4), respectively. Then, the MAN strategy will create
and sequentially transmit the following bit-wise XORs:

x123 = W
(1)
23 ⊕W

(2)
13 ⊕W

(3)
12 ,

x124 = W
(1)
24 ⊕W

(2)
14 ⊕W

(4)
12 ,

x134 = W
(1)
34 ⊕W

(3)
14 ⊕W

(4)
13 ,

x234 = W
(2)
34 ⊕W

(3)
24 ⊕W

(4)
23 .

(1.3)

Let us now focus on the transmitted message x123. We observe that user 1 has in its

own cache the subfiles W
(2)
13 and W

(3)
12 , which can therefore be removed from x123 to get

the desired subfile W
(1)
23 free of interference from the subfiles intended for users 2 and 3.

Due to its cached content, user 1 can recover the other missing subfiles W
(1)
24 and W

(1)
34

from the transmitted messages x124 and x134, respectively. Following similar arguments,
we can conclude that all the other users can also successfully recover all their desired
subfiles from the transmitted messages in (1.3). The total normalized delivery time T
needed to successfully deliver all the subfiles to the 4 users is given by the sum of the
duration of the four above messages, i.e. T ∗ = 4× 1

6 = 2
3 . Notice that if we transmitted

the 12 subfiles one by one the total delivery time would be as high as T = 2. Thus, coded
caching allows for a multiplicative reduction in the delay by a factor of DoF = 3.

4

Chapter 1. Introduction to Coded Caching

The MAN Coded Caching Scheme

Having given the above example, we proceed to provide the MAN placement and delivery
schemes in their general form.

MAN Cache Placement Each file W (n) of the library is split into S =
(
K
Kγ

)
disjoint

equally-sized subfiles as follows:

W (n) = (W (n)
τ : τ ⊆ [K] : |τ | = Kγ). (1.4)

For each n ∈ [N], subfile W
(n)
τ is stored in the cache of user k if and only if k ∈ τ . It

follows that the cache of user k ∈ [K] consists of the following content

Zk = {W (n)
τ : τ 3 k, ∀n ∈ [N]}. (1.5)

Hence, each user stores in its cache a total of N
(
K−1
Kγ−1

)
subfiles each of size 1

(KKγ)
, which

account for a total used memory of size

N

(
K − 1

Kγ − 1

)
1(
K
Kγ

) = M, (1.6)

thus satisfying the per-user cache size constraint. We now proceed with the definition of
the so-called subpacketization requirement of a coded caching scheme.

Definition 1. We use the term subpacketization requirement to refer to the number of
subfiles in which a coded caching scheme has to split each file of the library.

The MAN coded caching scheme has a subpacketization requirement of SMAN =
(
K
Kγ

)
,

which is exponential in K.

MAN Delivery Scheme Consider all the
(

K
Kγ+1

)
sets Q ⊂ [K] of Kγ+ 1 users. For each

such set Q, the server creates a message denoted by xQ and transmits it to the Kγ + 1
users in the set. The message xQ takes the form

xQ = ⊕
k∈Q

W
(dk)
Q\{k}. (1.7)

By construction, it can be easily verified that each subfile in the XOR is desired by one of
the Kγ + 1 users in Q and it is available in the local caches of the other Kγ users in Q.

Achievable performance Observing that the total number of transmissions is
(

K
Kγ+1

)
and that each such transmission takes 1

(KKγ)
units of time, immediately tells us that the

total delivery time can be expressed as in equation (1.1).

5

Chapter 1. Introduction to Coded Caching

1.2.2 Extensions of the MAN Coded Caching Scheme to Other Settings

The MAN scheme has sparked significant interest and the coded caching idea has been
extended to a wide range of settings. For example the work in [7] extended coded
caching to the so-called multi-server setting where the library is shared among N0 servers,
connected to the users through a full-rank linear network. In terms of DoF, this setting
is isomorphic to the cache-aided Multiple-input Single-Output (MISO) channel studied
in [8]. A hierarchical setting with two layers of caches has been studied in [9]. Coded
caching under an arbitrary popularity distribution of the file library was investigated
in [10, 11]. Settings with secrecy and privacy constraints were addressed in [12–14].
In [15], the authors extended the coded caching scheme to a setting where the users use
a Device-to-Device (D2D) communication scheme to recover their requested files without
the help of the server. Despite the relative young age of coded caching, its literature is
very wide and we here mention only a few among the many relevant works.

Applications of Coded Caching In its most general sense, coded caching is a communi-
cation technique that can be used whenever the requested data can be pre-stored in the
nodes of the communication network. That is why, in addition to being employed for
CDNs, coded caching can be applied to a variety of problems such us the inter-server
communication bottleneck of distributed computing [16], data rebalancing in distributed
databases [17], distributed data shuffling [18], medical data sharing [19], and so on. A
practical application of coded caching can be found in the products of the company
Cadami [20], which has developed coded-caching-based software for media content distri-
bution.

In what follows we will briefly elaborate more on the multi-server/multi-antenna and
the D2D settings, which are the most relevant for this thesis.

Multi-Antenna/Multi-Server Coded Caching

The multi-server setting differs from the MAN shared-link setting in the way the channel
connects the servers to the users. Here, the library of files is fully present at each of
the N0 servers, which communicate with the users through a linear network that can be
described by a full-rank K ×N0 matrix1 H. The work in [7] showed that the normalized
delivery time to serve all the users is no larger than

T ∗MS =
K(1− γ)

Kγ +N0
, γ ∈

{
0,

1

K
,

2

K
, . . . , 1

}
, (1.8)

which corresponds to a DoF of DoF = Kγ + N0, achieved with a subpacketization
requirement of SMS =

(
K
Kγ

)
·
(
K−Kγ−1
N0−1

)
. The scheme achieving this performance was

proved in [21] to be optimal within a gap of 2 among all one-shot linear schemes; gap that
was later tightened in [22] that showed the exact optimality under the aforementioned
assumptions. The above DoF reveals that the multiplexing gain N0 from having multiple

1In the DoF regime, the cache-aided MISO BC in [8] is isomorphic to the multi-server setting.

6

Chapter 1. Introduction to Coded Caching

servers (multiple antennas) can be additively combined with the coded caching gain
Kγ [21].

D2D Coded Caching

Another relevant setting for this thesis is the cache-aided D2D setting, where the use of
coded caching was introduced for the first time in [15]. There, the authors considered a
cache placement phase that is not different than the one of the cache-aided shared-link
setting, while the delivery phase differs in the way the users are served. In fact, the
cache-aided users in the network recover their requested files by exchanging messages in
a D2D fashion, without any central server/transmitter assisting them. It is evident that
in order to satisfy any possible user request, the cache placement scheme has to force all
the bits of the library to be cached at the users’ storage units. The work in [15] proposed
a D2D-version of the MAN coded caching scheme which achieves the optimal worst-case
delivery time

T ∗D2D =
K(1− γ)

Kγ
, γ ∈

{
1

K
,

2

K
, . . . , 1

}
, (1.9)

with a subpacketization requirement of SD2D = Kγ
(
K
Kγ

)
. As we will discuss at the end

of this thesis, the D2D coded caching scheme in [15] finds application in distributed
computing where its use allows for the reduction of the inter-server communication load
in a class of computational problems that fall under the MapReduce framework [16,23].

7

Chapter 1. Introduction to Coded Caching

8

Chapter 2

Motivations and Main Contributions

Having presented a general introduction to the topic of coded caching, we start this
chapter by motivating shared-cache networks. These networks will be the main object of
study of this thesis. Then, after providing a brief description of some related state of the
art, in the second part of this chapter we will provide a succinct description of the main
contributions of the thesis.

2.1 The Emergence of Shared-Cache Networks

In what follows, we will discuss how the shared-cache networks studied in this thesis arise
from three seemingly different problems; the problem associated to cache-aided wireless
heterogeneous networks, to multiple file demands and crucially the problem of file-size
constraints. We elaborate below.

Cache-Aided Heterogeneous Wireless Networks

Traditionally the use of caching in CDNs has been mostly limited to the core of the
networks. However, recent developments in base station design as well as the substantial
reduction in the cost of storage units, has allowed for a much more dense deployment
of caches which can now take place at the level of the radio access network. These
developments, together with the tremendous increase of wireless devices and data traffic,
are driving an evolution away from the classical cellular networks that we now know, into
the much more complex variant of wireless heterogeneous networks where different types
of transmitters and cells coexist. A typical heterogeneous network scenario that is of
interest here, involves the case where in the coverage area of a large macro base station
(MBS), one can also find a set of small base stations (SBS) that are placed closer to the
users whom — due to their proximity — they serve at higher data rates. As argued
in [24] and references therein, caching at these type of networks can significantly help
ISPs better operate their networks. Indeed, in our setting, these SBSs will serve the
role of helper caches that store data which can be then forwarded, during peak hours,
to some users at a cost that is negligible compared to the cost of sending this same
information directly from the main MBS. These SBS will serve as helper caches that

9

Chapter 2. Motivations and Main Contributions

Figure 2.1 – A cache-aided heterogeneous wireless network.

are shared among various users. The transition to the coded caching setting is simple:
the link between the MBS and the users corresponds to the main bottleneck link of the
classical broadcast channel, and then the cache content of each user will reside in the
memory of the associated SBS, i.e., will reside in the user’s associated helper cache. The
difference with the traditional coded caching scenario is simply that one such helper
cache is associated to many users and thus these users, by necessity, share the same cache
content. The connection between the heterogeneous network and the classical coded
caching setting is completed after we assume that the cost of a user accessing its cache, is
zero. This last assumption is motivated by the aforementioned fact that the SBS-to-user
rate is expected to dwarf the corresponding rate between the MBS and the users.

Our effort will be to establish the fundamental limits of this heterogeneous cache-aided
scenario. The aforementioned association between coded caching and heterogeneous
networks, brings to the fore salient features that deviate from the traditional treatment
of coded caching problems. One of the most challenging aspects that appears is the
treatment of the heterogeneity, and in particular the uneveness in the cache occupancy
number. While existing works considered a uniform setting where each cache serves the
same number of users, we must in this heterogeneous setting consider networks where
each cache serves an arbitrary number of users (cf. Figure 2.1). An additional related
salient feature that emerges in wireless scenarios, is the need for caching schemes that
are agnostic to the topology (agnostic for example of cache occupancy number). While
traditional coded caching treatments assume a cache placement phase that is fully aware

10

Chapter 2. Motivations and Main Contributions

of which user will be assigned which cache, it is very natural that in a realistic wireless
network scenario, this knowledge may not exist. At the same time, in some other scenarios
this knowledge of the network topology may be available. If not exact, in some cases
it is reasonable to assume that, at the time of caching, we can have an estimate of the
number of users that will be served by each cache. Therefore, studying such shared-cache
networks where the cache occupancy numbers are known in the placement phase is also
a very pertinent problem. Another important salient feature stems from the fact that
in the wireless access setting, each user may be located in the coverage area of multiple
SBSs, i.e., may have access to multiple caches. Finally but crucially, no treatment of a
wireless scenario would be complete without considering that almost surely the main
transmitter (the MBS) will have access to multiple transmit antennas. Treating all these
salient features

• heterogeneous topology,

• users having access to multiple caches that are shared by different users,

• multiple transmit antennas,

will place interesting challenges in constructing converses as well as schemes; a challenge
that will be addressed by this thesis.

Related Works on Shared-Cache Networks: One of the first studies of these cache-aided
networks is the famous Femtocaching work in [25], where wireless receivers are assisted
by helper nodes of a limited cache size, whose main role is to bring content closer to the
users in order to alleviate the backhaul load from the main MBS. While [25] did not
consider the use of coded caching, a transition to the latter can be found in [26] which
considered a similar shared-cache network as the one in this thesis. Under the assumption
that each cache serves an equal number of users, [26] proposed a coded caching scheme
which was shown to perform to within a certain constant factor from the optimal. This
uniform setting is addressed also in [6]. Another interesting work can also be found
in [27] which explores the shared-link coded caching scenario with shared caches, where
the uniformity condition is lifted, and where emphasis is placed on designing schemes
with coded cache placement where the total cache size across the users is smaller than
the library size. After our first results on shared-cache networks were published, other
works studied similar shared-cache settings; we will briefly mention them throughout the
thesis. Finally, please note that this does not capture the extent of the work that has
been done in this area, and that more works are highlighted later in the text.

Coded Caching with Multiple File Requests

Assuming an error-free shared-link channel connecting the server to the users, the shared-
cache setting studied in this thesis is isomorphic to a dedicated-cache setting where each
receiving node equipped with its own dedicated cache, requests an arbitrary number of
files. In practical scenarios, each such cache-aided users placing an arbitrary number of
demands may represent a cache serving an arbitrary number of users at the edge of a

11

Chapter 2. Motivations and Main Contributions

CDN. In such case, the network connecting the main server with the caches at the edge
of the CDN would suffer from a bottleneck link and would then be modeled here as a
error-free shared-link. Similarly, in a radio access network, a cache-aided SBS serving an
arbitrary number of mobile users could forward their requests to the main server hosting
the library and then, it would act as a cache-aided user with multiple file requests. In
this context, under the assumption that all the users request the same number of files,
interesting results have been obtained in the works in [28–30]. As we will discuss later on,
the multiple file requests problem is relevant also in its D2D form which again relates to
the heterogeneous coded distributed computing problem that we will discuss in Chapter
8.

Shared Caches as a Solution to the Subpacketization Bottleneck of Coded Caching

The study of the shared-cache setting is important not only because it captures the
essence of some of the realistic scenarios mentioned above, but also because it nicely
reflects the effect of subpacketization (file size) constraints [31] that typically force cache-
aided receivers to have identically-filled caches. Unfortunately, the subpacketization
requirement (see Definition 1) of coded caching algorithms is generally exponential in the
number of users in the system, and thus requires unrealistically large file sizes to yield
any meaningful coded caching gains. This is in our opinion one of the main bottlenecks
of coded caching, and its severity is such that for any realistic file sizes, number of
users and per-user cache size, the best known coding gain is a small modest single digit
number, generally less than 6. At the same time, a high subpacketization requirement
automatically implies a high implementation complexity and overhead [2]. That is why,
in all practical scenarios, one might be forced to design a coded caching algorithm that
requires that the subpacketization does not exceed a given threshold. This relates directly
to the shared-cache scenario. In the single-stream setting, this connection was made
in [31] which suggested the repetition of cache states (i.e., grouping users and asking the
users in a group to store the same cache content) as a means of reducing subpacketization.
This naturally though comes with a much reduced performance, compared to the case
of unbounded file sizes. This scenario again brings to the fore the asymmetries and
heterogeneities that we alluded to before. For example, in [32], Jin at al. proposed a
framework where the server designs a set of Λ different cache contents according to MAN
placement algorithm and where, in the cache placement phase, each user picks at random
any one of such Λ caches. It is intuitive to see that, because of this decentralized cache
placement, the delivery phase turns out to be isomorphic to the shared-cache setting
with heterogeneously populated caches. However, the information theoretic limits of
this approaches, where the number of allowed cache states is considerably smaller than
the number of users, were not investigated before, and are object of study of this thesis
where they are presented from the point of view of shared-cache networks. While for
the cache-aided shared-link setting we will show the inevitable loss in performance of
the grouping approach, a different conclusion can be drawn for the setting where the
transmitter is equipped with multiple antennas. In fact, we will extend the result of
Lampiris et al. that showed that, in the multiserver setting, by partitioning the set of

12

Chapter 2. Motivations and Main Contributions

users in groups containing as many users as antennas (N0) at the central server, the
optimal one-shot linear DoF Kγ+N0 can still be achieved, this time with an exponentially
reduced subpacketization [33]. In this work we will extend this result and show the full
interplay between the number of antennas N0 and the number of different caches Λ.

2.1.1 Storage Allocation in Cache-Aided Networks

As expected, and as we will see later on, a determining aspect to take into account when
designing schemes for a scenario with heterogeneously populated caches is the ability
to properly allocate storage capacity (amount of memory) at the caches as a function
of their occupancy number. A SBS serving an office building is statistically more likely
to serve many more users/demands than a SBS serving a sparser residential area. This
heterogeneity motivates the allocation of more memory to more crowded SBSs in order
to reduce the total amount of data requested to the MBS. The ability to allocate the
memory as a function of the occupancy number of each cache is essential to achieve
the fundamental limits of these cache-aided networks, which could not be achieved by
a uniform memory allocation despite the knowledge of the occupancy number of all
the caches during the cache placement phase. While one could argue that predicting
during the placement phase the exact number of users that will be served by a SBS in
the delivery phase can be infeasible, we will also show that a mere long-term statistical
knowledge of the occupancy numbers of all the caches can still be extremely beneficial.

Related works on storage allocation: The problem of memory allocation has been
investigated in the context of back-haul limited cache-aided small-cell networks [34,35]
where, however, coded multicasting was not considered. For a cache-enabled heterogeneous
small-cell network, the work in [36] aims to minimize the average back-haul load subject
to an overall cache capacity. However, none of the above works provides information-
theoretic guarantees on the achievable performance. In contrast, we will address the
memory allocation problem in a simple heterogeneous shared-cache network for which we
will provide information-theoretic optimality results. The memory allocation problem
was also addressed in the cache-aided degraded broadcast channel in [37] for which a
memory allocation analogous to our had been proposed. A similar setting to the one
in [37] can also be found in [38].

2.2 Heterogeneities in Cache-Aided Settings

Many of the problems addressed in this thesis include some heterogeneous elements. In
shared-cache networks we will consider the case where each cache serves (is associated
to) an arbitrary number of users, while when we address distributed computing, we will
assume that each computing node has a different computational power which can lead
to heterogeneous computations loads and\or unequal number of output functions to be
computed by the nodes. Similarly we will study the coded caching problem where each
user has a different QoS requirement. The study of such asymmetries is necessitated by
the nature of communication networks, which is indeed stochastic. Any given snapshot

13

Chapter 2. Motivations and Main Contributions

of a communication network reveals a variety of heterogeneities: non uniform topologies,
heterogeneous resources at the user terminals, heterogeneous QoS requirements, and
so on. That is why in order to understand the overall behaviour of such networks it is
important to develop and analyse algorithms that can handle such heterogeneous settings.
In the specific topic of cache-aided communications, such heterogeneities pose challenges
in terms of the achievable schemes, which normally require complicated combinatorial
designs that rely on the symmetry of the problems. These hurdles are further exacerbated
when designing converse bounds, where complicated symmetrization techniques are often
the key for retrieving insightful non-trivial bounds. That is why many heterogeneous
coded caching problems, such us coded caching with arbitrary popularity distribution [11],
coded caching with heterogeneous cache sizes [39] and coded caching with heterogeneous
file sizes [40], are still largely unsolved. In this thesis we will characterize, under some
reasonable assumptions, the memory-delay trade-off of some heterogeneous coded caching
problems, hoping that some of our techniques and approaches could inspire the solution
of other unsolved non-symmetric cache-aided problems.

2.3 Thesis Outline and Summary of the Main Contributions

This thesis seeks to study four different settings, for which the main results will be
presented throughout the next chapters. In particular, the first setting studied in this
thesis is the shared-link shared-cache network, which was motivated in the previous
section, and which will be studied in Chapters 3,4,5. Next, we will consider the cache-
aided MISO broadcast channel where the role of shared caches (and\or user grouping)
is analysed in Chapter 3 and in Chapter 6. In Chapter 7 we will address the pertinent
problem of coded caching with heterogeneous Quality-of-Service (QoS) requirements.
After that, we will study the problem of heterogeneous coded distributed computing
in Chapter 8, where we will apply the insights coming from the study of shared-cache
networks. Finally, we will conclude this thesis in Chapter 9, where we will discuss the
main conclusions that emerge from this work. The following provides a summarized
presentation and discussion of the main results of the thesis.

2.3.1 Shared-Cache Networks

The first type of networks that we will study in this thesis is the one of a cache-aided
network where each cache serves an arbitrary number of users. In particular, similarly to
the cache-aided shared-link setting discussed in Section 1.2.1, a shared-link shared-cache
network consists of a server with a library of N files that serves K users through an
error-free shared link that can serve 1 file per unit of time. Each user is assisted at zero
cost by one of the Λ (Λ ≤ K) caches in the system such that — during the delivery
phase — each cache λ = 1, 2, . . . ,Λ serves an arbitrary set of users Uλ. We will denote
by Lλ the number of users associated to the λ-th most populated cache, and we will
refer to the vector L = (L1, L2, . . . , LΛ) as the cache occupancy vector. Notice that in
general we have that Lλ 6= |Uλ|. We also assume that the cumulative size of the Λ caches
is t times the size of the library. This setting can be separated into two major different

14

Chapter 2. Motivations and Main Contributions

scenarios: the first is the topology-agnostic scenario where, during the cache placement
phase, it is not known the number of users associated to each cache, and the second
is the topology-aware scenario where, on the contrary, the caching phase is aware of
the exact number of users assisted by each cache. Furthermore, within the context of
shared-cache networks, we will seek to study the shared-cache setting where each user
has access to more than one cache. Within the framework of coded caching, we will refer
to this problem as the multi-access coded caching problem. For this setting, we will focus
on the symmetric scenario with K users and Λ = K caches, where each user has access
to z different helper caches. We now proceed to present our main contributions for these
aforementioned settings.

Topology-Agnostic Coded Caching with Shared Caches: In this scenario, we assume
that, during the cache placement phase, the exact number of users |Uλ| associated to
cache λ is not available while, instead, the cache occupancy vector L is known. Under
the assumption of uncoded cache placement, the optimal worst-case (among all possible
users’ requests) normalized delivery time takes the form

T ∗(t,L) =

∑Λ−t
r=1 Lr

(
Λ−r
t

)(
Λ
t

) . (2.1)

We will see how this optimal performance is achieved with a uniform memory allocation,
i.e each cache is of size γ = t

Λ . This result allows us to conclude that, if the number of
users associated to each cache is not known during the cache placement phase, any other
non-uniform memory allocation cannot be helpful. What we will also see is that the NDT
in (2.1) corresponds to a sum DoF smaller than t+ 1, which is achievable only if users are
distributed uniformly among the caches, i.e. when Lλ = K

Λ , ∀λ ∈ [Λ]. The above result
in (2.1) will be derived in Chapter 3 where we will present the achievable scheme and
the corresponding matching converse. The latter is based on the index coding technique
used in [4] which proved the optimality of the MAN normalized delivery time previously
stated in equation (1.1). However, our heterogeneous setting required an interesting twist
of the original converse technique that nicely allowed to push the lower bound up to the
exact optimal performance. This result — which extends to the scenario where the server
is equipped with a number of antennas N0 no larger than the smallest number of users
in a cache (i.e. N0 ≤ LΛ) — can also be found in the following publications:

[41]E. Parrinello, A. Ünsal, and P. Elia, “Optimal coded caching in heterogeneous
networks with uncoded prefetching,” in IEEE Information Theory Workshop, (ITW),
2018.

[42]E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of coded caching with
multiple antennas, shared caches and uncoded prefetching,” in IEEE Transactions
on Information Theory, vol. 66, no. 4, pp. 2252–2268, 2020.

Topology-Aware Coded Caching with Shared Caches: In the considered topology-aware
scenario, the exact number of users |Uλ| associated to each cache λ is known during the

15

Chapter 2. Motivations and Main Contributions

cache placement phase. Without loss of generality, we here assume that cache λ is the
most populated cache1, i.e. Lλ = |Uλ|, ∀λ ∈ [Λ]. This knowledge of the network topology
opens up the opportunity for an optimized memory allocation as a function of L. For
each λ ∈ [Λ], we will allocate to cache λ a (normalized) cache size

γλ ,
Lλ ·

∑
q∈C[Λ]\{λ}

t−1

∏t−1
j=1 Lq(j)∑

q∈C[Λ]
t

∏t
j=1 Lq(j)

, t ∈ {0, 1, . . . ,Λ}, (2.2)

where we have used the notation CTk , {τ : τ ⊆ T , |τ | = k}. For a total cache-size budget
t, we will show that all users can be served within a NDT that is no larger than

T (t,L) =

∑Λ
λ=1 Lλ(1− γλ)

t+ 1
, (2.3)

where {γλ}Λλ=1 (defined above) adheres to the global cache size constraint
∑Λ

λ=1 γλ = t.
Equation (2.3) directly tells us that since Lλ is the number of files requested by the
users connected to cache λ, and since the quantity (1− γλ) corresponds to the amount
of data that each user connected to cache λ has to receive, then the denominator t+ 1
corresponds to the sum DoF of the network and reflects the number of users that can
be served simultaneously. Interestingly, the memory allocation allows to achieve the
sum DoF of t+ 1 regardless of cache occupancy vector L. This nicely deviates from the
topology-agnostic scenario where this maximal DoF is achievable only when users are
uniformly distributed among the caches. Furthermore, in this thesis we will show that this
achievable NDT is information theoretic optimal under the assumption of uncoded and
homogeneous cache placement. Here, the expression homogeneous cache placement refers
to those placement schemes where all the bits of the library are cached the same number
of times across the caches. The achievable scheme highlights the importance of memory
allocation in heterogeneous settings, and the converse provides combinatorial tools that
we believe can be used to develop bounds for other heterogeneous cache-aided settings.
These results will be presented in Chapter 4 where we will also discuss the scenario
where during the cache placement phase the available information on the topology (in
particular on the cache occupancy vector) is erroneous or imperfect. In this context, we
will demonstrate the benefits of memory allocation that exploits only the average cache
occupancy, and how even such partial knowledge far outperforms the topology-agnostic
treatment. Part of our work on topology-aware shared-cache networks resulted in the
following publication

[43]E. Parrinello and P. Elia, “Coded caching with optimized shared-cache sizes,”
in 2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1–5,

and all these results will be soon submitted to the following publication:

1Because of the assumption that Lλ = |Uλ|, in this topology-aware scenario, saying that the exact
number of users |Uλ| associated to each cache λ is known during the cache placement phase is equivalent
to saying that the cache occupancy vector L is known during such phase.

16

Chapter 2. Motivations and Main Contributions

[44] E. Parrinello, A. Bazco-Nogueras and P. Elia, “Fundamental limits of topology-
aware shared-cache networks,” to be submitted to IEEE Transactions on Information
Theory, 2021.

Multi-Access Coded Caching: Chapter 5 addresses the multi-access coded caching
problem where each of the K users in the system are connected to z consecutive caches.
We assume that there are in total Λ = K caches, each with a normalized memory size
γ = t

K , and that the topology of the network follows a cyclic-shift pattern (see Figure
5.1), where for example user K is connected to caches {K, 1, 2, . . . , z−1}. For this setting
the work in [26] showed that the following worst-case NDT

T (t, z) =
K(1− zγ)

t+ 1
(2.4)

is achievable, thus showing an increased local caching gain of (1− zγ) compared to the
MAN setting where each user has access to only one cache (z = 1). What the above
though was not able to show was an increase in the global caching gain, which remained
at t+ 1 = Λγ + 1 = Kγ + 1. In our work we will show that for the special case where
z = K−1

t the NDT

T

(
t,
K − 1

t

)
=
K − zt
zt+ 1

=
1

K
(2.5)

is achievable, and it is optimal under the assumption of uncoded cache placement. This
shows an ability of the scheme to serve zt + 1 users at the same time as if there were
zK caches in the system and each user had exclusive access to z of them. Furthermore,
when t = 2 we show that a global caching gain greater than t+ 1 = 3 is achievable while
maintaining the full local caching gain (1− zγ). In other words, for any z ∈ [K − 1] and
t = 2 our achievable NDT satisfies

K − 2z

4
< T (2, z) ≤ K − 2z

3
. (2.6)

These results were published in the following publication:

[45] B. Serbetci, E. Parrinello, and P. Elia, “Multi-access coded caching: gains
beyond cache-redundancy,” in 2019 IEEE Information Theory Workshop (ITW),
2019, pp.1–5.

2.3.2 Cache-Aided MISO Broadcast Channel

The second setting of interest that we consider in this thesis assumes that the central
transmitter (server) is equipped with N0 antennas and the channel between the transmitter
and the users is modeled as a Gaussian MISO flat-fading channel. Similarly as before,
we assume that each user is assisted at zero cost by one of the Λ caches in the networks
so that each cache λ serves |Uλ| = Lλ users and that the total normalized cache size is t.

17

Chapter 2. Motivations and Main Contributions

In Chapter 3 we will prove that, in the topology-agnostic scenario, the worst-case NDT2

T ∗(t,L, N0) =

∑Λ−t
r=1 Lr

(
Λ−r
t

)
N0

(
Λ
t

) , (2.7)

is achievable and optimal under the assumption of uncoded cache placement as long
as the number of antennas N0 is no larger than the number of users in each cache, i.e.
N0 ≤ LΛ. This result shows the impact of the heterogeneity of the cache occupancy
vector L — as already discussed for the single-antenna case — and it shows the regime
where the gain from the multiple antennas N0 is multiplicative. Furthermore, for the
setting where each cache of size γ = t

Λ serves exactly K
Λ users, corresponding to the cache

occupancy vector Lunif = (KΛ , . . . ,
K
Λ), our work shows that the NDT

T ∗(t,Lunif , N0) =

K −Kγ

N0(Λγ + 1)
Λ < K

N0
, (2.8a)

K −Kγ
N0(KN0

γ + 1)
=

K −Kγ
Kγ +N0

Λ ≥ K
N0

, (2.8b)

is achievable3 and optimal under some basic assumptions (see Chapter 3). It is interesting
to observe that in the regime where N0 ≤ K

Λ , every time that we add one extra antenna at
the transmitter we increase the DoF by an additive factor of Λγ + 1. On the other hand,
in a system where the transmitter has more than K

Λ antennas, adding one extra antenna
provides us with a DoF increase of only one additional unit. A complete presentation and
discussion of the above contributions can be found in Chapter 3. Part of these results
have been published in the previously mentioned journal publication in [42] and part in
the following conference publication

[46] E. Parrinello, P. Elia, and E. Lampiris, “Extending the optimality range
of multi-antenna coded caching with shared caches,” in 2020 IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 1675–1680.

The above results can also be interpreted in the corresponding dedicated-cache setting
where each user has its own physical cache, and where Λ represents the number of
groups such that the users in the same group store the same content in their caches.
In this scenario, the aforementioned result not only tell us the optimal NDT but very
importantly it tells us that forcing a number of groups Λ smaller than K

N0
does not allow

to achieve the optimal linear one-shot DoF Kγ +N0 of the network. Selecting Λ = K
N0

and placing N0 users in each group we retrieve the result of Lampiris et al. in [33], which

showed that the DoF of Kγ + N0 can be achieved with a subpacketization of
(K/N0
Kγ/N0

)
,

thus exponentially reducing the subpacketization required by the multi-server scheme
discussed in Section 1.2.2. However, the scheme in [33] requires that N0 ≤ Kγ, which
might not be the case in some practical scenarios where the number of antennas employed
at the transmitter is very high. For the opposite regime where N0 ≥ Kγ we will show

2The expression in (2.7) is valid in the DoF regime.
3The achievability in (2.8b) holds for N0 being an integer multiple of K

Λ
.

18

Chapter 2. Motivations and Main Contributions

that the optimal linear one-shot DoF Kγ +N0 of the network can be achieved with a
subpacketization as low as

S =
K(Kγ +N0)

(gcd(K,Kγ,N0))2
, (2.9)

where gcd(·) is the operator that computes the greatest common divisor. In equation
(2.9), the term gcd(K,Kγ,N0) represents the number of users that will store the same
content in their caches. Therefore, in the delivery phase, this dedicated-cache setting
can be seen as a shared-cache setting with Λ = K

gcd(K,Kγ,N0) caches and gcd(K,Kγ,N0)

users per cache. We will refer to the scheme achieving the sum DoF of Kγ + N0 (for
N0 ≥ Kγ) with the subpacketization requirement in (2.9) as the cyclic caching scheme,
where the term ”cyclic” is chosen to reflect the structure of the aforementioned scheme.

Finite SNR regime: In addition to considering the DoF regime, we analyse the per-
formance of the cyclic caching scheme in the finite signal-to-noise ratio (SNR) regime
where we will consider MMSE-type optimized beamformers. In this regime, in line with
other works on multi-antenna coded caching [47,48], we will sacrifice some multiplexing
gain α ≤ N0 in order to have higher beamforming gains that compensate the well-known
effects of the worst-user channel condition. At the same time, the multiplexing gain α
can be also tuned to further reduce the subpacketization requirement of the scheme at
the cost of a reduced sum DoF. Furthermore, while the optimized beamformer design
problems tend to be non-convex in general and require computational complex iterative
methods which can make the implementation infeasible even for a modest size of the
network, we will see that the special unicasting nature of our transmissions makes the
optimization problem quasi-convex, and hence, allows us to use uplink-downlink duality
to attain a simple iterative solution. The low complexity of the beamforming design
along with the low subpacketization result in a high-performance method that can be
employed even when the number of users in the system is very large. This cyclic caching
scheme is fully described and analysed in Chapter 6, and have been submitted for the
following publication:

[49] M.J. Salehi, E. Parrinello, S.P. Shariatpanahi, P. Elia, A. Tölli, ”Low-
Complexity High-Performance Cyclic Caching for Large MISO Systems” under
revision for publication to Transactions on Wireless Communications, 2021. The
paper is available online at ”https://arxiv.org/abs/2009.12231”.

2.3.3 Coded Caching with Heterogeneous Quality-of-Service Requirements

In many scenarios users download the requested content at different quality levels,
depending on the type of device, type of subscription (e.g. base or premium), channel
conditions and so on. That is why studying a caching model that captures the users’
heterogeneity in terms of their required QoS is an important and pertinent problem. For
the standard K−user shared-link MAN setting [2] discussed in Section 1.2.1, we now
use a layered coding approach to encoded each file into H layers. While the first layer
provides the video stream of base quality, the other subsequent layers can successively

19

Chapter 2. Motivations and Main Contributions

refine this quality. When a user requests a file at QoS level h ∈ [H], then this means
that this user must be successfully delivered the first h layers (out of H) of the requested
file. The number of users requesting QoS h ∈ [H] is denoted by Kh and we refer to
K = (K1,K2, . . . ,KH) as the QoS profile. Moreover, assuming as always that each file
has a normalized size of one unit, we will use rh to denote the size of the first h layers of
a file, which naturally yields that rH = 1. For this setting, assuming that the vector K is
known during caching, we propose a general placement and delivery scheme that achieves

T (t,K) =

H∑
h=1

K∑
g=0

∑P(g,h)
r=1

(
K−r
g

)(
K
g

)
N

xg,h (2.10)

where Pg,h = min
{
K − g,K −∑h−1

j=1 Kj

}
and {xg,h} satisfies

K∑
g=0

xg,h = (rh − rh− 1)N, h ∈ [H] (2.11)

K∑
g=0

g ·
(H∑
h=1

xg,h

)
≤ tN, (2.12)

xg,h ≥ 0, h ∈ [H] g ∈ [K]0. (2.13)

We will prove that by minimizing (2.10) with respect to {xg,h} and subject to the
constraints in equations (2.11),(2.12), (2.13), we obtain the information theoretic optimal
normalized delivery time under the assumptions that the cache placement is uncoded and
aware of the QoS profile K. An intriguing fact of this result is the ability of the developed
tight converse bound to provide useful information on how to design the optimal caching
scheme. A sub-optimal choice of {xg,h} which does not require knowledge of K during
caching is also presented in our work. These results are fully described in Chapter 7 and
resulted in the following publication

[50] E. Parrinello, A. Ünsal, and P. Elia, “Optimal coded caching under statistical
QoS information,” in 2019 IEEE International Symposium on Information Theory
(ISIT),2019, pp. 2987–2991.

2.3.4 Heterogeneous Coded Distributed Computing

In the context of distributed computing, one of the most well-known frameworks is the
so-called MapReduce model which decomposes the computation in three distinct phases:
the map phase, the shuffle phase and the reduce phase. As argued in [16] and references
therein, the shuffle phase — which consists of an exchange of messages between the
computing nodes — constitutes the major bottleneck that does not allow distributed
computing to scale with the number of nodes. The work in [16] proposed a new variant
of the MapReduce framework, called Coded MapReduce, which employs coded caching
in the shuffling phase in order to reduce the inter-node communication load. For a
MapReduce-type distributed computing system with Λ nodes that have to work on a

20

Chapter 2. Motivations and Main Contributions

dataset of N files to obtain K output functions4, Li et al. [16] showed that the optimal
communication load, i.e. the minimum number of bits communicated by the nodes
normalized by the total number of bits required by all the nodes, is given by

τ∗CMR(γ,Λ) =
1

Λ

Λ(1− γ)

Λγ
, (2.14)

where γ is the fraction of the dataset that is stored by each computing node before
the beginning of the map phase. The shuffling scheme that achieves this optimal load
employs the same technique developed in [15] for the D2D cache-aided shared-link network.
Motivated by the fact that it is common to have computing nodes with different storage
and processing capabilities (as is commonly the case with Amazon EC2 clusters), in
Chapter 8 we address the problem of heterogeneous distributed computing. We will
assume that each computing node λ has computational power characterized by the
constant cλ (0 ≤ cλ ≤ 1) and we denote by Lλ the number of output functions that are
assigned to it. We will see that, for each computing node λ, an intuitive yet powerful
approach is to select the value Lλ to be proportional to the computational power cλ
of the node, so that the time that the system spends in the reduce phase is lessened
compared to when using a uniform assignment of the output functions among the nodes.
With the vector L = (L1, L2, . . . , LΛ) at hand, assuming that we have the freedom to
replicate the dataset t (referred to as the total computation load) times across the nodes,
we will show that an achievable communication load is

τ(t,L) =

∑Λ
λ=1 Lλ(1− γλ)

Kt
, t ∈ [Λ], (2.15)

where γλ has been defined in (2.2) and represents the fraction of the dataset that has to
be stored in node λ. We will then prove that, for a fixed L and a fixed total computation
load t, the above communication load is within a multiplicative gap of 2 from optimal
under the assumptions of one-shot shuffling and homogeneous file assignment. A shuffling
scheme is said ”one-shot” if any node can recover each of its required data (intermediate
values) from the intermediate values computed in the map phase and from at most one
transmitted message by some other node. Furthermore, we say that a file assignment is
homogeneous when all the files of the dataset are replicated among the nodes the same
number of times. The achievable scheme and the technique used for the converse bound
draw from those derived for the topology-aware shared-cache setting in Chapter 4, thus
also showing the versatility of our developed techniques in this thesis. It is interesting to
see that the allocation {γλ}Λλ=1 — where γλ was defined in equation (2.2) — of the total
computation load t across the nodes as a function of L, is crucial in allowing a shuffle
phase that serves t computing nodes at a time. Furthermore, under the aforementioned
assumption of homogeneous file assignment, we will prove that the expression in (2.15)
serves as a lower bound for the optimal communication load of the heterogeneous coded
distributed computing problem with fixed arbitrary output functions assignment L and

4The choice of using the symbol K for the total number of output functions is motivated by the fact
that, as it will be clear in the corresponding chapter, the value of K is reminescent of the total number of
requested files in a shared-cache setting with Λ caches.

21

Chapter 2. Motivations and Main Contributions

fixed arbitrary per-node computation loads {γλ}Λλ=1 (γλ ∈ R and 0 ≤ γλ ≤ 1), satisfying∑Λ
λ=1 γλ = t. In conclusion, the proposed shuffle scheme exploits the heterogeneity of the

output functions assignment L by properly allocating the total computation load t across
the computing nodes, thus allowing for a reduced communication load compared to the
standard coded MapReduce communication load in (2.14). These results are presented
in Chapter 8 and will be also part of the following publication:

[51] E. Parrinello and P. Elia, “New optimality results for heterogeneous coded
distributed computing,” manuscript in preparation, 2021.

22

Chapter 3

Topology-Agnostic Shared-Cache
Networks

In this chapter we explore the fundamental limits of coded caching in the setting where a
transmitter with potentially multiple (N0) antennas serves different users that are assisted
by a smaller number of caches. Under the assumption of uncoded cache placement and
that the topology of the network is not known during this cache placement phase, we
derive the exact optimal worst-case normalized delivery time and DoF, for a broad range
of cache occupancy vectors where each such occupancy vector describes how many users
are helped by each cache. This is achieved by presenting an information-theoretic converse
based on index coding that succinctly captures the impact of the cache occupancy vector,
as well as by presenting a coded caching scheme that optimally adapts to the heterogeneity
of the topology by exploiting the benefits of encoding across users that share the same
cache.

3.1 System Model and Problem Formulation

We consider a shared-link configuration with a transmitting server having N0 transmitting
antennas and access to a library of N files W (1),W (2), . . . ,W (N), each of size equal to one
unit of ‘file’, where this transmitter is connected to K receiving users and to Λ ≤ K helper
nodes that will serve as caches which store content from the library. The communication
process is split into the cache placement phase, the user-to-cache assignment phase, and
the delivery phase.

Cache placement phase During this phase, helper nodes (caches) store content from
the library without having knowledge of the users’ requests. Each helper cache has size
M ≤ N (γ , M

N) units of file, and no coding is applied to the content stored at the
helper caches; this corresponds to the common case of uncoded cache placement. We will
denote by Zλ the content stored by helper node λ during this phase such that the vector
Z = (Z1,Z2, . . . ,ZΛ) represents the overall cache placement. We assume that the cache
placement algorithm is oblivious of the subsequent user-to-cache association, i.e. during

23

Chapter 3. Topology-Agnostic Shared-Cache Networks

the cache placement phase we have no knowledge of the number of users that will be
assisted by each cache. In other words, during the cache placement phase the topology
of the network is not known yet. This condition will be removed in the next chapter
where we will assume that we can allocate the memory to each cache as a function of the
topology.

User-to-cache association phase After the caches are filled, each user is assigned to
exactly one helper node/cache, from which it can download content at zero cost. Specifi-
cally, each cache λ = 1, 2, . . . ,Λ, is assigned to a set of users Uλ, and all these disjoint
sets

U , {U1,U2, . . . ,UΛ}
form a partition of the set of users {1, 2, . . . ,K}, describing the overall association of the
users to the caches. This cache assignment is independent of the cached content and
independent of the file requests to follow. We here consider any arbitrary user-to-cache
association U , thus allowing the results to reflect both an ability to choose/design the
association, as well as to reflect possible association restrictions due to randomness
or topology. Similarly, having the user-to-cache association being independent of the
requested files, is meant to reflect the fact that such associations may not be able to vary
as quickly as a user changes the requested content.

Delivery phase The delivery phase starts when each user k = 1, . . . ,K requests from the
transmitter, any one file W (dk), dk ∈ {1, . . . , N} out of the N files of the library. Upon
notification of the entire demand vector d = (d1, d2, . . . , dK) ∈ [N]K , the transmitter
aims to deliver the requested files and the objective is to design a caching scheme and a
delivery scheme that do so with limited (delivery phase) duration T , where the delivery
algorithm has full knowledge of the user-to-cache association U . For each transmission,
the received signal at user k takes the form

yk = hTk x+ wk, k = 1, . . . ,K (3.1)

where x ∈ CN0×1 denotes the transmitted vector satisfying a power constraint E(||x||2) ≤
PT , hk ∈ CN0×1 denotes the channel gain of receiver k, and wk represents the additive
white gaussian noise (AWGN) noise with unit power at user k. We will assume that the
maximum allowed average power PT is high (i.e., we will assume high signal-to-noise ratio
(SNR)), that there exists perfect channel state information throughout the active users,
that fading is statistically symmetric, and that each link (one antenna to one receiver)
has ergodic capacity log(SNR) + o(log(SNR)).

Observation 1. We notice that in the high-SNR regime of interest, when N0 = 1 and
Λ = K (where each cache is associated to one user), the setting matches identically
the original single-stream setting in [2]. In particular, the file size and log(SNR) are
here scaled so that, as in [2], each point-to-point link has capacity of 1 file per unit of
time. When N0 > 1 and Λ = K (again each cache is associated to one user), the setting
matches the multi-server setting of [7], which we now explore in the presence of fewer
caches serving potentially different numbers of users.

24

Chapter 3. Topology-Agnostic Shared-Cache Networks

Shared link

Server
User

Shared cache

Z1 Z2 ZΛ

U1(1) U1(2) U2(1)U1(L1) U2(L2) UΛ(1) UΛ(LΛ)

M

Cache-aided
Access Point

User
Multi-antenna

Transmitter

Figure 3.1 – Schematic of the shared-link BC with shared caches (left) and a pictorial representation of
the multi-antenna BC with shared caches (right).

Performance measure As one can imagine, some user-to-cache associations U may allow
for higher performance than others; for instance, considering the fact that U is not known
during the placement phase, one can suspect that a uniform distribution of the users
among the caches may be preferable. Part of the objective of this work is to explore the
effect of such associations on the overall performance. Toward this, for any given U , we
define cache occupancy vector the sorted tuple

L = (L1, . . . , LΛ)

where Lλ is the number of users assigned to the λ-th most populated helper node/cache1.
Naturally,

∑Λ
λ=1 Lλ = K. Each vector L defines a class UL comprising all the user-to-

cache associations U that correspond to the same cache occupancy vector L.
As in [2], the measure of interest T is the number of time slots needed to complete

delivery of any request vector2 d. For a given fixed Z, we use T ∗(U ,d,Z) to define
the optimal normalized delivery time required to satisfy demand d in the presence of
a user-to-cache association described by U . The optimal worst-case delivery time for a
given cache occupancy vector L can be formally stated as

T ∗(L) , min
Z

max
(U ,d)∈(UL,{1,...,N}K)

T ∗(U ,d,Z). (3.2)

Our interest is in the regime of N ≥ K where there are more files than users.

3.2 Main Results

In this section we present the main results for the considered topology-agnostic shared-
cache problem. We first describe the main results for the single-antenna case (shared-link
BC), and then generalize to the multi-antenna case.

1Here L is simply the vector of the cardinalities of Uλ, ∀λ ∈ {1, . . . ,Λ}, sorted in descending order.
For example, L1 = 6 states that the highest number of users served by a single cache, is 6.

2The time scale is normalized such that one time slot corresponds to the optimal amount of time
needed to send a single file from the transmitter to the receiver, had there been no caching and no
interference.

25

Chapter 3. Topology-Agnostic Shared-Cache Networks

3.2.1 Topology-Agnostic Shared-Link Coded Caching with Shared Caches

The following theorem presents the main result for the shared-link case (N0 = 1).

Theorem 1. In the K-user shared-link channel with Λ shared caches of normalized size γ,
the topology-agnostic optimal delivery time for any cache occupancy vector L is

T ∗(L) = Convt∈[Λ]0

(∑Λ−t
r=1 Lr

(
Λ−r
t

)(
Λ
t

))
, (3.3)

where t = Λγ.

Proof. The achievability part of the proof is given in Section 3.3, and the converse is
proved in Section 3.4 after setting N0 = 1.

Remark 1. We note that the converse that supports Theorem 1, encompasses the class of
all caching and delivery schemes that employ uncoded cache placement under a general
sum cache constraint 1

Λ

∑Λ
λ=1 |Zλ| = M which does not necessarily impose an individual

cache size constraint. The converse also encompasses all scenarios that involve a library
of size

∑
n∈[N] |W (n)| = N but where the files may be of different size. In the end, even

though the designed optimal scheme will consider an individual cache size M and equal
file sizes, the converse guarantees that — if the cache occupancy vector L is not known
during caching — there cannot exist a scheme (even in settings with uneven cache sizes
or uneven file sizes) that exceeds the optimal performance identified here .

From Theorem 1, we see that in the uniform case3 where Lunif = (KΛ ,
K
Λ , . . . ,

K
Λ), the

expression in (3.3) reduces to

T ∗(Lunif) =
K(1− γ)

Λγ + 1
,

matching the achievable delay presented in [6] for the shared-cache setting with uniform
L. It also matches the result by [30] which proved that this performance — in the context
of the multiple file request problem — is optimal under the assumption of uncoded cache
placement. The following corollary relates to this uniform case.

Corollary 1. In the uniform case where Lunif = (KΛ ,
K
Λ , . . . ,

K
Λ), the aforementioned

optimal normalized delivery time T ∗(Lunif) is smaller than the corresponding delay T ∗(L)
for any other non-uniform cache occupancy vector L.

Proof. The proof that the uniform cache occupancy vector results in the smallest delay,
follows directly from the fact that in (3.3), both Lr and

(
Λ−r
Λγ

)
are non-increasing with

r.

Remark 2 (Shared-link coded caching with multiple file requests). In the error-free
shared-link case (N0 = 1), with worst-case demand assumptions, i.e., when each user

3Here, this uniform case, naturally implies that Λ|K.

26

Chapter 3. Topology-Agnostic Shared-Cache Networks

requests a different file, the shared-cache problem here is closely related to the coded
caching problem with multiple file requests per user, where now Λ users with their own
cache, request in total K ≥ Λ different files. The demand vector d would now represent
the vector of the indices of the K requested files and for each user λ ∈ [Λ], Uλ would
tell us that user λ requests files {W (dk), k ∈ Uλ}. At this point, as before, the problem is
now defined by the user-to-file association U = {U1,U2, . . . ,UΛ} which describes — given
a fixed demand vector d — the files requested by any user. From this point on, the
equivalence with the original shared cache problem is complete. As before, each such U
again has a corresponding (sorted) cache occupancy vector L = (L1, L2, . . . , LΛ), and
belongs to a class UL with all other associations U that share the same occupancy vector
L. As we quickly show in the Appendix Section A.3, our scheme and converse can be
adapted to the multiple file request problem, and thus directly from Theorem 1 we conclude
that for this multiple file request problem, the optimal delay corresponding to any cache

occupancy vector L, takes the form T ∗(L) = ConvΛγ∈[Λ]0

(∑Λ−Λγ
r=1 Lr(Λ−r

Λγ)
(Λ

Λγ)

)
. At this point

we close the parenthesis regarding multiple file requests, and we refocus exclusively on the
problem of shared caches.

3.2.2 Topology-Agnostic Multi-Antenna Coded Caching with Shared Caches

The following theorem extends Theorem 1 to the case where the transmitter is equipped
with multiple (N0 > 1) antennas.

Theorem 2. In the N0-antenna K-user broadcast channel with Λ shared caches of nor-
malized size γ, the optimal delivery time for any cache occupancy vector L satisfying
Lλ ≥ N0, ∀λ ∈ [Λ] is

T ∗(L, N0) =
1

N0
Convt∈[Λ]0

(∑Λ−t
r=1 Lr

(
Λ−r
t

)(
Λ
t

))
, (3.4)

where t = Λγ. This reveals a multiplicative gain of N0 with respect to the single antenna
case.

Proof. The scheme that achieves (3.4) is presented in Section 3.3, and the converse is
presented in Section 3.4.

Theorem 3. In the uniform case of Lunif =
(
K
Λ ,

K
Λ , . . . ,

K
Λ

)
, the following normalized

delivery time is achievable

T ∗(Lunif , N0) =

K −Kγ

N0(Λγ + 1)
Λ < K

N0
, (3.5a)

K −Kγ
N0(KN0

γ + 1)
=

K −Kγ
Kγ +N0

Λ ≥ K
N0

. (3.5b)

The performance for the regime Λ < K
N0

is optimal under the assumption of uncoded cache

placement, while for the opposite regime where Λ ≥ K
N0

optimality is proven among the
linear one-shot schemes. Furthermore, the achievability of (3.5b) requires that N0 is an
integer multiple of K

Λ .

27

Chapter 3. Topology-Agnostic Shared-Cache Networks

Dedicated Caches

Single Antenna Multiple Antennas

Achievable
delay

K(1−γ)
Kγ+1 [2] K(1−γ)

Kγ+N0
[7]

Optimality

gap of 2 [3]
and optimality
under uncoded

prefetching [5, 52]

optimal under
one-shot linear
schemes [22]

Shared Caches/ Multiple File Requests Shared Caches

Single Antenna Multiple Antennas

Cache
occupancy

uniform not uniform uniform
not uniform
(LΛ ≥ N0)

Achievable
delay

K(1−γ)
Λγ+1 [30]

∑Λ−Λγ
r=1 Lr(Λ−r

Λγ)
(Λ

Λγ)

(1) K−Kγ
N0(Λγ+1) Λ < K

N0

(2) K−Kγ
Kγ+N0

Λ ≥ K
N0

∑Λ−Λγ
r=1 Lr(Λ−r

Λγ)
N0(Λ

Λγ)

Optimality
under

uncoded
prefetching [30]

under
uncoded

prefetching

(1) under uncoded
prefetching

(2) under one-shot
linear schemes [22]

under
uncoded

prefetching

Table 3.1 – Overview of the optimal topology-agnostic worst-case performance for the cache-aided networks
with dedicated and shared caches.

Proof. The result in (3.5a) for the regime where Λ < K
N0

, follows directly from Theorem
2. The optimality under the one-shot linear assumption of the delivery time in (3.5b) has
been proven in [22] for the cache-aided MISO setting, while the scheme achieving such a
performance with a limited number of caches Λ ≥ K

N0
is presented in Section 3.5.

Before proceeding with the interpretation of the results, we point out that in Chapter
6 we will present another scheme that achieves the same performance as (3.5b) for the
specific regime where N0 ≥ Kγ. The scheme described in Chapter 6 has the advantage
of having a very low subpacketization requirement, which we will compare with other
known one-shot linear sum-DoF optimal schemes.

3.2.3 Interpretation of Results

Capturing the effect of the cache occupancy vector

In a nutshell, Theorems 1,2 quantify how non-uniformities in the vectors L bring about
increased delays. What we see is that, the more skewed the cache occupancy vector
is, the larger is the delay. This is reflected in Figure 3.2 which shows — for a setting
with K = 30 users and Λ = 6 caches — the memory-delay trade-off curves for different
cache occupancy vectors L. As expected, Figure 3.2 demonstrates that when all users

28

Chapter 3. Topology-Agnostic Shared-Cache Networks

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

25

Figure 3.2 – Optimal delivery time for different cache occupancy vectors L, for K = 30 users and Λ = 6
caches.

are connected to the same helper cache, the only gain arising from caching is the well
known local caching gain. On the other hand, when users are assigned uniformly among
the caches (i.e., when Lλ = K

Λ , ∀λ ∈ [Λ]) the caching gain is maximized and the delay is
minimized.

A multiplicative reduction in delay

Theorem 2 states that, as long as each cache is associated to at least N0 users, we

can achieve a normalized delivery time T ∗(L, N0) = 1
N0

∑Λ−Λγ
r=1 Lr(Λ−r

Λγ)
(Λ

Λγ)
. The resulting

reduction
T (L, N0 = 1)

T (L, N0)
= N0 (3.6)

as compared to the single-stream case, comes in strong contrast to the case of Λ = K
where, as we know from [7], this same reduction takes the form

T (Λ = K,N0 = 1)

T (Λ = K,N0)
=

K(1−γ)
1+Λγ

K(1−γ)
N0+Λγ

=
N0 + Λγ

1 + Λγ
(3.7)

which approaches N0 only when γ → 0, and which decreases as γ increases.
In the uniform case (Lλ = K

Λ) with Λ ≤ K
N0

, Theorem 3 implies a sum-DoF

K(1− γ)

T
= N0(1 + Λγ)

which reveals that every time we increase Λγ by one we gain N0 degrees of freedom. This
is in direct contrast to the case of Λ = K (for which case we recall from [7] that the DoF

29

Chapter 3. Topology-Agnostic Shared-Cache Networks

is N0 + Λγ = N0 + Kγ) where the same unit increase in the cache redundancy yields
only one additional DoF.

Impact of encoding over users that share the same cache

As we know, both the MAN algorithm in [2] and the multi-antenna algorithm in [7], are
designed for users with different caches, so — in the uniform case where Lλ = K/Λ —
one conceivable treatment of the shared-cache problem would have been to apply these
algorithms over Λ users at a time, all with different caches4. As we see, in the single
antenna case, this implementation would treat 1 + Λγ users at a time thus yielding a
delay of T = K(1−γ)

1+Λγ , while in the multi-antenna case, this implementation would treat

N0 + Λγ users at a time (see [7]) thus yielding a delay of T = K(1−γ)
N0+Λγ . What we see

here is that while this direct implementation is optimal in the single antenna case (see
also [30]), in the multi-antenna case this same approach can have a performance gap of

K(1−γ)
N0+Λγ

K(1−γ)
N0(1+Λγ)

= N0(1+Λγ)
N0+Λγ Λ < K

N0

K(1−γ)
N0+Λγ

K(1−γ)
N0+Kγ

= N0(1+Λγ)
N0+Kγ Λ ≥ K

N0

(3.8)

from the derived optimal performance in (3.5a).

Interpretations of the above results in the dedicated-cache setting

As we have discussed already in the second chapter, the shared-cache setting can also
reflect the limits imposed by the subpacketization bottleneck of coded caching in the
dedicated-cache setting. The work in [32] proposed a decentralized framework for
the subpacketization-constrained cache-aided shared-link problem, where only Λ cache
contents are designed such that during the cache placement phase each of the users in
the system picks at random any one of these designed Λ caches. The choice of limiting
Λ to be smaller than K is taken to reduce the subpacketization requirement, which is
now limited to S =

(
Λ

Λγ

)
, and which we recall that represents the number of subfiles

in which we have to subpacketize each file of the library. Because of this decentralized
placement, the topology of the network in the delivery phase can be represented by
the cache occupancy vector L = (L1, . . . , LΛ), where Lλ represents the number of users
that have stored the designed cache indexed by λ. It can be verified that their delivery
phase is isomorphic to the delivery phase of our shared-cache setting. At the same time,
their proposed scheme coincides with the single-antenna version of our developed scheme.
This one-to-one mapping between these two settings implies that the optimality of the
performance in Theorem 1 applies also to the decentralized dedicated-cache setting in [32].
Furthermore, in a centralized dedicated-cache scenario where we can control the cache
placement at the users such that L = (KΛ , . . . ,

K
Λ), the result in Theorem 3 tells us that it

is sufficient to design Λ = K
N0

, as it was done originally in [33], to achieve the full linear

4This would then require K
Λ

such rounds in order to cover all K users.

30

Chapter 3. Topology-Agnostic Shared-Cache Networks

sum-Dof Kγ +N0 of the network, and increasing this value of Λ cannot help in boosting
the performance.

3.3 General Achievable Scheme for N0 ≤ LΛ

This section is dedicated to the description of the placement and delivery schemes
achieving the performance presented in Theorem 1, Theorem 2, and in Theorem 3 for the
regime where Λ ≤ K

N0
. The formal description of the optimal scheme in the upcoming

subsection will be followed by a clarifying example in Section 3.3.4 that demonstrate the
main idea behind the design.

3.3.1 Description of the Scheme

The placement phase, which uses exactly the algorithm developed in [2] for the case of
(Λ = K,M,N), is independent of U ,L, while the delivery phase is designed for any given
U , and will achieve the optimal worst-case delivery times stated in (3.3) and (3.4). As
mentioned already, we will assume that any non zero Lλ satisfies Lλ ≥ N0, ∀λ ∈ [Λ].

Cache Placement Phase

The placement phase employs the original cache-placement algorithm of [2] corresponding
to the scenario of having only Λ users, each with their own cache. Hence — recalling

from [2] — first each file W (n) is split into
(

Λ
Λγ

)
disjoint subfiles W

(n)
T , for each T ⊂ [Λ],

|T | = Λγ, and then each cache stores a fraction γ of each file, as follows

Zλ = {W (n)
T : T 3 λ, ∀n ∈ [N]}. (3.9)

Delivery Phase

For the purpose of the scheme description only, we will assume without loss of generality
that |U1| ≥ |U2| ≥ · · · ≥ |UΛ| (any other case can be handled by simple relabeling of the
caches), so that Lλ = |Uλ|. Furthermore, in a slight abuse of notation, we will consider
here each Uλ to be an ordered vector describing, in order, the users associated to cache λ.
We will also use

sλ = (Uλ‖Uλ)N0 , λ ∈ [Λ] (3.10)

to denote the N0-fold concatenation of each Uλ. Each such N0Lλ-length vector sλ can
be seen as the concatenation of Lλ different N0-tuples sλ,j , j = 1, 2, . . . , Lλ, i.e., each sλ
takes the form5

sλ = sλ,1‖sλ,2‖ . . . ‖ sλ,LΛ︸ ︷︷ ︸
N0−length

.

5Note also that having Lλ ≥ N0, ∀λ ∈ [Λ] guarantees that in any given sλ,j , j ∈ [Lλ], a user appears
at most once.

31

Chapter 3. Topology-Agnostic Shared-Cache Networks

The delivery phase commences with the demand vector d being revealed to the server.
Delivery will consist of L1 rounds, where each round j ∈ [L1] serves users

Rj =
⋃
λ∈[Λ]

(
sλ,j : Lλ ≥ j

)
. (3.11)

Transmission scheme Once the demand vector d is revealed to the transmitter, each

requested subfile W
(n)
T (for any n found in d) is further split into N0 mini-files {W (n)

T ,l }l∈[N0].

During round j, serving users in Rj , we create
(

Λ
Λγ+1

)
sets Q ⊆ [Λ] of size |Q| = Λγ + 1,

and for each set Q, we pick the set of users

χQ =
⋃
λ∈Q

(
sλ,j : Lλ ≥ j

)
. (3.12)

If χQ = ∅, then there is no transmission, and we move to the next Q. If χQ 6= ∅, the
server — during this round j — transmits the following vector6

xχQ=
∑

λ∈Q:Lλ≥j
H−1
sλ,j
×

W
(dsλ,j (1))

Q\{λ},l1
...

W
(dsλ,j (k))

Q\{λ},lk
...

W
(dsλ,j (N0))

Q\{λ},lN0

(3.13)

where W
(dsλ,j (k))

Q\{λ},lk is a mini-file intended for user sλ,j(k), i.e., for the user labelled by the

kth entry of vector sλ,j . The choice of each lk ∈ [N0] is sequential, guaranteeing that

no mini-file W
(dsλ,j (k))

Q\{λ},lk of the same subfile W
(dsλ,j (k))

Q\{λ} is transmitted twice. In the above,

H−1
sλ,j

denotes the inverse of the channel matrix between the N0 transmit antennas and
the users in vector sλ,j .

Since each user appears in sλ (and consequently in
⋃
j∈[L1]Rj) exactly N0 times,

at the end of the L1 rounds, all the N0 mini-files W
(dsλ,j (k))

Q\{λ},lk , lk ∈ [N0] will be sent

once. This, along with the fact that the sets Q follow the standard MAN scheme in [2],
guarantees that the scheme serves all subfiles requested by the users.

Decoding Directly from (3.13), we see that each receiver sλ,j(k) obtains a received
signal whose noiseless version takes the form

ysλ,j(k) = W
(dsλ,j (k))

Q\{λ},lk + ιsλ,j(k)

6The transmitted-vector structure below draws from the structure in [33], in the sense that it involves
the linear combination of one or more Zero Forcing precoded (ZF-precoded) vectors of subfiles that are
labeled (as we see below) in the spirit of [2].

32

Chapter 3. Topology-Agnostic Shared-Cache Networks

where ιsλ,j(k) is the k-th entry of the interference vector

∑
λ′∈Q\{λ} :
Lλ′ ≥ j

H−1
s
λ′,j
·
[
W

(ds
λ′,j (1))

Q\{λ′},l1 . . . W
(ds

λ′,j (k))

Q\{λ′},lk . . . W
(ds

λ′,j (N0))

Q\{λ′},lN0

]T
. (3.14)

In the above, we see that the entire interference term ιsλ,j(k) experienced by receiver
sλ,j(k), can be removed (cached-out) because all appearing subfiles

W
(ds

λ′,j (1))

Q\{λ′},l1 , . . . ,W
(ds

λ′,j (N0))

Q\{λ′},lN0

, for all λ′ ∈ Q \ {λ}, Lλ′ ≥ j, can be found in cache λ associated to this user, simply
because λ ∈ Q\{λ′}.

This completes the proof of the scheme for the multi-antenna case.

Small modification for the single antenna case

For the single-antenna case, the only difference is that now sλ = Uλ, and that each
transmitted vector in (3.13) during round j, becomes a scalar of the form

xχQ =
⊕

λ∈Q:Lλ≥j
W

(dsλ,j)

Q\{λ},1. (3.15)

The rest of the details from the general scheme, as well as the subsequent calculation of
the delay, follow directly. We also notice that this same scheme for the single antenna
case has been already proposed for the previously discussed decentralized coded caching
setting with reduced subpacketization in [32,53].

3.3.2 Calculation of the Normalized Delivery Time

To first calculate the delay needed to serve the users in Rj during round j, we recall that
there are

(
Λ

Λγ+1

)
sets

χQ =
⋃
λ∈Q

(
Uλ(j) : Lλ ≥ j

)
,Q ⊆ [Λ]

of users, and we recall that |U1| ≥ |U2| ≥ · · · ≥ |UΛ|. For each such non-empty set, there

is a transmission. Furthermore we see that for aj , Λ− |Rj |N0
, there are

(aj
Λγ+1

)
such sets

χQ which are empty, which means that round j consists of(
Λ

Λγ + 1

)
−
(

aj
Λγ + 1

)
(3.16)

transmissions.
Since each file is split into

(
Λ

Λγ

)
N0 subfiles, the duration of each such transmission is

1(
Λ

Λγ

)
N0

(3.17)

33

Chapter 3. Topology-Agnostic Shared-Cache Networks

and thus summing over all L1 rounds, the total delay takes the form

T =

∑L1
j=1

(
Λ

Λγ+1

)
−
(aj

Λγ+1

)(
Λ

Λγ

)
N0

(3.18)

which, after some basic algebraic manipulation (see Appendix A.2.7 for the details), takes
the final form

T =
1

N0

∑Λ−Λγ
r=1 Lr

(
Λ−r
Λγ

)(
Λ

Λγ

) (3.19)

which concludes the achievability part of the proof.

3.3.3 Intuition on the Scheme: Separability and the Parallel Version of the
Multi-Antenna BC with Shared Caches

The scheme described above makes use of a non-separable approach that is based on
multicast messages that simultaneously exploit the caches and the channel. To gain some
insight into this scheme, we will briefly look at a simpler (but separable) solution to the
easier parallel version of the multi-transmitter BC with shared caches.

N0-transmitter parallel BC with shared caches This parallel version of the problem
consists of N0 transmitters, each connected to all K receivers via a broadcast link of
normalized unit capacity. The main difference in this parallel version is that naturally
each receiver enjoys N0 simultaneous signal observations, one from each transmitter. As
in our setting, each receiver has access to one of Λ caches.

In this parallel version, an optimal scheme would consist of a cache placement that is
identical to ours, and a delivery phase which begins by generating the same set of XORs
that we would generate for the single-antenna case, then partitioning this set into any N0

equal-sized subsets7, and finally the delivery phase would conclude by sending each of the
N0 subsets, simultaneously, from each of the transmitters. Decoding is done exactly as
in the single-antenna case. This achieves a speed-up factor of N0 over the single-antenna
case, for any cache occupancy vector L (including for the case where Lλ ≤ N0). As it will
become clear later, the lower bound in Section 3.4 applies also to this parallel channel,
and we can thus conclude that the optimal performance for the parallel channel coincides
with the derived performance for the MISO BC for Lλ ≥ N0.

Non-separability of the scheme for the MISO-BC with shared caches To draw the
connection to our scheme, we first note that the above described parallel version is
separable; the scheme consists of a) a cache placement and multicast message generation
that are independent of the network/channel and are identical to the single-transmitter
case, and b) an efficient delivery (now as a function of the network) of these multicast
messages. However, this is not the case for the MISO BC setting of interest here, where

7Without loss of generality, we here assume that the number of XORs is a multiple of the number of
antennas. The general case can be handled with a small increase in the subpacketization.

34

Chapter 3. Topology-Agnostic Shared-Cache Networks

the multicast messages themselves are a function of the channel. The difference here is
that, to the best of our understanding, we could not have used the single-stream XORs
generated in Section 3.3.1, and then simply found a way (e.g. via beamforming) to deliver
these over a parallelized channel, where this channel was parallelized (for example by
the use of Zero Forcing)8. Instead, what we do is that we consider the same sequence
of XORs as in the parallel channel setting, we split these into the same N0 subsets, but
then instead of considering XORs, we decompose each XOR, and linearly combine the
subfiles within each such XOR, as a function of the channel, in a way that the created
multicast messages — in addition to exploiting the caches of the users addressed by each
such multicast message — also simultaneously orthogonalize the channels to another
set of users that share the same cache. This approach makes the scheme non-separable.
Whether it is possible or not to develop a fully separable optimal solution for the MISO
BC with shared caches, remains an open question.

3.3.4 Illustrative Example

Consider a scenario with K = 15 users {1, 2, . . . , 15}, a server equipped with N0 = 2 trans-
mitting antennas that stores a library of N = 15 equally-sized files W (1),W (2), . . . ,W (15),
and consider Λ = 3 helper caches, each of size equal to M = 5 units of file.

In the cache placement phase, we split each file W (n) into 3 equally-sized disjoint

subfiles denoted by W
(n)
1 ,W

(n)
2 ,W

(n)
3 and as in [2], each cache λ stores W

(n)
λ , ∀n ∈ [15].

We assume that in the subsequent cache assignment, users U1 = (1, 2, 3, 4, 5, 6, 7, 8)
are assigned to helper node 1, users U2 = (9, 10, 11, 12, 13) to helper node 2 and users
U3 = (14, 15) to helper node 3. This corresponds to a cache occupancy vector L = (8, 5, 2).
We also assume without loss of generality that the demand vector is d = (1, 2, . . . , 15).

Delivery takes place in |U1| = 8 rounds, and each round will serve either N0 = 2 users
or no users from each of the following three ordered user groups

s1 = U1||U1 = (1, 2, . . . , 7, 8, 1, 2, . . . , 7, 8),

s2 = U2||U2 = (9, 10, 11, 12, 13, 9, 10, 11, 12, 13),

s3 = U3||U3 = (14, 15, 14, 15).

Specifically, rounds 1 through 8, will respectively serve the following sets of users

R1 = {1, 2, 9, 10, 14, 15}
R2 = {3, 4, 11, 12, 14, 15}
R3 = {5, 6, 13, 9}
R4 = {7, 8, 10, 11}
R5 = {1, 2, 12, 13}
R6 = {3, 4}
R7 = {5, 6}
R8 = {7, 8}.

8This separable approach though can indeed work (cf. [7]) if each user has its own cache.

35

Chapter 3. Topology-Agnostic Shared-Cache Networks

Before transmission, each requested subfile W
(n)
T is further split into N0 = 2 mini-files

W
(n)
T ,1 and W

(n)
T ,2. As noted in the general description of the scheme, the transmitted

vector structure within each round, draws from [33] as it employs the linear combination
of ZF-precoded vectors. In the first round, the server transmits, one after the other, the
following 3 vectors

x{1,2,9,10}=H−1
{1,2}

[
W

(1)
2,1

W
(2)
2,1

]
+ H−1

{9,10}

[
W

(9)
1,1

W
(10)
1,1

]
(3.20)

x{1,2,14,15}=H−1
{1,2}

[
W

(1)
3,1

W
(2)
3,1

]
+ H−1

{14,15}

[
W

(14)
1,1

W
(15)
1,1

]
(3.21)

x{9,10,14,15}=H−1
{9,10}

[
W

(9)
3,1

W
(10)
3,1

]
+ H−1

{14,15}

[
W

(14)
2,1

W
(15)
2,1

]
(3.22)

where H−1
{i,j} is the zero-forcing (ZF) precoder that inverts the channel H{i,j} = [hTi h

T
j]

from the transmitter to users i and j. Instead of ZF, one can naturally use a similar
precoder with potentially better performance in different SNR ranges; we will consider
the finite SNR regime in Chapter 6. To see how decoding takes place, let us first focus
on users 1 and 2 during the transmission of x{1,2,9,10}, where we see that, due to ZF
precoding, the users’ respective received signals take the form

y1 =W
(1)
2,1 + hT1 H

−1
{9,10}

[
W

(9)
1,1

W
(10)
1,1

]
︸ ︷︷ ︸

interference

+w1 (3.23)

y2 =W
(2)
2,1 + hT2 H

−1
{9,10}

[
W

(9)
1,1

W
(10)
1,1

]
︸ ︷︷ ︸

interference

+w2. (3.24)

Users 1 and 2 use their cached content in cache node 1, to remove files W
(9)
1,1 ,W

(10)
1,1 , and

can thus directly decode their own desired subfiles. The same procedure is applied to the
remaining users served in the first round.

Similarly, in the second round, we have

x{3,4,11,12}=H−1
{3,4}

[
W

(3)
2,1

W
(4)
2,1

]
+ H−1

{11,12}

[
W

(11)
1,1

W
(12)
1,1

]
(3.25)

x{3,4,14,15}=H−1
{3,4}

[
W

(3)
3,1

W
(4)
3,1

]
+ H−1

{14,15}

[
W

(14)
1,2

W
(15)
1,2

]
(3.26)

x{11,12,14,15}=H−1
{11,12}

[
W

(11)
3,1

W
(12)
3,1

]
+ H−1

{14,15}

[
W

(14)
2,2

W
(15)
2,2

]
(3.27)

and again in each round, each pair of users can cache-out some of the files, and then
decode their own file due to the ZF precoder.

36

Chapter 3. Topology-Agnostic Shared-Cache Networks

The next three transmissions, corresponding to the third round, are as follows

x{5,6,13,9}=H−1
{5,6}

[
W

(5)
2,1

W
(6)
2,1

]
+ H−1

{13,9}

[
W

(13)
1,1

W
(9)
1,2

]
(3.28)

x{5,6}=H−1
{5,6}

[
W

(5)
3,1

W
(6)
3,1

]
(3.29)

x{13,9}=H−1
{13,9}

[
W

(13)
3,1

W
(9)
3,2

]
(3.30)

where the transmitted vectors x{5,6} and x{13,9} simply use zero-forcing. Similarly round
4 serves the users in R4 by sequentially sending

x{7,8,10,11}=H−1
{7,8}

[
W

(7)
2,1

W
(8)
2,1

]
+ H−1

{10,11}

[
W

(10)
1,2

W
(11)
1,2

]
(3.31)

x{7,8}=H−1
{7,8}

[
W

(7)
3,1

W
(8)
3,1

]
(3.32)

x{10,11}=H−1
{10,11}

[
W

(10)
3,2

W
(11)
3,2

]
(3.33)

and round 5 serves the users in R5 by sequentially sending

x{1,2,12,13}=H−1
{1,2}

[
W

(1)
2,2

W
(2)
2,2

]
+ H−1

{12,13}

[
W

(12)
1,2

W
(13)
1,2

]
(3.34)

x{1,2}=H−1
{1,2}

[
W

(1)
3,2

W
(2)
3,2

]
(3.35)

x{12,13}=H−1
{12,13}

[
W

(12)
3,2

W
(13)
3,2

]
. (3.36)

Finally, for the remaining rounds 6, 7, 8 which respectively involve user sets R6,R7 and
R8 that are connected to the same helper cache 1, data is delivered using the following
standard ZF-precoded transmissions

x{3,4}=H−1
{3,4}

[
W

(3)
2,2 ||W

(3)
3,2

W
(4)
2,2 ||W

(4)
3,2

]
(3.37)

x{5,6}=H−1
{5,6}

[
W

(5)
2,2 ||W

(5)
3,2

W
(6)
2,2 ||W

(6)
3,2

]
(3.38)

x{7,8}=H−1
{7,8}

[
W

(7)
2,2 ||W

(7)
3,2

W
(8)
2,2 ||W

(8)
3,2

]
. (3.39)

37

Chapter 3. Topology-Agnostic Shared-Cache Networks

The overall delivery time required to serve all users is

T =
1

6
· 15 +

1

3
· 3 =

21

6

where the first summand is for rounds 1 through 5, and the second summand is for rounds
6 through 8. It is easy to see that this delay remains the same — given again worst-case
demand vectors — for any user-to-cache association U with the same cache occupancy
vector L = (8, 5, 2). Every time, this delay matches the converse

T ∗((8, 5, 2)) ≥
∑2

r=1 Lr
(

3−r
1

)
2
(

3
1

) =
8 · 2 + 5 · 1

6
=

21

6
(3.40)

of Theorem 2.

3.4 Information Theoretic Converse

Toward proving Theorems 1 and 2, we develop a lower bound on the normalized delivery
time in (3.2) for each given cache occupancy vector L. The proof technique is based
on the breakthrough in [52] which — for the case of Λ = K, where each user has their
own cache — employed index coding to bound the performance of coded caching. Part
of the challenge here will be to account for having shared caches, and mainly to adapt
the index coding approach to reflect non-uniform cache occupancy vectors. We recall
that, in order to facilitate the reader to understand the main idea behind the general
converse, an example of the construction of the converse is presented in Appendix A.1.
We will begin with lower bounding the normalized delivery time T ∗(U ,d,Z), for any
user-to-cache association U , demand vector d and a generic uncoded caching strategy Z.

Identifying the distinct problems The caching problem is defined when the user-to-cache
association U = {Uλ}Λλ=1 and demand vector d are revealed. What we can easily see
is that there are many combinations of {Uλ}Λλ=1 and d that jointly result in the same
coded caching problem. After all, any permutation of the file indices requested by users
assigned to the same cache, will effectively result in the same coded caching problem. As
one can see, every distinct coded caching problem is fully defined by {dλ}Λλ=1, where dλ
denotes the vector of file indices requested by the users in Uλ, i.e., requested by the |Uλ|
users associated to cache λ. The analysis is facilitated by reordering the demand vector
d to take the form

d(U) , (d1, . . . ,dΛ). (3.41)

Based on this, we define the set of worst-case demands associated to a given cache
occupancy vector L, to be

DL = {d(U) : d ∈ Dwc,U ∈ UL}

where Dwc is the set of demand vectors d whose K entries are all different (i.e., where
di 6= dj , i, j ∈ [Λ], i 6= j, corresponding to the case where all users request different files).
We will convert each such coded caching problem into an index coding problem.

38

Chapter 3. Topology-Agnostic Shared-Cache Networks

The corresponding index coding problem To make the transition to the index coding

problem, each requested file W (dλ(j)) is split into 2Λ disjoint subfiles W
(dλ(j))
T , T ∈ 2[Λ]

where T ⊂ [Λ] indicates the set of helper nodes in which W
(dλ(j))
T is cached9. Then —

in the context of index coding — each subfile W
(dλ(j))
T can be seen as being requested

by a different user that has as side information all the content Zλ of the same helper

node λ. Naturally, no subfile of the form W
(dλ(j))
T , T 3 λ is requested, because helper

node λ already has this subfile. Therefore the corresponding index coding problem is
defined by K2Λ−1 requested subfiles, and it is fully represented by the side-information
graph G = (VG , EG), where VG is the set of vertices (each vertex/node representing a

different subfile W
(dλ(j))
T , T 63 λ) and EG is the set of direct edges of the graph. Following

standard practice in index coding, a directed edge from node W
(dλ(j))
T to W

(dλ′ (j
′))

T ′ exists
if and only if λ′ ∈ T . For any given U , d (and of course, for any caching scheme Z)
the total delay T required for this index coding problem, is the completion time for the
corresponding coded caching problem.

Lower bounding T ∗(U ,d,Z) We are interested in lower bounding T ∗(U ,d,Z) which
represents the total delay required to serve the users for the index coding problem
corresponding to the side-information graph GU ,d defined by U ,d,Z or equivalently by
d(U),Z.

In the next lemma, we remind the reader — in the context of our setting — the
index-coding converse from [54].

Lemma 1. (Cut-set-type converse [54]) For a given U ,d,Z, in the corresponding side
information graph GU ,d = (VG , EG) of the N0-antenna MISO broadcast channel with VG
vertices/nodes and EG edges, the following inequality holds

T ≥ 1

N0

∑
V∈VJ

|V| (3.42)

for every acyclic induced subgraph J of GU ,d, where VJ denotes the set of nodes of the
subgraph J , and where |V| is the size of the message/subfile/node V.

Proof. The above lemma draws from [54, Corollary 1] (see also [55, Corollary 2] for a
simplified version), and is proved in the Appendix Section A.2.1.

Creating large acyclic subgraphs Lemma 1 suggests the need to create (preferably large)
acyclic subgraphs of GU ,d. The following lemma describes how to properly choose a set
of nodes to form a large acyclic subgraph.

9Notice that by considering a subpacketization based on the power set 2[Λ], and by allowing for any
possible size of these subfiles, the generality of the result is preserved. Naturally, this does not impose
any subpacketization related performance issues because this is done only for the purpose of creating a
converse.

39

Chapter 3. Topology-Agnostic Shared-Cache Networks

Lemma 2. Consider a subgraph J of GU ,d corresponding to the index coding problem
defined by U ,d,Z for any U with cache occupancy vector L, consisting of all subfiles

W
(dσs(λ)(j))

Tλ , ∀j ∈ [Lλ], ∀λ ∈ [Λ] for all Tλ ⊆ [Λ] \ {σs(1), . . . , σs(λ)} where σs ∈ SΛ is
the permutation such that |Uσs(1)| ≥ |Uσs(2)| ≥ · · · ≥ |Uσs(Λ)|. This subgraph is acyclic.

Proof. The proof, which can be found in the Appendix Section A.2.2, is an adaptation
of [52, Lemma 1] to the current setting.

Remark 3. The choice of the permutation σs is critical for the development of a tight
converse. Any other choice σ ∈ SΛ may result — in some crucial cases — in an acyclic
subgraph with a smaller number of nodes and therefore a looser bound. This approach
here deviates from the original approach in [52, Lemma 1], which instead considered —
for each d,Z, for the uniform user-to-cache association case of K = Λ — the set of
all possible permutations, that jointly resulted in a certain symmetry that is crucial to
that proof. Here in our case, such symmetry would not serve the same purpose as it
would dilute the non-uniformity in L that we are trying to capture. Our choice of a single
carefully chosen permutation, allows for a bound which — as it turns out — is tight
even in non-uniform cases. The reader is also referred to Section A.1 for an explanatory
example.

Having chosen an acyclic subgraph according to Lemma 2, we return to Lemma 1
and form — by adding the sizes of all subfiles associated to the chosen acyclic graph —
the following lower bound

T ∗(U ,d,Z) ≥ TLB(U ,d,Z) (3.43)

where

TLB(U ,d,Z) ,
1

N0

(Lσs(1)∑
j=1

∑
T1⊆[Λ]\{σs(1)}

|W (dσs(1)(j))

T1 |

+

Lσs(2)∑
j=1

∑
T2⊆[Λ]\{σs(1),σs(2)}

|W (dσs(2)(j))

T2 |+ . . .

+

Lσs(Λ)∑
j=1

∑
TΛ⊆[Λ]\{σs(1),...,σs(Λ)}

|Wd(σs(Λ)(j))

TΛ |
)
. (3.44)

Our interest lies in a lower bound for the worst-case delivery time/delay associated to
cache occupancy vector L. Such a worst-case naturally corresponds to the scenario where
all users request different files, i.e., where all the entries of the demand vector d(U) are
different. The corresponding lower bound can be developed by averaging over worst-case
demands. Recalling our set DL, the worst-case delivery time can thus be written as

T ∗(L) , min
Z

T (L,Z)︷ ︸︸ ︷
max

(U ,d)∈(UL,[N]K)
T (U ,d,Z) (3.45)

40

Chapter 3. Topology-Agnostic Shared-Cache Networks

(a)

≥ min
Z

1

|DL|
∑

d(U)∈DL

T (d(U),Z) (3.46)

where in step (a), we used the following change of notation T (d(U),Z) , T (U ,d,Z) and
averaged over worst-case demands.

With a given cache occupancy vector L in mind, in order to construct DL (so that we
can then average over it), we will consider all demand vectors d ∈ Dwc for all permutations
π ∈ SΛ. Then for each d, we create the following set of Λ vectors

d
′
1 = (d1 : dL1),

d
′
2 = (dL1+1 : dL1+L2),

...

d
′
Λ = (d∑Λ−1

i=1 Li +1 : dK)

and for each permutation π ∈ SΛ applied to the set {1, 2, . . . ,Λ}, a demand vector d(U)
is constructed as follows

d(U) , (d1,d2, . . . ,dΛ) (3.47)

= (d
′

π−1(1),d
′

π−1(2), . . . ,d
′

π−1(Λ)), (3.48)

where π−1(·) is the inverse function of the permutation operation.
This procedure is repeated for all Λ! permutations π ∈ SΛ and all P (N,K) worst-case

demands d ∈ Dwc. This implies that the cardinality of DL is |DL| = P (N,K) · Λ!.
Using this designed set DL, now the optimal worst-case delivery time in (3.46) is

bounded as

T ∗(L) = min
Z
T ∗(L,Z) (3.49)

≥ min
Z

1

P (N,K)Λ!

∑
d(U)∈DL

TLB(d(U),Z) (3.50)

where TLB(d(U),Z) is given by (3.44) for each reordered demand vector d(U) ∈ DL.
Rewriting the summation in (3.50), we get∑

d(U)∈DL

TLB(d(U),Z) =

=
1

N0

Λ∑
i=0

∑
n∈[N]

∑
T ⊆[Λ]:|T |=i

|W (n)
T | ·

∑
d(U)∈DL

1V
Jd(U)
s

(W
(n)
T)

︸ ︷︷ ︸
,Qi(W

(n)
T)

, (3.51)

where VJ d(U)
s

is the set of vertices in the acyclic subgraph chosen according to Lemma 2

for a given d(U). In the above, 1V
Jd(U)
s

(W
(n)
T) denotes the indicator function which takes

the value of 1 only if W
(n)
T ⊂ VJ d(U)

s
, else it is set to zero.

41

Chapter 3. Topology-Agnostic Shared-Cache Networks

A crucial step toward removing the dependence on T , comes from the fact that

Qi = Qi(W
(n)
T) ,

∑
d(U)∈DL

1V
Jd(U)
s

(W
(n)
T)

=

(
N − 1

K − 1

) Λ∑
r=1

P (Λ− i− 1, r − 1)(Λ− r)!Lr

× P (K − 1, Lr − 1)(K − Lr)!(Λ− i) (3.52)

where we can see that the total number of times a specific subfile appears — in the
summation in (3.51), over the set of all possible d(U) ∈ DL, and given our chosen
permutation σs — is not dependent on the subfile itself but is dependent only on the
number of caches i = |T | storing that subfile. The proof of (3.52) can be found in
Section A.2.3.

In the spirit of [52], defining

xi ,
∑
n∈[N]

∑
T ⊆[Λ]:|T |=i

|W (n)
T | (3.53)

to be the total amount of data stored in exactly i helper nodes, we see that

N =
Λ∑
i=0

xi =
Λ∑
i=0

∑
n∈[N]

∑
T ⊆[Λ]:|T |=i

|W (n)
T | (3.54)

and we see that combining (3.50), (3.51) and (3.52), gives

T ∗(L,Z) ≥ 1

N0

Λ∑
i=0

Qi
P (N,K)Λ!

xi. (3.55)

Now substituting (3.52) into (3.55), after some algebraic manipulations, we get that

T ∗(L,Z) ≥ 1

N0

Λ∑
i=0

∑Λ−i
r=1 Lr

(
Λ−r
i

)
N
(

Λ
i

) xi (3.56)

=
1

N0

Λ∑
i=0

xi
N
ci (3.57)

where ci ,
∑Λ−i
r=1 Lr(

Λ−r
i)

(Λ
i)

decreases with i ∈ [Λ]0. The proof of the transition from (3.55)

to (3.56), as well as the monotonicity proof for the sequence {ci}i∈[Λ]0 , are given in
Appendix Sections A.2.4 and A.2.5 respectively.

Under the file-size constraint given in (3.54), and given the following cache-size
constraint

Λ∑
i=0

i · xi ≤ ΛM (3.58)

42

Chapter 3. Topology-Agnostic Shared-Cache Networks

the expression in (3.56) serves as a lower bound on the delay of any caching scheme Z
which implies a set of {xi}.

We then employ the Jensen’s-inequality based technique of [5, Proof of Lemma 2] to
minimize the expression in (3.56), over all admissible {xi}. Hence for any integer Λγ, we
have

T ∗(L,Z) ≥
∑Λ−Λγ

r=1 Lr
(

Λ−r
Λγ

)(
Λ

Λγ

) (3.59)

whereas for all other values of Λγ, this is extended to its convex lower envelop. The
detailed derivation of (3.59) can again be found in Appendix Section A.2.6.

This concludes lower bounding max(U ,d)∈(UL,[N]K) T (U ,d,Z), and thus — given that
the right hand side of (3.59) is independent of Z — lower bounds the performance for
any scheme Z, which hence concludes the proof of the converse for Theorem 2 (and
consequently for Theorem 1 after setting N0 = 1).

Proof of the Converse for (3.5a)

For the uniform case of L =
[
K
Λ ,

K
Λ , . . . ,

K
Λ

]
, the lower bound in (3.59) becomes

1

N0

∑Λ−Λγ
r=1 Lr

(
Λ−r
Λγ

)(
Λ

Λγ

) =
1

N0

K

Λ

∑Λ−Λγ
r=1

(
Λ−r
Λγ

)(
Λ

Λγ

) (3.60)

(a)
=

1

N0

K

Λ

(
Λ

Λγ+1

)(
Λ

Λγ

) (3.61)

=
K

N0

(1− γ)

(Λγ + 1)
(3.62)

where the equality in step (a) is due to Pascal’s triangle which says that
(
n
k

)
=
(
n−1
k−1

)
+(

n−1
k

)
.

3.5 Achievable Scheme for the Uniform Setting with N0 ≥ K
Λ

In this section we will describe the algorithm that achieves the delivery time in equation
(3.5b). We begin with describing the algorithm through the use of an example and
continue with the general algorithm, which requires that N0 is an integer multiple of K

Λ .

3.5.1 Illustrative Example

Consider a scenario where a base station equipped with N0 = 4 antennas has access to
a library with N = 8 files W (1),W (2), . . . ,W (8), and is connected to K = 8 users. We
assume that the number of caches is Λ = 4 and that users are distributed uniformly
among the caches, such that each cache serves K

Λ = 2 users. Furthermore, we also assume
that the per-cache capacity is M = 2 (i.e., γ = 1

4).

43

Chapter 3. Topology-Agnostic Shared-Cache Networks

In the cache placement phase, each file W (n), n ∈ [8] is split into
(

Λ
Λγ

)
= 4 equally-sized

subfiles denoted by W
(n)
1 ,W

(n)
2 ,W

(n)
3 ,W

(n)
4 . Employing the cache placement algorithm

of [2], we have that each cache λ ∈ [4] stores W
(n)
λ , ∀n ∈ [8]. In the delivery phase,

we further split each subfile W
(n)
τ , τ ∈ [4] into 2 equally-sized and disjoint minifiles

W
(n)
τ,1 ,W

(n)
τ,2 . For simplicity, we will also use the notation A ≡W (1), B ≡W (2), C ≡W (3),

and so on.
Without loss of generality, we assume that users {1, 5} are connected to the first

cache and request files {A,E}, users {2, 6} are connected to the second cache and request
{B,F}, and so on.

For simplicity, in this example we will use the one-shot (see Section 3.5.4) variation
of the proposed scheme in Section 3.5.3. The delivery algorithm consists of 4 rounds,
each serving users from Λγ + N0Λ

K = 3 different caches.
In the first round, the server transmits to users in caches 1, 2, 3 the vector

x{1,2,3,5,6,7} = H−1
1,5,3,7

A2,1

E2,1

C2,1

G2,1

+ H−1
1,5,2,6

A3,1

E3,1

B3,1

F3,1

+ H−1
2,6,3,7

B1,1

F1,1

C1,1

G1,1

 (3.63)

in a time slot of normalized duration 2
8 . H−1

i,j,p,q is the zero-forcing (ZF) precoder that

inverts the channel matrix Hi,j,p,q , [hTi h
T
j h

T
p h

T
q]. To describe the decoding, we focus

on user 1 who receives the signal

y1 = A2,1 +A3,1 + hT1 ·H−1
2,6,3,7

B1,1

F1,1

C1,1

G1,1

︸ ︷︷ ︸

interference

+w1. (3.64)

We observe that user 1 is connected to cache 1 and that it has perfect knowledge
of the channel state, thus user 1 can reconstruct the interference term in (3.64) and
subtract it from y1 to obtain (neglecting the noise) ȳ1 = A2,1 + A3,1. Recalling that
|A2,1| = |A3,1| = 1

8 , which is half of the transmission duration for vector v1,2,3, user 1 can
successfully decode the 2 desired minifiles A2,1, A3,1. The same decoding procedure is
applied to the users served in the first round.

Similarly, in the other 3 rounds the transmitted vectors are

x1,2,4,5,6,8 = H−1
1,5,4,8

A2,2

E2,2

D2,1

H2,1

+ H−1
1,5,2,6

A4,1

E4,1

B4,1

F4,1

+ H−1
2,6,4,8

B1,2

F1,2

D1,1

H1,1

 , (3.65)

x1,3,4,5,7,8 = H−1
1,5,4,8

A3,2

E3,2

D3,1

H3,1

+ H−1
1,5,3,7

A4,2

E4,2

C4,1

G4,1

+ H−1
4,8,3,7

D1,2

H1,2

C1,2

G1,2

 , (3.66)

44

Chapter 3. Topology-Agnostic Shared-Cache Networks

x2,3,4,6,7,8 = H−1
2,6,4,8

B3,2

F3,2

D3,2

H3,2

+ H−1
2,6,3,7

B4,2

F4,2

C4,2

G4,2

+ H−1
3,7,4,8

C2,2

G2,2

D2,2

H2,2

 . (3.67)

The overall optimal delivery time required to serve all users’ demands is T = 2
8 · 4 = 1,

which corresponds to a sum degrees of freedom of DoF = 8(1−1/4)
T = 6 = Kγ +N0.

We proceed with the description of the general scheme.

3.5.2 Cache Placement Scheme

The cache placement phase is the same as the one in [2], for a setting with Λ users, each
with its own dedicated cache. Therefore, each file W (n), n ∈ [N] is split into

(
Λ

Λγ

)
disjoint

subfiles W
(n)
τ , for each τ ⊂ [Λ], |τ | = Λγ. Then, each cache λ stores a fraction γ of the

library according to the following policy

Zλ = {W (n)
τ : τ 3 λ,∀n ∈ [N]}. (3.68)

3.5.3 Delivery Scheme

Upon receiving the users’ requests, the server further splits the demanded subfiles W
(dk)
τ

in
(Λ−Λγ−1
N0Λ
K
−1

)
minifiles as follows

W (n)
τ =

{
W (n)
τ,r |r ∈

{
1, 2, . . . ,

(
Λ− Λγ − 1
N0Λ
K − 1

)}}
. (3.69)

For each set of caches Φ ⊆ [Λ], each of cardinality |Φ| = Λγ + N0Λ
K , the server transmits(Λγ+

N0Λ
K
−1

Λγ

)
vectors of the form

x(i)
χΦ

=
∑

φ⊂Φ:|φ|=Λγ

c
(i)
Φ\φ
·H−1

Φ\φ
·

W
dΦ\φ(1)

φ,r1

W
dΦ\φ(2)

φ,r2

...

W

d
Φ\φ

(
N0Λ
K

)
φ,rN0Λ

K

, i ∈

{
1, 2, . . . ,

(
Λγ + N0Λ

K − 1

Λγ

)}
,

(3.70)
In the above, χΦ is the set of users to which the message is transmitted, i.e. χΦ , ∪λ∈ΦUλ,

c
(i)
Φ\φ
∈ C denotes an arbitrary coefficient, Φ\φ (l) , l ∈

[
N0Λ
K

]
denotes the l-th element of

the ordered set of caches Φ\φ, where φ ⊂ Φ : |φ| = Λγ, and W
dΦ\φ(l)

φ,rl
denotes a K

Λ×1

45

Chapter 3. Topology-Agnostic Shared-Cache Networks

vector of minifiles requested by all users connected to cache Φ\φ (l), i.e.

W
dΦ\φ(l)

φ,rl
,

W

(dΦ\φ(l)(1))

φ,rl

W
(dΦ\φ(l)(2))

φ,rl
...

W
(dΦ\φ(l)(KΛ))

φ,rl

 .

The choice of indices r1, r2, . . . , rN0Λ
K

is sequential, guaranteeing that no minifile is

transmitted twice.

Decoding Directly from (3.70) and for a fixed Φ and i, the received signal at the q−th
user, denoted by u, of cache λ ∈ Φ is

y
(i)
u,Φ =

∑
φ⊂Φ\{λ}:|φ|=Λγ

c
(i)
Φ\φ

W
(du)
φ,r︸ ︷︷ ︸

L(i)
Φ,u

+ι(i)u

where L(i)
Φ,u is the part of the received signal useful for user u, while ι

(i)
u is an interference

term that takes the form

hTu ·
∑

φ⊂Φ:φ3λ,|φ|=Λγ

c
(i)
Φ\φ
·H−1

Φ\φ
·

Wd
Φ\φ(1)

φ,r1

Wd
Φ\φ(2)

φ,r2
...

Wd
Φ\φ

(
N0Λ
K

)
φ,rN0Λ

K

+ wu.

We can see that user u can reconstruct and remove (neglecting the noise) the interference

term ι
(i)
u , because it can obtain the minifiles contained in ι

(i)
u through its cache. After

collecting the signals

ȳ
(i)
u,Φ = y

(i)
u,Φ − ι(i)u , ∀i ∈

[(
Λγ + N0Λ

K − 1

Λγ

)]
,

user u will possess
(Λγ+

N0Λ
K
−1

Λγ

)
linear combinations L(i)

Φ,u of the same set of desired minifiles

Ψ =
{
W

(u)
φ,rl
|φ ∈ Φ \ {g}, |φ| = Λγ

}
.

Directly from (3.70), we observe that x
(i)
χΦ is constructed as the sum of

(Λγ+
N0Λ
K

Λγ

)
vectors, each containing minifiles for users connected to the caches in the set Φ \φ, where
φ ⊂ Φ : |φ| = Λγ. Taking this into account, the number of times that a cache λ ∈ Φ

appears in all the sets Φ \ φ appearing in v
(i)
Φ can be computed to be

(Λγ+
N0Λ
K
−1

Λγ

)
. This

means that the vector v
(i)
Φ contains |Ψ| =

(Λγ+
N0Λ
K
−1

Λγ

)
minifiles for each user in cache λ.

46

Chapter 3. Topology-Agnostic Shared-Cache Networks

As a result, user u can successfully decode all the desired files in Ψ from the
(Λγ+

N0Λ
K
−1

Λγ

)
linear combinations L(i)

Φ,u.

3.5.4 Calculation of the Normalized Delivery Time

We observe that the scheme splits each file into S =
(

Λ
Λγ

)(Λ−Λγ−1
n0Λ
K
−1

)
minifiles, where the

first term follows from the subpacketization required by the cache placement in equation
(3.5.2) and the second term is due to the further subpacketization needed by the delivery
phase (cf. (3.69)).

Direcly from the scheme, the total number of transmissions can be easily computed

as N =
(Λ

Λγ+
N0Λ
K

)(Λγ+
N0Λ
K
−1

Λγ

)
. Finally, we notice that all transmissions have the same

duration of 1
S , yielding a total delivery time of

T =

(Λ
Λγ+

N0Λ
K

)(Λγ+
N0Λ
K
−1

Λγ

)
(

Λ
Λγ

)(Λ−Λγ−1
N0Λ
K
−1

) =
K(1− γ)

Kγ +N0
.

A one-shot linear variation of the delivery scheme

In this subsection, we present a variation of the delivery phase presented in Section 3.5.3.
Unlike the previous algorithm, this scheme has the one-shot property, where each part of
the requested messages is transmitted only once.

In the new scheme, each transmission associated to Φ occurs in a time slot of duration

Ts =
(Λγ+

N0Λ
K
−1

Λγ
)

S , where the server transmits the message

xχΦ =
∑

φ⊂Φ:|φ|=Λγ

H−1
Φ\φ
·

Wd
Φ\φ(1)

φ,r1

Wd
Φ\φ(2)

φ,r2
...

Wd
Φ\φ

(
N0Λ
K

)
φ,rLΛ

K

(3.71)

of duration |xχΦ| = 1
S . After receiving the signal hTuxχΦ, user u removes the interference

term as described in Section 3.5.3. This step presents user u with a multiple access

channel (MAC) with |Ψ| =
(Λγ+

N0Λ
K
−1

Λγ

)
messages to resolve. Having the slot duration

Ts be
(Λγ+

N0Λ
K
−1

Λγ

)
times larger than the message duration |xχΦ|, guarantees that we are

within the achievable rate region of the multiple access channel (MAC). The rest of the
calculations follow as before.

47

Chapter 3. Topology-Agnostic Shared-Cache Networks

3.6 Follow-Up Works

As a testament to the importance of this shared caches setting, it is worth noting that
after the preliminary conference version of some of the results presented in this chapter
appeared in [41], the shared-cache problem for the single-antenna setting studied in this
chapter, has been extended in a variety of ways. For example, in [56] the authors extended
the single antenna setting of our work to the case when the delivery phase is error prone as
well as to the case where some users can request the same files. The work [57] considered
a shared-cache setting where each group of two users can be connected in four different
ways to two helper nodes/caches. While we focused on uncoded cache placement, coded
cache placement was considered in the work in [58]. In [59], it was shown that our derived
optimal performance can be improved if the server has full knowledge — during cache
placement — of the number of users associated to each cache. While in [59] the authors
considered the setting where all the caches have the same size, which cannot be optimized,
in the next chapter we will show that the knowledge of the network topology turns out
to be much more impactful if we can allocate the memory across the caches as a function
of the number of users connected to them. A decentralized scheme for the shared-link
shared-cache network was introduced in [60]. Another interesting work is the one in [61]
where the authors provided statistical analysis of the average performance of the shared-
link shared-cache networks studied in this chapter, and where simple load balancing
techniques are proposed to combat the performance loss due to the heterogeneity of the
number of users associated to each cache.

48

Chapter 4

Topology-Aware Shared-Cache
Networks

This chapter studies a shared-cache setting similar to the one in the previous chapter,
but where now the number of users assisted by each cache is known during the cache
placement phase. Unlike the previous chapter, we will only consider the single shared-link
setting. However, in light of the results in the previous chapter, the techniques developed
for this shared-link setting can be extended to the case where the transmitter is equipped
with multiple antennas. For such cache-aided shared-link setting, we will show how a
proper allocation of a total cache memory of t times the library size across the caches, as
a function of their occupancies, allows to always achieve a sum DoF of t+ 1 in conjuction
with a local caching gain that surprisingly increases with the skewness of the cache
occupancy vector L. This reveals the importance of memory allocation in heterogeneous
scenarios, which allows for a significantly improved performance over topology-agnostic
schemes. Under some basic assumptions, we will prove the optimality of the proposed
achievable scheme by developing a novel converse bound based on index coding that
captures the heterogeneity of the setting. Finally, motivated by the fact that the topology
of the network might vary over time, we will also address a topology-partially-aware
scenario where the cache placement is designed according to a topology that does not
match with the network topology in the upcoming delivery phase. The scheme proposed
for this scenario allows for flexibility in handling different network topologies during the
delivery phase while still benefiting of the gains coming from memory allocation.

4.1 System Model and Problem Formulation

In this section, we present the system model with two different operating scenarios as well
as the corresponding performance metric. The system model will be fully described for the
topology-aware scenario, while the description of the topology-partially-aware scenario is
limited to highlight the differences with the previous scenario. Hereinafter, whenever it
is not explicitly mentioned, we will always refer to the topology-aware scenario.

49

Chapter 4. Topology-Aware Shared-Cache Networks

Topology-Aware Scenario

Similarly as in the previous chapter1, we consider a cache-aided network where a transmit-
ter (TX) with access to a library of N unit-sized files W (1),W (2), . . . ,W (N) is connected
via a shared-link broadcast channel to K users (N ≥ K), each of which is connected to
one of Λ different caches. The size of each cache λ ∈ {1, 2, . . . ,Λ} is a design parameter
denoted by Mλ ∈ (0, N] (in units of file), adhering to a cumulative sum cache-size
constraint MΣ ,

∑Λ
λ=1Mλ. We define the normalized cache size of cache λ as γλ ,

Mλ
N ,

such that the sum cache-size constraint takes the form

Λ∑
λ=1

γλ =
MΣ

N
, t. (4.1)

We consider a normalized scenario where the channel capacity is normalized to one file
per unit of time, and we assume that users can access the content of the cache to which
they are connected at zero cost. Each cache λ is connected to a set of users Uλ ⊂ [K],
such that all these disjoints sets U = {U1, . . . ,UΛ} form a partition of the set of users
[K]. The number of users connected to cache λ is denoted by Lλ (i.e. |Uλ| = Lλ) for any
λ ∈ [Λ], and it is here referred to as occupancy of cache λ. This defines a so-called cache
occupancy vector

L , (L1, . . . , LΛ), (4.2)

where naturally
∑Λ

λ=1 Lλ = K, and where we assume, without loss of generality, that
Li ≥ Lj for i < j, such that L1 ≥ L2 ≥ · · · ≥ LΛ. Whenever needed, we will use L as a
set, i.e. L = {Lλ}Λλ=1. The schematic of this setting is depicted in Figure 4.1.

Remark 4. It is important to highlight that here we have assumed that cache λ is the
λ-th most populated cache such that Lλ = |Uλ|, in contrast to the previous chapter where
cache λ was not necessarily the λ-th most populated cache.

The system works in three different phases.

1. A memory allocation phase during which the knowledge of the cache occupancy
vector L is used to allocate the total memory MΣ to the caches, yielding the
allocated size set {γλ}Λλ=1.

2. A cache placement phase during which each cache λ — of allocated size γλ — is filled
with content Zλ from the library, according to a certain strategy2 Z = (Z1, . . . ,ZΛ).
In this work, we focus only on uncoded cache placement schemes (cf. [5]), where
each cache stores part of the content of the library as it is, without any coding.
Besides this, we also assume that the cache occupancy vector L is known in this
phase.

1Some of the definitions and assumptions in this section coincide with the ones of the system model in
the previous chapter. This allows the chapter to be self-contained.

2We notice that the size of cache λ, i.e. |Zλ|, reflects the memory allocation of the previous phase.

50

Chapter 4. Topology-Aware Shared-Cache Networks

Shared Link

User

Shared Cache
Server

Z1

Z2 Z3

1 2 3

4

γ1

γ2 γ3

Figure 4.1 – Schematic of the shared-cache shared-link setting with optimized cache sizes for L = (2, 1, 1).

3. A delivery phase that starts with each user k ∈ [K] requesting a file. The vector of
requested file indices is denoted by d , (d1, d2, . . . , dK), such that the file requested
by user k is given by W (dk). Once the demand vector d is known, the server will
aim to deliver each requested file to its corresponding user.

Topology-Partially-Aware Scenario

In this scenario, we consider a similar setting to the one described above with the only
difference that the number of users that will be connected to each cache, i.e. L, is not
known during the memory allocation and cache placement phases. Nevertheless, we
assume that the first two phases are designed according to another cache occupancy
vector vector L̄. For any λ ∈ [Λ], the value of L̄λ can represent — but it is not limited
to — the expected number of users connected to cache λ during the delivery phase. We
also allow the sum

∑Λ
λ=1 L̄λ to be arbitrary and not necessarily equal to

∑Λ
λ=1 Lλ = K,

while at the same time we assume that for any λ ∈ [Λ] the value of Lλ is strictly positive.

4.1.1 Problem Definition

We consider the standard rate metric that has been commonly used in coded caching
literature [2, 4, 5], to which we hereinafter refer to as delivery time and whose definition
follows. For any given uncoded cache placement scheme Z, any cache occupancy vector L
and any given demand d, we define T ∗(Z,d,L) as the minimum delivery time (over all
delivery schemes) that guarantees delivery of the desired files W (dk) to all users k ∈ [K].
For the topology-aware scenario, under the assumption of uncoded cache placement, our
goal is to characterize the minimum worst-case delivery time over all memory-allocation
strategies and all placement-and-delivery schemes, i.e.,

T ∗(t,L) , min
Z

max
d

T ∗(Z,d,L) (4.3)

as a function of t and L. We omit hereinafter the dependence of T ∗ on (t,L) when
there is not any possible ambiguity. We also define the optimal cache placement Z∗L as

51

Chapter 4. Topology-Aware Shared-Cache Networks

Z∗L , argmin
Z

max
d

T ∗(Z,d,L). Next, we present the definition of homogeneous cache

placement.

Definition 2. A cache placement scheme is homogeneous if each bit of the library is
repeated the same number of times throughout the different caches.

A homogeneous cache placement naturally implies that t must be an integer, i.e.,
t ∈ [Λ]. In the context of non-uniform L and heterogeneous {γλ}Λλ=1, the concept of the
sum-DoF in cache-aided networks [62] naturally generalizes to

DoF ,
K −∑Λ

λ=1 γλLλ
T

,

reflecting the rate of delivery of the non-cached desired information.
For the topology-partially-aware scenario, we will characterize the optimal delivery

time
T ∗(t,L, L̄) , max

d
T ∗(Z∗L̄,d,L) (4.4)

as a function of t, L and L̄.

4.2 An Illustrative Example of the Scheme for the Topology-Aware

Setting

Before introducing our main results, we present in the following an illustrative example
that shows the idea behind the proposed general scheme.

Consider an instance of the considered shared-cache problem with N = 6 files, Λ = 3
caches and K = 6 users distributed among the caches according to the cache occupancy
vector L = (3, 2, 1). We assume that a sum memory of MΣ = 12 units of file is available
to be allocated across the caches.

In the caching phase, we split each file W (n) (n ∈ [6]) into 11 equally-sized subfiles
indexed by the pairs3

{(12, 1), (12, 2), (12, 3), (12, 4), (12, 5), (12, 6), (13, 1), (13, 2), (13, 3), (23, 1), (23, 2)}.
(4.5)

In the above, the first index of the pairs refers to the set of caches that will store the
subfiles with that index. On the other end, the second index is just a counter that
differentiates subfiles with the same first index. Then, for each n ∈ [6], each cache λ
stores those subfiles whose first index includes λ. It follows that the content of each cache
is:

Z1 = {W (n)
12,1,W

(n)
12,2,W

(n)
12,3,W

(n)
12,4,W

(n)
12,5,W

(n)
12,6,W

(n)
13,1,W

(n)
13,2,W

(n)
13,3 : n ∈ [6]},

3For the sake of readability and concision, in (4.5) and throughout this example we have used the
compact notation (12, 1) in place of ({1, 2}, 1). The same applies to all other indices.

52

Chapter 4. Topology-Aware Shared-Cache Networks

Z2 = {W (n)
12,1,W

(n)
12,2,W

(n)
12,3,W

(n)
12,4,W

(n)
12,5,W

(n)
12,6,W

(n)
23,1,W

(n)
23,2 : n ∈ [6]},

Z3 = {W (n)
13,1,W

(n)
13,2,W

(n)
13,3,W

(n)
23,1,W

(n)
23,2 : n ∈ [6]},

thus adhering to γ1 = 9
11 , γ2 = 8

11 , γ3 = 5
11 .

In the delivery phase, we consider the demand vector d = (1, 2, 3, 4, 5, 6) where
W (1),W (4) and W (6) are each requested by one of the three users associated to cache 1,
W (2) and W (5) by the two users with cache 2, and W (3) by the user with cache 3. For the
sake of a more understandable exposition, we re-denote the ordered set of files {W (n)}6n=1

as {A,B,C,D,E, F}. On that account, for Rλ denoting the set of uncached subfiles
wanted by the users of cache λ, we have

R1 R2 R3

A23,1 B13,1 C12,1

D23,1 E13,1 C12,2

F23,1 B13,2 C12,3

A23,2 E13,2 C12,4

D23,2 B13,3 C12,5

F23,2 E13,3 C12,6

We notice that, thanks to the proposed heterogeneous memory allocation — which we
will present in detail in Section 4.4 —, the number of subfiles (which are all equally-sized)
requested from each cache is the same. This fact is key to allow the transmission of
all data during the delivery phase in the form of multicast messages of order t+ 1 = 3.
Hence, the set of 6 XORs are

X123(1) = D23,1⊕B13,1⊕C12,1 (4.6)

X123(2) = A23,1⊕E13,1⊕C12,2 (4.7)

X123(3) = A23,2⊕B13,2⊕C12,3 (4.8)

X123(4) = F23,1⊕E13,2⊕C12,4 (4.9)

X123(5) = F23,2⊕B13,3⊕C12,5 (4.10)

X123(6) = D23,2⊕E13,3⊕C12,6 (4.11)

and can be easily decoded in the classical manner as in [2]. Consequently, the total delay
is T = 6

11 which can be shown to be exactly optimal under the assumption of uncoded
and homogeneous cache placement. On the other hand, if the topology of the network was
not known so that we should employ equal-sized caches, the best possible performance
under the same assumptions is T = 1 (cf. Theorem 1), which almost doubles the delay of
the new scheme. This gain of the new proposed scheme comes from the fact that the
memory was allocated in a way that simultaneously increases the coded multicasting
gain and the local caching gain. Intuitively, allocating more memory to those caches that
serve more users automatically implies a higher local caching gain. At the same time, a
cache allocation that levels out the data requested from each cache allowed for the design
of multicast messages of maximum order. In contrast, in the case of uniform allocation

53

Chapter 4. Topology-Aware Shared-Cache Networks

(see Chapter 3), a coding gain of t+ 1 is not achievable for all requested data, and the
local caching gain is always smaller than any memory allocation strategy allocating more
storage to more loaded caches.

4.3 Main Results

We present in this section our main contributions. We first start with an important
definition that we will use throughout this chapter and Chapter 8.

Definition 3 (Elementary symmetric functions [63]). For any set X = {x1, x2, . . . , xn} of
n elements, the k-th elementary symmetric function is defined as the sum of all distinct
products of k distinct elements in X , i.e.,

ek(X) ,
∑
q∈CXk

k∏
j=1

xq(j), (4.12)

for any k ∈ {1, . . . , n}, whereas e0(X) , 1.

We know proceed by presenting a lower bound on the delivery time under uncoded
cache placement for the topology-aware scenario described before.

Topology-Aware Scenario

Theorem 4. Under the assumption of uncoded cache placement, the optimal normalize
delivery time of the (t,L) shared-cache BC network satisfies

T ∗(t,L) ≥ T (t̄,L)
low (t) (4.13)

where t̄ , round(t), T (t̄,L)
low (x) is defined4 as

T (t̄,L)
low (x) , Convj∈[Λ]0

∑

q∈C[Λ]

t̄+1

t̄+1−|q∩τ?j |
j+1−|q∩τ?j |

∏t̄+1
i=1 Lq(i)∑

`∈C[Λ]

t̄

∏t̄
i=1 L`(i)

 , (4.14)

and τ?j is given by

τ?j =

{∅} if j = 0

{Λ− j + 1, Λ− j + 2, . . . , Λ} if 1 ≤ j < t̄

{1, 2, . . . , j} if j ≥ t̄

Proof. The proof is presented in Section 4.5.

4As reported in the notation section at the beginning of this manuscript, the term Cχk is used to
denote the set of all k-combinations of the set χ.

54

Chapter 4. Topology-Aware Shared-Cache Networks

The heterogeneity of the cache occupancy vector L and its knowledge during the
placement phase introduce a new challenge in the derivation of the converse bound.
Directly adjusting and applying the index coding technique developed in [4] (or, equiva-
lently, the genie-aided approach of [5]) would result in a very loose bound, as we have
demonstrated5 in [43]. On the other hand, the derivation of the bound in (4.14) relies
on a new index-coding-based approach that captures the heterogeneity of the system
and therefore — in conjunction with the developed achievable coded caching scheme
presented in Section 4.4 — allows us to characterize the optimal delivery time under the
basic assumptions of homogeneous (cf. definition 2) and uncoded cache placement in
the subsequent theorem. We first present the achievable delivery time of the scheme in
Section 4.4 in the following lemma.

Lemma 3. For the K-user BC with Λ shared caches, normalized sum-cache constraint t,
and cache occupancy vector L, the worst-case delivery time

T(t,L) = Convt∈[Λ]0

(∑Λ
λ=1 Lλ(1− γλ)

t+ 1

)
(4.15)

is achievable, where the memory allocation {γλ}Λλ=1 is given by

γλ =
Lλ · et−1(L \ {Lλ})

et(L)
. (4.16)

Proof. The placement and delivery schemes are presented in Section 4.4.

We immediately notice that the delay in (4.15) directly implies that DoF = t + 1,
which is an improvement over the topology-agnostic scenario discussed in Chapter 3. In
fact, we know from Chapter 3 that, if during the cache placement phase the exact number
of users that will be connected to each cache during the delivery phase is not known, then
DoF = t+ 1 can be achieved only in the uniform case where we have K

Λ users per cache,
and that any non-uniformity in L forces a DoF penalty. The above lemma shows that
knowledge of the cache occupancy vector L allows for a redesigned and skewed memory
allocation that, in turn, simultaneously allows a better local caching gain and a higher
sum-DoF. To clarify this, a strategy that allocates more memory to more loaded caches
automatically allows for higher local caching gains than a uniform memory allocation
across the caches. At the same time, such heterogeneous allocation allows for multicasting
messages that always serve t+1 users at a time. These observations lead to the surprising
fact that, for a fixed number of users and caches, the uniform cache occupancy vector
L = (KΛ ,

K
Λ , . . . ,

K
Λ) is the one that results in the highest delivery time, while the more

skewed is the cache occupancy vector L the lower is the achievable normalized delivery
time. Also, it is interesting to observe that the skewness of the allocated {γλ}Λλ=1 reduces

as t increases. For t = 1, the skewness is maximal since we have γλ = Lλ
K , while as t

increases, the skewness reduces down to having a uniform allocation when t = Λ.

5The converse bound presented in [43] is not included in this thesis since the bound presented in
Section 4.5 improves the one in [43].

55

Chapter 4. Topology-Aware Shared-Cache Networks

Observation 2. It is interesting to observe that, for any given normalized total cache
size t, the memory allocation {γλ}Λλ=1 given in Lemma 3 coincides with the one of the
scheme proposed in [38] (see also [37]) for a cache-aided setting with fixed unequal channel
capacities. Precisely, Tang et al. consider a wireless broadcast channel where the link
between the transmitter and cache-aided receiver λ has normalized capacity Rλ, and where
these capacities are known during the cache allocation and placement phases. Assuming
that each user requests only one file, the authors proposed a scheme which requires an
unequal cache size allocation that coincides with the one in (4.16), where Lλ would be
replaced by the inverse of the rate of user λ, i.e. Rλ = 1

Lλ
, ∀λ ∈ [Λ]. Despite the different

nature of these two problems, we can observe that in the unequal link rate setting a user
with rate Ri (here referred to as user i) is reminiscent of the user requesting Li files (or
the cache serving Li users) in our setting.

We have presented the proposed lower bound and achievable scheme. In the next
theorem, we state the conditions under which the achievable delivery time in (4.15) is
exactly optimal.

Theorem 5. For integer values of t ∈ [Λ]0, the achievable delivery time T(t,L) in (4.15)
is exactly optimal in the following two cases:

(i) Under the assumption of uncoded and homogeneous cache placement.

(ii) Under the assumption of uncoded cache placement when the sequence {c̃(t)
τ?j
}j∈[Λ]0 is

convex in j, where

c̃
(t)
τ?j

,

∑
q∈C[Λ]

t+1

t+1−|q∩τ?j |
j+1−|q∩τ?j |

∏t+1
i=1 Lq(i)∑

`∈C[Λ]
t

∏t+1
i=1 L`(i).

. (4.17)

Proof. The converse bound for (i) is relegated to Section 4.5. We prove (ii) in the

following. From (4.17), we can write T (t,L)
low (x) (defined in (4.14)) as

T (t,L)
low (x) = Convj∈[Λ]0

(
c̃

(t)
τ?j

)
. (4.18)

For any convex sequence, its lower convex envelope contains all its elements. Thus, if

{c̃(t)
τ?j
}j∈[Λ]0 is convex, then T (t,L)

low (t) = c̃
(t)
τ?t

for any integer point t ∈ [Λ]0.

Moreover, for j = t, we have that
t+1−|q∩τ?j |
j+1−|q∩τ?j |

= 1 for any q, and thus (4.17) yields

c̃
(t)
τ?t

=

∑
q∈C[Λ]

t+1

∏t+1
i=1 Lq(i)∑

`∈C[Λ]
t

∏t+1
i=1 L`(i)

= et+1(L)
et(L) . Then, it follows from Theorem 4 that

T ∗(t,L) ≥ et+1(L)

et(L)

(a)
=

1

t+ 1

∑Λ
λ=1 Lλ · et(L \ {Lλ})

et(L)

56

Chapter 4. Topology-Aware Shared-Cache Networks

(b)
=

1

t+ 1

∑Λ
λ=1 Lλ · (et(L)− Lλet−1L \ {Lλ})

et(L)

(c)
=

∑Λ
λ=1 Lλ(1− γλ)

t+ 1
= T(t,L),

(4.19)

where (a) follows from using Corollary 3, (b) follows from employing Property 1 in
Appendix B.1 and (c) is because of (4.16).

Next, we present an example of a setting for which our scheme is optimal under the
constraint of uncoded cache placement.

Example 1. Consider the cache-aided network of the example in Section 4.2 with L =

(3, 2, 1) and t = 2. The sequence
{
c̃

(2)
τ?j

}
j∈{0,1,2,3} takes the values {18/11, 12/11, 6/11, 0},

which is a convex sequence. From Theorem 5, this implies that for the considered example
in Section 4.2 the achievable delivery time T ∗(2, (3, 2, 1)) = 6/11 is information-theoretic
optimal under the assumption of uncoded cache placement.

Remark 5. It is important to highlight that the converse bound in Theorem 4 and the
achievable delivery time in Lemma 3 can be extended to the setting where the server is
equipped with N0 antennas. In particular, as long as each cache assists at least N0 users,
i.e. Lλ ≥ N0, ∀λ ∈ [Λ], the achievable delivery time reduces by a multiplicative factor
of N0, similarly as it happened in the topology-agnostic setting discussed in the previous
chapter. The main idea behind the multi-antenna version of the proposed scheme in
Section 4.4 is to increase the subpacketization of each file by a multiplicative factor of
N0, thus allowing to use the N0 antennas for multiplexing users with the same cache, as
we saw in the previous chapter. A valid matching lower bound can be also easily obtained
by dividing the developed bound in Theorem 4 by a factor N0, again following the same
line as in Section 3.4 of the previous chapter.

Topology-Partially-Aware Scenario

We now shift the focus to the topology-partially-aware scenario, for which we present
the optimal delivery time in the next theorem. Hereinafter, we will use SΛ,Λ−t to denote
the set of the (Λ− t)-permutations of [Λ].

Theorem 6. For the (t, L̄,L) topology-partially-aware scenario, the delivery time

T ∗(t, L̄,L) = max
σ∈SΛ,Λ−t

Λ−t∑
λ=1

Lσ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

(4.20)

is exactly optimal under the assumption of placement Z∗
L̄

.

Theorem 6 describes the optimal delivery time for a scenario in which, during the
memory allocation and cache placement phases, the server has a wrong (e.g., noisy or
statistical) information about the cache occupancy vector of the subsequent delivery
phase. Equivalently, during the first two phases the server knows that users will be

57

Chapter 4. Topology-Aware Shared-Cache Networks

connected to the caches in the delivery phase according to cache occupancy vector L̄,
but it turns out that the actual cache occupancy vector will finally be L. The delivery
time in Theorem 6 is higher than the optimal delivery time for the scenario where users
actually show up according to L̄, as expected by the server, i.e. T ∗(t, L̄,L) ≥ T (t, L̄),
where T (t, L̄) was presented in (4.15). Note that, in scenarios where only long-term
statistical information is available, it is common to consider the strategy of acting as if
this information was perfect and true for any realization. In Section 4.7, we will show
through some numerical evaluations how T ∗(t, L̄,L) behaves on average when L is a
realization of Λ independent Poisson random variables.

4.4 Achievability for the Topology-Aware Scenario

In this section, we present our caching and delivery scheme that achieves the optimal
delivery time in (4.15), followed by the assessment of its performance. The scheme below
is presented for integer values of t, i.e., t ∈ {1, 2 . . . ,Λ}; for all other cases (t 6∈ N),
memory-sharing is used (cf. [2]), and we address these cases at the end of this section.

4.4.1 Memory Allocation and Cache Placement

In the first place, we split each file W (n), n ∈ [N], into

S = et(L) =
∑
τ∈C[Λ]

t

t∏
j=1

Lτ(j), (4.21)

subfiles of equal size, such that W (n) is partitioned as

W (n) =
{
W

(n)
τ,1 ,W

(n)
τ,2 , . . . ,W

(n)
τ,|Aτ | | τ ∈ C

[Λ]
t

}
where Aτ ,

{
1, 2, . . . ,

t∏
j=1

Lτ(j)

}
. Afterwards, cache λ ∈ [Λ] stores in its memory all

subfiles W
(n)
τ,mτ ,mτ ∈ Aτ , whose first subscript τ includes λ, which in turn results in the

following cache

Zλ =
{
W (n)
τ,mτ |W (n)

τ,mτ ∈W (n), τ 3 λ,mτ ∈ Aτ , n ∈ [N]
}
.

This automatically yields the memory allocation

γλ =
Lλ · et−1(L \ {Lλ})

et(L)
, λ ∈ [Λ]. (4.22)

Proof of equation (4.22): To evaluate γλ, we first note that all subfiles are equally-sized
and that the placement scheme is symmetric with respect to the library files, i.e. the
caching strategy does not depend on the file index n ∈ [N]. This suggests that γλ can
be evaluated as the ratio between the number of subfiles (of any file W (n)) stored in

58

Chapter 4. Topology-Aware Shared-Cache Networks

cache λ and the total number of subfiles S = et(L) into which W (n) is split. The fact

that a subfile W
(n)
τ,m is placed in Zλ if and only if λ ∈ τ , together with the fact that

|Aτ | =
∏t
j=1 Lτ(j), automatically yield the numerator of (4.22).

This same placement also assures that each subfile is cached in exactly t caches
(because each τ satisfies |τ | = t), which in turn guarantees the sum memory constraint in
(4.1). This memory constraint can also be verified by noting that

Λ∑
λ=1

γλ =
Λ∑
λ=1

Lλ · et−1(L \ {Lλ})
et(L)

= t, (4.23)

where the last step follows directly from Corollary 3 in Appendix B.1. Also, this placement
yields an interesting property — described in the following proposition — which will be
instrumental for the design of the delivery phase and the achieving of its performance.

Proposition 1. For any (t+ 1)-tuple Q ⊂ [Λ], and for any specific cache λ ∈ Q, the total
number of subfiles with first subscript τ = Q \ {λ} that are missing from all the users
associated to cache λ is independent of λ and it equals

PQ ,
t+1∏
j=1

LQ(j). (4.24)

Proof. For any (t+ 1)-tuple Q ⊂ [Λ], consider cache λ ∈ Q and let τ = Q \ {λ}. There
are Lλ requested files from the users Uλ of cache λ, each having

∏t
j=1 Lτ(j) subfiles with

first index τ . This means that the total number of subfiles that need to be sent to serve
users in Uλ is Lλ

∏t
j=1 Lτ(j) =

∏t+1
j=1 LQ(j), which does not depend on λ.

4.4.2 Delivery Scheme

For ease of presentation, we will use dλ to denote the vector of indices of the files requested
by the users in Uλ. For a fixed (t+ 1)-tuple Q and any λ ∈ Q, consider the set of subfiles

{W (dλ(j))
τ,m : j ∈ [Lλ],m ∈ Aτ}

with first subscript τ = Q\ {λ} that are requested from users in Uλ. From Proposition 1,
we know that the cardinality of this set is PQ, and thus we can relabel these subfiles as

{F (λ)
τ,j : j ∈ [PQ]}.

Because of the cache placement phase, we note that, for any (t + 1)-tuple Q and any
j ∈ [PQ], the set of subfiles

F
(λ)
Q\{λ},j , ∀λ ∈ Q, (4.25)

forms a clique of t+ 1 nodes. By Proposition 1, for any (t+ 1)-tuple Q ∈ [Λ], we have PQ
cliques as in (4.25), all of t+ 1 nodes. Consequently, we transmit, for each (t+ 1)-tuple
Q ⊆ [Λ], the following PQ XORs:

XQ(j) = ⊕
λ∈Q

F
(λ)
Q\{λ},j , ∀j ∈ [PQ], (4.26)

whose structure allows for clique-based decoding as in [2].

59

Chapter 4. Topology-Aware Shared-Cache Networks

4.4.3 Performance of the Scheme

The fact that there are PQ XORs for each (t+ 1)-tuple Q implies a total of∑
Q∈C[Λ]

t+1

PQ =
∑
Q∈C[Λ]

t+1

t+1∏
j=1

LQ(j) = et+1(L)

transmissions, and a corresponding delivery time of

T (t,L) =
et+1(L)

et(L)
, (4.27)

where the denominator et(L) is due to (4.21). In the proof of Theorem 5, we have seen
that the above achievable delivery time in (4.27) can be written in the more standard
form

T (t,L) =

∑Λ
λ=1 Lλ(1− γλ)

t+ 1
, (4.28)

where {γλ}Λλ=1 is the memory allocation obtained in (4.22).

Extension to Non-integer Values of t

When the normalized total memory t has a non-integer value, we apply memory sharing
along the same lines as in [2]. We write t as t = αbtc + (1 − α)dte, for α ∈ [0, 1], and
we split each file W (n) of the library in two parts W (n),1,W (n),2, where |W (n),1| = α and
|W (n),2| = (1− α), such that the library remains partitioned in two sub-libraries

W1 = {W (n),1|n ∈ [N]}, W2 = {W (n),2|n ∈ [N]}.
Afterwards, we first employ the cache placement scheme in Section 4.4.1 for sub-library
W1 with a total sum-cache constraint btc, and then we do the same for sub-library
W2 with a total sum-cache constraint dte. Delivery phase now consists of 2 rounds,
each as in Section 4.4.2: the first round employs XORs of order btc + 1 to serve files
{W (dk),1|k ∈ [K]}, whereas the second round employs XORs of order dte + 1 to serve
{W (dk),2|k ∈ [K]}. This scheme clearly results in the following delivery time

T (t,L) = αT (btc,L) + (1− α)T (dte,L). (4.29)

We now present a lemma that is instrumental for the proof of Lemma 3.

Lemma 4. The sequence
{
et+1(L)
et(L)

}
t∈[Λ]0

is a decreasing and convex sequence.

Proof. The proof is relegated to Appendix B.2.

The achievability of (4.29) implies that, for integer t, the straight line between points
(t, T (t,L)) and (t + 1, T (t + 1,L)) is also achievable. Moreover, we know from (4.27)

that {T (t,L)}t∈[Λ]0
=
{
et+1(L)
et(L)

}
t∈[Λ]0

, and thus Lemma 4 implies that {T (t,L)}t∈[Λ]0
is

a convex sequence. Since the lower convex envelope of a convex sequence is a piece-wise
function composed of the segments connecting two successive elements of the sequence
{T (t,L)}t∈[Λ]0

(i.e., (4.29)), Lemma 3 is proven.

60

Chapter 4. Topology-Aware Shared-Cache Networks

4.5 Converse for the Topology-Aware Scenario

In this section, we present a converse bound on the optimal delivery time T ∗(t,L), which
will serve as a proof for Theorem 4. We will also show that, restricting the cache placement
scheme to be homogeneous as in Definition 2, the proposed lower bound naturally implies
the optimality of the achievable delivery time in Lemma 3, thus proving case (i) of
Theorem 5.

In what follows, we denote the set of demands with distinct file requests by Dwc, such

that Dwc , {d ∈ [N]K : dj 6= di, ∀ i 6= j}. Finally, we will use the notation W
(i)
τ to refer

to the part of file W (i) exclusively stored in the caches in set τ .

Lower bounding T ∗(Z,d,L)

We first present a lemma that provides a generic lower bound on the delivery time
T ∗(Z,d,L) as a function of the cache permutation σ ∈ SΛ.

Lemma 5. Consider the delivery phase of a shared-cache network with a cache placement
described by Z, demand vector d and cache occupancy vector L. Then, under the
assumption of uncoded cache placement, the optimal delivery time T ∗(Z,d,L) can be
lower bounded by the quantity

Tlb,σ(Z,d,L) ,
Λ∑
λ=1

Lσ(λ)∑
`=1

∑
τλ⊆[Λ]\{σ(1),...,σ(λ)}

|W (dσ(λ)(`))
τλ |, (4.30)

where σ denotes an arbitrary permutation of the set of caches [Λ], i.e. σ ∈ SΛ.

Proof. The lemma is direct from equation (3.44) in Section 3.4, employed here with
N0 = 1. Furthermore, equation (3.44) was stated for a specific permutation denoted by
σs; it can be easily verified that it actually holds for every permutation σ ∈ SΛ, as stated
in the above lemma.

Next, a flexible lower bound on T ∗(Z,d,L) can be constructed as a weighted average
of the Λ! possible lower bounds that stem from (4.30). Thus, it holds that

T ∗(Z,d,L) ≥
∑
σ∈SΛ

wσTlb,σ(Z,d,L), (4.31)

where the weights {wσ} satisfy
∑

σ∈SΛ
wσ = 1.

Remark 6. The use of the weighted average is key to the construction of a tight bound,
and it is one of the key contributions of our work. In fact, in many works that follow the
index coding approach originally proposed in [4] (and the similar genie-aided approach
used in [5]) to construct lower bounds on coded caching problems, it is common to lower
bound the delivery time as a uniform average of several bounds driven by a certain cache
permutation σ (see for example [5, 64, 65]). This method has been shown to work well in

61

Chapter 4. Topology-Aware Shared-Cache Networks

settings that are uniform in terms of number of users per cache and sizes of the caches.
However, whenever the system model is affected by some heterogeneity, this approach
can easily fail to meet the goal. In our particular setting, we have shown in [43] that
the uniform average (i.e. wσ = 1

Λ!) leads to a loose bound which proved our achievable
performance to be optimal within a gap that scales linearly with the normalized total cache
size t. On the other hand, in this work, we show that a careful choice of the weights can
be crucial to derive a tight bound. We believe that this approach can be helpful to derive
lower bounds for other generic heterogeneous coded caching problems.

In our derivation, for any p ∈ [Λ]0, the choice of the weights wσ is taken as

w(p)
σ ,

p∏
j=1

Lσ(Λ−p+j)

∑
σ∈SΛ

p∏
j=1

Lσ(Λ−p+j)

, (4.32)

where we have used the upper index (p) to highlight the dependency of the value of the

weights on the choice of the parameter p. For p = 0 we define w
(0)
σ , 1

|SΛ| .

Lower bound on T ∗(t,L)

We now proceed to derive the lower bound on the optimal delivery time T ∗(t,L). In
this respect, we start by bounding from below — for a fixed cache placement Z — the
worst-case delay by the average rate over all demands with distinct requests as

T ∗(Z,L) , max
d

T ∗(Z,d,L) ≥ 1

|Dwc|
∑

d∈Dwc

T ∗(Z,d,L). (4.33)

Combining (4.33) and (4.31), it yields

T ∗(Z,L) ≥ 1

|Dwc|
∑

d∈Dwc

∑
σ∈SΛ

w(p)
σ Tlb,σ(Z,d,L) (4.34)

(a)

≥ 1

|Dwc|
∑

d∈Dwc

∑
σ∈SΛ

w(p)
σ

Λ∑
λ=1

Lσ(λ)∑
`=1

∑
τλ⊆[Λ]\{σ(1),...,σ(λ)}

|W (dσ(λ)(`))
τλ |

︸ ︷︷ ︸
,Tlb,p(Z,L)

, (4.35)

where in (a) we have used (4.30).
Next, we write the R.H.S of (4.35), which we denote by Tlb,p(Z,L), in the more

compact form

Tlb,p(Z,L) =
N∑
n=1

∑
τ∈2[Λ]

c(p)
τ,n

|W (n)
τ |
N

, (4.36)

where the value of c
(p)
τ,n is expressed in the following lemma. Before presenting the lemma,

let us introduce the notation L̇q ,
∏|q|
j=1 Lq(j) for any subset q ⊆ [Λ] for the sake of

readability.

62

Chapter 4. Topology-Aware Shared-Cache Networks

Lemma 6. The value of c
(p)
τ,n does not depend on the file index n and it takes the form

c(p)
τ =

1∑
`∈C[Λ]

p
L̇`

 ∑
q∈C[Λ]

p+1

L̇q
p+ 1− |q ∩ τ |
|τ |+ 1− |q ∩ τ | +

1

|τ |+ 1
L̇τ

∑
s∈C[Λ]\{τ}

p−j

(
L̇s ·

p−j∑
i=1

Ls(i)

) .

(4.37)

Proof. The proof of this lemma is presented in Appendix B.3.

We can tighten the bound on T ∗(Z,L) by selecting the most restricting p, such that

T ∗(Z,L) ≥ max
p∈[Λ]0

Tlb,p(Z,L). (4.38)

From the definition of the optimal delay T ∗(t,L) in (4.3), using (4.38) and substituting
(4.37) in (4.36) yields

T ∗(t,L) = min
Z

T ∗(Z,L) (4.39)

≥ min
Z

max
p∈[Λ]0

N∑
n=1

∑
τ∈2[Λ]

c(p)
τ

|Wn
τ |
N

= min
Z

max
p∈[Λ]0

∑
τ∈2[Λ]

c(p)
τ aτ , (4.40)

where we have introduced the notation aτ , 1
N

(
|W (1)

τ |+ |W (2)
τ |+ ...+ |W (N)

τ |
)

. Now,

considering the constraint on the total files size and the one on the sum cache size, a lower
bound on the optimal delay T ∗(t,L) can be obtained from the solution of the following
linear program

min
aτ

max
p∈[Λ]0

∑
τ∈2[Λ]

c(p)
τ aτ

subject to
∑
τ∈2[Λ]

aτ = 1,

∑
τ∈2[Λ]

|τ |aτ = t,

aτ ≥ 0, ∀τ ∈ 2[Λ].

(4.41)

Let us now focus on the proof of the lower bound in Theorem 4, and later we will consider
the proof for the optimality in Theorem 5

Proof of Theorem 4

In what follows, we further bound from below the constructed lower bound in (4.41). First

of all, let us introduce some useful notation. We define c̃
(p)
τ as c̃

(p)
τ ,

∑
q∈C[Λ]

p+1

L̇q
p+1−|q∩τ |
|τ |+1−|q∩τ |∑

`∈C[Λ]
p
L̇`

.

63

Chapter 4. Topology-Aware Shared-Cache Networks

Then, we define the subset of cardinality j that minimizes c̃
(p)
τ as τ?j , i.e., τ?j ,

argminτ∈2[Λ]:|τ |=j c̃
(p)
τ , and we define āj as āj ,

∑
τ∈2[Λ]:|τ |=j aτ . Then, it holds that

∑
τ∈2[Λ]

c(p)
τ aτ

(a)

≥
∑
τ∈2[Λ]

c̃(p)
τ aτ

(b)

≥
Λ∑
j=0

c̃
(p)
τ?j
āj , (4.42)

where in (a) we have applied the fact that c̃
(p)
τ ≤ c(p)

τ (cf. (4.37)), and in (b) we have used
the definitions of τ?j and āj .

We now provide a lemma that tells us the value of the optimal τ?j , for any p ∈ [Λ]0
and j ∈ [Λ]0.

Lemma 7. Let us consider that the caches are sorted such that L1 ≥ L2 ≥ · · · ≥ LΛ.
Then, for any cardinality |τ | = j, j ∈ [Λ], it holds that

argmin
τ⊆[Λ]
|τ |=j

c̃(p)
τ ,

τ?j = {∅} if j = 0

τ?j = {Λ− j + 1, Λ− j + 2, . . . , Λ} if 1 ≤ j < p

τ?j = {1, 2, . . . , j} = [j] if j ≥ p
(4.43)

Note that for j = p, c̃
(p)
τ is the same for every τ such that |τ | = j. This means that

c̃
(p)
τ?j

= c̃
(p)
τ ∀τ : |τ | = j.

Proof. The proof is relegated to Appendix B.5.

Now, jointly employing (4.42) in (4.40) and using the max-min inequality yields

min
Z

max
p∈[Λ]0

∑
τ∈2[Λ]

c(p)
τ aτ ≥ max

p∈[Λ]0
min
Z

Λ∑
j=0

c̃
(p)
τ?j
āj . (4.44)

It then follows that

T ∗(t,L) ≥ max
p∈{0,1,...,Λ}

min
āj

Λ∑
j=0

c̃
(p)
τ?j
āj

subject to

Λ∑
j=0

āj = 1

Λ∑
j=0

jāj = t

āj ≥ 0, ∀j ∈ [Λ]0.

(4.45)

We present now a result that will be instrumental for the following step in the derivation.

Proposition 2. The sequence
{
c̃

(p)
τ?j

}
is a decreasing sequence in j ∈ [Λ]0.

64

Chapter 4. Topology-Aware Shared-Cache Networks

Proof. The proof is relegated to Appendix B.4.

We know focus on the inner optimization problem in (4.45) for a fixed p ∈ [Λ]0,
and we follow the same steps as in [5] to solve it analytically. In this respect, we know

from Proposition 2 that
{
c̃

(p)
τ?j

}
is a decreasing sequence in j ∈ [Λ]0, and thus its convex

envelope is a decreasing and convex sequence. Thus, applying Jensen inequality, we
obtain that

T ∗(t,L) ≥ max
p∈[Λ]0

T (p,L)
low (t) (4.46)

where

T (p,L)
low (t) , Convj∈[Λ]0

(
c̃

(p)
τ?j

)
. (4.47)

Theorem 4 simply follows from the fact that

max
p∈{0,1,...,Λ}

T (p,L)
low (t) ≥ T (t̄,L)

low (t), (4.48)

where t̄ = round(t).

Proof of case (i) in Theorem 5

We recall that, under the assumption of homogeneous caching, t is integer, thus implying
that t̄ = round(t) = t. For p = t, and under the aforementioned assumption, the problem
in (4.45) reduces to

min
āj

c̃
(t)
τ?t
āt

subject to āt = 1.
(4.49)

It is easy to verify that, for all τ ∈ [Λ] : |τ | = t, it holds that

c̃(t)
τ = c̃

(t)
τ?t

=

∑
q∈C[Λ]

t+1

t+1∏
j=1

Lq(j)

∑
q∈C[Λ]

t

t∏
j=1

Lq(j)

, (4.50)

which, together with (4.49), directly results in

T ∗(t,L) ≥ c̃(t)
τ?t
, (4.51)

which concludes the proof of case (i) in Theorem 5.

4.6 The Topology-Partially-Aware Scenario

In this section, we present the achievable scheme and the matching converse for the
topology-partially-aware scenario previously described.

65

Chapter 4. Topology-Aware Shared-Cache Networks

4.6.1 Achievable Scheme

With the knowledge of the cache occupancy vector L̄ at hand — which we recall again
that can represent the expected cache occupancy vector in the delivery phase —, the
server designs the memory allocation {γλ}Λλ=1 and cache placement Z∗

L̄
as described

in Section 4.4.1. For the subsequent delivery phase with topology described by L, the
following fact holds.

Proposition 3. For any (t + 1)-tuple Q ⊂ [Λ], the total number of subfiles with first
subscript τλ = Q \ {λ} that are missing from all users associated to any specific cache
λ ∈ Q is equal to

PλQ = Lλ

t∏
j=1

L̄τλ(j). (4.52)

Proof. Considering cache λ, there are Lλ users requesting Lλ files. For each of these files
there are

∏t
j=1 L̄τλ(j) subfiles with first index τλ = Q \ {λ}.

In what follows, we will use dλ to denote the vector of indices of the files requested by
the users in Uλ. Similarly to the delivery scheme in section 4.4.2, for a fixed (t+ 1)-tuple
Q and any λ ∈ Q, consider the set of subfiles, with first subscript τ = Q \ {λ}, that are
requested from users in Uλ, i.e.

{W (dλ(j))
τ,m : j ∈ [Lλ],m ∈ Aτ},

where we recall that Aτ =
{

1, 2, . . . ,
t∏

j=1
L̄τ(j)

}
. From Proposition 3, we know that the

cardinality of this set is PλQ , thus we can relabel these subfiles as

FλQ = {F (λ)
τ,j : j ∈ [PλQ]}.

Let us now define the quantity P
(max)
Q , max

λ∈Q
PλQ and F

(λ)
τ,j , ∅ for any λ ∈ Q,

τ = Q \ {λ} and PλQ < j ≤ P
(max)
Q . Because of the cache placement phase, we notice

that for any (t+ 1)-tuple Q and any j ∈ [P
(max)
Q], the set of subfiles

F
(λ)
Q\{λ},j ∀λ ∈ Q (4.53)

forms a clique of t+ 1 nodes. For any (t+ 1)-tuple Q ∈ [Λ], we have P
(max)
Q cliques as in

(4.53), all of t+ 1 nodes. Consequently, we transmit, for each (t+ 1)-tuple Q ⊆ [Λ], the

following P
(max)
Q XORs

XQ(j) = ⊕
λ∈Q

F
(λ)
Q\{λ},j , ∀j ∈ [P

(max)
Q], (4.54)

whose structure allows for clique-based decoding as in [2].

66

Chapter 4. Topology-Aware Shared-Cache Networks

Delay Evaluation For each (t+ 1)-tuple Q, the server transmits

P
(max)
Q = max

λ∈Q
PλQ

XORs. The total number of XORs sent through the channel is

∑
Q∈C[Λ]

t+1

max
λ∈Q

PλQ =
∑
Q∈C[Λ]

t+1

max
λ∈Q

Lλ

t∏
j=1

L̄τλ(j),

where τλ = Q \ {λ}. This result and the cache placement Z∗
L̄

imply that the normalized
delivery time of the achievable scheme for any t,L and L̄ is

T (t,L, L̄) =

∑
Q∈C[Λ]

t+1

maxλ∈Q Lλ
˙̄Lτλ

et(L̄)
, (4.55)

where we have applied the notation ˙̄Lτλ =
∏t
j=1 L̄τλ(j), et(L̄) =

∑
τλ∈C

[Λ]
t

∏t
j=1 L̄τλ(j).

4.6.2 Converse Bound

To develop the lower bound for T ∗(t,L, L̄), we immediately observe that, unlike in the
topology-aware scenario, the cache placement is fixed in this case, thus resulting in a
simpler problem. Before proceeding with the proof, we notice that, under the cache
placement Z∗

L̄
, for any n ∈ [N], we can put together all subfiles stored in the caches in

set τ ⊂ [Λ] : |τ | = t and form the subfile W
(n)
τ = {W (n)

τ,mτ : mτ ∈ Aτ}.
Under the cache placement Z∗

L̄
, Lemma 5 also holds for the considered topology-

partially-aware scenario, such that T ∗(Z∗
L̄
,d,L) can be lower bounded as

T ∗(Z∗L̄,d,L) ≥
Λ∑
λ=1

Lσ(λ)∑
`=1

∑
τλ⊆[Λ]\{σ(1),...,σ(λ)}

|W (dσ(λ)(`))
τλ |, (4.56)

=
Λ∑
λ=1

Lσ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

, (4.57)

where (4.57) follows directly from the fact that, under the cache placement Z∗
L̄

, we have
that

|W (n)
τ | =

{ ˙̄Lτ
et(L̄)

|τ | = t

0 otherwise
∀n ∈ [N]

67

Chapter 4. Topology-Aware Shared-Cache Networks

0 1 2 3 4 5 6

0

10

20

30

40

50

60

70

Figure 4.2 – Delivery time comparisons for L = (20, 20, 8, 6, 4, 2)

Now, we first note that (4.57) does not depend on the specific demand d. Then, we
maximize over all possible caches permutations σ to obtain

T ∗(t,L, L̄) = max
d

T ∗(Z∗L̄,d,L) (4.58)

≥ max
σ∈SΛ

Λ∑
λ=1

Lσ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

(4.59)

= max
σ∈SΛ,Λ−t

Λ−t∑
λ=1

Lσ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

(4.60)

where we recall that SΛ,Λ−t is the set of (Λ− t)-permutations of [Λ].

4.7 Numerical Results

We here focus on the topology-partially-aware scenario, and we assume in the delivery
phase that the cache occupancy vector L is the realization of a collection of independent
random variables L = (L1,L2, . . . ,LΛ) with expected value L̄ = (L̄1, L̄2, . . . , L̄Λ), where
we have used L̄λ = E[Lλ], λ ∈ [Λ].

Fact 1. For the (L,t) topology-partially-aware scenario, the expected delivery time satisfies

E[T ∗(t,L, L̄)] ≥ T (t, L̄). (4.61)

68

Chapter 4. Topology-Aware Shared-Cache Networks

Proof.

E[T ∗(t,L, L̄)] = E

 max
σ∈SΛ,Λ−t

Λ−t∑
λ=1

Lσ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

≥ max

σ∈SΛ,Λ−t
E

Λ−t∑
λ=1

Lσ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

 (4.62)

= max
σ∈SΛ,Λ−t

Λ−t∑
λ=1

E
[
Lσ(λ)

] ∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

˙̄Lq
et(L̄)

(4.63)

=

∑
Q∈C[Λ]

t+1

maxλ∈Q E [Lλ] ˙̄LQ\{λ}

et(L̄)
(4.64)

=

∑
Q∈C[Λ]

t+1

maxλ∈Q L̄λ
˙̄LQ\{λ}

et(L̄)

=
et+1(L̄)

et(L̄)

= T (t, L̄), (4.65)

where (4.63) follows from the independence of the random variables {Lλ} and (4.64) is
proven in Appendix B.6.

For the above setting, we will consider 3 different schemes. The first is the single-
antenna topology-agnostic scheme of Section 3.3.1 (equivalent to the one in [32]), which
does not exploit the knowledge of L̄ for the cache placement, which is done according to
MAN cache placement. The second scheme, which we will refer to as TPA ECS scheme
(topology-partially-aware equal-cache-size scheme), is the one achieving the delivery time
in equation (24a) of [59] for the case when there are no cache-less users. We notice
that [59] assumes that all the caches have the same size, which cannot be optimized.
The cache placement of the aforementioned scheme in [59] partitions the set of caches
in G groups such that all the caches in the same group store the same content, and it
applies MAN placement for G caches/users. If the cache occupancy vector L is known
in advance during placement, the best partition is chosen by leveraging L in order to
minimize the delivery time. In the topology-partially-aware scenario considered here,
L cannot be known in advance, thus we select the partition according to the average
cache occupancy vector L̄. Delivery is performed by means of the multi-round scheme
for the single-antenna setting in Section 3.3.1 (se also [32]). Finally, the third scheme is
our proposed topology-partially-aware scheme achieving the delivery time in Theorem 6.
We assume that each random variable Lλ follows a poisson distribution with mean L̄λ,
i.e. Lλ ∼ Poiss(L̄λ), and we consider the scenario where the expected number of users
per cache is L̄ = (20, 20, 8, 6, 4, 2). Figure 4.2 shows the average delivery time achieved
by the three schemes, the memory-rate curve (t, T (t, L̄)) from Lemma 3, and the average

69

Chapter 4. Topology-Aware Shared-Cache Networks

memory-rate curve (t,E[T (t,L)]). It is evident that the proposed scheme with optimized
shared caches largely outperforms the other two scheme, thus highlighting the importance
of proper memory allocation. The plot also confirms Fact 1, and it shows that T (t, L̄) is
a good approximation of E[T (t,L)], i.e. T (t, L̄) ≈ E[T (t,L)].

70

Chapter 5

Multi-Access Shared-Cache Networks

This chapter considers the K-user cache-aided shared-link channel where each user has
access to exactly z neighbouring caches of normalized size γ, and where each cache assists
exactly z users. For this setting, for two opposing memory regimes, we propose novel
caching and coded delivery schemes which maximize the local caching gain, and achieve a
coding gain larger than Kγ + 1 despite the fact that the cache replication factor remains
Kγ irrespective of z. Interestingly, when z = K−1

Kγ , the derived optimal coding gain is
Kγz + 1, matching the performance of a hypothetical scenario where each user has its
own dedicated cache of size zγ.

Previous Works on Multi-Access Coded Caching

The1 shared-cache setting where each user has access to more than one cache was explored
for the first time in [26] which considered a K-user shared-link setting, where each user
is assisted by exactly z > 1 caches, and where each cache can serve exactly z users. In
this context, the work in [26] provided a caching and delivery strategy whose centralized
variant2 achieves a worst-case NDT of

T =
K(1− zγ)

Kγ + 1
(5.1)

reflecting an ability to increase the local caching gain to zγ (meaning that each user sees
a fraction zγ of each file), as well as an ability to preserve the coding gain to Kγ + 1, by
virtue of a scheme that served Kγ + 1 users at a time. For this same setting, in [66] the
authors provide explicit designs for K = 4, N = 4, z = {2, 3}, M = 1 and K = 6, N = 6,
z = 3, M = 1, for which matching lower bounds are also developed to prove optimality
of the schemes under uncoded cache placement. Finally, the authors provide a scheme
for the extreme case of z = K − 1.

1In this paragraph we mentioning only the works that had been published before the submission of
our results to the IEEE Information Theory Workshop 2019. After our contributions were published, a
significant set of results on multi-access coded caching appeared. We briefly mention these papers in the
concluding section of this chapter.

2The work in [26] proposed a decentralized cache placement scheme, whose performance is slightly
reduced over the easy-to-extend-to centralized variant whose delivery time we recorded above.

71

Chapter 5. Multi-Access Shared-Cache Networks

Users

Caches

Shared Link

1 file per channel use

Infinite capacity link

Server

1 2 3 4 5

1 2 3 4 5

Figure 5.1 – Multi-Access setting for K = 5 and z = 2.

5.1 System Model and Problem Definition

We consider a network where K users are connected via an error-free shared link to a
server storing N (N ≥ K) files W (1),W (2), . . . ,W (N). Each user has access to z out of
K helper caches3, each of size M = Nγ (units of file), where γ ∈ { 1

K ,
2
K , . . . , 1}. We

will use Zk to denote the content in cache k, and we will assume that each user has an
unlimited capacity link to the caches it is connected to. Reflecting the assumption that
each user has access to exactly z caches and each cache connects to exactly z users, we
will consider the symmetric topology where each user k ∈ [K] is associated to caches

Ck , 〈k, k + 1, . . . , k + z − 1〉 ⊆ [K]

where in the above we use the notation 〈M〉 = {m | m for m ≤ K ; m−K for m >
K, m ∈ Z+, ∀m ∈M}. A pictorial representation of the studied setting can be found
in Figure 5.1.

The system works in two phases: the cache placement phase and the delivery phase.
The first consists of filling the caches with the content of the library without knowledge
of the users’ demands. In the delivery phase, each user k requests a file from the library.
We denote the index of such file by dk and we collect all the indices of the requested files
in the demand vector d = (d1, d2, . . . , dK). The work focuses on the worst case where
all users request different files. Upon reception of the demand vector d, the server will
transmit a message X that spans T units of time. Each user k will use X and their
own available cache content ∪i∈CkZi to decode the desired file W (dk). Our objective is to
provide a caching and delivery scheme that reduces the delivery delay T .

3Notice that the assumption of having as many users as caches can be relaxed to a more general case
where the system has more users than caches, with a potential non uniform distribution of the users
among the caches. Under these circumstances, the schemes described here can be combined with the
topology-agnostic scheme (for the single antenna setting) presented in Chapter 3.

72

Chapter 5. Multi-Access Shared-Cache Networks

X1 =
K∑
k=1

min{k−z−1,z−1}∑
j=1

[⌊K − (k + z + j)

2

⌋
+ 1

]
+

+
z−1∑

j=max{1,k−z}

[⌊K − 2z − 2j

2

⌋
+ 1

]
+

 ,

X2=K

[
bK−2−z

3
c − z

2
+ 1

]
+

(
K−4z+3−3

[
bK−2−z

3
c − z

2
+ 1

]
+

)
, S =

K(K − 2z + 2)

4
.

(5.2)

5.2 Main Results

This section presents the main results. The proof of the following theorem follows from
the scheme described in Section 5.3.

Theorem 7. In the coded caching setting where each user is connected to z consecutive
caches, when Kγ = 2, the delivery time satisfies

K − 2z

4
< T (2, z) ≤ K − 2z

3
, (5.3)

and its exact value is T (2, z) = X1+X2
S , where4 X1, X2 and S are given in (5.2).

Remark 7. The scheme consists of transmissions serving either Kγ + 1 = 3 users or
4 users at a time. Figure 5.2 shows, for several values of z, the achievable DoF as a
function of K. We can see how the DoF always exceeds Kγ + 1 = 3 and can approach 4
for some values of K and z.

We now characterize the optimal worst-case delivery time (under the assumption of
uncoded cache placement) for the case of z = K−1

Kγ , for any Kγ .

Theorem 8. In the addressed K-user caching network with access to an integer number
z = K−1

Kγ of caches of normalized size γ, the optimal delivery time, under the assumption
of uncoded cache placement, takes the form

T ∗ =
K(1− γz)
Kγz + 1

=
1

K
(5.4)

corresponding to a DoF of Kγz + 1 users served at a time.

The scheme that achieves the above performance is described in Section 5.4. The
optimality — under uncoded cache placement — follows directly from the fact that the
achieved performance matches the optimal performance (cf. [52], [5]) of a dedicated-cache
coded caching setting (identical to that in [2]), where each cache has an augmented size
equal to zγ.

4The above expression holds for the case where S(K − 2z)− 4X1 is non negative and divisible by 3.

73

Chapter 5. Multi-Access Shared-Cache Networks

50 100 150 200 250 300 350 400

K

3

3.2

3.4

3.6

3.8

4

4.2

D
oF

z=2
z=4
z=6
z=8
z=10
Scheme from [26] for any z

Figure 5.2 – Achievable sum DoF as a function of K, for several z. Case of Kγ = 2.

5.3 Achievable Scheme for Kγ = 2

In this section we present a caching and delivery scheme for the case of Kγ = 2. The
scheme preserves the full local caching gain as in [26], and achieves a coding gain that
strictly exceeds Kγ + 1.

5.3.1 Cache Placement Scheme

In the cache placement phase, we first split each file W (n) into S = K(K−2z+2)
4 subfiles

W
(n)
T for each pair T , {T1, T2} from the set

Ψ , {T : T1 ∈ [K − z], T2 ∈ [T1 + z : 2 : min{K − z + T1,K}]} (5.5)

where in the above we used the notation [a : b : c] to denote an ordered set of integers5,
from a to c, in additive steps of b. After splitting the files, each cache k is filled as follows

Zk = {W (n)
T | ∀n ∈ [N],∀T 3 k}. (5.6)

Verifying the memory constraint To show that the cache placement satisfies the per-
cache memory M = 2N

K , we focus without loss of generality on cache 1, and note that the

5Note that b may be negative.

74

Chapter 5. Multi-Access Shared-Cache Networks

number of subfiles (per file) in this cache is K−2z
2 + 1. Recalling that each such subfile is

of size 1/S, yields

N
(
K−2z

2 + 1
)

K(K−2z+2)
4

=
2N

K
= M

thus proving that the memory constraint is satisfied.

5.3.2 Delivery Scheme

The delivery scheme has two phases, where the first phase transmits XORs composed of
4 subfiles, while the second phase transmits XORs composed of Kγ + 1 = 3 subfiles.

Phase 1

Recall from above that any subfile W
(dk)
T , k ∈ T ∈ Ψ (T1 ∈ [k : 1 : 〈k + z − 1〉]), is

already available at one of the caches seen by the requesting user k ∈ [K]. For each user
k ∈ [K], the aim of this first phase is to serve the subfiles in the set{

W
(dk)
T1,T2 | ∀{T1, T2} ∈ Ψ : T1 ∈ 〈[k−z+1:1:k−1]〉∪〈[k+z:1:k+2z−2]〉

}
. (5.7)

For any k ∈ [K], let us define the following two sets

Ωk,1 , [k + 1 : 1 : k + z − 1]

Ωk,2 , [k − z + 1 : 1 : k − 1] (5.8)

and the set

Bk,j , [Ωk,1(j) + z : 2 : Uk,j] (5.9)

where

Uk,j ,

{
〈Ωk,2(j)− z〉, if Ωk,2(j)− z < 0

K, otherwise.
(5.10)

and where in the above we used the notation Γ(j) to denote the j-th element of an
ordered set Γ. Next, for any k ∈ [K] and any j ∈ [z − 1] we form the following XOR

X(k, j,m) = W
(d〈k−z+1〉)

〈Ωk,1(j)〉,Bk,j(m) ⊕W
(dk)
〈Ωk,2(j)〉,Bk,j(m)

⊕W
(d〈Bk,j(m)−z+1〉)

〈ΩBk,j(m),1(j)〉,k ⊕W
(dBk,j(m))

〈ΩBj,k(m),2(j)〉,k. (5.11)

Creating the above XORs for every m ∈ [|Bk,j |] and every k ∈ [K], spans the entire set
of requested files in (5.7), and what we show below is that each component subfile (in
the XORs) can be successfully decoded by its corresponding user.

75

Chapter 5. Multi-Access Shared-Cache Networks

Decoding Consider any XOR as in (5.11) and let us focus on the subfiles W
(d〈k−z+1〉)

Ωk,1(j),Bk,j(m)

and W
(dk)
Ωk,2(j),Bk,j(m) which are desired by users 〈k − z + 1〉 and k, respectively. By the

cache placement phase, we notice that the subfiles W
(d〈Bk,j(m)−z+1〉)

TBk,j(m),z,1(j),k and W
(dBk,j(m))

Tbj,k,z(m),z,2(j),k

are both cached in cache k, thus enabling both users 〈k − z + 1〉 and k to subtract
these subfiles from X(k, j,m). Next, we also notice that user 〈k − z + 1〉 can cache out

W
(dk)
Ωk,2(j),Bk,j(m) since Ωk,2(j) ∈ ∪i∈C〈k−z+1〉Zi. Similarly, user k can remove W

(d〈k−z+1〉)

Ωk,1(j),Bk,j(m)

from X(k, j,m) because Ωk,1(j) ∈ ∪i∈CkZi. Hence, we conclude that any XOR in (5.11)
is decodable by both users k and 〈k − z + 1〉. In the same way, it can be shown that
users 〈Bk,j(m)− z + 1〉 and Bk,j(m) can successfully decode their own requested subfiles.

Phase 2

We start by defining the set

δ =

[
z : 2 :

⌊
K − 2− z

3

⌋]

as well as the following set of triplets

Θ =

{
(θ1, θ2, θ3)|θ1 = δ(j), θ2 = 2δ(j) + z + 2(i− 1),

θ3 = δ(j) + 2(i− 1), j ∈ [|δ|], i ∈
[
K − 3δ(j)− z

2

]}
. (5.12)

For each triplet θ ∈ Θ and for each p ∈ [K], we generate the following two XORs

Yp(θ, 1) = W
(dp)
〈θ2−θ1+p−1〉,〈θ2+p−1〉 ⊕W

(d〈θ2−θ1−z+p〉)

p,〈θ2+p〉

⊕W (d〈θ2+p−1〉)

〈z−2+p〉,〈z−2+θ3+p〉 (5.13)

Yp(θ, 2) = W
(dp)
〈θ2−θ1+p〉,〈θ2+p〉 ⊕W

(d〈θ2−θ1−z+1+p〉)

p,〈θ2+p〉

⊕W (d〈θ2+p−1〉)

〈z+p−1〉,〈z+θ3+p−1〉. (5.14)

As we did for phase 1, below we show that each subfile in the above XORs from (5.13)
and (5.14) can be decoded successfully by their requesting user.

Decoding For any p ∈ [K], we will prove that the subfiles in Yp(θ, 1) can be decoded by
their intended users. The decodability proof for Yp(θ, 2) will then follow directly.

User p can cache out subfiles W
(d〈θ2−θ1−z+p〉)

p,〈p+θ2〉 and W
(d〈θ2+p−1〉)

〈z−2+p〉,〈z−2+θ3+p〉 from Yp(θ, 1)

since their subscripts p ∈ ∪i∈CpZi and 〈z − 2 + p〉 ∈ ∪i∈CpZi correspond to the caches

76

Chapter 5. Multi-Access Shared-Cache Networks

that user p is connected to. Next, we notice that user 〈θ2 − θ1 − z + p〉 is connected

to cache 〈θ2 − θ1 + p− 1〉 and thus it can cache out subfile W
(dp)
〈θ2−θ1+p−1〉,〈θ2+p−1〉. The

same user 〈θ2 − θ1 − z + p〉 = 〈δ(j) + p+ 2(i− 1)〉 has access to subfiles with subscripts
in the set 〈[δ(j) + p + 2(i − 1) : 1 : δ(j) + p + 2(i − 1) + z − 1]〉. A relabelling of
〈θ3 + p + z − 2〉 to 〈δ(j) + z + p − 2 + 2(i − 1)〉 highlights that user 〈θ2 − θ1 − z + p〉
can also remove W

(d〈θ2+p−1〉)

〈z−2+p〉,〈z−2+θ3+p〉 from Yp(θ, 1), and hence obtains its desired subfile

W
(d〈θ2−θ1−z+p〉)

p,〈θ2+p〉 successfully. Finally, we recall that user 〈θ2 + p− 1〉 has access to caches

C〈θ2+p−1〉 = 〈[θ2 + p− 1 : 1 : θ2 + p− 2 + z]〉 and hence can successfully decode its desired

subfile since it can cache out subfiles W
(dp)
〈θ2−θ1+p−1〉,〈θ2+p−1〉 and W

(d〈θ2−θ1−z+p〉)

p,〈θ2+p〉 .

Performance of the algorithm

We observe that each generated XOR serves a different set of 3 or 4 subfiles, which can all
be decoded. Therefore, we can conclude that the achieved sum DoF is between 3 and 4.
From the description of the algorithm, it can be seen that the proposed delivery scheme
is valid for any demand vector d. Following the construction, we can readily count the
total number of XORs transmitted during phase 1 and phase 2 to respectively be X1 and
X2 from (5.2), which concludes the proof of the achievable delay in Theorem 7.

5.3.3 Illustrative Example

In this subsection we offer an example that may help to better understand the scheme.
We consider the setting with parameters K = 10, Kγ = 2, and z = 2. For the sake of
simplicity, we will use 0 to represent the index 10 and also, when describing a double
index i, j, we will omit the comma.

In the placement phase, we first split each file, according to (5.5), into S = 20
equally-sized subfiles with indices

Ψ ={13, 15, 17, 19, 24, 26, 28, 20, 35, 37, 39, 46, 48, 40, 57,

59, 68, 60, 79, 80}

and we then fill the caches according to (5.6) as follows

Z1 = {W (n)
13 ,W

(n)
15 ,W

(n)
17 ,W

(n)
19 , ∀n ∈ [N]}

Z2 = {W (n)
24 ,W

(n)
26 ,W

(n)
28 ,W

(n)
20 , ∀n ∈ [N]}

...

Z9 = {W (n)
19 ,W

(n)
39 ,W

(n)
59 ,W

(n)
79 , ∀n ∈ [N]}

Z0 = {W (n)
20 ,W

(n)
40 ,W

(n)
60 ,W

(n)
80 , ∀n ∈ [N]}.

We notice that the cache placement guarantees an empty intersection Zk ∩ Z〈k+1〉 = ∅ of
any z = 2 neighboring caches, and thus a full local caching gain (zγ = 0.4).

77

Chapter 5. Multi-Access Shared-Cache Networks

In the delivery phase we consider the worst-case demand vector d = (1, 2, . . . , 9, 0).
We will list the XORs of phase 1 and phase 2, but before doing that, let us offer some
intuition on the design of the XORs of the first phase.

Let us consider a pair of users (say, users 0 and 1) that “see” a common cache (in this
case, cache 1). For these two users we will create a generic XOR

W (0)
σ1,σ2

⊕W (1)
σ̃1,σ̃2

(5.15)

which will be combined with another XOR

W (3)
τ1,τ2 ⊕W

(4)
τ̃1,τ̃2

(5.16)

which is meant for another pair of users, say 3 and 4, that again share a common cache

(cache 4). Combining the two XORs yields a new XOR X = W
(0)
σ1,σ2 ⊕W (1)

σ̃1,σ̃2
⊕W (3)

τ1,τ2 ⊕
W

(4)
τ̃1,τ̃2

of 4 subfiles. To guarantee decoding for all, we will set σ1 = σ̃1 = 4 to let user
3 and user 4 “cache out” from X the subfiles in (5.15) and similarly we set τ1 = τ̃1 = 1
in order to let users 0 and 1 cache out the XOR in (5.16). Next, we choose σ2 = 2 so

that user 1 can remove subfile W
(0)
4,2 from X and σ̃2 = 0 to let user 0 remove subfile W

(1)
4,0

from X. A similar choice of τ2 and τ̃2 will result in6

X = W
(0)
24 ⊕W

(1)
40 ⊕W

(3)
15 ⊕W

(4)
13 . (5.17)

The list of XORs sent during phase 1 is given below.

X(1, 1, 1) = W
(0)
24 ⊕W

(1)
40 ⊕W

(3)
15 ⊕W

(4)
13

X(1, 1, 2) = W
(0)
26 ⊕W

(1)
60 ⊕W

(5)
17 ⊕W

(6)
15

X(1, 1, 3) = W
(0)
28 ⊕W

(1)
80 ⊕W

(7)
19 ⊕W

(8)
17

X(2, 1, 1) = W
(1)
35 ⊕W

(2)
15 ⊕W

(4)
26 ⊕W

(5)
24

X(2, 1, 2) = W
(1)
37 ⊕W

(2)
17 ⊕W

(6)
28 ⊕W

(7)
26

X(2, 1, 3) = W
(1)
39 ⊕W

(2)
19 ⊕W

(8)
20 ⊕W

(9)
28

X(3, 1, 1) = W
(2)
46 ⊕W

(3)
26 ⊕W

(5)
37 ⊕W

(6)
35

X(3, 1, 2) = W
(2)
48 ⊕W

(3)
28 ⊕W

(7)
39 ⊕W

(8)
37

X(3, 1, 3) = W
(2)
40 ⊕W

(3)
20 ⊕W

(9)
13 ⊕W

(0)
39

X(4, 1, 1) = W
(3)
57 ⊕W

(4)
37 ⊕W

(6)
48 ⊕W

(7)
46

X(4, 1, 2) = W
(3)
59 ⊕W

(4)
39 ⊕W

(8)
40 ⊕W

(9)
48

X(5, 1, 1) = W
(4)
68 ⊕W

(5)
48 ⊕W

(7)
59 ⊕W

(8)
57

X(5, 1, 2) = W
(4)
60 ⊕W

(5)
40 ⊕W

(9)
15 ⊕W

(0)
59

6This intuition can be generalized for z > 2 and used as a baseline in the general description of the
scheme presented in Section 5.3.2.

78

Chapter 5. Multi-Access Shared-Cache Networks

X(6, 1, 1) = W
(5)
79 ⊕W

(6)
59 ⊕W

(8)
60 ⊕W

(9)
68

X(7, 1, 1) = W
(6)
80 ⊕W

(7)
60 ⊕W

(9)
17 ⊕W

(0)
79 .

In phase 2, the X2 = 20 transmissions from (5.13) and (5.14) are cyclically generated
as shown below.

Y1(θ, 1)=W
(1)
46 ⊕W

(3)
17 ⊕W

(6)
13 ,

Y2(θ, 1)=W
(2)
57 ⊕W

(4)
28 ⊕W

(7)
24

Y3(θ, 1)=W
(3)
68 ⊕W

(5)
39 ⊕W

(8)
35

...

Y0(θ, 1)=W
(0)
35 ⊕W

(2)
60 ⊕W

(5)
20

and

Y1(θ, 2)=W
(1)
57 ⊕W

(4)
17 ⊕W

(6)
24

Y2(θ, 2)=W
(2)
68 ⊕W

(5)
28 ⊕W

(7)
35

Y3(θ, 2)=W
(3)
79 ⊕W

(6)
39 ⊕W

(8)
46

...

Y0(θ, 2)=W
(0)
46 ⊕W

(3)
60 ⊕W

(5)
13 .

In the end, we have S = 20, X1 = 15 and X2 = 20 which gives

T =
X1 +X2

S
=

35

20

and a coding gain K(1− zγ)/T = 3.43.

5.4 Achievable Scheme for K = Kγz + 1

Corresponding to Theorem 8, we now present the optimal caching and delivery scheme
for z = K−1

Kγ for any Kγ.

5.4.1 Cache Placement Scheme

In the cache placement phase, each file W (n) is first split into K subfiles W
(n)
φ , φ ∈ Φ

where each Kγ-tuple φ , {φ1, φ2, . . . , φKγ} is drawn from the set

Φ , {φ : φ1 ∈ [K], φj = 〈φj−1 + z〉, ∀j ∈ [2 : Kγ]} (5.18)

of size K. Then each cache k is filled as follows

Zk = {W (n)
Φ | ∀n ∈ [N],∀Φ 3 k} (5.19)

79

Chapter 5. Multi-Access Shared-Cache Networks

forcing each integer k ∈ [K] to appear in Φ exactly Kγ times, thus guaranteeing that each
cache stores exactly Kγ subfiles from each file, thus respecting the cache-size constraint.

What the above placement also guarantees is that, by construction of the set Φ, all
subfiles of each file stored in any z consecutive caches, are different. This is due to the
fact that any two elements of each Kγ-tuple φ ∈ Φ have distance at least z. Thus, each
user k has access to Kγz = KK−1

Kz z = K − 1 different subfiles of its requested file W dk .

We denote by W
(dk)
ρk the one remaining subfile desired by user k, for a specific Kγ-tuple

ρk = Φ \ {∪i∈CkZi}.

5.4.2 Delivery Scheme

Upon reception of the demand vector d, the server multicasts a single XOR

X =
⊕
k∈[K]

W (dk)
ρk

(5.20)

to all users of the network. By virtue of the fact that each user is only missing a
single subfile, we can deduce that each user k can cache out from X all K − 1 subfiles

{W (dj)
ρj }j∈[K]\{k} to successfully decode its own requested subfile W

(dk)
ρk . Consequently

the total delivery time is naturally equal to T = |X| = 1
K .

5.4.3 Illustrative Example

Let us consider the case of Kγ = 3, z = 2 and K = 7. We first split each file into 7
equally sized subfiles with indices

Φ = {135, 136, 146, 246, 247, 257, 357}.
and fill each cache, according to (5.19), as follows

Z1 = {W (n)
135 ,W

(n)
136 ,W

(n)
146 , ∀n ∈ [N]}

Z2 = {W (n)
246 ,W

(n)
247 ,W

(n)
257 , ∀n ∈ [N]}

Z3 = {W (n)
135 ,W

(n)
136 ,W

(n)
357 , ∀n ∈ [N]}

Z4 = {W (n)
146 ,W

(n)
246 ,W

(n)
247 , ∀n ∈ [N]}

Z5 = {W (n)
135 ,W

(n)
257 ,W

(n)
357 , ∀n ∈ [N]}

Z6 = {W (n)
136 ,W

(n)
146 ,W

(n)
246 , ∀n ∈ [N]}

Z7 = {W (n)
247 ,W

(n)
257 ,W

(n)
357 , ∀n ∈ [N]}.

In the delivery phase we consider the delivery vector d = (1, 2, . . . , 7). We notice that
the placement and topology jointly guarantee that each user is missing only a single

subfile. For example, user 1 is only missing subfile W
(1)
357. Placing all these missing subfiles

together, the server sends

X = W
(1)
357 ⊕W

(2)
146 ⊕W

(3)
257 ⊕W

(4)
136 ⊕W

(5)
247 ⊕W

(6)
135 ⊕W

(7)
246 (5.21)

which guarantees that each user can cache out exactly 6 elements to decode their own
subfile. The delay is T = 1

7 and the DoF of Kγz + 1 = 7.

80

Chapter 5. Multi-Access Shared-Cache Networks

5.5 Follow-Up Works

The topic of multi-access coded caching has recently attracted a lot of attention in the
coded caching community. In this section we will briefly mention some of the new works
on this topic. The scheme presented in [67] can be seen as a generalization of our results
for the case z = K−1

Kγ . The work in [68] proposes a novel transformation approach that
nicely allow to convert schemes for the classical shared-link setting to the multi-access
shared-link setting considered in this chapter. In [69] new index coding results were
applied to the multi-access coded caching problem. A PDA-based scheme requiring lower
subpacketization than known schemes was recently proposed in [70] for some limited
values of the normalized cache size γ. In [71] the authors used cross resolvable designs to
propose new multi-access coded caching scheme for a setting where the number of caches
is different than the number of users in the system. Finally, the problem of secure delivery
for multi-access cache-aided networks was addressed in [72], while schemes achieving
demand privacy guarantees were presented in [73,74].

81

Chapter 5. Multi-Access Shared-Cache Networks

82

Chapter 6

Novel Low-Complexity Scheme for
the Cache-Aided MISO BC

In this chapter1 we present a novel scheme for the MISO broadcast channel with users
with dedicated caches, which has a low complexity both in terms of the subpacketization
requirement and in the optimized beamforming design for the finite SNR regime. For
the regime where the number of antennas N0 is larger than the total normalized cache
size t, our new algorithm is the first to achieve the exact one-shot linear optimal DoF
with a subpacketization complexity that scales only linearly with the number of users.
Knowing well that in the low-to-moderate SNR regimes beamforming gains can be as
important as multiplexing gains, we proceed to consider the more general scenario where
the multiplexing gain α ≤ N0 is traded off with an ability to beamform in a manner
that compensates the well-known effects of the worst-user channel condition. In our
case, the multiplexing gain α ≥ t is treated as a design parameter calibrated not only
for yielding good finite-SNR performance but also for fine-tuning the subpacketization.
The multicasting structure of our scheme allows for exploiting uplink-downlink duality in
order to reduce the complexity design of optimized beamformers. In the end, our novel
solution provides excellent performance for networks with finite SNR, finite file sizes, and
many users.

6.1 The Subpacketization Requirement of Multi-Antenna
Coded Caching Schemes

While the high subpacketization requirement is one of the major bottlenecks of shared-link
coded caching schemes which struggle to achieve high gains in the finite file size regime,
interesting results have emerged recently to significantly reduce the subpacketization of
multi-antenna coded caching schemes. While the original schemes in [7,8] required an

1The results in this chapter are part of a collaboration with a team from the University of Oulu and
have produced the following publication [49], which is under revision for publication to Transaction on
Wireless Communications. Before the beginning of the collaboration, the achievable scheme (for the DoF
regime) denoted in this chapter by LIN, had been already published in [75].

83

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

astronomical subpacketization of
(
K
t

)(
K−t−1
N0−1

)
, the recent work in [33] showed that if K

N0

and t
N0

are both integers, the optimal DoF t+N0 is achievable with a subpacketization

of
(K/N0

t/N0

)
, which is dramatically less than the subpacketization in [2, 8]. This directly

means that under fixed subpacketization constraints (fixed file size), adding multiple
antennas can multiplicatively boost the real (subpacketization-constrained) DoF by a
factor of N0. The main idea behind the algorithm in [33], which after setting Λ = K

N0

(as a by-product) coincides with the scheme in Section 3.3, is to employ user-grouping
techniques to endow groups of users with the same cache content and then apply a specific
precoding approach that decomposes the network of users into effectively parallel coded
caching problems. While, as we know from Chapter 3, for single-antenna settings, having
shared caches between the users causes an inevitable DoF loss, the work in [33] and
our results of Chapter 3 have proven that multi-antenna shared-cache setups need not
suffer from DoF losses. Of course, this is valid under the assumption that K

N0
and t

N0
are

integers.2Another interesting work can be found in [76], which proposes a DoF-optimal
scheme that yields a reduction in transmission and decoding complexity compared to
the optimized beamformer scheme of [47], albeit with a small reduction in performance
compared to [47], and also with an exponential subpacketization

(
K
t

)
. In another line of

work, [48] provides a novel algorithm that reduces the channel state information (CSI)
requirements, and does so with subpacketization Lc

(
Kc
t

)
, where Lc ,

N0+t
t+1 and Kc , K

Lc
.

Finally, [77, 78] explore, under the assumption of K = t+N0, how subpacketization can
be traded-off with performance. Apart from our novel contributions in this chapter, the
known existing multi-antenna schemes either exhibit subpacketization requirements that
are exponential in K, or do not experience DoF optimality in scenarios where N0 > t.

6.2 System Model and Performance Measure

We consider a MISO broadcast setting, in which a single server, equipped with N0

transmit antennas, communicates with K single-antenna receiving users over a shared
wireless link. An illustration of the considered communication setup for a small network
of K = 3 users is provided in Figure 6.1. The server has access to a library F of N ≥ K
files, where each file W (n), n ∈ [N] has a size of f bits3. We assume that every user has a
cache memory of size Mf bits. As usual, we use t , KMf

Nf to denote the total cache size
in the network normalized by the size of the library.

During the cache placement phase, the placement algorithm operates without any
prior knowledge of future requests. We use Zk to denote the content cached at user
k ∈ [K]. At the beginning of the delivery phase, each user k ∈ [K] reveals its requested
file W (dk) to the server, which, after receiving the demand vector d = (d1, d2, . . . , dK),
follows the delivery algorithm to transmit the requested subpackets to the users. This

2The scheme of [33] suffers DoF losses (and also increased subpacketization) if either K
N0

or t
N0

is
non-integer. The DoF is reduced by a multiplicative factor that can reach 2 when N0 > t, and can reach
3
2

when N0 < t.
3While in all other chapters we assume that the size of each file is normalized by the total number of

bits, so that they are unit-sized, in this chapter we highlight the composition of each file as a sequence of
bits in order to work with the transmission rate as a performance metric.

84

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Z1

User 1

. . .

Server

Z2

User 2

Z3

User 3

Figure 6.1 – Illustration of the communication setting for a network with K = 3 users

will involve the transmission of some I transmission vectors {xi} ∈ CN0 , i ∈ [I], where
I is given by the delivery algorithm. These transmission vectors are transmitted in
consecutive time intervals or separate frequency bins4, using the array of N0 antennas.
After xi is transmitted, user k receives yi(k) = hHk xi+wi(k), where hk ∈ CN0 denotes the
channel vector and wi(k) ∼ CN (0, n0) denotes the observed noise at user k. Furthermore,
we consider a slow-fading model in which the channel vectors remain constant during
each time interval i, and we assume that full channel state information (CSI) is available
at the server.5

Let Xi ⊆ [K] denote the set of users targeted by xi, and let Ti denote the duration of
time interval i required so that every user in Xi decodes its intended data from xi. If
we consider Bi to be the length of the codeword transmitted at time slot i, and if we
define Ri to be the multicast rate at which the server transmits a common message to
all users in Xi, then Ti is simply the ratio between Bi and Ri. We will use the metric of
the symmetric rate, which describes the total number of bits per second with which each
user is served. Particularly, we will consider the worst-case metric, corresponding to the
symmetric rate at which the system can serve all users in the network irrespective of the
demand vector d. Given that the delivery phase has an overall duration of

∑I
i=1 Ti, and

given that there are K users, the symmetric rate can be computed as

Rsym =
Kf∑I
i=1 Ti

=
Kf∑I
i=1

Bi
Ri

. (6.1)

Our aim is to design a placement and delivery scheme that maximizes Rsym.

4For comparison with other schemes, we will generally assume that transmissions here are made in
consecutive time intervals.

5Improving CSI accuracy is a well-studied topic in the literature. In general, the designs are specific to
the underlying uncertainty model, i.e., whether CSI error is bounded [79] or unbounded [80]. If the error is
bounded, robust (worst-case) beamforming solutions can be computed that guarantee the achievability of
the max-min SINR for all possible realizations of channel uncertainty. For unbounded error, statistically
robust solutions can be provided if the estimation noise is assumed to follow a known distribution. In such
a scenario, fixed-point iterations are used to provide a robust solution by adding the noise contribution
from CSI uncertainty to the thermal noise.

85

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

6.2.1 Building the Transmission Vectors

We use linear precoding to build the transmission vectors. A generic transmission vector
xi is built as

xi =
∑
k∈Xi

wi(k)Xi(k) , (6.2)

where Xi(k) is the data codeword transmitted to user k, and wi(k) ∈ CN0 is the
beamforming vector used for Xi(k). The beamforming vectors wi(k) are here designed to
maximize the worst-user rate, or equivalently, the worst user’s SINR (signal to interference
and noise ratio), as xi is transmitted. Thus, given the transmission model in (6.2), the
multicast rate at time interval i is calculated as

Ri = log(1 + ω∗i) , (6.3)

in which ω∗i is defined as

ω∗i =max
wi(k)

min
k∈Xi

SINRk s.t.
∑
k∈Xi

||wi(k)||2 ≤ PT , (6.4)

where SINRk is the received SINR at user k and PT is the available transmission power.
We discuss this optimization problem in more details in the next section.

As suggested before, we will consider that each transmission vector serves |Xi| = t+α
users, where α ≤ N0 is the multiplexing gain and is treated as a parameter of choice
that can be tuned to obtain a better rate performance at finite-SNR. This α represents
the number of independent streams in each transmission, and hence, reducing it implies
sacrificing some spatial multiplexing gain for the purpose of increasing the beamforming
gain, which can help reduce the worst-user effect in the finite-SNR regime. As we
discuss later on, this same α can also be calibrated to control subpacketization as well as
beamformer design complexity.

6.3 A Cyclic Caching Scheme for Reduced Subpacketization

In this section, we present our low-complexity high performance cyclic caching scheme,
which can be applied to any MISO setup in which α ≥ t.6 The following theorem
summarizes the DoF and subpacketization performance of the scheme:

Theorem 9. For the large MISO broadcast setup with t ≤ α ≤ N0, the sum DoF of t+ α
is achievable with a subpacketization7

K(t+ α)(
gcd(K, t, α)

)2 , (6.5)

6For setups with t > α, one can use the coded caching scheme presented in [33] for reduced subpacke-
tization.

7Here, gcd(K, t, α) corresponds to the greatest common divisor of K, t, α.

86

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Proof. The proof is found in this current section, where we present the designed cyclic
caching scheme and show that it employs the above subpacketization to achieve the sum
DoF of t+ α.

In what follows, we first introduce a cache placement algorithm in Section 6.3.1,
which is based on a well-defined placement matrix and requires each file to be split
into K(t + α) subfiles. In Sections 6.3.2 and 6.3.3, we explain the delivery phase, in
which the missing subfiles are delivered to the requesting users with I = K(K − t)
multicast transmission vectors, each serving t+ α subpackets to t+ α different users. In
Section 6.3.4, using an example network, we show that this delivery algorithm follows a
simple graphical representation, involving circular shifting of two vectors over a tabular
structure. Overall, in Sections 6.3.1 to 6.3.4, we present a scheme which satisfies all the
requests with multicast transmissions always containing t+ α subfiles, which implies a
DoF of t+ α with subpacketization K(t+ α). Finally, in Section 6.3.6 we show that by
properly applying a user-grouping technique, subpacketization is further reduced by a
factor of

(
gcd(K, t, α)

)2
, without any DoF loss.

Remark 8. When α = N0, the achieved DoF t+N0 is exactly optimal under the assumption
of one-shot linear schemes and uncoded placement (cf. [22]).

We note that, for fixed t and N0, the above integer subpacketization scales linearly
with K. This allows applying coded caching in larger networks, and entails the benefit of
a reduced number of necessary transmissions which in turn implies a reduced number
of beamformer design problems that need to be solved. As a quick comparison, if
K = 20, t = 4, N0 = α = 8, the proposed scheme requires subpacketization of 15, while
the schemes in [76] and [8] respectively require (approximately) 5 × 103 and 3 × 107

subpackets. More comparisons are provided in Section 6.4.2.

Remark 9. In Theorem 9, the term gcd(K, t, α) represents the number of users that will
store the same content in their caches. Therefore, in the delivery phase, this dedicated-
cache setting can be seen as a shared-cache setting with Λ = K

gcd(K,t,α) caches and

gcd(K, t, α) users per cache.

Before proceeding with the description of the algorithm, we introduce some useful
notation. We use [i : j] to represent the vector [i i+1 ... j]. V[i, j] refers to the element
at the i-th row and j-th column of matrix V, and w[i] represents the i-th element in
vector w.

6.3.1 Cache Placement

For cache placement, we use a K ×K binary placement matrix V where the first row
has t consecutive 1’s (other elements are zero) and each subsequent row is a circular
shift of the previous row by one column. Given V, we split each file W (n), n ∈ [N]

into K subfiles W
(n)
p , p ∈ [K], and each subfile W

(n)
p into t+ α smaller minifiles W

(n)
p,q .

87

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Then for every p, k ∈ [K], if V[p, k] = 1, W
(n)
p,q is stored in the cache memory of user k,

∀n ∈ [N], q ∈ [t+ α].8

Example 2. For a scenario of K = 6, t = 2, α = 3, V is built as

V =

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

 , (6.6)

and the resulting subpacketization is K × (t+ α) = 6× (2 + 3) = 30. For example, the

cache contents of users 1 and 2 can be found from (6.6) as

Z1 ={W (n)
1,q ,W

(n)
6,q ; ∀n ∈ [N], q ∈ [5]} , Z2 = {W (n)

1,q ,W
(n)
2,q ; ∀n ∈ [N], q ∈ [5]} .

The cache contents of users 3− 6 can be written accordingly.

6.3.2 Content Delivery

In cyclic caching, the content delivery phase consists of K rounds, where in each round
we build K − t transmission vectors. Thus, the content delivery is completed after
I = K(K − t) transmissions. We use xrj to denote the transmission vector j ∈ [K − t] at

transmission round r ∈ [K].9 By transmitting xrj , useful subfiles are delivered to a set of
t+ α users. We define the user index vector krj to denote the set of users being targeted
by xrj , and the subfile index vector prj to contain the subfiles indices targeted for the users

in krj . In other words, using xrj , we transmit (part of) the subfile W
(dkr

j
[n])

prj [n] to each user

krj [n], n = 1, . . . , t+α. Both krj and prj vectors are built recursively. Let us use % sign to
denote the mod operator with an offset of one. It is defined as a%b = ((a− 1) mod b) + 1,
such that a%a = a and (a+ b)%a = b%a. Then, k1

j and p1
j are built as

k1
j =

[
[1 : t] ‖

(
([1 : α] + j − 1)%(K − t)

)
+ t

]
,

p1
j =

[(
(t+ j − [1 : t])%(K − t)

)
+ [1 : t] ‖ e(α)

]
,

(6.7)

where e(m) is a vector of 1’s with size m (e.g., e(3) = [1 1 1]). For the next transmission
rounds, i.e., 1 < r ≤ K, we simply build krj and prj , using k1

j and p1
j , as

krj =
(
k1
j + r

)
%K , prj =

(
p1
j + r

)
%K . (6.8)

To gain a better insight into how krj and prj are built, in Section 6.3.4, we offer a
simple graphical representation, which is based on circular shift operations over a tabular
structure. In the following, we provide krj and prj vectors for the small network scenario
given in Example 2.

8The placement matrix V used in this paper is a special case of valid placement matrices introduced
in [77].

9In the general transmission vector model (6.2), xrj corresponds to xi, i = (r − 1)(K − t) + j.

88

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Example 3. In the scenario of Example 2, content delivery consists of six rounds, where
at each round four transmission vectors are built. The user and subfile index vectors for
the first and second rounds are given as

k1
1 = [1 2 3 4 5] , k1

2 = [1 2 4 5 6] , k1
3 = [1 2 5 6 3] , k1

4 = [1 2 6 3 4] ,

p1
1 = [3 3 1 1 1] , p1

2 = [4 4 1 1 1] , p1
3 = [5 5 1 1 1] , p1

4 = [2 6 1 1 1] ,
(6.9)

and

k2
1 = [2 3 4 5 6] , k2

2 = [2 3 5 6 1] , k2
3 = [2 3 6 1 4] , k2

4 = [2 3 1 4 5] ,

p2
1 = [4 4 2 2 2] , p2

2 = [5 5 2 2 2] , p2
3 = [6 6 2 2 2] , p2

4 = [3 1 2 2 2] ,
(6.10)

respectively. The user and subfile index vectors for the other rounds are built similarly.

Two other variables are needed to build the transmission vector xrj . First, we introduce
the minifile index q(n, p), where n ∈ [N] refers to a general file and p ∈ [K] is the subfile

index. The minifile index q(n, p) indicates which minifile of W
(n)
p should be transmitted,

the next time it is included in a transmission vector. For every n ∈ [N] and p ∈ [K],

q(n, p) is initialized to one, and incremented every time W
(n)
p is included in a transmission

vector. For notational simplicity, here we use

qrj (n) , q(dkrj [n],p
r
j [n]) . (6.11)

Second, we use the interference indicator set Rrj(n) to be the set of users at which

W
(dkr

j
[n])

prj [n],qrj (n) should be suppressed by beamforming.10 Rrj(n) has exactly α− 1 elements

and is built as
Rrj(n) =

{
k ∈ krj\krj [n] | V

[
prj [n], k

]
= 0
}
. (6.12)

Example 4. For the network considered in Examples 2 and 3, the interference indicator
sets for the first transmission round are built as

R1
1(1) = {2, 5}, R1

1(2) = {1, 5}, R1
1(3) = {4, 5},

R1
1(4) = {3, 5}, R1

1(5) = {4, 4}.
(6.13)

Finally, the transmission vectors are built as:11

xrj =
t+α∑
n=1

wRrj (n)W
(dkr

j
[n])

prj [n],qrj (n) . (6.14)

10If zero-forcing beamformers are used, Rrj (n) denotes the set of users at which W
(dkr

j
[n])

pr
j [n],qrj (n) should be

nulled-out.
11The general transmission vector model in (6.2) is equivalent to (6.14) via the following index mapping:

k → krj [n] , wi → wRr
j (n) , Xi →

⋃
n∈[t+α]

{krj [n]} , Xi(k)→W
(dkr

j
[n])

pr
j [n],qrj (n) .

89

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

6.3.3 Decoding at the Receiver

During time interval i, every user k ∈ Xi receives

yi(k) = hHk wi(k)Xi(k) +
∑

k̂∈Xi\{k}

hHk wi(k̂)Xi(k̂) + wi(k) ,
(6.15)

where the first term is the intended codeword and the latter two terms indicate the
interference and noise, respectively. Assume k̂ , kr̂

ĵ
[n̂], for some ĵ, r̂, n̂. Defining

p(k̂) , pr̂
ĵ
[n̂], for every element in the interference term only one of the following options

is possible:

1. V[p(k̂), k] = 1 indicates Xi(k̂) is in the cache memory of user k, and hence,
hHk wi(k̂)Xi(k̂) can be reconstructed and removed from yi(k);

2. V[p(k̂), k] = 0 indicates that k̂ is in the interference indicator set associated with
Xi(k) as defined in (6.12), and hence, Xi(k̂) is suppressed at user k by transmit
beamforming.

In both cases, the interference due to Xi(k̂) can be controlled and/or completely removed
at user k. Since |Xi| = t + α, the proposed scheme allows for serving t + α users in
parallel during each transmission interval. The following example clarifies the decoding
procedure for a single transmission in a small network. A more detailed explanation is
provided in Appendix C.1.

Example 5. Consider the network in Example 2, for which the user and subfile index
vectors are provided in Example 3 and the interference indicator sets are presented
in Example 4. Let us assume that users (1, 2, . . . , 6) request files (A,B,C,D,E, F),
respectively. Then, following (6.14), the first transmission vector in the first round is
built as

x1
1 = w2,5A3,1 + w1,5B3,1 + w4,5C1,1 + w3,5D1,1 + w3,4E1,1 , (6.16)

where the brackets of the interference indicator sets are dropped for notation simplicity.
After x1

1 is transmitted, user 1 receives

y1
1(1) = hH1 w2,5A3,1 + hH1 w1,5B3,1 + hH1 w4,5C1,1 + hH1 w3,5D1,1 + hH1 w3,4E1,1 + w1

1(1) ,

(6.17)
in which the single- and double-underlined terms indicate the interference. From Exam-
ple 2, C1,1, D1,1, and E1,1 are available in the cache memory of user 1, and hence, all
the single-underlined terms can be reconstructed and removed from the received signal.
On the other hand, the minifile B3,1 requested by user 2 is suppressed at user 1 via
transmit beamforming, following the definition of the interference indicator sets, the
double-underlined term is also suppressed at user 1 with the help of the beamforming
vectors. As a result, user 1 can decode A3,1 with controlled interference. Similarly, users
2−5 can decode B3,1, C1,1, D1,1 and E1,1, respectively. In Table 6.1, we have summarized
how different users decode x1

1 and extract their requested data.

90

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Transmission vector: x1
1 = w2,5A3,1 + w1,5B3,1 + w4,5C1,1 + w3,5D1,1 + w3,4E1,1

User Avail. in cache Supp. by beamformer Useful data SINR

1 C1,1, D1,1, E1,1 B3,1 A3,1
|hH1 w2,5|2
|hH1 w1,5|2+n0

2 C1,1, D1,1, E1,1 A3,1 B3,1
|h12Hw1,5|2
|hH2 w2,5|2+n0

3 A3,1, B3,1 D1,1, E1,1 C1,1
|hH3 w4,5|2

|hH3 w3,5|2+|hH3 w3,4|2+n0

4 A3,1, B3,1 C1,1, E1,1 D1,1
|hH4 w3,5|2

|hH4 w4,5|2+|hH4 w3,4|2+n0

5 A3,1, B3,1 C1,1, D1,1 E1,1
|hH5 w3,4|2

|hH5 w4,5|2+|hH5 w3,5|2+n0

6 − − − −

Table 6.1 – Decoding process for x1
1 at different network users, for Example 5.

6.3.4 A Graphical Example

For further clarification, we describe the operation of the cyclic caching scheme for the
network setup in Example 2, using a graphical representation of the placement matrix
V in Figure 6.2. In this figure, each column represents a user, and each row denotes
a subfile index. For example, the first column represents user one, and the first row

stands for the first subfile of all files, i.e., W
(n)
1,q , ∀n ∈ [N], q ∈ [t + α]. Lightly shaded

entries indicate subfiles that are cached at the user. For example, W
(n)
1,q ,W

(n)
6,q are stored

at user 1, ∀n ∈ [N], q ∈ [t+ α].

Figure 6.2 – Graphical illustration for Example 1.

In the subsequent figures, we use darkly shaded entries to indicate which subfile indices
of the requested files are sent during each transmission. The column and row indices of
these darkly shaded entries are extracted from the user and subfile index vectors. For our
example network, the user and subfile index vectors for the first and second transmission
rounds are provided in (6.9) and (6.10); and their graphical representations are depicted
in Figures 6.3 and 6.4. For example, Fig. 6.3a corresponds to the first transmission of
the first round, where users k1

1 = [1, 2, 3, 4, 5] receive minifiles of subfiles indicated by
p1

1 = [3, 3, 1, 1, 1]. For simplicity, let us assume that users request files (A,B,C,D,E, F).
Then, users 1-5 receive A3,1, B3,1, C1,1, D1,1 and E1,1, respectively.

The transmission vectors can be easily reconstructed using the graphical representa-
tions. For example, Fig. 6.3 implies that the following transmission vectors are generated

91

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

(a) Transmission 1 (b) Transmission 2 (c) Transmission 3 (d) Transmission 4

Figure 6.3 – Graphical illustration of the first round r = 1.

(a) Transmission 1 (b) Transmission 2 (c) Transmission 3 (d) Transmission 4

Figure 6.4 – Graphical illustration of the second round r = 2.

in the first round:

x1
1 =w2,5A3,1 + w1,5B3,1 + w4,5C1,1 + w3,5D1,1 + w3,4E1,1 ,

x1
2 =w2,6A4,1 + w1,6B4,1 + w5,6D1,2 + w4,6E1,2 + w4,5F1,1 ,

x1
3 =w2,3A5,1 + w1,3B5,1 + w6,3E1,3 + w5,3F1,2 + w5,6C1,2 ,

x1
4 =w4,6A2,1 + w3,4B6,1 + w3,4F1,3 + w6,4C1,3 + w6,3D1,3 ,

where the brackets of the interference indicator sets are dropped for notation simplicity.
Note that according to (6.11), the minifile index q1

j (n) is equivalent to q(dk1
j [n],p

1
j [n]),

and hence, is incremented every time W
(d

k1
j
[n]

)

p1
j [n]

appears in a transmission vector. As a

result, the minifile index for the subfile C1 is incremented from one to three, as it has
appeared in x1

1, x1
3 and x1

4, respectively.
Following the same procedure, using Figure 6.4, for the second round we have

x2
1 =w3,6B4,2 + w2,6C4,1 + w5,6D2,1 + w4,6E2,1 + w4,5F2,1 ,

x2
2 =w3,1B5,2 + w2,1C5,1 + w6,1E2,2 + w5,1F2,2 + w5,6A2,2 ,

x2
3 =w3,4B6,2 + w2,4C6,1 + w1,4F2,3 + w6,4A2,3 + w6,1D2,2 ,

x2
4 =w5,1B3,2 + w4,5C1,4 + w4,5A2,4 + w1,5D2,3 + w1,4E2,3 .

From Figures 6.3 and 6.4, it can be seen that the transmissions vectors xr2, xr3 and xr4 in
round r are built by circular shift of the first transmission vector xr1 over the non-shaded
cells of the tabular grid and in two perpendicular directions. Specifically, the first two

92

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

terms in xr1 are shifted vertically, while the other three are shifted horizontally. This
procedure is highlighted in sub-figures using wide border lines. Moreover, comparing
Figures 6.3 and 6.4, it is clear that the vectors in the second transmission round are
diagonally shifted versions of the vectors in the first round. This property is the intuition
behind the cyclic caching name, and results from the recursive procedure in (6.8), where
the mod operator is used to build krj and prj vectors for r > 1.

6.3.5 Beamformer Design

As discussed earlier, we use optimized beamformers to build the transmission vectors.
These beamformers result in a better rate compared to zero-forcing, especially in the low-
SNR regime, as they allow balancing the detrimental impact of noise and the inter-stream
interference [47]. However, optimized beamformers may require non-convex optimization
problems to be solved (due to interference from unwanted terms), making the problem
computationally intractable even for moderate K values. Interestingly, cyclic caching,
in addition to requiring much-reduced subpacketization, also manages to eliminate the
requirement of multicasting, thus enabling optimized beamformers to be designed with
much less computational complexity.

As t + α users are served simultaneously by each transmission vector, symmetric
rate maximization is equivalent to maximizing the worst user rate (among served users),
which, in turn, is equivalent to maximizing the worst user SINR. Naturally, the unwanted
terms canceled-out using the local cache contents are not considered as interference in the
optimized SINR expressions. The optimized beamformer vectors for the j-th transmission
in round r can be found by solving the optimization problem

max
wRr

j
(n)

min
n∈[t+α]

|hHkrj [n]wRrj (n)|2∑
b :Rrj [b]3krj [n]

|hHkrj [n]wRrj (b)|2 + n0
s.t.

∑
n∈[t+α]

|wRrj (n)|2 ≤ PT .

(6.18)

Example 6. Consider the network in Example 2 and the transmitted signal vector x1
1

in (6.16) for the first transmission of the round r = 1. The optimized beamformers
w25,w15,w45,w35,w34 can be found by solving

max
wR

min
{ |hH1 w25|2
µ1 + n0

,
|hH2 w15|2
µ2 + n0

,
|hH3 w45|2
µ3 + n0

,
|hH4 w35|2
µ4 + n0

,
|hH5 w34|2
µ5 + n0

}
s.t. |w25|2 +|w15|2 +|w45|2 +|w35|2 +|w34|2 ≤PT ,

where µk denotes the interference at user k, given as

µ1 = |hH1 w15|2, µ2 = |hH2 w25|2, µ3 = |hH3 w35|2 + |hH3 w34|2,
µ4 = |hH4 w34|2 + |hH4 w45|2, µ5 = |hH5 w15|2 + |hH5 w25|2 + |hH5 w35|2 + |hH5 w45|2.

In cyclic caching, as also demonstrated in Example 6, the number of interfering
messages experienced by each user does not need to be the same, in general. For the
transmission vector x1

1 considered in Example 6, users 1-5 experience 1, 1, 2, 2, and 4

93

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

interfering messages, respectively. This unevenness is an intrinsic characteristic of the
proposed cyclic caching scheme, while each message is still suppressed at exactly α− 1
users (in Example 6, there exist exactly α − 1 = 2 users in each interference indicator
set).12

The optimized beamformer design problems tend to be non-convex in general and
require iterative methods such as successive convex approximation (SCA) to be used [47].
Such methods can be computationally complex and make the implementation infeasible,
especially for large networks. However, the special unicasting nature of the cyclic caching
transmission and the max-min SINR objective in (6.18) make the optimization problem
quasi-convex [81, 82], and hence, allow us to use uplink-downlink duality to attain a
simple iterative solution. As the beamformer design with uplink-downlink duality is
thoroughly discussed in [82], here we only briefly review the required process. Denoting
the normalized receive beamforming vectors for the dual uplink channel as vRrj (n), r ∈ [K]

and j ∈ [K − t], the uplink-downlink duality necessitates∑
n∈[t+α]

νn‖vRrj (n)‖2 =
∑

n∈[t+α]

‖wRrj (n)‖2 , (6.19)

where the beamforming vectors vRrj (n) and their power values νn can be found by

maximizing the minimum of dual uplink SINR expressions:

max
vRr

j
(n),νn

min
n∈[t+α]

ωn =
νn|hHkrj [n]vRrj (n)|2∑

b :Rrj [b]3krj [n]

νb|hHkrj [b]vRrj (n)|2 + n0

s.t.
∑

n∈[t+α]

νn ≤ PT , ‖vRrj (n)‖2 = 1 ∀ n .
(6.20)

Note that the interference terms in the denominator of (6.20) have different indices
compared with (6.18). The dual uplink optimization problem in (6.20) is quasi-convex and
can be solved optimally for the given unicast group [82]. Here we use a standard iterative
approach, where we adjust (e.g., by bisection) a target SINR value, denoted by ω̄, until the
power constraint is met with a desired convergence level |PT −

∑
n∈[t+α] νn| < ε. However,

this requires finding the power coefficients νn resulting in the minimum total power∑
n∈[t+α] νn, for a given target SINR value ω̄. We use another internal iterative loop to

address this issue. We first note that the (normalized) MMSE receiver vRrj (n) = v̄
‖v̄‖ , where

v̄ = 1√
νn

(∑
b :Rrj [b]3krj [n] νb hkrj [b]

hHkrj [b]
+ n0I

)−1
hkrj [n] is the optimal RX beamformer

solution for the dual uplink channel, for a fixed set of power values νn. Plugging this
into (6.20), we can write the uplink SINR compactly as

ωn = νnh
H
krj [n]

(∑
b :Rrj [b]3krj [n]

νb hkrj [b]
hHkrj [b]

+ n0I
)−1

hkrj [n] . (6.21)

12We suspect that altering the placement scheme to remove this unevenness may improve the achievable
rate due to the optimization problem’s max-min structure.

94

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Now, for a fixed ω̄, we can iteratively solve for optimal νn values resulting in the minimum
total power, using the joint update method in [82]. This involves updating νn values via

ν(m)
n =

ω̄

ω
(m−1)
n

ν(m−1)
n =

ω̄

hHkrj [n]

(∑
b :Rrj [b]3krj [n] ν

(m−1)
b hkrj [b]

hHkrj [b]
+ n0I

)−1
hkrj [n]

,

(6.22)
until for every n ∈ [t+α], ωn = ω̄. Note that the convergence of the joint update method
in (6.22) can be proved by the standard interference function approach [83].

So, in summary, we use an outer iterative loop to find the target SINR value ω̄ for
which the power constraint is met, and an internal iterative loop to find the optimal
power coefficients for any given ω̄. After the outer loop is converged, we calculate vRrj (n)

and then we can find max-min optimal downlink beamformers using wRrj (n) = ρnvRrj (n),

where ρn is the downlink power associated with wRrj (n). To compute ρn, we first define

a = [a1 a2 ... at+α] and D to be a diagonal matrix of elements a1, ..., at+α, where

an =
ωn

(1 + ωn)|hHkrj (n)vn|2
. (6.23)

Then, we define G as a matrix of elements gn,b, n, b ∈ [t+ α], where gn,b = |hHRrj (n)vb|2 if

either b = n or Rrj [b] 3 krj [n], and gn,b = 0 otherwise. Finally, defining ρ = [ρ1 ρ2 ... ρn],
we have

ρ = (I−DG)−1n0a . (6.24)

6.3.6 Further Reduction in Subpacketization

Interestingly, with appropriate modifications, it is possible to further reduce the sub-
packetization requirement of cyclic caching by a factor of (gcd(K, t, α))2. This not only
reduces the subpacketization requirement (and hence, the implementation complexity)
considerably but also enables the subpacketization (and complexity) to be adjusted by
tuning α (and K) parameter. For notation simplicity, let us simply use φ = gcd(K, t, α)
to represent the reduction factor. To achieve the reduced subpacketization, we use a user
grouping technique inspired by [33]. The idea is to split users into groups of size φ and
assume each group is equivalent to a virtual user. Then, we consider a virtual network
consisting of these virtual users, in which the coded caching and spatial multiplexing
gains are t

φ and α
φ , respectively. Finally, we apply the coded caching scheme proposed in

Sections 6.3.1 and 6.3.2 to the virtual network, and elevate the resulting cache placement
and delivery schemes to be applicable in the original network. The elevation procedure,
which is thoroughly explained in Appendix C.2, is designed so that the maximum DoF of
t+ α is achieved without any increase in the required subpacketization. As a result, the
elevated scheme would require the same subpacketization as the scheme applied to the
virtual network, which is K

φ

(
t
φ + α

φ

)
, as there exist K

φ virtual users in the virtual network.
Here, we explain the proposed procedure with the help of one example.

Example 7. Assume a network scenario with K = 8, t = 2 and α = 4. In this case,
φ = 2 and the resulting virtual network has K ′ = K

φ = 4 virtual users, coded caching

95

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

gain of t′ = t
φ = 1 and spatial multiplexing gain of α′ = α

φ = 2. Assume the virtual
users correspond to user groups v1 = {1, 2}, v2 = {3, 4}, v3 = {5, 6} and v4 = {7, 8}.
Applying the proposed cyclic caching scheme, the cache placement in the virtual network

is Zvk′ = {W (n)
k′,q | n ∈ [N], q ∈ [3]}, ∀k′ ∈ [4], and the corresponding subpacketization

requirement is K ′(t′ + α′) = 12. Data delivery is performed in four rounds, where three
transmissions are done during each round. The first transmission vector at the first round
is built as

x1
1
′
= w′v3

W
(dv1)
2,1 + w′v3

W
(dv2)
1,1 + w′v2

W
(dv3)
1,1 , (6.25)

and other transmission vectors are also built similarly. Now, to elevate the cache placement
to be applicable to the original network, we simply bind the cache content of each user in
the original network with its corresponding virtual user in the virtual network. So, the
cache placement for the original network is

Z1 =Z2 =Zv1 , Z3 =Z4 =Zv2 , Z5 =Z6 =Zv3 , Z7 =Z8 =Zv4 .

Elevating the delivery procedure is more complex. Let us consider the first transmission
of the first round, as provided in (6.25). The first minifile in the transmission vector, i.e.,

W
(dv1)
2,1 , is suppressed at user v3, which will be equivalent to users {5, 6} in the original

network. In the original network, W
(dv1)
2,1 corresponds to two minifiles destined to users

1 and 2; i.e., W
(d1)
2,1 and W

(d2)
2,1 . Now, we see that the minifile W

(d1)
2,1 , in addition to

being suppressed at the real users {5, 6} corresponding to virtual user v3, it has also to

be suppressed at real user 2. Similarly, W
(d2)
2,1 has to be suppressed at real users {5, 6, 1}.

Recalling that α = 4, the suppression of the aforementioned minifiles at 3 users is possible.

Analogous considerations can be done for the other two minifiles W
(dv2)
1,1 and W

(dv3)
1,1 of

the first transmission for the virtual network. In this way, we see that the equivalent
transmission vector to (6.25) for the original network will be

x1
1 =w5,6,2W

(d1)
2,1 +w5,6,1W

(d2)
2,1 +w5,6,4W

(d3)
1,1 +w5,6,3W

(d4)
1,1 + w3,4,6W

(d5)
1,1 +w3,4,5W

(d6)
1,1 .
(6.26)

Other transmissions are built similarly. Overall, the algorithm requires subpacketization of
12 and delivers data in 12 transmissions. In comparison, applying cyclic caching without
user grouping requires subpacketization of K(t+ L) = 48 (4 times higher than with user
grouping), and the number of transmissions would be 48. A graphical representation for
the first transmission of the first round, for both virtual and original networks, is provided
in Figure 6.5.

(a) Virtual Network (b) Original Network

Figure 6.5 – Graphical illustration of transmission vector in Example 7

96

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

6.4 Complexity and Performance Analysis

6.4.1 Complexity Analysis

For two main reasons, the subpacketization value is an important complexity indicator for
any coded caching scheme. First, it indicates the number of smaller parts each file must be
split into, for the scheme to work properly. As argued in [33], the exponentially growing
subpacketization of conventional coded caching schemes can make their implementation
infeasible, even for networks with a moderate number of users. Second, a scheme
with smaller subpacketization generally requires a smaller number of transmissions,
and consequently, fewer beamformer design problems to be solved. For comparison, in
order to achieve the optimallinear one-shot sum DoF of t+N0, cyclic caching requires
subpacketization and transmission count of K(t+α)

φ2
K,t,N0

and K(K−t)
φ2
K,t,N0

, respectively. Both of

these numbers are considerably smaller than in the original multi-antenna scheme of [8],
for which the subpacketization is

(
K
t

)(
K−t−1
N0−1

)
, while

(
K

t+N0

)
transmissions are needed

in total. As each transmission requires solving a separate beamformer design problem,
cyclic caching has remarkably lower computation complexity than in [47].

In addition to the performance and complexity benefits of reduced subpacketization,
cyclic caching also has the critical advantage of relying on unicasting only, unlike other
traditional schemes that rely on high-order multicast messages (e.g., using XOR-ed
codewords). Although removing multicasting causes performance loss as discussed in [77],
it enables high-performance optimized (MMSE-type) beamformers to be applicable with
low complexity, even for large networks with a large sum-DoF. In the next subsection,
we provide simulation results for large networks with up to K = 100 users, in which
optimized beamformers are used. To the best of our knowledge, this is the first time a
multi-antenna coded caching scheme has been applied with optimized beamformers to
such a large network with a large sum-DoF.

From another perspective, cyclic caching also removes the requirement of decoding
multiple data parts jointly at the same user during a single transmission. As a result,
there is no need for complex receiver schemes such as successive interference cancellation
(SIC). Cyclic caching requires that during all transmissions, every user in the target
group decodes only one message, while in [8],

(
t+N0−1

t

)
terms must be jointly decoded.

The receiver complexity reduction is possible also by splitting each transmission with
overlapping multicast messages into multiple TDMA intervals as shown in [47], but it
comes with a substantial subpacketization increase.

Interestingly, cyclic caching also enables tuning α and K parameters jointly to reduce
both subpacketization and transmission count. This reduction is useful especially for
large networks with a large number of users K, for which the complexity of coded caching
schemes is critically limiting their practical implementation [33]. Selecting α to be smaller
than the antenna count is straightforward and explained in [47]. However, in order
to tune K, we consider a set of Kf additional phantom users and tune both α and
Kf to maximize gcd(K +Kf , t, α). Kf phantom users are then omitted during all the
subsequent transmissions. Of course, tuning either parameter comes with a DoF loss. For
α, this is not necessarily an issue, especially when the communication is at finite-SNR.

97

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Reduced subpacketi-
zation

Cyclic caching enables achieving the sum-DoF of t+ α, with
the reduced subpacketization of K(t+α)

φ2
K,t,α

.

Reduced number of
transmissions

With cyclic caching, delivery to all users is completed with
only K(K−t)

φ2
K,t,α

transmissions.

Relying only on uni-
casting

Cyclic caching relies on unicasting only. As a result, optimized
MMSE-type beamformers can be implemented with much lower
complexity using the uplink-downlink duality. This improves
the performance at low- and mid-SNR, compared with ZF
beamforming.

No MAC decoding Cyclic caching removes the requirement of MAC decoding,
thus eliminating the necessity of complex receiver structures
such as successive interference cancellation (SIC).

Controlling the com-
plexity

The subpacketization of cyclic caching can be controlled by
tuning the φK,t,α parameter, which is possible by adjusting α
and also by considering a set of Kf phantom users.

Table 6.2 – Advantages of the Cyclic Caching Scheme

In [47] it is shown that by choosing α < N0, one can obtain an improved beamforming
gain, which considerably improves the performance at the finite-SNR regime. The joint
impact of α and Kf tuning is studied through numerical simulations in Section 6.4.2.

In principle, the reduced subpacketization scheme of Section 6.3.6 can be applied
by splitting users into groups of size Q > 1, such that gcd(K, t, α) is divisible by Q.

This enables selecting several subpacketization levels, between K(t+ α) and K(t+α)
gcd(K,t,α)2 .

However, as we show later through simulations, the performance of cyclic caching is
almost intact regardless of the selected subpacketization, and hence it makes sense to
select the lowest possible subpacketization value.

In Table 6.2, we have summarized the key advantages of the cyclic caching scheme.
Moreover, in Tables 6.3 and 6.4, we have compared the complexity order, in terms of
both subpacketization requirement and the total number of transmissions, for the multi-
antenna scheme of [8] (M-S), cyclic caching without user grouping (LIN), cyclic caching
with user grouping (RED), the original group-based scheme in [33] (L-E), and the recently
proposed scheme in [76] (M-B). In Table 6.3, the complexity order is provided for the case
the global cache ratio t = KM

N does not scale with the number of users K. For this case,

we have simply used
(
K
t

)
= K!

t!(K−t)! = O(Kt). However, if t scales with K (i.e., if γ = M
N

does not scale with K), this order approximation is no longer valid. In this case, to
approximate

(
K
t

)
, we can consider the problem where we repeat a binary experiment with

the success probability of γ for K times. As K grows large, according to the law of large
numbers, the number of typical sequences (i.e., sequences with Kγ = t success outcomes)
would be

(
K
t

)
. However, from information theory, we also know that the number of typical

sequences approaches H(γ), where H(γ) = −γ log2 γ − (1− γ) log2(1− γ) is the entropy
function. Hence, when t scales with K we can use the approximation

(
K
t

)
= O(2KH(γ)),

and the complexity order of different schemes would be as shown in Table 6.4. From

98

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

M-S LIN RED L-E M-B

Subpacketization O(KtKN0−1) O(K) O(K) O(Kt/N0) O(Kt)

Transmission Count O(Kt+N0) O(K2) O(K2) O(Kt/N0+1) O(Kt+1)

Table 6.3 – Complexity order of different schemes when t does not scale with K

M-S LIN RED L-E M-B

Subpacketization O(2KH(γ)KN0−1) O(K2) O(K2) O(2KH(γ)/N2
0) O(2KH(γ))

Transmission Count O(2KH(γ)) O(K2) O(K2) O(2KH(γ)/N0) O(2KH(γ))

Table 6.4 – Complexity order of different schemes when t scales with K, γ = M
N

, H(·) is the entropy
function

Tables 6.3 and 6.4, it is clear that the complexity order of the proposed cyclic caching
scheme is considerably smaller (linear if t does not scale with K, and quadratic otherwise)
than all other schemes.

Finally, in Table 6.5, we have respectively compared the subpacketization requirement
and the transmission count in some different network setups for M-S, LIN, RED, L-E,
and M-B schemes. In the table, many entries are left empty for L-E and M-B schemes
due to their tight restrictions on the network parameters. The L-E scheme is originally
designed for networks in which t ≥ α and α divides both t and K, while M-B requires
t+α
t+1 to be an integer.

From Table 6.5, it is clear that except for the L-E scheme, the RED scheme has the
lowest subpacketization requirement among all the schemes. Also, regarding the number
of transmissions, except for a specific case (the third row in the table) LIN and RED
outperform all other schemes. It can be seen that, even when the user count is as low
as K = 30, the M-S scheme becomes infeasible due to the substantial values for both
the subpacketization and the transmission count. On the other hand, it is possible to
implement RED even for a very large network of K = 400 users in which the spatial
DoF is α = 100. The results also show how proper tuning of α and Kf can help further
reduce both the complexity and subpacketization in RED scheme.

6.4.2 Simulation Results

We use numerical simulations to compare the performance of cyclic caching with other
schemes. The symmetric rate, as defined in (6.1), is used as the comparison metric. The
L-E and M-B schemes are ignored in the simulations as they require tight restrictions on
network parameters to work without significant performance (DoF) loss. Moreover, for
the sake of comparison, we also consider a baseline scheme without coded caching, denoted
by No-CC, in which only the local caching gain at each user is attained together with
the spatial multiplexing gain. In the baseline scheme, we create K transmission vectors,
where users {1, 2, ..., α} are served during the first transmission (i = 1), while for i > 1,
the served user indices are a circular shift of the user indices targeted at transmission i−1.
For all the simulations, we use maxmin-SINR optimal (MMSE-type) beamformers, found
through solving (6.18). In the case of LIN, RED, and No-CC schemes, the beamformers

99

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

Required Subpacketization

K t N0 α Kf M-S LIN RED L-E M-B

8 2 5 2 0 140 32 8 4 -

8 2 5 4 0 280 48 12 - 28

8 2 5 5 0 140 56 56 - -

30 4 8 4 0 > 107 240 60 - -

30 4 8 4 2 > 108 256 16 8 -

30 4 8 6 0 > 109 300 75 - -

100 15 30 15 0 > 1032 3000 120 - -

100 15 30 15 5 > 1033 3150 14 7 -

100 15 30 17 0 > 1034 3200 3200 - -

400 50 200 100 0 > 10153 > 104 24 - -

Required number of transmissions (I)

K t N0 α Kf M-S LIN RED L-E M-B

8 2 5 2 0 70 48 12 6 -

8 2 5 4 0 28 48 12 - 28

8 2 5 5 0 8 48 48 - -

30 4 8 4 0 > 106 780 195 - -

30 4 8 4 2 > 107 832 52 28 -

30 4 8 6 0 > 107 780 195 - > 104

100 15 30 15 0 > 1032 8500 340 - -

100 15 30 15 5 > 1026 9450 42 21 -

100 15 30 17 0 > 1026 8500 8500 - > 1017

400 50 200 100 0 > 10113 > 105 56 - -

Table 6.5 – Complexity comparison for some example network settings.

are designed with the uplink-downlink duality solution described in Section 6.3.5. For
the M-S scheme, we use the more complex SCA method detailed in [47].

As discussed earlier, the complexity of the M-S scheme makes its implementation
infeasible even for moderate-sized networks. In order to be able to compare all the
schemes, we consider a small network of K = 6 users. The performance comparison
results are provided in Figure 6.6. It can be seen that the performance values of LIN and
RED schemes lie between M-S and No-CC. M-S provides better performance because it
benefits from a multicasting gain; i.e., a single codeword (created with the XOR operation)
benefits all the users in a multicast group. This multicasting effect is explained in more
detail in [77], with the help of the so-called efficiency index parameter. On the other hand,
No-CC scheme has the worst performance as it lacks the coded caching gain entirely. It
should also be noted that choosing a smaller α value improves the performance of both
M-S and LIN schemes at the lower SNR range, while this effect is more prominent for
the LIN scheme.13 This result is in line with the findings of [47, 48], where a smaller α is

13Note that when α = 1, placement and delivery algorithms in M-S scheme are the same as the original
scheme of [2]. The beamformer design also concedes with the max-min fair beamforming in [8].

100

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

−5 5 10 15 20 25 30

10

20

30

40

SNR [dB]

S
y
m

m
e
tr

ic
R

a
te

[n
a
ts

/
s]

M-S, α = 3

M-S, α = 2

M-S, α = 1

LIN, α = 3

LIN, α = 2

RED, α = 2

No-CC, α = 3

No-CC, α = 2

Figure 6.6 – M-S vs LIN vs RED vs No-CC rate; K = 6, t = 2, N0 = 3

10 15 20 25 30

2

4

6

8

10

Number of users (K)

S
y
m

m
e
tr

ic
R

a
te

[n
a
ts

/
s]

(a) Performance vs K, N0 = 4

5 10 15 20

10

20

30

Number of Antennas (N0)

S
y
m

m
e
tr

ic
R

a
te

[n
a
ts

/
s]

(b) Performance vs N0, K = 30

Figure 6.7 – Performance of RED vs K and N0 parameters, t = 2, α = N0, SNR= 10dB

shown to improve the performance at the finite-SNR regime due to a better beamforming
gain. Finally, Figure 6.6 demonstrates that RED scheme is able to provide the same
performance as LIN scheme, but with lower complexity. This near-identical performance
is a result of the two schemes having a very similar coding and interference-cancellation
structure.

Unfortunately, although the M-S scheme has superior performance, its high complexity
makes the implementation infeasible even for slightly larger networks. For example, for the
small network of 6 users considered in Figure 6.6, with our simulation setup, the required
time for simulating the M-S scheme is O(103) times larger than the LIN scheme. As
the network size grows, this ratio between the simulation times also grows exponentially.
On the other hand, the simulation time for the RED scheme is roughly four times
smaller than LIN. This is in line with the fact that for the considered network with
K = 6, t = 2, α = 2, the reduction in the subpacketization and transmission count is
equal to gcd(K, t, α)2 = 4.

In Figure 6.7, we have analyzed the performance of RED scheme with respect to K

101

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

10 20 30

50

100

150

200

SNR [dB]

S
y
m

m
e
tr

ic
R

a
te

[n
a
ts

/
s]

RED, α = 10

RED, α = 15

RED, α = 20

No-CC, α = 10

No-CC, α = 15

No-CC, α = 20

(a) Performance vs α

−5 0 5 10 15 20 25 30

0

10

20

SNR [dB]

P
e
rf

o
rm

a
n
c
e

R
a
ti

o
[%

]

α = 15

α = 20

(b) Performance ratio w.r.t. α = 10

Figure 6.8 – Performance of RED for a large network, K = 100, t = 10, N0 = 25

10 20 30

50

100

150

SNR [dB]

S
y
m

m
e
tr

ic
R

a
te

[n
a
ts

/
s]

K = 100, Kf = 0

K = 100, Kf = 5

K = 30, Kf = 0

K = 30, Kf = 5

(a) Performance vs Kf

−5 0 5 10 15 20 25 30

−10

0

10

SNR [dB]

P
e
rf

o
rm

a
n
c
e

R
a
ti

o
[%

]

K = 100, Kf = 5

K = 30, Kf = 5

(b) Performance ratio w.r.t. Kf = 0

Figure 6.9 – The effect of the Kf parameter, RED scheme, t = 7, N0 = 20, α = 14

and N0 parameters, while assuming t = 2 and α = N0. From Figure 6.7a, we see that
with the DoF value t+N0 fixed, the performance slightly reduces as K increases. This is
because we have assumed a fixed t = KM

N value, which means the local caching gain M
N is

reduced as K is increased. On the other hand, from Figure 6.7b, we see that increasing
L results in a linear increase in rate. This is simply because increasing N0 improves DoF,
and accordingly, the system performance.

Figure 6.8 illustrates the performance of RED scheme for a large network with
K = 100, t = 10 and N0 = 25. To the best of our knowledge, this is the first time a
coded caching scheme is applied with optimized beamformers for such a large network.
In Figure 6.8a, the results for No-CC scheme are included for comparison. It can be
verified that decreasing α from 20 to 10 gives a small performance boost at the low- to
moderate-SNR regime (< 15dB) due to improved beamforming gain. On the other hand,
at larger SNR values, the α = 20 setup performs much better due to the increased spatial
multiplexing gain. These results are in line with the findings in [47].

Finally, the complexity reduction effect of the Kf parameter is analyzed in Figure 6.9

102

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

for two network scenarios of size K1 = 100 and K2 = 30 users. In both networks, we
have assumed t = 7, N0 = 20 and α = 14. Without any phantom users, gcd(K, t, α) = 1
and the subpacketization values for the two networks are S1 = 2100 and S2 = 630,
respectively. However, by adding only Kf = 5 phantom users, the common denominator
becomes gcd(K +Kf , t, α) = 7, and hence, the subpacketization values are reduced to
S1 = 45 and S2 = 15, respectively. Interestingly, the decrease in the achievable rate, due
to adding Kf phantom users, is relatively minor for both networks. In fact, for the larger
network, the performance loss is less than 4% over the entire SNR range, while for the
smaller network, the deterioration is less than 15%. On the other hand, adding the extra
phantom users reduces the simulation time in our setup by a factor of ∼ 10.

103

Chapter 6. Novel Low-Complexity Scheme for the Cache-Aided MISO BC

104

Chapter 7

Coded Caching with Heterogeneous
Quality-of-Service Requirements

In this chapter we focus on the cache-aided K-user shared-link, where each user’s request
comes with a certain Quality-of-Service (QoS) requirement, thus allowing – in the context
of multi-layered coding – users to download only those file layers that are necessary to
meet their own QoS requirements. For such a problem we propose a generic QoS -aware
delivery scheme that works for a class of uncoded caching schemes within which we
identify a specific cache placement that is proven to be optimal if during the caching
phase the server knows only the number of the users requiring a given QoS but not their
identity. Finally, we will also touch upon the case when, in the caching phase, the server
does not have any information about the users’ QoS requirements.

7.1 Context and Related Works

Most streaming services employ adaptive streaming techniques to serve videos with
different quality levels, often as a function of the available bandwidth, processing power,
type of subscription etc. Indeed in current video coding standards such us H.264/AVC,
this adaptability is a main ingredient, and the different quality levels are obtained via
scalable video coding which encodes videos into many streams/layers such that the more
streams the user decodes, the higher is the video quality. This direction of coded caching
with heterogeneous quality-of-service requirements, was first studied in [84] by Yang and
Gündüz, who presented — for the case where the users’ QoS requirements are known
during the cache-placement phase — two coded caching schemes and a cut-set type
converse. Subsequent similar work in [85] proposes — for the case of the cache-aided
gaussian broadcast channel — different schemes that exploit multi-layer source coding
to serve at higher rates those users with better channels. Another interesting work that
merges the benefits of coded caching and multi-layered source coding is presented in [86]
for the setting of 2-layered files, where different transmitting nodes serve K cache-enabled
users who can decode the base layer and, if their channel strength allows, the enhancement
layer as well. Other works that jointly study coded caching and multi-layered coded files

105

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

can also be found in [87,88].

Caching oblivious to specific QoS requirements Unlike other related works though, our
work focuses on the case where, at the time of cache placement, the server knows only
many users want a certain QoS level, but it does not know which QoS level each particular
user wants. Having caching that is oblivious to the specific QoS requirement of each
user, can be of particular interest because the cache placement can indeed take place
long before the allowed or desired QoS is established.

7.2 System Model and Problem Definition

As in the original MAN setting, we consider the K-user cache-aided shared-link, where
a transmitter with access to a library of N files W (1),W (2), . . . ,W (N), is tasked with
serving a set {1, 2, . . . ,K} of K users equipped with a cache of size M (γ = M

N). Using

successive refinement source coding, each library file W (n), n ∈ [N] is split into H layers
as follows W (n) = {W (n,1),W (n,2), . . . ,W (n,H)}, where W (n,h), h ∈ [H] denotes the h−th
layer of the n−th file. As usual we assume that the system operates in two phases: the
cache placement phase and the delivery phase. In the first phase, the users fill their cache
with part of the content of the library and we denote Zk the cache content by users k such
that the vector Z = (Z1,Z2, . . . ,ZK) denotes the overall cache placement strategy. In
the delivery phase, we assume that when a user k requests a file W (dk), dk ∈ [N], it has a
given QoS requirement h ∈ [H], meaning that this user must be succesfully delivered the
first h layers {W (dk,1),W (dk,2), . . . ,W (dk,h)} of its desired file W (dk). Assuming that each
file n has normalized unit size |W (n)| = 1, we will use rh to denote the size of these desired
h layers, i.e. rh ,

∑h
j=1 |W (n,j)|. Naturally

∑H
l=1 |W (n,l)| = rH = |W (n)| = 1, ∀n ∈ [N].

We define user-QoS association the partition of the set of users [K] as

U = {U1,U2, ..,UH} (7.1)

telling us exactly the QoS level of each user, where users in set Uh must be delivered
exactly (and only) layers 1, 2, . . . , h of their respective requested file. Related to this, the
number Kh = |Uh| denotes the number of users with QoS level h ∈ [H], and we define
QoS profile

K = (K1,K2, . . . ,KH).

Each QoS profile K defines a class UK comprising of all U that share the same profile1

K.

Key assumptions and objective As usual, we will assume that the cache placement
phase is oblivious to the subsequent demand vector d = (d1, d2, . . . , dK). In addition,
here, we will assume that the cache placement phase is also oblivious to the user-QoS
association {U1,U2, ..,UH} but that it is aware of the QoS profile K. When the delivery

1We can easily see that the number of different partitions U associated to any fixed K, is given by the
well known multinomial coefficient

(
K

K1,··· ,KH

)
.

106

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

phase starts the serve is notified of the demand vector d and of the exact user-QoS
association {U1,U2, ..,UH}.

For any tuple (U ,d,Z), we define T ∗(U ,d,Z) as the optimal delivery time necessary
to serve all users’ requests. Under the assumption that the exact user-QoS association is
not known during the cache placement, which is only aware of the QoS profile K, the
optimal worst-case delivery time can be formally define as

T ∗(K) , min
Z

max
(U ,d)∈(UK,[N]K)

T ∗(U ,d,Z), (7.2)

for any given QoS profile K. As in the previous problems discussed in this thesis, the
minimization is over all uncoded cache placement strategies.

7.3 Main Results

We proceed with the main result that identifies the optimal performance T ∗(K).

Theorem 10. In the K-user cache-aided shared-link network with H-layer file coding,
where the cache placement phase is aware of the QoS profile K but it is unaware of the
user-QoS association U , the optimal worst-case delivery time takes the form

T ∗(K) =
H∑
h=1

K∑
g=0

∑Pg,h
r=1

(
K−r
g

)(
K
g

)
N︸ ︷︷ ︸

cg,l

x∗g,h (7.3)

where Pg,h = min
{
K − g,K −∑h−1

j=1 Kj

}
and where the set {x∗g,h}h∈[H],g∈[K]0 is the

optimal point of the linear program

minimize
xg,h

H∑
h=1

K∑
g=0

cg,hxg,h (7.4)

subject to

K∑
g=0

xg,h = (rh − rh−1)N, h = 1, . . . ,H (7.5)

K∑
g=0

g ·
(H∑
h=1

xg,h

)
≤ KM, (7.6)

xg,h ≥ 0, h = 1, . . . ,H g = 0, 1, . . . ,K. (7.7)

where {xg,h}h∈[H],g∈[K]0 are the optimization variables.

The performance of Theorem 10 is achieved by the scheme presented in Section
7.4. The proposed scheme works for any set {xg,h}h∈[H],g∈[K]0 satisfying equations
(7.5),(7.6),(7.7), but the optimal performance in (7.3) is achievable by using {x∗g,h}h∈[H],g∈[K]0 .
The matching converse — as we will see in Section 7.5 — coincides with the optimal

107

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

value of the linear program (LP) in (7.4)-(7.7) which is directly used to design the scheme
that optimally reflects the QoS profile K.

A peculiar characteristic of the above result is the fact that the achievable optimal
performance — under the considered assumptions — is obtained by leveraging the
constructed lower bound. In fact, the lower bound tells us exactly — for each file — how
much of each layer we have to cache in each user’ cache, thus highlighting the importance
of developing tight bounds.

We now proceed by providing an achievable performance for the case where caching
is oblivious to K.

Proposition 4. In the K-user cache-aided shared-link network with H-layer file coding,
and with caching that is oblivious to any QoS information about the users, the following
delivery time is achievable

Tobl(K) =

H∑
h=1

∑Pg,h
r=1

(
K−r
Kγ

)(
K
Kγ

) (rh − rh−1), (7.8)

where PKγ,h = min
{
K −Kγ,K −∑h−1

j=1 Kj

}
.

The achievable scheme stated in the above proposition, is a by-product of the general
scheme presented in Section 7.4 and it is obtained by essentially properly choosing feasible
values xg,l that do not depend on the QoS profile K. This ‘oblivious’ scheme achieving
(7.8), is compared in the plot in Fig. 7.1, to the optimal scheme that employs the
knowledge of K at the cache placement scheme.

7.4 Achievable Caching and Delivery Scheme

In this section we present the general caching and delivery schemes that achieve the
optimal delay of Theorem 10 as well as the achievable performance in Proposition 7.8.

7.4.1 Cache Placement Scheme

For any n ∈ [N] and any h ∈ [H], the first step is to split each subfile W (n,h) into K + 1
mini-files W (n,h) = {W (n,h,g)}Kg=0. We denote the size of each such mini-file as yg,h, i.e.

yg,h , |W (n,h,g)| for any n ∈ [N]. Because of the layer coding technique and the limited
memory of each user cache, the following equations must be satisfied

K∑
g=0

yg,h = (rh − rh−1), h = 1, . . . ,H (7.9)

K∑
g=0

g ·
(H∑
h=1

yg,h

)
≤ Kγ, (7.10)

yg,h ≥ 0, h = 1, . . . ,H g = 0, 1, . . . ,K, (7.11)

108

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

per-user cache size

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
D

e
liv

e
ry

 T
im

e
Optimal (Theorem 10)

per-layer MAN placement (Prop. 4)

0 0.05 0.1 0.15

1.5

2

2.5

3

3.5

4

Figure 7.1 – Comparison of delivery time between the optimal scheme and the ‘oblivious’ one. This is
done for QoS profile K = {12, 10, 8, 5, 3, 2, 1} and sizes rh = 2h−H, ∀h ∈ [H],H = 7.

which correspond to the one in equations (7.5)-(7.7) after defining xg,h , yg,hN for any
g ∈ [K]0 and any h ∈ [H].

Next, we further split each mini-file W (n,h,g) into
(
K
g

)
equally-sized micro-files W

(n,h,g)
τ

as follows W (n,h,g) = {W (n,h,g)
τ | |τ | = g, τ ⊂ [K]}.

At this point we can fill the cache Zk of each user k, by placing in it, from each file

W (n), n ∈ [N], all the micro-files W
(n,h,g)
τ for any τ 3 k, as described below

Zk = {W (n,h,g)
τ | k ∈ τ, n ∈ [N], h ∈ [H], g ∈ [K]0}.

We now prove that the above placement adheres to the cache-size constraint.

Compliance of the placement scheme with the cache constraint

We first recall that for each mini-file W (n,h,g), n ∈ [N], h ∈ [H], g ∈ [K]0, any derived

micro-file W
(n,h,g)
τ with |τ | = g, τ ⊂ [K], have size |W (n,h,g)

τ | = yg,h

(Kg)
. Due to the symmetry

in the cache placement, each user k ∈ [K] stores exactly
(
K−1
g−1

)
micro-files W

(n,h,g)
τ from

any fixed mini-file W (n,h,g), which means that, for each mini-file Wn,h,g, each user stores(
K−1
g−1

)yg,h
(Kg)

= g
K yg,h units of file. Consequently the total amount of data from the h−th

layer of file W (n), n ∈ [N] stored by each user k, takes the form Sk(W
(n,h)) ,

∑K
g=0

g
K yg,h,

109

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

and thus the total memory employed by each user to cache a portion of a file W (n), n ∈ [N],
takes the form

Sk(W
n)=

H∑
h=1

Sk(W
(n,h)) =

H∑
h=1

K∑
g=0

g

K
yg,h =

1

KN

K∑
g=0

g

H∑
h=1

xg,h.

Finally, summing over all library files, we see that each user caches

N∑
n=1

1

KN

K∑
g=0

g
H∑
h=1

xg,h =
1

K

K∑
g=0

g
H∑
h=1

xg,h (units of file)

which does not exceed M due to the constraint in (7.6).

Cache placement allowing the achievable performances in Theorem 10 and in Proposi-
tion 7.8 The cache placement that allow to achieve the optimal performance stated in
equation 7.3 is obtained from the strategy described above by selecting xg,h = x∗g,h, where
{x∗g,h}h∈[H],g∈[K]0 is the solution of the linear program in (7.4)-(7.7). On the other hand,
the performance in Proposition 7.8 is obtained by selecting, for any h ∈ [H], xg,h as

xg,h

{
0 g 6= Kγ

N(rh − rh−1) g = Kγ,
(7.12)

which we can see does not depend on K.

7.4.2 Delivery Scheme

The delivery phase starts when the users reveal their requested file and their QoS
requirement to the server which uses the delivery scheme described below to serve all
the requests. The scheme sequentially serves all the requested files, and does so layer by
layer, in accordance to the now known user-QoS association {U1,U2, ..,UH}. The scheme
operates in H rounds, one for each layer, where in particular, round h ∈ [H] serves the

h−th layer of the files requested by the users in the set Gh ,
H⋃
j=h

Uj , which have a QoS

level of h or above. Specifically, round h aims to deliver the missing parts of subfiles
W (dk,h), ∀k ∈ Gh.

Each round h is split into Qh sub-rounds, where Qh ≤ K + 1 is the total number of
non-zero elements in the aforementioned {x∗g,h}h∈[H],g∈[K]0 . Consequently each sub-round

g ∈ [Qh] serves subfiles W (dk,h,g) for all k ∈
H⋃
j=h

Uj .

In each such sub-round g of round h, we apply a variation of the delivery scheme
in [2], where we create

(
K
g+1

)
sets Q ⊆ [K] of size |Q| = g + 1, and for each such set Q,

we pick the set of users χQ = Q∩Gh. If χQ 6= ∅, the server transmits

XχQ =
⊕
k∈χQ

W
(dk,h,g)
Q\{k} (7.13)

else if χQ = ∅, there is no transmission, and we move to the next Q.
The decoding follows directly from [2].

110

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

Calculation of Delivery Time

We first recall that |W (dk,h)| = rh − rh−1 and that |W (dk,h,g)| = xg,h
N . We also note that

in each sub-round g of round l, the total number of transmissions is

Gh,g =

(
K

g + 1

)
−
(∑h−1

j=1 Kj

g + 1

)
where the second term accounts for the number of times the set χQ was empty. It is easy
to see that if

∑h−1
j=1 Kj < g + 1, we have Gh,g =

∑K−g
r=1

(
K−r
g

)
, else we have

Gh,g =

(
K − 1

g

)
+

(
K − 2

g

)
+ · · ·+

(∑h−1
j=1 Kj

g

)

=

K−
∑h−1
j=1 Kj∑

r=1

(
K − r
g

)
which implies that

Gh,g=

min{K−g,K−
∑h−1
j=1 Kj}∑

r=1

(
K − r
g

)
.

Each transmission has normalized duration
xg,l

N(Kg)
, and thus the total duration of a

sub-round is ∑min{K−g,K−
∑h−1
j=1 Kj}

r=1

(
K−r
g

)(
K
g

)
N

xg,h.

Summing over all sub-rounds and then over all rounds, we calculate the total delivery
time to be

T ∗(K) =
H∑
h=1

K∑
g=0

∑min{K−g,K−
∑h−1
j=1 Kj}

r=1

(
K−r
g

)(
K
g

)
N

xg,l. (7.14)

It is easy to verify that as a by-product we get the achievable delivery times stated in
Thereom 10 and Proposition 7.8.

7.5 Information Theoretic Converse

In this section we present the information theoretic converse that proves, in conjunction
with the achievable scheme in Section 7.4, the optimality of the delivery time in The-
orem 10. The proof of converse draws nicely again from the technique in [52] (and its
adaptation in Chapter 3), that translates the coded caching problem into an equivalent
index coding problem, making use of the cut-set type outer bound on the index coding
capacity introduced in [89, Corollary 1].

111

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

The coded caching problem here is uniquely determined when the users’ requests and
QoS levels (d,U) are revealed to the server. Focusing on the worst-case scenario with
N ≥ K, we define

DK , {d(U) : d ∈ Dwc,U ∈ UK}

as the set of worst-case demands associated to a given QoS profile K, where Dwc is the
set of all demand vectors d that are comprised of (the indices of) K different files. First
of all, we proceed to translate the delivery phase of the considered problem into an index
coding problem, similarly to as we did in Section 3.4.

Translation to index coding A first step in converting the caching problem defined by
(d,U) into an equivalent index coding problem, is to split a requested layer of a requested
file in the most general way. In particular, focusing on layer h, this means that we

split any requested subfile W (di,h), i ∈ ∪Hp=hUp into 2K disjoint subfiles W
(di,h)
τ , τ ∈ 2[K],

where we recall that 2[K] is the power set of [K], and where τ ∈ [K] indicates the

set of users in which W
(di,h)
τ is cached. In the context of index coding, we can view

each such subfile W
(di,h)
τ as a message requested by a different user that has as side

information all the content in the cache of the requesting user from the caching problem.
Given this aforementioned representation of the requested files, the corresponding index
coding problem is fully defined by the side information graph GU ,d = (VG , EG), where VG
(which has cardinality |VG | = 2K−1 ·∑Hj=1 jKj) is the set of vertices corresponding to

the requested subfiles W
(di,h)
τ , and where EG is the set of directed edges of the graph. A

directed edge from vertex v ∈ VG to v′ ∈ VG exists if and only if the index coding user
requesting the subfile corresponding to vertex v′, knows the subfile corresponding to
vertex v.

Now that we have converted the coded caching problem into an index coding problem
we make use again of the so-called MAIS bound already stated in Lemma 1, which we use
it here with N0 = 1 since in this chapter we are considering a single antenna transmitter.
Lemma 1 will be used to lower bound the delay T ∗(U ,d,Z). To this end, we proceed
to carefully select acyclic subgraphs that will yield, via Lemma 1, tighter lower bounds
for T ∗(U ,d,Z). In the following lemma we use σ to denote a permutation on the tuple
(1, 2, . . . ,K).

Lemma 8. All subfiles

W
(dσ(i),h)
τi , ∀i ∈ [K], ∀h : σ(i) ∈

H⋃
p=h

Up, ∀τi ⊆ [K] \ {σ(1), . . . , σ(i)} (7.15)

such that

σ(i) ∈ Up ∧ σ(j) ∈ Uw with i ≤ j ⇐⇒ p ≥ w (7.16)

compose an acyclic subgraph J of GU ,d.

112

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

We notice that, for any permutation σ that does not necessarily satisfies (7.16),
the fact that the subfiles in (7.15) form an acyclic subgraph of the corresponding side
information graph is a simple direct extension of Lemma 1 in [52] to the considered setting
with multi-layered coded files. Among all the permutations2 σ ∈ SK , the permutations
that satisfy 7.16 are those that induce acyclic subgraphs with the highest number of
nodes. This latter fact is crucial for the derivation of a tight converse bound. The total
number of permutations σ that satisfy the condition in (7.16) can be easily calculated to
be K1!K2! · · ·KH!. We will denote the set of all such permutations by R.

After choosing an acyclic subgraph according to Lemma 8, we return to Lemma 1
and form the following lower bound

T ∗(U ,d,Z) ≥ T lbσ (U ,d,Z) (7.17)

where

T lbσ (U ,d,Z) ,
H∑
h=1

KH∑
j=1

∑
τj⊆[K]\{σ(1),··· ,σ(j)}

|W (dσ(j),h)
τj |+

H−1∑
h=1

KH−1∑
j=1

∑
τj⊆[K]\{σ(1),··· ,σ(KH+j)}

|W (dσ(KH+j),h)
τj |

+ · · ·+
1∑

h=1

K1∑
j=1

∑
τj⊆[K]\{σ(1),...,σ(K−K1+j)}

|W (dσ(K−K1+j),h)
τj |. (7.18)

Since (7.18) holds for each σ ∈ R, we proceed to lower bound T ∗(U ,d,Z) with the
following average

T ∗(U ,d,Z) ≥ 1

|R|
∑
σ∈R

T lbσ (U ,d,Z). (7.19)

We now recall that our interest lies on the worst-case delay scenario for a given profile K.
Relaxing the maximization with an average we get

T ∗(K) = min
Z

max
(U ,d)∈(UK,[N]K)

T ∗(U ,d,Z) (7.20)

≥ min
Z

1

|UK| · |Dwc|
∑
U∈UK

∑
d∈Dwc

T ∗(U ,d,Z), (7.21)

≥ min
Z

1

|UK| · |Dwc| · |R|
∑
U∈UK

∑
d∈Dwc

∑
σ∈R

T lbσ (U ,d,Z), (7.22)

where Dwc is the set of all demands d that are comprised of the indices of K different
files and where T lbσ (U ,d,Z) is given by (7.18).

We can now rewrite the inequality in (7.22) in the form

T ∗(K) ≥ min
Z

H∑
h=1

K∑
g=0

∑
τ⊂[K]:|τ |=g

N∑
n=1

c(n,h)
τ |W (n,h)

τ |, (7.23)

2We recall that SK is the symmetric group of all k-permutatios f the set [K].

113

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

where c
(n,h)
τ is evaluated in what follows. To this end, we first notice that the averages in

(7.22) act as a symmetrization step such that all subfiles that are cached in exactly g
users, i.e. those with lower index τ such that |τ | = g, appear an equal number of times

in the summation in (7.22), thus implying that c
(n,h)
τ = c

(n,h)
τ ′ for |τ | = |τ ′| = g for any

n ∈ [N] and any h ∈ [H]. At the same time the fact that we average over all possible
demand vectors with distinct requested files and over all possible QoS -user associations

satisfying the QoS profile K, we have that the coefficients c
(n,h)
τ do not depend on the

specific n. This implies that

c(n,h)
τ = c

(n′,h)
τ ′ ∀τ, τ ′ : |τ | = |τ ′| = g and ∀n, n′ ∈ [N]. (7.24)

Thus, the expression in (7.23) can be simplified to

T ∗(K) ≥ min
Z

H∑
h=1

K∑
g=0

cg,hxg,h, (7.25)

where xg,h ,
∑

n∈[N]

∑
T ⊆[K]:|τ |=g |W

(n,h)
τ |.

Because of the symmetry created, we can now calculate cg,h directly from (7.18) as
the percentage of subfiles of layer h with |τ | = g that appear in (7.18). For any h ∈ [H],

there are
∑min{K−g,K−

∑h−1
j=1 Kj}

r=1

(
K−r
g

)
subfile terms |W (j,h)

τ | in (7.18) for which |τ | = g.

Consequently, since there exist in total
(
K
g

)
N subfiles W

(j,h)
τ with |τ | = g, we have

that

cg,h =

∑min{K−g,K−
∑h−1
j=1 Kj}

r=1

(
K−r
g

)(
K
g

)
N

. (7.26)

This implies that our optimal delivery time is lower bounded as

T ∗(K) ≥ min
Z

H∑
h=1

K∑
g=0

∑min{K−g,K−
∑h−1
j=1 Kj}

r=1

(
K−r
g

)(
K
g

)
N

xg,l. (7.27)

We recall that the successive refinement source coding applied to the files, implies the
following equalities

K∑
g=0

xg,h = (rh − rh−1)N, ∀h ∈ [H] (7.28)

while the sum cache size constraint forces

K∑
g=0

g ·
(H∑
h=1

xg,h

)
≤ KM. (7.29)

Finally, by combining (7.27), (7.28), (7.29), the desired lower bound can be derived
from the following linear program

minimize
xg,h

H∑
h=1

K∑
g=0

cg,hxg,h

114

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

subject to (7.28), (7.29),

xg,h ≥ 0, h = 1, ...,H.

This concludes the proof.

115

Chapter 7. Coded Caching with Heterogeneous Quality-of-Service Requirements

116

Chapter 8

Heterogeneous Coded Distributed
Computing

In this chapter we address the coded distributed computing problem where each computing
node has different fixed computational power, which is directly motivated by practical
computing systems that have heterogeneous resources. With the aim of reducing the
overall execution time — comprised of mapping, shuffling and reduce time — required to
compute a set of arbitrary output functions from a dataset of files, we propose a novel
combination of a files assignment strategy, a output functions assignment strategy and a
shuffling scheme that exploit the heterogeneity of the nodes’ computational powers. In
particular, for a fixed heterogeneous assignment of the output functions to the computing
nodes, we will prove that, under the reasonable assumption that all the elements of the
dataset are replicated the same number of times across the nodes, our files assignment
strategy and shuffling scheme jointly achieve a communication load that is optimal within
a multiplicative gap of 2. Furthermore, we will also identify a class of heterogeneous
distributed computing problems with given computation loads at the nodes (i.e. fixed
arbitrary number of files assigned to each node) and given output functions assignment,
for which our proposed shuffle scheme is exactly optimal under the aforementioned
assumption. Interestingly, some of the results presented in this chapter are strongly
related and draw from the techniques that we have developed for the topology-aware
shared-cache setting addressed1 in Chapter 4.

8.1 Introduction

Distributed computing is known to be one of the most important paradigms to speed
up large scale data analysis. One of the most well-known frameworks for distributed
computing is the so-called MapReduce model which decomposes the computation in
three distinct phases: the map phase, the shuffle phase and the reduce phase [23]. In

1It is important to highlight that we will only present preliminaries contributions on this topic of
heterogeneous coded distributed computing and that more complete analysis as well as further extensions
of this results are still currently under investigation.

117

Chapter 8. Heterogeneous Coded Distributed Computing

the map phase, computing nodes process part of the data available locally to produce
some intermediate values that are then exchanged between the nodes during the shuffle
phase, in order to prepare the subsequent reduce phase where the nodes compute the
final output results distributedly. Unfortunately, the time that the system spend in the
shuffle phase increases rapidly with the number of computing nodes and it does not
allow distributed computing to scale with the number of such nodes. To alleviate the
impact of the communication load on distributed computing systems, the work in [16]
proposed a new variant of this MapReduce framework, called Coded MapReduce, which
leverages carefully designed redundant computations to enable coding opportunities that
substantially reduce the inter-node communication load (i.e. reduce the shuffle time)
of distributed computing. In particular, for a MapReduce-type distributed computing
system of Λ nodes that have to process a dataset of N files to obtain K output functions,
Li et al. showed that the optimal communication load (number of bits communicated by
the nodes normalized by the total number of bits required by all the nodes) is given by

τ∗CMR(γ,Λ) =
1

Λ

Λ− Λγ

Λγ
, (8.1)

where γ is the size of the fraction of the dataset stored by each computing node. It
can be observed that the shuffle scheme that achieves this optimal load is isomorphic to
the delivery scheme introduced in [15] for the cache-aided D2D setting. An important
limitation of this Coded MapReduce framework is the fact that it considers a homogeneous
setting, where all nodes are assigned the same number of files (a fraction γ of the dataset
per node) and the same number of output functions (KΛ output functions per node).
However, these uniform assignments might not be preferable in an computing system
where nodes have heterogeneous resources, since the overall execution time would be
dominated by the nodes with less available resources. In fact, it is common to have
computing nodes with heterogeneous storage, processing and communication capacities
in practical computer clusters (e.g. Amazon EC2 clusters are comprised of heterogeneous
computing nodes). Motivated by the above, in the following sections we present new
results for the coded distributed computing problem where each node has a different
computational power. In particular, we will consider three different scenarios. In the
first, we will assume that both the computation load (i.e. number of files of the dataset
that each computing node stores) and the reduce load (i.e. number of output functions
that each node has to compute) of each node are fixed. On the contrary, in the second
scenario we allow the design of the computation loads for given arbitrary reduce loads.
Finally, in the third scenario, we assume that both the computation loads and the reduce
loads of the nodes are flexible and can be properly designed.

8.1.1 Related Works

Most of the known works on heterogeneous coded distributed computing assume that
the computation load of each node is arbitrary and fixed. The first results in this
direction can be found in the work in [90], which provides information-theoretically
optimal results for the setting with 3 computing nodes having heterogeneous computation

118

Chapter 8. Heterogeneous Coded Distributed Computing

loads, but where the assignment of the output functions is uniform across the nodes.
The work in [91] proposes an achievable scheme for any given computation load and
any given function assignment at each node. Furthermore, the authors in [91] propose,
for any given computation load at each node, two different strategies for the output
functions assignment which allow them to show the order-optimality of their achievable
communication loads. By means of numerical results, the authors of [91] show that
their proposed schemes can have a better communication-computation trade-off than the
trade-off of the homogeneous Coded MapReduce in [16]. The problem of file assignment
for given computation loads is also addressed in [92], which considers a heterogeneous
network of computing nodes consisting of multiple homogeneous networks. For such
a problem, the authors prove that their achievable communication load is within a
constant multiplicative gap from optimal. A more recent work in [93] considers the fully
heterogeneous distributed computing problem with given arbitrary computation loads
and reduce loads for which they propose an achievable scheme that requires the solution of
a linear program. By numerical simulations, the authors show that their scheme achieves
a lower communication load than all the previously mentioned works. Furthermore, they
also provide a lower bound on the communication load, which again can be obtained
as a solution of a linear program. Other related works can also be found in [94, 95].
Nevertheless, the exact characterization of the optimal computation-communication
tradeoff for heterogeneous distributed computing systems remains an open problem. In
this chapter, we provide new ideas and results that bring us one more step closer to the
solution of such problems.

8.2 Heterogeneous Distributed Computing Model

In this section, we describe a general MapReduce-inspired coded distributed computing
problem with heterogeneous computational powers, and define the metric that we will
use to assess the goodness of our proposed algorithms.

We consider the problem of computing K arbitrary output functions from a dataset
consisting of N files of F bits on a cluster of Λ distributed computing nodes, for some
positive integers K,N,F,Λ ∈ N. We assume that each node λ ∈ [Λ] has a computa-
tional power described by the dimensionless quantity cλ, such that c = (c1, c2, . . . , cΛ)
denotes the vector of the computational powers of the nodes. Without loss of gener-
ality we assume that ci ≥ cj for j ≥ i, and we also assume that such computational
powers are normalized such that the total computational power of the Λ nodes sums
to one, i.e.

∑Λ
λ=1 cλ = 1. The distributed computation is coordinated by a central

controller which, for each λ ∈ [Λ], assigns Lλ output functions to computing node λ,
such that

∑Λ
λ=1 Lλ = K. We will refer to the vector L = (L1, L2, . . . , LΛ) as the re-

duce load vector, which we assume to be sorted in descending order, i.e. Li ≥ Lj for j ≥ i.

More specifically, given the input files F = {f1, f2, . . . , fN} ∈ F2F , the objective
of the computing problem is to evaluate the output values µ1, µ2, . . . , µK , where µk =
φk(f1, f2, . . . , fN) ∈ F2B , k ∈ [K], for some B ∈ N, and φk : (F2F)N −→ F2B is a function

119

Chapter 8. Heterogeneous Coded Distributed Computing

that maps all the input files to a binary stream of length B. Inspired by the distributed
computing framework MapReduce, we decompose the computation as

φk(f1, f2, . . . , fN) = hk(gk,1(f1), gk,2(f2), . . . , gk,N (fN)), k ∈ [K] (8.2)

where gn , [g1,n, g2,n, . . . , gK,n] is the function that maps input file fn into K
intermediate values (IVs) vk,n = gk,n(fn) ∈ F2T , k ∈ [K], for some T ∈ N, while
hk : (F2T)N −→ F2B is the reduce function that maps the IVs vk,1, vk,2, . . . , vk,N into
the output bit stream uk. The evaluation of the output functions {φk}Kk=1 as in (8.2) is
done in three sequential phases: the map phase, the shuffle phase and the reduce phase.
We assume that each phase starts only when the previous one has finished (sequential
MapReduce).

We assume that a central controller coordinates the computation. Before the compu-
tation starts a central controller partition the set of files F into Λ sets M1,M2, . . . ,MΛ

such that node λ is assigned to the set Mλ such that Mλ , |Mλ|. We will refer to
M = (M1,M2, . . . ,MΛ) as the file assignment vector. Furthermore, the central con-
troller decides which output values each computing node will have to evaluate. We denote
by Lλ the set of the indices of the output values that will be computed by node λ, for
some set Lλ ⊆ [K] such that |Lλ| = Lλ. Hereinafter, the quantity Lλ will be also referred
to as the reduce load of node λ, λ ∈ [Λ]. We now proceed with an important definition
which tells us the class of file assignments M considered throughout this chapter.

Definition 4. We say that a file assignment M is homogeneous if all files f ∈ F are
assigned to the same number of computing nodes.

8.2.1 Map Phase

In this phase, the central controller distributes to node λ, λ ∈ [Λ] a set of files Mλ ⊆ F
which are mapped by node λ to obtain the intermediate values {vk,n}Kk=1 for each fn ∈Mλ.
We define computation load of node λ the number of assigned files to node λ, normalized
by the total number of files N , i.e. γλ , |Mλ|

N , while the total computation load is

t ,
∑Λ

λ=1 γλ. We will use the symbol γ to refer to the vector of the computation loads
of the nodes, i.e. γ = (γ1, γ2, . . . , γΛ). Furthermore, we assume that node k processes

its assigned files with a mapping computational speed of c
(m)
λ bits per second, where

c
(m)
λ , cλ · bm, for some bm ∈ R. It follows that the time that node λ spends in mapping

files in Mλ can be expressed as

T (m)
λ =

MλF

c
(m)
λ

, (8.3)

thus resulting in a total map time of

T (m) = max
λ∈[Λ]

{
MλF

c
(m)
λ

}
(8.4)

bits per second.

120

Chapter 8. Heterogeneous Coded Distributed Computing

8.2.2 Shuffle Phase

After all the nodes have finished mapping their assigned files, the Λ computing nodes
exchange some of the computed intermediate values such that at the end of the shuffle
phase each node λ will have acquired all intermediate values vk,1, vk,2, . . . , vk,N , ∀k ∈ Lλ
required for computing output values {uk|k ∈ Lλ} in the subsequent reduce phase. To
do so, each node λ constructs the message Xλ ∈ F2`λ for some `λ ∈ N, as a function of
the intermediate values computed in the map phase. In particular, node λ uses some
encoding function Ψk : (F2T)K|Mλ| −→ F2`λ to construct the symbol

Xλ = Ψλ(gn(fn) : n ∈Mλ),

which is later multicasted to all other nodes through a channel of capacity cs bits per
second. We define communication load the normalized total number of bits sent through
the channel during the shuffle phase as

τ ,

∑Λ
λ `λ

KNT
, (8.5)

which corresponds to a shuffle time of

T (s) =

∑Λ
λ `λ
cs

(8.6)

bits per second.
We now proceed with an important definition.

Definition 5. We say that a shuffle scheme is one-shot if any computing node can recover
each of all its required bits (of the required intermediate values) from the intermediate
values computed in the map phase available locally and at most one transmitted message
by any other node.

8.2.3 Reduce Phase

In the last phase, node λ uses the received symbols X1, X2, . . . , XΛ and the computed
intermediate values {gn(fn) : n ∈ Mλ} to obtain the inputs of the reduce functions
{hk : k ∈ Lλ}, i.e. for each k ∈ Lλ and some encoding function χkλ = F2`1 × F2`2 × · · · ×
F2`Λ × (F2T)K|Mλ| −→ (F2T)N , node λ computes

(vk,1, vk,2, . . . , vk,N) = χkλ(X1, X2, . . . , XΛ, {gn(fn) : n ∈Mλ}).

Finally, node λ computes for each k ∈ Lλ the reduce function hk(vk,1, vk,2, . . . , vk,N) to
complete its assigned jobs. We assume that the reduce computational speed of node λ is

of c
(r)
λ bits per second, where c

(r)
λ = cλ · br, for some br ∈ R. Hence, the time that node λ

spends in computing its assigned output values can be expressed as

T (r)
λ =

LλNT

c
(r)
λ

, (8.7)

121

Chapter 8. Heterogeneous Coded Distributed Computing

thus resulting in the total reduce time

T (r) = max
λ∈[Λ]

{
LλNT

c
(r)
λ

}
bits per second. (8.8)

8.2.4 Problem Formulation

For the heterogeneous coded distributed computing model described above, the metric of
interest is the total computing time

TΣ , T (m) + T (s) + T (r).

The optimal duration of each phase is denoted as T ∗(m), T ∗(s), T ∗(r), respectively. In this
work, we consider three different scenarios which we describe in the following paragraphs.

Scenario with fixed computation loads and fixed reduce loads

In this scenario we assume that the computation load of each computing node is fixed, i.e.
the vector γ is fixed and given, which implies that the mapping time T (m) is fixed and
cannot be optimized. At the same time, we assume that also the reduce load vector L is
given, which in turn implies that also the reduce phase time T (r) is fixed, thus leaving
the shuffle time T (s) the only quantity to be minimize. We notice that minimizing the
shuffle time T (s) is equivalent to minimizing the communication load τ . Hereinafter, we
denote τ∗(L,γ) the optimal communication load for any given reduce load vector L and
any given computation load vector γ. Furthermore, we will use τ∗hom,os(L,γ) to refer to
the optimal communication load under the assumptions of homogeneous file assignment
(cf. Definition 4) and one-shot shuffling (cf. Definition 5).

Scenario with flexible computation loads and fixed reduce loads

We now consider the scenario where the reduce load vector L is given and that the
vector of the computation loads γ can be optimized as a function of L. Nevertheless,
we assume that the total computation load to distribute among the nodes equals the
value t, i.e.

∑Λ
λ=1 γλ = t. Unlike the previous scenario, here, we can optimize the time

that the system spend in the shuffle and map phase, while the reduce time is fixed.
For this scenario, we denote the optimal communication load under the assumption of
homogeneous file assignment as τ∗(L, t).

Scenario with flexible computation loads and flexible reduce loads

In this third scenario, we assume that both the computation loads and reduce loads can
be optimized as a function of the computational power vector c.

122

Chapter 8. Heterogeneous Coded Distributed Computing

8.3 Main Results

In this section we present our main contributions on heterogeneous coded distributed
computing for the three considered scenarios described above. Hereinafter, unless explicitly
stated, all our results hold for integer values of the total communication load t.

8.3.1 Fixed Computation Loads and Fixed Reduce Loads

We start by presenting a lower bound under the assumption of homogeneous file assign-
ment.

Theorem 11. For the heterogeneous coded distributed computing problem with given
computation load vector γ and given reduce load vector L, the optimal communication
load, under the assumption of homogeneous file assignment, satisfies

τ∗hom(L,γ) ≥
∑

λ∈[Λ] Lλ(1− γλ)
Kt

, (8.9)

where t =
∑Λ

λ=1 γλ and t ∈ [Λ].

The proof is relegated to Section 8.6.

Equipped with the above lower bound, we continue by identifying a set of pairs (L,γ)
for which we can provide an optimal achievable scheme. To this end, we start by defining
a computation load vector γ given any reduce load vector L.

Definition 6. For any reduce load vector L, any t ∈ [Λ] and any λ ∈ [Λ] we define

γ̄λ(L) ,
Lλ
∑

η∈C[Λ]\{λ}
t−1

∏t−1
j=1 Lη(j)∑

ω∈C[Λ]
t

∏t
j=1 Lω(j)

, (8.10)

which in turn defines the vector γ̄(L) = (γ̄1(L), γ̄2(L), . . . , γ̄Λ(L)).

Observation 3. We notice that the expression of the computation load γ̄λ(L) defined above
coincides with equation (4.16), which tells the normalized memory allocated to cache λ as
a function of the cache occupancy vector L for the topology-aware shared-cache problem
discussed in Chapter 4.

Equipped with definition 6, we are now ready to present our first optimality result of
this chapter.

Theorem 12. For an heterogeneous distributed computing problem with reduce load vector
L and computation load vector γ = γ̄(L), the optimal communication load τ∗hom(L, γ̄(L))
under the assumption of homogeneous file assignment is given by

τ∗hom(L, γ̄(L)) =

∑
λ∈[Λ] Lλ(1− γ̄λ(L))

Kt
. (8.11)

123

Chapter 8. Heterogeneous Coded Distributed Computing

Proof. For the considered computation load vector γ̄(L), which is function of the reduce
load vector L, the achievable scheme is presented in Section 8.4, while the matching
converse was presented in Theorem 11, which is here used with γ = γ̄(L).

Remark 10. We notice that the achievable scheme presented in Section 8.4 can be seen
as a D2D version of the topology-aware scheme for the shared-cache problem presented in
Chapter 4, Section 4.4.

Theorem 12 states the optimality of our achievable scheme, under the aforementioned
assumption of homogeneous file assignment, for the pair (L, γ̄(L)) where the computation
load γ is function of L (for any L, where Lλ ∈ N) as in Definition 6. The optimal
communication load for any pair (L,γ) remains an open problem.

We notice that for any non uniform reduce load vector L, the achievable communication
load for the tuple (L, γ̄(L)) is lower than the communication load τ∗CMR(Λ, γ) in equation
(8.1) by the standard coded MapReduce algorithm which uses L = (KΛ , . . . ,

K
Λ) and

γ = (tΛ , . . . ,
t
Λ). While this implies that if we want to reduce the communication load we

have to choose a reduce load vector L as skewed as possible, we also notice that, in the
scenario where all nodes have the same computational power, a skewed (non uniform)
L implies both a higher map time and reduce time than the case when the reduce load
vector is selected to be uniform, i.e. L = (KΛ , . . . ,

K
Λ). Therefore, it is evident that in

order to minimize the overall computing time (comprised of map time, shuffle time and
reduce time) we have to take into account the specific computing problem which will
affect the time that each node will spend in mapping a file of the dataset as well as
the time required to produce a given output value in the reduce phase. When we will
consider the scenario where both the computation load vector and the reduce load vector
can be optimized we will present a strategy that aims at minimizing the reduce time
while also reducing the shuffle time.

8.3.2 Flexible Computation Loads and Fixed Reduce Loads

In the next theorem we present an order optimality result for the considered scenario
where the computation load vector γ can be optimized as a function of the given reduce
load vector L in order to minimize the communication load τ .

Theorem 13. For an heterogeneous distributed computing problem with reduce load vector
L, the optimal communication load τ∗hom,os(L, t) under the assumptions of homogeneous
file assignment and one-shot shuffling satisfies

1

2
· τ∗hom(L, γ̄(L)) ≤ τ∗hom,os(L, t) ≤ τ∗hom(L, γ̄(L)), (8.12)

where τ∗hom(L, γ̄(L)) is provided in Theorem 12, for some t ∈ [Λ].

Proof. The converse bound and derivation of the optimality gap for Theorem 13 are
presented in Section 8.5, while the achievable scheme is the one that achieves the
communication load in Theorem 12 and it is presented in Section 8.4.

124

Chapter 8. Heterogeneous Coded Distributed Computing

Theorem 13 tells us that an order-optimal selection of the computation load vector γ,
given a total computation load t, is the one described by the vector γ̄(L). This strategy
allocates more computation load to those computing nodes that have to evaluate more
output functions, in a way that in the shuffle phase a coding gain of t is always achievable
regardless of L. At the same time, allocating more computation load to those nodes that
are more loaded in the reduce phase allows to simultaneously reduce also the total number
of intermediate values that have to be exchanged among the nodes, i.e. such approach
allows to get an higher ”local caching gain”2 than the one that would be achieved with a
uniform distribution of the total computation load among the nodes.

Equipped with an order-optimal solution for reducing the communication load for a
setting with a non uniform reduce load vector L, in the next paragraph we show a simple
yet effective way to select such reduce load vector L as a function of the computational
power vector c.

8.3.3 Flexible Computation Loads and Flexible Reduce Loads

In this scenario the computation load vector γ and the reduce load vector L can be
selected as a function of the computational power vector c in order to minimize the
overall computing time TΣ. To this end, we take a separation approach and we first
focus on minimizing the reduce time T (r), before proceeding with the minimization of
the shuffle time T (s).

The optimal reduce time, minimized over all possible reduce load vectors L ∈ NΛ,
can be evaluated as

T ∗(r) = min
L∈NΛ

max
λ∈[Λ]

{
LλNT

c
(r)
λ

}
=
NT

br
min
L∈NΛ

max
λ∈[Λ]

{
Lλ
cλ

}
, (8.13)

which it can be seen that is minimized for Lλ = Kcλ. Therefore, the minimum reduce
time takes the value

T ∗(r) =
KNT

br
. (8.14)

With the optimal reduce load vector L∗(c) , Kc at hand, we can proceed to
minimizing the shuffle time T (s) as a function of L∗(c), which in turn is equivalent to
minimizing the communication load τ(Kc, t). The following corollary holds.

Corollary 2. For the coded distributed computing problem with computational power vector
c and optimal reduce load vector L∗(c) = Kc, the optimal communication load, under
the assumptions of homogeneous file assignment and one-shot shuffling, satisfies

1

2
· τ∗hom(Kc, γ̄(Kc)) ≤ τ∗hom,os(Kc, t) ≤ τ∗hom(Kc, γ̄(Kc)) (8.15)

Proof. Corollary 2 follows directly from theorem 13.

2Here, the term local caching gain is borrowed from the coded caching literature.

125

Chapter 8. Heterogeneous Coded Distributed Computing

Therefore, in this scenario where we can select the output functions assignment (i.e.
the reduce loads of the nodes) as well as the computation loads of each node as a function
of the computational powers, selecting the reduce load vector L∗(c) = Kc minimizes
the reduce time and allows for an order-optimal shuffle time, achieved by the algorithm
described in Section 8.4. This solution has the drawback to slightly increase the map
time T (m) compared to the case where all computing nodes have the same storage size.
In particular, for the optimal choice of the reduce load vector L∗(c) = Kc, the map time
takes the value

T (m) = max
λ∈[Λ]

{
γ̄λ(Kc)NF

c
(m)
λ

}
, (8.16)

which is in general higher than the map time given by a uniform computation load
vector γ = (tΛ , . . . ,

t
Λ). However, we recall that in practical scenarios the time spent

by the system in the map phase is much smaller than the shuffle time and the reduce
time (cf. [16]), therefore this increased map time does not cancel-out the benefits of our
proposed solution which aims at minimizing the more dominant reduce time and shuffle
time.

8.4 A Novel File Assignment and Shuffle Scheme for Heteroge-

neous Coded Distributed Computing

In this section we present a file assignment and shuffle algorithm for the heterogeneous
distributed computing problem with reduce load vector L and computation load vector
γ̄(L) (cf. Definition 6), for any total computation load t ∈ [Λ]. The reader will notice
that the described file assignment and shuffle schemes can be seen as the D2D versions
of the cache placement and delivery scheme described in Section 4.4, applied to the
considered distributed computing problem.

8.4.1 File Assignment Scheme

For any given t ∈ [Λ] and any given reduce load vector L, which in turn imply the
computation load vector γ̄(L), the central controller splits the dataset F into N files
f1, f2, . . . , fN of F bits, where N takes the value3

N =
∑
η∈C[Λ]

t

t∏
j=1

Lη(j), (8.17)

and where we recall that C
[Λ]
t is the set of all possible t-combinations of the set [Λ]. Let

us consider a bijection that maps the set of indices [N] = {1, 2, . . . , N} to the set

∆L,t ,
{

(η, 1), (η, 2), . . . , (η, |Aη|)|η ∈ C [Λ]
t

}
,

3The scheme can be easily extended to work also for N taking any multiplicative value of the RHS of
equation (8.17).

126

Chapter 8. Heterogeneous Coded Distributed Computing

where Aη ,
{

1, 2, . . . ,
t∏

j=1
Lη(j)

}
. Hereinafter, we will use the above two sets [N] and

∆L,t interchangeably, in order to facilitate the exposition of the algorithm. Thus, for
example, we can now rewrite the set of files {fn}Nn=1 as{

f(η,1), f(η,2), . . . , f(η,|Aη |) | η ∈ C
[Λ]
t

}
, ∀λ ∈ [Λ].

Afterwards, the central controller assigns to each node λ ∈ [Λ] all files f(η,mη),mη ∈ Aη
whose first superscript η includes λ, which in turn results in the following file assignment

Mλ =
{
f(η,mη)|η 3 λ,mη ∈ Aη

}
.

It can be verified that the described file assignment is congruent with the computation
load vector γ̄(L). Once the file assignment is done, each node proceed to map each
assigned files to produce all the corresponding intermediate values.

8.4.2 Shuffle Scheme

After the map phase, each node λ will have obtained for each file f(η,mη), η 3 λ,mη ∈ Aη
the K intermediate values {v1,(η,mη), v2,(η,mη), . . . , vK,(η,mη)}. We recall that at the end
of the shuffle phase each node λ needs to have acquired the set of intermediate values

{vk,n|k ∈ Lλ, n ∈ [N]}.

We proceed with the following instrumental proposition.

Proposition 5. For any t + 1-tuple Q ⊂ [Λ], the total number of intermediate values
{vk,(η,mη)} with η = Q\{λ} that are missing from computing node λ, λ ∈ Q, is independent
of λ and it equals

PQ ,
t+1∏
j=1

LQ(j). (8.18)

Proof. For any t + 1-tuple Q ⊂ [Λ], let us consider node λ ∈ Q. For any k ∈ Lλ,
computing node λ has to receive from the other nodes

∏t
j=1 Lη(j) intermediate values

{vk,(η,mη)} with η = Q \ {λ} since mη ∈ Aη and |Aη| =
∏t
j=1 Lη(j). This in turn means

that, since |Lλ| = Lλ, the total number of intermediate values that need to be sent to
node λ is Lλ

∏t
j=1 Lη(j) =

∏t+1
j=1 LQ(j), which does not depend on λ.

For any t+ 1-tuple Q ⊆ [Λ] and any λ ∈ Q, we set η = Q \ {λ} and relabel the set

of intermediate values
{
vk,(η,mη)|k ∈ Lλ,mη ∈ Aη

}
as WQ =

{
w

(λ)
(η,j)|j ∈ [PQ]

}
. Then,

we split each intermediate value w
(λ)
(η,j) into t parts as w

(λ)
(η,j) = {w(λ)

(η,j,p)|p ∈ η} such that

|w(λ)
(η,j,p)| = T

t . At this point, for any t + 1-tuple Q and any j ∈ [PQ] we construct the
following t+ 1 messages

Xλ,Q\{λ},j = ⊕
λ′∈Q\{λ}

w
(λ′)
(Q\{λ′},j,λ) ∀λ ∈ Q, (8.19)

127

Chapter 8. Heterogeneous Coded Distributed Computing

where Xλ,Q\{λ},j is a message transmitted by node λ to all nodes in the set Q \ {λ}. It
can be verified that, for any λ ∈ Q, each intended node λ′ ∈ Q \ {λ} can recover its

required intermediate value part w
(λ′)
(Q\{λ′},j,λ) from Xλ,Q\{λ},j and the intermediate values

computed in the map phase. This decoding proceedure is analogous to the one of the
standard Coded MapReduce in [16].

8.4.3 Communication Load

For any Q ∈ C [Λ]
t+1 and any j ∈ [PQ], the number of transmitted messages is t+ 1, thus

resulting in a total number of transmissions of

(t+ 1) ·
∑
Q∈C[Λ]

t+1

PQ. (8.20)

Then, we notice that the number of bits of each transmitted message is equal to
|Xλ,Q\{λ},j | = T

t , which is the same for all transmissions. It follows that the com-
munication load achieved by our proposed scheme can be written as

τ(L, γ̄(L)) =
(t+ 1)

∑
Q∈C[Λ]

t+1

PQ
T
t

KNT
(8.21)

=
(t+ 1)

∑
η∈C[Λ]

t+1

∏t+1
j=1 Lη(j)

tK
∑

ω∈C[Λ]
t

∏t
j=1 Lω(j)

(8.22)

=
(t+ 1)et+1(L)

tKet(L)
(8.23)

=

∑
λ∈[Λ] Lλ(1− γ̄λ(L))

Kt
. (8.24)

where in (8.22) we have used (8.17) and where (8.24) follows from simple mathematical
manipulations analogous to those in equation (4.19).

8.5 Converse Bound for the Scenario with Given Reduce Loads
and Proof of Optimality Gap

In the first part of this section we construct the bound on the communication load
τ∗hom,os (L, t) that along with the achievable scheme presented in Section 8.4 will allow to
prove Theorem 13 in the second part of this section (Section 8.5.2).

8.5.1 Lower Bound

We start by recalling that the communication load τ(L, t) is defined as

τ (L, t) =

∑Λ
λ `λ

KNT
=

∑Λ
λ H(Xλ)

KNT
, (8.25)

128

Chapter 8. Heterogeneous Coded Distributed Computing

where H(·) is the entropy function and Xλ is the message transmitted by node λ in the
shuffle phase.

Observation 4. We observe that, under the assumption of one-shot shuffling, the shuffle
phase can be seen to be composed of Λ shared-link channels, where in each such channel
we have that node λ acts as a transmitter that serves the remaining Λ−1 computing nodes
[Λ] \ {λ}. In particular, the transmitting node λ uses the intermediate values obtained in
the map phase to transmit to all other nodes their desired intermediate values.

The above observation is crucial for the derivation of the converse bound, which relies
on the aforementioned one-shot assumption. This same idea of seeing, under the one-shot
assumption, the D2D shard-link setting as a set of shared-link BC settings was already
used in [96] for the D2D coded caching problem.

First, we need to introduce some useful notation. Following the same notation as
in [16], we denote by Vk,n an i.i.d. random variable uniformly distributed on F2T for any
k ∈ [K] and n ∈ [N] and we let the intermediate values vk,n be the realization of Vk,n.
For some k ∈ [K] and N ⊆ [N], we define

Vk,N ,
{
Vk,n : n ∈ (∩λ∈NMλ) \

(
∪λ′ 6∈NMλ′

)}
.

We recall that we restrict our attention to those file assignments that are homogeneous,
as defined in Definition 4. This implies that the cardinality of N must be |N | = t, for

t ∈ [Λ]. Furthermore, we will use V
(λ)
k,N to refer to the random variables in Vk,N , whose

realizations correspond to the intermediate values transmitted by node λ during the
shuffle phase. We also denote the number of files that are exclusively mapped by the
nodes in set S as

aS,M ,
∑
J⊆S
|(∩
q∈J
Mq)\(∪

i 6∈J
Mi)|.

Finally, for any set χ, we denote the set of all the permutations of the set χ as Sχ.

We now proceed with the proof. Because of the one-shot assumption, we can first
focus, for any λ ∈ [Λ], on the channel that sees computing node λ to be a transmitter
serving the remaining nodes [Λ] \ {λ}. For such channel we will provide a lower bound
on H(Xλ). After that, we will sum over all possible λ ∈ [Λ] to obtain a lower bound on
the total number of bits that must be exchanged in the shuffle phase. We start with an
important instrumental lemma which provides a lower bound on H(Xλ).

Lemma 9.

H(Xλ) ≥
∑

i∈[Λ]\{λ}

∑
q∈Lσ(i)

∑
ηi∈C

[Λ]\{λ,σ(1),...,σ(i)}
t−1

H(V
(λ)
q,{λ,ηi}), for some σ ∈ S[Λ]\{λ}. (8.26)

Proof. The above lemma is an adaptation of Lemma 5 of Chapter 3 to the distributed
computing shared-link problem where computing node λ serves the remaining [Λ] \ {λ}

129

Chapter 8. Heterogeneous Coded Distributed Computing

nodes. The lemma can be obtained by first modelling the considered problem as an
index coding problem and then applying the single-antenna version of the MAIS bound
reported in Lemma 1, similarly as it was done in [52]. Notice that, unlike Lemma 5,
the third summation in (8.26) is over only sets ηi of cardinality t − 1 because of the

homogeneous file assignment assumption that forces the second lower index of V
(λ)
k,N to

be of size t.

We immediately notice that, for any σ ∈ S[Λ]\{λ}, (8.26) can be simplified to

H(Xλ) ≥
∑

i∈[Λ]\{λ}

∑
ηi∈C

[Λ]\{λ,σ(1),...,σ(i)}
t−1

Lσ(i) ·H(V
(λ)
k∗,{λ,ηi})

︸ ︷︷ ︸
τ lbλ,σ

, (8.27)

where k∗ refers to any k ∈ [K].
Following the same steps as the converse bound in Section 4.5, we lower bound H(Xλ)

as

H(Xλ) ≥ 1∑
σ∈S[Λ]\{λ}

Qσ

∑
σ∈S[Λ]\{λ}

Qστ
lb
λ,σ, (8.28)

where Qσ is chosen to be Qσ =
t−1∏
j=1

Lσ(Λ−t+j). After denoting the RHS of (8.28) as τ lbλ

and recalling that ek(χ) denotes the k-th elementary symmetric function in the set χ
(see Definition 3), the following lemma holds.

Lemma 10.

τ lbλ =
et(L \ {Lλ})
et−1(L \ {Lλ})

∑
η∈C[Λ]\{λ}

t−1

H(V
(λ)
k∗,{λ,η}) (8.29)

Proof. The proof follows directly from Section 4.5 after imposing homogeneous cache
placement (see also [51]).

Next, summing the loads of each shared-link channel it yields

Λ∑
λ=1

H(Xλ) ≥
Λ∑
λ=1

et(L \ {Lλ})
et−1(L \ {Lλ})

∑
η∈C[Λ]\{λ}

t−1

H(V
(λ)
k∗,{λ,η}) (8.30)

=
∑
η∈C[Λ]

t

∑
λ∈η

et(L \ {Lλ})
et−1(L \ {Lλ})

H(V
(λ)
k∗,η)

(a)

≥
∑
η∈C[Λ]

t

et(L \
{
Lλ∗(η)

}
)

et−1(L \
{
Lλ∗(η)

}
)

∑
λ∈η

H(V
(λ)
k∗,η)

(b)

≥
∑
η∈C[Λ]

t

et(L \
{
Lλ∗(η)

}
)

et−1(L \
{
Lλ∗(η)

}
)
H(Vk∗,η)

130

Chapter 8. Heterogeneous Coded Distributed Computing

(c)

≥
∑
η∈C[Λ]

t

et(L \
{
Lλ∗(η∗)

}
)

et−1(L \
{
Lλ∗(η∗)

}
)
Taη,M

= T
et(L \

{
Lλ∗(η∗)

}
)

et−1(L \
{
Lλ∗(η∗)

}
)

∑
η∈C[Λ]

t

aη,M, (8.31)

where in (a) we have used λ∗(η) = argminλ∈η
et(L\{Lλ})
et−1(L\{Lλ}) , (b) follows from the fact that∑

λ∈ηH(V
(λ)
k∗,η) ≥ H(Vk∗,η), and where in (c) we have used η∗ = argmin

η∈C[Λ]
t

et(L\{Lλ∗(η)})
et−1(L\{Lλ∗(η)})

as well as H(Vk∗,η) = Taη,M.
We now observe that the homogeneous file assignment assumption yields∑

η∈C[Λ]
t

aη,M = N. (8.32)

Combining (8.31) and (8.32) we have

Λ∑
λ=1

H(Xλ) ≥ TN
et(L \

{
Lλ∗(η∗)

}
)

et−1(L \
{
Lλ∗(η∗)

}
)
. (8.33)

We now proceed with the following instrumental lemma.

Lemma 11. For any λ1 ∈ [Λ] and any λ2 ∈ [Λ], such that Lλ1 ≥ Lλ2 the following
inequality holds

et(L \ {Lλ1})
et−1(L \ {Lλ1})

≤ et(L \ {Lλ2})
et−1(L \ {Lλ2})

. (8.34)

Proof. Proving (8.34) is equivalent to prove

et(L \ {Lλ1})et−1(L \ {Lλ2}) ≤ et(L \ {Lλ2})et−1(L \ {Lλ1}) (8.35)

Applying the Property 1 in Appendix B.1 to each element of the above expression
and moving the RHS of (8.35) to the LHS we can write the above inequality as

[Lλ2et−1(L \ {Lλ1 , Lλ2}) + et(L \ {Lλ1 , Lλ2})] ·
· [Lλ1et−2(L \ {Lλ1 , Lλ2}) + et−1(L \ {Lλ1 , Lλ2})] +

− [Lλ1et−1(L \ {Lλ1 , Lλ2}) + et(L \ {Lλ1 , Lλ2})] ·
· [Lλ2et−2(L \ {Lλ1 , Lλ2}) + et−1(L \ {Lλ1 , Lλ2})] ≤ 0 (8.36)

We can see that (8.36) is equivalent to

(Lλ2−Lλ1)
(
e2
t−1(L \ {Lλ1 , Lλ2})− et(L \ {Lλ1 , Lλ2})et−2(L \ {Lλ1 , Lλ2})

)
≤ 0. (8.37)

which we have to prove to be correct. By assumption we have that Lλ2 − Lλ1 ≤ 0, while
from the Netwon-Maclaurin bound [63] we

e2
t−1(L \ {Lλ1 , Lλ2})− et(L \ {Lλ1 , Lλ2})et−2(L \ {Lλ1 , Lλ2}) ≥ 0

This shows that (8.37) holds, thus completing the proof.

131

Chapter 8. Heterogeneous Coded Distributed Computing

Recalling that L is sorted in decreasing order, Lemma 11 directly implies that
λ∗(η∗) = 1. By using this in equation (8.33) we get

τ∗(L, t,M) =

∑Λ
λ=1H(Xλ)

KNT
(8.38)

≥ et(L \ {L1})
Ket−1(L \ {L1})

, (8.39)

where we have used τ∗(L, t,M) to denote the optimal communication load for a given
reduce load vector L and file assignment M that corresponds to a total computation
load t. Finally, the optimal communication load τ∗hom,os(L, t), under the aforementioned
assumptions of homogeneous file assignment and one-shot shuffling, satisfies

τ∗hom,os(L, t) , min
M:

|M1|+···+|MΛ|=tN

τ∗(L, t,M) (8.40)

≥ et(L \ {L1})
Ket−1(L \ {L1})

. (8.41)

8.5.2 Optimality Gap

We now proceed to prove that the achievable communication load in (8.24) of our proposed
scheme is optimal within a gap of two. Recalling that the achievable communication load
is

τ(L, t) =
t+ 1

t

et+1(L)

Ket(L)
, (8.42)

we have

τ(L, t)

τ∗hom,os(L, t)
≤ t+ 1

t

et+1(L)

et(L)

et−1(L \ {L1})
et(L \ {L1})

(8.43)

(a)
=
t+ 1

t

et+1(L \ {L1})
et(L)

et−1(L \ {L1})
et(L \ {L1})

+
t+ 1

t

L1et(L \ {L1})
et(L)

et−1(L \ {L1})
et(L \ {L1})

(8.44)

(b)

≤ t+ 1

t

(
e2
t (L \ {L1})

et(L)et(L \ {L1})
+ L1

et−1(L \ {L1})
et(L)

)
(8.45)

=
t+ 1

t

(
et(L \ {L1}) + L1et−1(L \ {L1})

et(L)

)
(8.46)

(c)
=
t+ 1

t
(8.47)

≤ 2, (8.48)

where (a) and (c) follow from Property 1 in Appendix B.1 and where (b) follows from
the Newton-MacLaurin bound of the elementary symmetric functions [63].

132

Chapter 8. Heterogeneous Coded Distributed Computing

8.6 Converse Bound for the Scenario with Given Computation
and Reduce Loads

In this section we provide the proof of Theorem 11. We start with some useful notation.
For a subset S ⊆ [Λ] and a file assignment M, we denote the number of files that are
exclusively mapped by j nodes in S as

a
(j)
S,M ,

∑
J⊆S:|S|=j

|(∩
q∈J
Mq)\(∪

i 6∈J
Mi)|,

which in turn can be rewritten as

a
(j)
S,M =

1

j

∑
λ∈S

a
(j,λ)
S,M (8.49)

where a
(j,λ)
S,M is the number of files that are exclusively mapped by j nodes in S including

node λ. It holds that
|S|∑
j=1

a
(j,λ)
[Λ],M = γλN, λ ∈ [Λ]. (8.50)

Furthermore, for some Q ⊆ [K] and N ⊆ [N], we define

VQ,N , {Vq,n : q ∈ Q, n ∈ N} ,

where Vq,n was introduced at the beginning of the previous section and it represents the
random variable whose realization gives the intermediate value vq,n.

Next, for a subset S ⊆ [Λ], we define

XS , (Xλ : λ ∈ S),

as well as

YS , (VLS ,:, V:,MS
),

where LS = ∪λ∈SLλ, MS = ∪λ∈SMλ, and where we use ”:” to denote the set of all
possible indices. YS contains all the intermediate values required by the nodes in S and
all those known locally by the nodes in S after the map phase.

We can now start the proof by presenting an important lemma which is instrumental
for the derivation of the lower bound.

Lemma 12. For any file assignment M and any reduce load vector L, it holds that

H(XS |YSc) ≥ T
∑
λ∈S

|S|∑
j=1

a
(j,λ)
S,M

∑
q∈S Lq − j · Lλ

j2
S ⊆ [Λ] (8.51)

Proof. The proof of Lemma 12 is presented in Appendix D.1.

133

Chapter 8. Heterogeneous Coded Distributed Computing

We now proceed to lower bound the optimal communication load τ∗(L,γ) as follows:

τ∗(L,γ) , min
M

∑Λ
λ=1H(Xλ)

KNT
(8.52)

≥ min
M

H(X[Λ]|Y[Λ]c)

KNT
(8.53)

≥ min
M

∑
λ∈[Λ]

Λ∑
j=1

a
(j,λ)
[Λ],M

∑
q∈[Λ] Lq − j · Lλ

KNj2
, (8.54)

where (8.54) is due to Lemma 12.
Recalling that

∑Λ
λ=1 γλ = t, under the assumption of homogeneous file assignment

we have that

a
(j)
[Λ],M =

{
N j = t,

0 j 6= t,
(8.55)

and that
a

(t,λ)
[Λ],M = γλN, λ ∈ [Λ]. (8.56)

Applying this assumption in (8.54), we obtain that the optimal communication load
τ∗hom(L,γ)can be lower bounded as

τ∗hom(L,γ) ≥ min
M

∑
λ∈[Λ]

a
(t,λ)
[Λ],M

∑
q∈[Λ] Lq − t · Lλ

KNt2
(8.57)

(a)
= min

M

a
(t)
[Λ],M

∑
q∈[Λ] Lq −

∑
λ∈[Λ] a

(t,λ)
[Λ],M · Lλ

KNt
(8.58)

(b)
= min

M

∑
q∈[Λ] Lq −

∑
λ∈[Λ] γλLλ

Kt
(8.59)

(c)
=

∑
λ∈[Λ] Lλ(1− γλ)

Kt
, (8.60)

where (a) follows from (8.49), (b) follows from (8.55) and (8.56), and (c) from the

fact that
∑
λ∈[Λ] Lλ(1−γλ)

Kt does not depend on the specific file assignment M. The proof
of Theorem 11 is complete.

134

Chapter 9

Conclusions and Future Directions

In this chapter, we quickly revisit the major contributions of this thesis and present some
possible future directions.

9.1 Shared-Cache Networks with Single-Antenna Transmitter

Motivated by realistic cache-aided heterogeneous networks, in this thesis we have studied
the fundamental limits of shared-cache networks with (potentially) heterogeneously
populated caches. While we mostly focused on the case where each user is associated to
only one cache, for a specific symmetric network configuration with as many users as
caches we have assumed that users are associated to different many helper caches.

9.1.1 Topology-Agnostic and Topology-Aware Scenarios

Brief Summary: For the topology-agnostic scenario, where the number of users con-
nected to each cache is not known during the caching phase, we have characterized the
optimal normalized delivery time under the assumption of uncoded cache placement. This
result shows that, as expected, the sum-DoF of t+ 1 = Λγ + 1 is achievable only when
users are distributed uniformly among the caches. This is in contrast to the topology-
aware scenario where we have shown that a proper memory allocation as a function of
the number of users associated to the caches allows for multicasting opportunities that,
in turn, result in a sum-DoF of t+ 1 regardless of the specific cache occupancy vector. At
the same time, a carefully designed non-uniform memory allocation leads to higher local
caching gains than the uniform case, thus surprisingly implying that the more skewed
the cache occupancy vector is, the lower will be the NDT required to serve all the users.
For this topology-aware scenario, the optimality of our achievable performance requires

— in addition to the aforementioned uncoded cache placement assumption — also the
assumption that all the bits of the library are stored across the caches the same number of
times (homogeneous placement). Finally, we have demonstrated the benefits of memory
allocation also in the case when only the average cache occupancies are known in the
placement phase, and we have shown how even such partial knowledge far outperforms

135

Chapter 9. Conclusions and Future Directions

the topology-agnostic scheme. We recall that all the above results also apply to the
equivalent multiple file request problem.

Discussions for Possible Future Directions: Dealing with the heterogeneity of the setting
raised interesting challenges in redesigning converse bounds as well as redesigning coded
caching schemes, which generally thrive on uniformity. We hope and we believe that the
tools developed for the study of these problems can be useful for other heterogeneous
settings. For example, we have seen how the proposed memory allocation for the topology-
aware scenario is strongly related to the one used in [38] for the dedicated-cache setting
where the link rates between the transmitter and receivers are different. We hope that
the techniques used in our developed bound for the topology-aware scenario could be
exploited also in this unequal link rates setting in order to provide better information
theoretic guarantees than the one presented in [38]. Furthermore, we observe that the high
gains achieved by our topology-aware scheme come with a price of a high subpacketization
requirement, which we recall takes the form S =

∑
τ∈C[Λ]

t

∏t
j=1 Lτ(j). In the finite file size

regime with a large number of caches and users, this high subpacketization requirement
might significantly limit the actual gains. Therefore, a possible interesting direction
for future work could aim at designing achievable coded caching schemes with lower
subpacketization requirements. Finally, we recall that our work assumes that the cost
of fetching data from the caches is zero. However, while it is true that the data rates
at which a cache-aided access point can serve the users are much higher than those at
which a macro base station can serve them, it is also true that such rates are finite and
therefore fetching content from the caches is in general a costly operation. This rises the
need of studying shared-cache networks where the access to the caches has a non zero
cost.

9.1.2 Multi-Access Shared-Cache Network

In this thesis we have considered a special type of multi-access shared-cache networks
where each user is associated to z neighboring caches and where the number of caches
equals the number of users. When our results were published, our work was the first
to show that a global caching gain higher than the one achievable in the single access
setting — where each user is associated to only one cache — is achievable along with the
full local caching gain arising from the several caches to which each user is connected.
We showed this interesting fact by proposing two achievable schemes for the special cases
where Kγ = 2 and z = K−1

Kγ . For the latter case, our proposed scheme is optimal and it
shows an ability to serve Kγz+ 1 users simultaneously as if there where zK caches in the
network and each user had exclusive access to z of them. We acknowledge the limitations
of our achievable schemes which are designed for these 2 aforementioned special cases.
Despite after the publication of our results, several other works have provided additional
contributions on this topic, characterizing the fundamental limits of such networks still
remains an open problem, both in terms of achievable schemes and converse bounds.

136

Chapter 9. Conclusions and Future Directions

9.2 Cache-Aided MISO Broadcast Channel

Brief Summary: The first contributions of this thesis on the cache-aided MISO BC
were obtained for the setting where each user is associated to a cache which, in turn,
serves an arbitrary number of users. For this shared-cache network, we have assumed
a topology-agnostic scenario and we have focused on the case where the number of
antennas N0 at the transmitter is smaller than the number of users per cache. For this
described setting, we characterized the optimal normalized delivery time (DoF regime)
under the assumption of uncoded cache placement, and we showed that the gain coming
from having multiple antennas allows for a multiplicative reduction of N0 in the NDT.
For the complementary regime where N0 can be higher than the number of users per
cache, the optimal NDT remains generally unknown. However, for the special case
where the users are distributed uniformly among the caches (with an integer constraint
on the ratio between N0 and the number of users per cache K

Λ) we have proposed a
scheme achieving the optimal one-shot linear DoF of Kγ + N0 regardless of the value
of Λ, as long as Λ ≥ K

N0
. This result suggests that in a dedicated-cache setting where —

motivated by subpacketization constraints — we use user grouping such that the users
in the same group store the same content, arranging users in less than K

N0
groups does

not allow to achieve the optimal one-shot linear DoF of the network. Furthermore, for
the dedicated-cache setting where the number of antennas N0 at the transmitter exceeds
the total cache redundancy Kγ, we proposed a scheme that achieves a DoF of Kγ + α
(α ≤ N0) with a low subpacketization requirement. We analysed the performance of
this scheme also in the finite SNR regime where we have used optimized MMSE-type
beamformers that require low computational complexity. Interestingly, the parameter
α can be tuned both to control subpacketization and to trade multiplexing gains with
beamforming gains, which we know being very important at low SNR regime. Finally,
the low computational complexity of the beamforming design combined with the low
subpacketization allows our scheme to be eligible for being used in large networks with
many users and many antennas at the transmitter.

Discussions for Possible Future Directions: With minor modifications, our topology-
agnostic multi-round scheme presented in Section 3.3 could be applied to the regime
where N0 ≥ Lλ,∀λ ∈ [Λ]. Also, we recall that our developed converse bound in Section
3.4 holds for this aforementioned regime. However, we know that, for this regime, the
converse bound is loose, and we believe that the aforementioned multi-round scheme fails
to achieve the optimal performance. Therefore, the optimal DoF of the topolgy-agnostic
setting for this regime where N0 ≥ Lλ, ∀λ ∈ [Λ] remains an open problem. In Chapter 4,
we have briefly mentioned that the topology-aware scheme developed for the shared-link
shared-cache network can be extended to the case where the transmitter is equipped
with multiple antennas as long as N0 ≤ Lλ, ∀λ ∈ [Λ]. The details were not provided in
this thesis. For the complementary regime where N0 ≥ Lλ, ∀λ ∈ [Λ], we believe that if
the optimal achievable scheme for the topology-agnostic scenario would be known, then,
in light of the results of this thesis, the extension of such scheme to the topology-aware
scenario might be straightforward. Finally, for the dedicated-cache setting we believe

137

Chapter 9. Conclusions and Future Directions

that an interesting future direction would be the one of working towards a decentralized
variation of the proposed scheme in Chapter 6, similarly to [53] where each user picks at
random one of some pre-defined cache states. We believe that such a practical ramification
of the proposed scheme could still achieve good finite SNR performance.

9.3 Cache-aided Networks with Heterogeneous QoS requirements

Brief Summary: In this thesis, we also characterized the rate-memory tradeoff for the
coded caching problem with multi-layer coded files for the case when, in the uncoded
cache placement, the server knows only the number of users requiring a given QoS level
but does not know the specific QoS requirement of each user. To this end, we developed
an information theoretic converse which in turn defined the design of an optimal scheme
by defining how much of each layer should be placed in the caches. This interesting
back-and-forth between the converse and the scheme, nicely highlights the usefulness
of finding exact information theoretic bounds, since such exact bounds may have the
potential to recreate the structure of the optimal scheme.

Discussions for Possible Future Directions: With the aim of characterizing the fun-
damental limits of networks with heterogeneous QoS requirements, studying the case
when, in the cache placement phase, the server is aware of the QoS requirement of each
user could be an interesting extension. This latter case has been already investigated
in the literature, but the exact optimal memory-rate tradeoff is still unknown. If we
allowed the cache size of each user to be optimized as a function of its requested QoS
level and potentially the ones of the other users, we believe that the ideas behind the
topology-aware scheme described in Section 4.4 for the shared-cache networks, could
be applied for this coded caching problem where the QoS requirements of each user
are known during the caching phase. At the same time, we believe that the tools used
in the lower bound developed in Section 4.5 may also be exploited and applied to the
aforementioned problem.

9.4 Heterogeneous Coded Distributed Computing

Brief Summary: The last problem that we addressed in this thesis is the coded dis-
tributed computing problem with heterogeneous computational powers. For a MapReduce-
like framework with given reduce load vector L and a total computation load t, we have
provided a file assignment and shuffle scheme which we proved to be order-optimal under
the two reasonable assumptions of homogeneous file assignment and one-shot shuffling.
Similarly as it happened for the topology-aware heterogeneous shared-cache problem, the
order-optimality is obtained with a file assignment strategy that assigns more files of
the dataset, i.e. more computation load, to those nodes that will have to compute more
output functions in the reduce phase. Indeed, the proposed scheme can be seen as a D2D
version of the scheme presented in Section 4.4. Furthermore, we have also seen that in
order to minimize the reduce time, as expected, one should assign to each computing node

138

Chapter 9. Conclusions and Future Directions

a number of output functions that is proportional to its computational power. Finally, we
also provided a lower bound on the communication load for an arbitrary output function
assignment and an arbitrary allocation of the total computation load across the nodes.

Discussions for Possible Future Directions: Part of our future effort on this topic will be
to extend the shuffle scheme proposed in this thesis to the case with arbitrary computation
load and arbitrary reduce load at each node, for which we have already provided a converse
bound. For this latter problem, some recent advances have been recently published (see
the related works subsection in 8.1.1). Finally, we believe that — while we mostly focused
on minimizing the shuffle time and, separately, the reduce time — one should consider the
much harder problem of identifying the optimal file assignment, shuffle scheme and output
function assignment that jointly minimize the sum of the map, shuffle and reduce time
for a MapReduce-like distributed computing system with heterogenenous computational
powers.

139

Chapter 9. Conclusions and Future Directions

140

Appendices

141

Appendix A

Appendix of Chapter 3

A.1 An Illustrative Example for the Converse

We here give an example of deriving the converse for Theorem 2, emphasizing on how
to convert the caching problem to the index-coding problem, and how to choose acyclic
subgraphs. We consider the case of having K = 9 receiving users, and a transmitter with
N0 = 2 transmit antennas having access to a library of N = 9 files of unit size. We also
assume that there are Λ = 3 caching nodes, of total normalized cache size t = Λγ. We
will focus on deriving the bound for the cache occupancy vector L = (4, 3, 2), meaning
that we are interested in the setting where one cache is associated to 4 users, one cache
to 3 users and one cache associated to 2 users.

Each file W (n) is split into 2Λ = 8 disjoint subfiles W
(i)
T , T ∈ 2[3] where each T

describes the set of helper nodes in which W
(i)
T is cached. For instance, W

(1)
13 refers to

the part of file W (1) that is stored in the first and third caching nodes.

As a first step, we present the construction of the set DL. To this end, let us start by
considering the demand d = (1, 2, 3, 4, 5, 6, 7, 8, 9) and one of the 6 permutations π ∈ S3;
for example, let us start by considering π(1) = 2, π(2) = 3, π(3) = 1. Toward reordering
d to reflect L, we construct

d
′
1 = (1, 2, 3, 4), d

′
2 = (5, 6, 7), d

′
3 = (8, 9)

to obtain the reordered demand vector

d(U) = (d
′

π−1(1),d
′

π−1(2),d
′

π−1(3))

= (d
′
3,d

′
1,d

′
2)

which in turn yields d1 = (8, 9),d2 = (1, 2, 3, 4),d3 = (5, 6, 7). Similarly, we can construct
the remaining 5 demands d(U) associated to the other 5 permutations π ∈ S3. Finally,
the procedure is repeated for all other worst-case demand vectors. These vectors are part
of set DL.

With the users demands d(U) known to the server, the delivery problem is translated
into an index coding problem with a side information graph of K2Λ−1 = 9 · 22 nodes. For

143

Appendix A. Appendix of Chapter 3

each requested file W (dλ(j)), we write down the 4 subfiles that the requesting user does
not have in its assigned cache. Hence, a given user of the caching problem requiring 4
subfiles from the main server, is replaced by 4 different new users in the index coding
problem. Each of these users request a different subfile and are connected to the same
cache λ as the original user. The nodes of the 6 side-information graphs corresponding
to the aforementioned vectors d(U) (one for each permutation π ∈ S3) for demand
d = (1, 2, 3, 4, 5, 6, 7, 8, 9), are depicted in Figure A.1.

For each side-information graph, we develop a lower bound as in Lemma 1. We
recall that the lemma applies to acyclic subgraphs, which we create as follows; for each
permutation1 σ ∈ S3, a set of nodes forming an acyclic subgraph is

{W (dσ(1)(j))

T1 }|Uσ(1)|
j=1 for all T1⊆{1, 2, 3}\{σ(1)},

{W (dσ(2)(j))

T2 }|Uσ(2)|
j=1 for all T2⊆{1, 2, 3}\{σ(1), σ(2)},

{W (dσ(3)(j))

T3 }|Uσ(3)|
j=1 for all T3⊆{1, 2, 3}\{σ(1), σ(2), σ(3)}.

Based on this construction of acyclic graphs, our task now is to choose a permutation
σs ∈ S3 that forms the maximum-sized acyclic subgraph. For the case where d1 =
(8, 9),d2 = (1, 2, 3, 4) and d3 = (5, 6, 7), it can be easily verified that such a permutation
σs is the one with σs(1) = 2,σs(2) = 3 and σs(3) = 1. In Figure A.1, for each of the six
graphs, we underline the nodes corresponding to the acyclic subgraph that is formed by
such permutation σs. The outer bound now involves adding the sizes of these chosen
(underlined) nodes. For example, for the demand d(U) = ((8, 9), (1, 2, 3, 4), (5, 6, 7)) (this
corresponds to the lower center graph), the lower bound in (3.42) becomes

T ∗(d(U),Z) ≥1

2
(|W (1)

∅ |+ |W
(1)
1 |+ |W

(1)
3 |+ |W

(1)
13 |+ |W

(2)
∅ |

+ |W (2)
1 |+ |W

(2)
3 |+ |W

(2)
13 |+ |W

(3)
∅ |+ |W

(3)
1 |

+ |W (3)
3 |+ |W

(3)
13 |+ |W

(4)
∅ |+ |W

(4)
1 |+ |W

(4)
3 |

+ |W (4)
13 |+ |W

(5)
∅ |+ |W

(5)
1 |+ |W

(6)
∅ |+ |W

(6)
1 |

+ |W (7)
∅ |+ |W

(7)
1 |+ |W

(8)
∅ |+ |W

(9)
0 |). (A.1)

The lower bounds for the remaining 5 vectors d(U) for the same d = (1, 2, 3, 4, 5, 6, 7, 8, 9),
are given in a similar way, again by adding the (underlined) nodes of the corresponding
acyclic subgraphs (again see Figure A.1).

Subsequently, the procedure is repeated for all P (N,K) = K! = 9! worst-case demand
vectors d ∈ Dwc. Finally, all the P (N,K) · Λ! = 9! · 3! bounds are averaged to get

T (L,Z) ≥

1

2

1

9! · 3!

∑
d(U)∈DL

∑
λ∈[3]

Lσs(λ)∑
j=1

∑
Tλ⊆[3]\{σs(1),...,σs(λ)}

|Wdσs(λ)(j)

Tλ | (A.2)

1We caution the reader not to confuse the current permutations (σ) that are used to construct
large-sized acyclic graphs, with the aforementioned permutations π which are used to construct DL.

144

Appendix A. Appendix of Chapter 3

d1 = (1, 2, 3, 4),d2 = (5, 6, 7), d1 = (1, 2, 3, 4),d2 = (8, 9), d1 = (5, 6, 7),d2 = (1, 2, 3, 4),
d3 = (8, 9) d3 = (5, 6, 7) d3 = (8, 9)

W
(1)
∅ W

(1)
2 W

(1)
3 W

(1)
23

W
(2)
∅ W

(2)
2 W

(2)
3 W

(2)
23

W
(3)
∅ W

(3)
2 W

(3)
3 W

(3)
23

W
(4)
∅ W

(4)
2 W

(4)
3 W

(4)
23

W
(5)
∅ W

(5)
1 W

(5)
3 W

(5)
13

W
(6)
∅ W

(6)
1 W

(6)
3 W

(6)
13

W
(7)
∅ W

(7)
1 W

(7)
3 W

(7)
13

W
(8)
∅ W

(8)
1 W

(8)
2 W

(8)
12

W
(9)
∅ W

(9)
1 W

(9)
2 W

(9)
12

W
(1)
∅ W

(1)
2 W

(1)
3 W

(1)
23

W
(2)
∅ W

(2)
2 W

(2)
3 W

(2)
23

W
(3)
∅ W

(3)
2 W

(3)
3 W

(3)
23

W
(4)
∅ W

(4)
2 W

(4)
3 W

(4)
23

W
(5)
∅ W

(5)
1 W

(5)
2 W

(5)
12

W
(6)
∅ W

(6)
1 W

(6)
2 W

(6)
12

W
(7)
∅ W

(7)
1 W

(7)
2 W

(7)
12

W
(8)
∅ W

(8)
1 W

(8)
3 W

(8)
13

W
(9)
∅ W

(9)
1 W

(9)
3 W

(9)
13

W
(1)
∅ W

(1)
1 W

(1)
3 W

(1)
13

W
(2)
∅ W

(2)
1 W

(1)
3 W

(2)
13

W
(3)
∅ W

(3)
1 W

(3)
3 W

(3)
13

W
(4)
∅ W

(4)
1 W

(4)
3 W

(4)
13

W
(5)
∅ W

(5)
2 W

(5)
3 W

(5)
23

W
(6)
∅ W

(6)
2 W

(6)
3 W

(6)
23

W
(7)
∅ W

(7)
2 W

(7)
3 W

(7)
23

W
(8)
∅ W

(8)
1 W

(8)
2 W

(8)
12

W
(9)
∅ W

(9)
1 W

(9)
2 W

(9)
12

d1 = (5, 6, 7),d2 = (8, 9), d1 = (8, 9),d2 = (1, 2, 3, 4), d1 = (8, 9),d2 = (5, 6, 7),
d3 = (1, 2, 3, 4) d3 = (5, 6, 7) d3 = (1, 2, 3, 4)

W
(1)
∅ W

(1)
1 W

(1)
2 W

(1)
12

W
(2)
∅ W

(2)
1 W

(2)
2 W

(2)
12

W
(3)
∅ W

(3)
1 W

(3)
2 W

(3)
12

W
(4)
∅ W

(4)
1 W

(4)
2 W

(4)
12

W
(5)
∅ W

(5)
2 W

(5)
3 W

(5)
23

W
(6)
∅ W

(6)
2 W

(6)
3 W

(6)
23

W
(7)
∅ W

(7)
2 W

(7)
3 W

(7)
23

W
(8)
∅ W

(8)
1 W

(8)
3 W

(8)
13

W
(9)
∅ W

(9)
1 W

(9)
3 W

(9)
13

W
(1)
∅ W

(1)
1 W

(1)
3 W

(1)
13

W
(2)
∅ W

(2)
1 W

(2)
3 W

(2)
13

W
(3)
∅ W

(3)
1 W

(3)
3 W

(3)
13

W
(4)
∅ W

(4)
1 W

(4)
3 W

(4)
13

W
(5)
∅ W

(5)
1 W

(5)
2 W

(5)
12

W
(6)
∅ W

(6)
1 W

(6)
2 W

(6)
12

W
(7)
∅ W

(7)
1 W

(7)
2 W

(7)
12

W
(8)
∅ W

(8)
2 W

(8)
3 W

(8)
23

W
(9)
∅ W

(9)
2 W

(9)
3 W

(9)
23

W
(1)
∅ W

(1)
1 W

(1)
2 W

(1)
12

W
(2)
∅ W

(2)
1 W

(2)
2 W

(2)
12

W
(3)
∅ W

(3)
1 W

(3)
2 W

(3)
12

W
(4)
∅ W

(4)
1 W

(4)
2 W

(4)
12

W
(5)
∅ W

(5)
1 W

(5)
3 W

(5)
13

W
(6)
∅ W

(6)
1 W

(6)
3 W

(6)
13

W
(7)
∅ W

(7)
1 W

(7)
3 W

(7)
13

W
(8)
∅ W

(8)
2 W

(8)
3 W

(8)
23

W
(9)
∅ W

(9)
2 W

(9)
3 W

(9)
23

Figure A.1 – Nodes of the side information graphs corresponding to demand vector d =
(1, 2, 3, 4, 5, 6, 7, 8, 9) and cache occupancy vector L = (4, 3, 2).

145

Appendix A. Appendix of Chapter 3

which is rewritten as

T (L,Z) ≥
1

2

1

9! · 3!

3∑
i=0

∑
n∈[9]

∑
T ⊆[3]:|T |=i

|W (n)
T | ·

∑
d(U)∈DL

1V
Jd(U)
s

(W
(n)
T)

︸ ︷︷ ︸
Qi(W

(n)
T)

. (A.3)

After the evaluation of the term Qi(W
(n)
T), the bound in (A.3) can be written in a more

compact form as

T (L,Z) ≥ 1

2

3∑
i=0

∑3−i
r=1 Lr

(
3−r
i

)
9
(

3
i

) xi (A.4)

≥ Convi∈[Λ]0

(
1

2

∑3−i
r=1 Lr

(
3−r
i

)(
3
i

))
(A.5)

where the proof of the transition from (A.3) to (A.4) and from (A.4) to (A.5) can be
found in the general proof (Section 3.4).

A.2 Collection of Proofs

A.2.1 Proof of Lemma 1

In the addressed problem, we consider a MISO broadcast channel with N0 antennas at the
transmitter serving K receivers with some side information due to caches. In the wired
setting this (high-SNR setting) is equivalent to the distributed index coding problem
with N0 senders J1, . . . , JN0 , all having knowledge of the entire set of messages, and each
being connected via an (independent) broadcast line link of capacity CJi = 1, i ∈ [N0] to
the K receivers which hold side information. This multi-sender index coding problem
is addressed in [54]. By adapting the achievable rate result in [54, Corollary1] to our
problem, we get ∑

V∈VJ

RV ≤
∑
i∈[N0]

CJi (A.6)

(RV = |V|
T is the rate for message V), that yields

∑
V∈VJ

|V|
T
≤ N0 (A.7)

which, when inverted, gives the bound in Lemma 1.

146

Appendix A. Appendix of Chapter 3

A.2.2 Proof of Lemma 2

Consider a permutation σ where the subfiles W
(dσ(λ)(j))

Tλ , ∀j ∈ Uσ(λ) for all Tλ ⊆ [Λ] \
{σ(1), . . . , σ(λ)} are all placed in row λ of a matrix whose rows are labeled by λ =
1, 2, . . . ,Λ. The index coding users corresponding to subfiles in row λ only know (as side

information) subfiles W
(dk)
T , T 3 σ(λ). Consequently each user/node of row λ does not

know any of the subfiles in the same row2 nor in the previous rows. As a result, the
proposed set of subfiles chosen according to permutation σ, forms a subgraph that does
not contain any cycle.

A basic counting argument can tell us that the number of subfiles — in the acyclic
subgraph formed by any permutation σ ∈ SΛ — that are stored in exactly i caches, is

Λ−i∑
r=1

|Uσ(r)|
(

Λ− r
i

)
. (A.8)

This means that the total number of subfiles in the acyclic subgraph is simply

Λ∑
i=0

Λ−i∑
r=1

|Uσ(r)|
(

Λ− r
i

)
. (A.9)

This number is maximized when the permutation σ guarantees that the vector
(|Uσ(1)|, |Uσ(2)|, . . . , |Uσ(Λ)|) is in descending order. This maximization is achieved with
our choice of the ordering permutation σs (as this was defined in the notation part) when
constructing the acyclic graphs.

A.2.3 Proof of Equation (3.52)

Here, through a combinatorial argument, we derive Qi(W
(n)
T), that is the number of

times that a subfile W
(n)
T with index size |T | = i appears in all the acyclic subgraphs

chosen to develop the lower bound.
There are

(
N−1
K−1

)
subsets Υm,m ∈ [

(
N−1
K−1

)
] out of

(
N
K

)
unordered subsets of K files

from the set {W (j), j ∈ [N]} that contain file W (n), and for each Υm there exists K!
different demand vectors d′. For each Υm, among all possible demand vectors, a subfile

W
(n)
T : |T | = i appears in the side information graph an equal number of times. For a

fixed Υm, file W (n) is requested by a user connected to any helper node with a certain

cardinality Lr. By construction, Qi(W
(n)
T) can be rewritten as

Qi(W
(n)
T) =

∑
d∈Dwc

∑
π∈SΛ

1V
Jdr(U)
s

(W
(n)
T)

=

(
N − 1

K − 1

) Λ∑
r=1

∑
d′r∈Dwc

∑
π∈SΛ

1V
Jd′r(U)
s

(W
(n)
T) (A.10)

2Notice that the index coding users/nodes who are associated to the same cache, are not linked by
any edge in the corresponding graph.

147

Appendix A. Appendix of Chapter 3

where d′r denotes the subset of all demand vectors from Υm such that n ∈ dλ : |dλ| = Lr.

The number of chosen maximum acyclic subgraphs containing W
(n)
T that arise from

all the demand vectors d′r(U) is evaluated as follows. After fixing the demands such

that n ∈ dλ : |dλ| = Lr, then W
(n)
T appears in the side information graph only if it is

requested by a user connected to helper node λ such that λ /∈ T , which corresponds to
(Λ − i) different available positions in the demand vector d′r(U), since |T | = i. After
fixing one of the (Λ− i) positions occupied by dλ : |dλ| = Lr, for the remaining demands
dλ : |dλ| = Lj ,∀j ∈ [Λ] \ {r} there are P (Λ− i− 1, r − 1) · (Λ− r)! possible ways to be
placed into d. After fixing the order of dλ,∀λ ∈ [Λ] in d and n ∈ dλ : |dλ| = Lr, there
are Lr different positions in which n can be placed in dλ : |dλ| = Lr. This leaves out
Lr − 1 positions with K − 1 different numbers from the considered set Υm \ {n}, and the
remaining K − Lr positions in d′r are filled with K − Lr numbers. Therefore, there exist

LrP (K−1, Lr−1)(K−Lr)! different demand vectors where the subfile W
(n)
T will appear

in the associated maximum acyclic subgraphs. Hence, the above jointly tell us that

Qi(W
(n)
T) =

(
N − 1

K − 1

) Λ∑
r=1

P (Λ− i− 1, r − 1)

× (Λ−r)!LrP (K−1, Lr − 1)(K−Lr)!(Λ− i) (A.11)

which concludes the proof.

A.2.4 Transition from Equation (3.55) to (3.56)

The coefficient of xi in equation (3.55), can be further simplified as follows

Qi
Λ!P (N,K)

=

=
(N − 1)!(N −K)!

(K − 1)!(N −K)!Λ!N !

Λ∑
r=1

LrP (K − 1, Lr − 1)

× (K − Lr)!(Λ− i)P (Λ− i− 1, r − 1)(Λ− r)!

=
1

(K − 1)!Λ!N

×
Λ∑
r=1

Lr
(K − 1)!(K − Lr)!(Λ− i)(Λ− i− 1)!(Λ− r)!

(K − Lr)!(Λ− i− r)!

=
1

Λ!N

Λ∑
r=1

Lr
(K − 1)!(Λ− i)!(Λ− r)!

(K − 1)!(Λ− i− r)!

=
1

N

Λ∑
r=1

Lπs(r)
(Λ− i)!(Λ− r)!i!
Λ!(Λ− i− r)!i!

=
1

N

Λ∑
r=1

Lr

(
Λ−r
i

)(
Λ
i

) (A.12)

148

Appendix A. Appendix of Chapter 3

which concludes the proof.

A.2.5 Monotonicity of {ci}
Let us define the following sequences

(an)n∈[Λ−i] ,

{(Λ−n
i

)(
Λ
i

) , n ∈ [Λ− i]
}

(A.13)

(bn)n∈[Λ−i−1] ,

{(Λ−n
i+1

)(
Λ
i+1

) , n ∈ [Λ− i− 1]

}
. (A.14)

It is easy to verify that an ≥ bn, ∀n ∈ [Λ− i]. Consider now the set of scalar numbers
{Vj , j ∈ [Λ− i], Vj ∈ N}. The inequality a∗n ≥ b∗n, ∀n ∈ [Λ− i] holds for

(a∗n)n∈[Λ−i] ,
{
Vn · an, n ∈ [Λ− i]

}
(A.15)

(b∗n)n∈[Λ−i−1] ,
{
Vn · bn, n ∈ [Λ− i− 1]

}
. (A.16)

As a result, we have ∑
n∈[Λ−i]

Vn · an ≥
∑

n∈[Λ−i]

Vn · bn (A.17)

which proves that ci ≥ ci+1.

A.2.6 Proof of (3.59)

Through the respective change of variables t , ΛM
N , x′i ,

xi
N and c′i ,

ci
N0

, in equations
(3.56), (3.54) and (3.58), we obtain

T (L,Z) ≥
Λ∑
i=0

x′ic
′
i (A.18)

Λ∑
i=0

x′i = 1 (A.19)

Λ∑
i=0

ix′i ≤ t. (A.20)

Let X denote a discrete integer-valued random variable with probability mass function
fX(x) = {x′i if x = i,∀i ∈ {0, 1, . . . ,Λ}}, where the x′i are those that satisfy equation
(A.19). The value c′i can also be seen as the realization of a random variable Y , g(X),

where g(x) =
∑Λ−x
r=1 Lr(Λ−r

x)
N0(Λ

x)
, having the same probability mass function as X, i.e. fY (y) =

{x′i if y = c′i,∀i ∈ {0, 1, . . . ,Λ}}. Due to the equation in (A.20), the expectation of X is
bounded as E[X] ≤ t. Similarly, (A.18) is equivalent to T (L,Z) ≥ E[Y]. From Jensen’s
inequality, we have T (L,Z) ≥ E[Y] ≥ g(E[X]). Next, we notice that function g(x) is

149

Appendix A. Appendix of Chapter 3

monotonically decreasing because it is obtained from the decreasing sequence {c′i} by
replacing integer i with a continuous real variable x. This allows for the lower bound

T (L,Z) ≥ g(E[X]) ≥ g(t)
(a)
=

∑Λ−t
r=1 Lr

(
Λ−r
t

)
N0

(
Λ
t

) (A.21)

where (a) is due the decreasing monotonicity of g(x) and the fact that E[X] ≤ t. This
concludes the proof.

A.2.7 Proof of Equation (3.19)

We remind the reader that (for brevity of exposition, and without loss of generality) this
part assumes that the |Uλ| are in decreasing order.

We define the following quantity

bλ , |U1| − |Uλ|

and rewrite the total number of transmissions using the above definition as

|U1|∑
j=1

(
Λ

Λγ + 1

)
−
(

aj
Λγ + 1

)

= |U1|
(

Λ

Λγ + 1

)
−
|U1|∑
j=1

(
aj

Λγ + 1

)

=

Λ−Λγ∑
i=1

(|Ui|+ bi)

(
Λ− i
Λγ

)
−
|U1|∑
j=1

aj−1∑
i=Λγ

(
i

Λγ

)

=

Λ−Λγ∑
i=1

|Ui|
(

Λ− i
Λγ

)
+

Λ−1∑
i=Λγ

bΛ−i

(
i

Λγ

)
−
|U1|∑
j=1

aj−1∑
i=Λγ

(
i

Λγ

)
(a)
=

Λ−Λγ∑
i=1

|Ui|
(

Λ− i
Λγ

)
+

Λ−1∑
i=Λγ

|U1|∑
j:aj≥i+1

(
i

Λγ

)

−
|U1|∑

j:aj−1≥Λγ

aj−1∑
i=Λγ

(
i

Λγ

)
(b)
=

Λ−Λγ∑
i=1

|Ui|
(

Λ− i
Λγ

)
+

|U1|∑
j:aj≥Λγ+1

aj−1∑
i=Λγ

(
i

Λγ

)

−
|U1|∑

j:aj−1≥Λγ

aj−1∑
i=Λγ

(
i

Λγ

)

=

Λ−Λγ∑
i=1

|Ui|
(

Λ− i
Λγ

)
(A.22)

150

Appendix A. Appendix of Chapter 3

where step (a) uses the equality bΛ−i =
∑|U1|

j:aj≥i+1 1, and where step (b) is true as∑b
i=a

∑c
j:aj>i

is equivalent to
∑c

j:aj>a

∑aj
i=a. Substituting (A.22) into the numerator of

(3.18) yields the overall delivery time given in (3.19).
The same performance holds for any U with the same cache occupancy vector L.

A.3 Transition to the Multiple File Request Problem

We here briefly describe how the converse and the scheme presented in the shared cache
problem, can fit the multiple file request problem.

Converse In Remark 2 we described the equivalence between the two problems. Based
on this equivalence, we will describe how the proof of the converse in Section 3.4 holds
in the multiple file request problem with N0 = 1, where now simply some terms carry a
different meaning. Firstly, each entry dλ of the vector defined in equation (3.41) now
denotes the vector of file indices requested by user λ. Then we see that Lemma 2 (proved
in Section A.2.2) directly applies to the equivalent index coding problem of the multiple file
requests problem, where now, for a given permutation σ (see Section A.2.2), all the subfiles

placed in row λ — i.e., subfiles W
(dσ(λ)(j))

Tλ ,∀j ∈ Uσ(λ) for all Tλ ⊆ [Λ] \ {σ(1), . . . , σ(λ)}
— are obtained from different files requested by the same user, and therefore any two of
these subfiles/nodes are not connected by any edge in the side information graph. After
these two considerations, the rest of the proof of Lemma 2 is exactly the same. The
remaining of the converse consists only of mathematical manipulations which remain
unchanged and which yield the same lower bound expression.

Scheme The cache placement phase is identical to the one described in Section 3.3.1,
where now each cache λ is associated to the single user λ. In the delivery phase, the
scheme now follows directly the steps in Section 3.3.1 applied to the shared-link (single
antenna) setting, where now sλ = Uλ (cf. (3.10)). As in the case with shared caches, the
scheme consists of L1 rounds, each serving users

Rj =
⋃
λ∈[Λ]

(
Uλ(j) : Lλ ≥ j

)
(A.23)

where Uλ(j) is the j-th user in set Uλ. The expression in (A.23) now means that the
multiple files requested by each user are transmitted in a time-sharing manner, and at
each round the transmitter serves at most one file per user. Next, equation (3.12) is
replaced by

χQ =
⋃
λ∈Q

(
Uλ(j) : Lλ ≥ j

)
(A.24)

and then each transmitted vector described in equation (3.13), is substituted by the
scalar

xχQ =
⊕

λ∈Q:Lλ≥j
W

(dUλ(j))

Q\{λ},1 . (A.25)

151

Appendix A. Appendix of Chapter 3

Finally decoding remains the same, and the calculation of delay follows directly.

152

Appendix B

Appendix of Chapter 4

B.1 Equalities with Elementary Symmetric Functions

Property 1. For ek(X) being the k-th elementary symmetric function in the set X ,
|X | = n, it holds that

ek(X) = ek(X \ {xi}) + xiek−1(X \ {xi}), (B.1)

for any i = 1, 2, . . . , n.

Property 1 simply states that the sum of all products of k distinct elements in X is
equal to the sum of all such products not including xi plus the products including xi,
where the latter can be written as xiek−1(X \ {xi}).

Property 2. For ek(X) being the k-th elementary symmetric function in the set X ,
{x1, . . . , xn}, |X | = n, and φ a subset of X , it holds that

∑
xi∈{X\φ}

xi · ek−1(X \ {xi}) =
∑
q∈CXk

k∏
j=1

xq(j) · |{q \ φ}|, (B.2)

for any k = 1, 2, . . . , n.

Proof. Let us introduce the notation ẋθ =
∏k
j=1 xθ(j). By Property 1, we have that∑

xi∈{X\φ}

xi · ek−1(X \ {xi}) = |X \ φ| · ek(X)−
∑

xi∈{X\φ}

ek(X \ {xi}). (B.3)

We can write that ek(X \ {xi}) =
∑

q⊆X , |q|=k, xi /∈q ẋq. Hence, a particular set q ⊆
X , |q| = k, will appear in ek(X \ {xi}) if and only if xi /∈ q, which implies that each set
q will appear for |X \ {φ, q}| different xi ∈ X in

∑
xi∈{X\φ} ek(X \ {xi}). Consequently,

it follows that ∑
xi∈{X\φ}

ek(X \ {xi}) =
∑
q⊆X
|q|=k

ẋq · |X \ {φ, q}|. (B.4)

153

Appendix B. Appendix of Chapter 4

Applying (B.4) into (B.3) yields

∑
xi∈{X\φ}

xi · ek−1(X \ {xi}) =
∑
q∈CXk

k∏
j=1

xq(j) · (|X \ φ| − |X \ {φ, q}|) (B.5)

(a)
=
∑
q∈CXk

k∏
j=1

xq(j) · |q \ φ|, (B.6)

where in (a) we have applied that

|X \ φ| − |X \ {φ, q}| = |X | − |φ| − (|X | − |φ ∪ q|) = |q \ φ|,

which concludes the proof of Property 2.

Corollary 3. For ek(X) being the k-th elementary symmetric function in the set X ,
{x1, . . . , xn}, |X | = n, it holds that∑

i∈[|X |]

xiek−1(X \ {xi}) = k · ek(X), (B.7)

for any k = 1, 2, . . . , n.

Proof. Corollary 3 follows directly from Property 2 after setting φ = ∅.

B.2 Convexity of Achievability

In the following, we prove Lemma 4, i.e., that the sequence {c(t)
t }t∈{0,...,Λ} is a decreasing

and convex sequence. Since the t-th elementary symmetric polynomial in L is given by

et(L) ,
∑

q∈C[Λ]
t+1

∏t+1
j=1 Lq(j), and c

(t)
t ,

∑
q∈C[Λ]

t+1

∏t+1
j=1 Lq(j)∑

q∈C[Λ]
t

∏t
j=1 Lq(j)

, we can write that

c
(t)
t = e1(L) if t = 0 (B.8)

c
(t)
t =

et+1(L)

et(L)
if 1 ≤ t ≤ Λ− 1 (B.9)

c
(t)
t = 0 if t = Λ (B.10)

The proof of Lemma 4 builds on the relation of the coefficients c
(t)
t with the elementary

symmetric polynomials and the following lemma.

Lemma 13. Let {ak}, k = [n], be a strictly log-concave sequence satisfying that ak > 0
for any k < n. Then, the sequence {bk , ak+1

ak
}, k = [n − 1], is a decreasing (strictly)

convex sequence.

154

Appendix B. Appendix of Chapter 4

Proof. Since {ak}, k = [n], is a strictly log-concave sequence, it holds that a2
k > ak+1ak−1.

Moreover, since ak > 0 for any k < n by definition of the sequence {ak}, we have that

a2
k > ak+1ak−1 ⇐⇒ ak

ak−1
>
ak+1

ak
. (B.11)

The right-hand side of (B.11) is equivalent to bk−1 > bk, which proves that {bj} is a
decreasing sequence. Next, we prove that {bj} is also a convex sequence.

A discrete sequence {bj}, j = [n − 1], is convex if and only if 2bj ≤ bj−1 + bj+1 for
any j = {2, . . . , n− 2}, which, in our case, is equivalent to prove that

2
aj+1

aj
≤ aj
aj−1

+
aj+2

aj+1
, ∀j = {2, . . . , n− 2}. (B.12)

Let us now multiply (B.12) by the denominators to obtain

2aj−1a
2
j+1 ≤ a2

jaj+1 + aj−1ajaj+2 (B.13)

< a2
jaj+1 + aj−1a

2
j+1, (B.14)

which follows from the strict log-concavity of {ak} (i.e., ajaj+2 < a2
j+1). Re-ordering

terms, we obtain

aj−1aj+1 < a2
j , (B.15)

which is always true because {ak} is strictly log-concave. Consequently, the sequence
{bj} is a strictly convex sequence.

Thus, we only need to show that the sequence {1, {et}t∈[Λ], 0} is strictly log-concave.

If it is strictly log-concave, and upon defining {ak} = {1, {et}t∈[Λ], 0} (such that bk ,
ak+1

ak
= c

(t)
t), applying Lemma 13 yields that c

(t)
t is a strictly convex sequence, which will

conclude the proof of Lemma 4.

In order to prove this, let us first introduce the elementary symmetric means Ek,
which are defined as

Ek(L) ,
ek(L)(
n
k

) , (B.16)

where
(
n
k

)
is the number of summands in ek(L) for a set of |L| = n elements (in our case,

n = Λ). Hereinafter, we omit the dependence of ek and Ek on L because it is the same
set for any ek, Ek considered in the following.

It was shown by Newton [97] that, for any n-tuple of non-negative numbers, it holds
that the sequence {Ek}k∈[n] is a log-concave sequence, and thus

E2
k ≥ Ek−1Ek+1, k ∈ {2, . . . , n− 1}, (B.17)

where the inequality is strict unless all the elements of the n-tuple coincide.

155

Appendix B. Appendix of Chapter 4

In order to prove log-concavity, we first obtain from (B.16)-(B.17) that

E2
t ≥ Et−1Et+1 ⇐⇒ e2

t(
n
t

)2 ≥ et−1et+1(
n
t−1

)(
n
t+1

) , (B.18)

for any 1 < t < n. Then, we can write that

e2
t ≥

(
n
t

)2(
n
t−1

)(
n
t+1

)et−1et+1 (B.19)

> et−1et+1, (B.20)

which implies that {et}1≤t≤Λ is strictly log-concave, and where the last step follows
from the strict log-concavity of the binomial coefficient [98]. It remains to prove that
e2

1 > 1 × e2 = e2 and that e2
Λ > eΛ−1 × 0 = 0. The latest is always true since

eΛ =
∏Λ
j=1 Lj > 0 because Lj ≥ 1. For the former (e2

1 > e2), let us recall the Maclaurin
inequalities [99], which state that

E1 ≥
√
E2 ≥ 3

√
E3 ≥ · · · ≥ n

√
En, (B.21)

with equality only if all the Lj for any j ∈ [n] coincide. Let us focus on the first inequality.
Since n = Λ and Lj ≥ 1 for any j, it follows that

E1 ≥
√
E2 ⇐⇒ e2

1(
Λ
1

)2 ≥ e2(
Λ
2

) ⇐⇒ e2
1

Λ2
≥ e2

Λ(Λ−1)
2

⇐⇒ e2
1 ≥

2Λ

Λ− 1
e2.

(B.22)

Since e2
1 ≥ 2Λ

Λ−1e2 > e2, we obtain that the sequence {1, {et}1≤t≤Λ, 0} is strictly log-

concave. Thus, applying Lemma 13 yields that c
(t)
t is a strictly convex sequence, which

concludes the proof of Lemma 4.

B.3 Proof of Lemma 6

From (4.35) and (4.32) we can write Tlb,p(Z,L) as

Tlb,p(Z,L) =
1

|Dwc|
∑
σ∈SΛ

p∏
j=1

Lσ(Λ−p+j)︸ ︷︷ ︸
,Dp

∑
d∈Dwc

∑
σ∈SΛ

Q(p)
σ Tlb,σ(Z,d,L)︸ ︷︷ ︸
,Np

. (B.23)

where Q(p)
σ ,

p∏
j=1

Lσ(Λ−p+j) and

Tlb,σ(Z,d,L) ,
Λ∑
λ=1

Lσ(λ)∑
`=1

∑
τλ⊆[Λ]\{σ(1),...,σ(λ)}

|W (dσ(λ)(`))
τλ |. (B.24)

156

Appendix B. Appendix of Chapter 4

First, we rewrite Dp (defined in (B.23)) in a more suitable form as

Dp = P (N,K)
∑
σ∈SΛ

p∏
j=1

Lσ(Λ−p+j)

= P (N,K)
∑

v∈SΛ−p

∑
q∈Sp

p∏
j=1

Lq(j)

= P (N,K)(Λ− p)!p!
∑
q∈C[Λ]

p

p∏
j=1

Lq(j), (B.25)

which follows from basic mathematical manipulations.

For any n ∈ [N] and any τ ⊆ [Λ], our goal is now to evaluate the coefficient that

multiplies each |W (n)
τ | in Np from (B.23), which we denote here by g

(p)
n,τ . We first state

the following trivial fact.

Fact 2. For any n ∈ [N] and any τ ⊆ [Λ], if |W (n)
τ | appears in Tlb,σ(Z,d,L) for some

d ∈ Dwc and some σ ∈ SΛ, then it only appears once for all λ ∈ [Λ], ` ∈ [Lλ].

Let us focus on a demand vector d′ such that subfile |W (n)
τ | is requested by a certain

user k′ associated to cache λ′, i.e. k′ ∈ Uλ′ and dk′ = n. Our objective is now to evaluate

the coefficient of |W (dk′)
τ | in

Tlb(Z,d
′,L) ,

∑
σ∈SΛ

Q(p)
σ Tlb,σ(Z,d′,L). (B.26)

In this respect, we need to identify those permutations σ ∈ SΛ for which |W (dk′)
τ | appears

in Tlb,σ(Z,d′,L).
From the expression of Tlb,σ(Z,d′,L) in (B.24), the following proposition holds.

Proposition 6. The permutations σ for which |W (dk′)
τ | appears in Tlb,σ(Z,d′,L) are such

that λ′ appears in the permutation σ before any element of the set τ . We will refer to
such permutations as valid permutations.

Example: Consider W
(3)
1,2 , where dk = 3 for k ∈ U3 and τ = {1, 2}. This subfile will

not appear in Tlb,σ(Z,d′,L) for permutations σ (1, 2, 3), (2, 1, 3), (1, 3, 2) and (2, 3, 1),
while it will appear for permutations (3, 1, 2) and (3, 2, 1).
Because of (B.26), when we identify any valid permutation σ we will say that we identified

Q(p)
σ such permutations.

Next, we need to split the proof in two cases. First, we consider the case when |τ | ≥ p,
and afterwards we focus on the case |τ | < p. In the following, we make use of the notation

L̇q ,
∏|q|
j=1 Lq(j) for any q ⊆ [Λ].

157

Appendix B. Appendix of Chapter 4

The |τ | ≥ p case

With Proposition 6 at hand, we notice that, if λ′ appears in any one of the last p positions
of a permutation σ, then there will be for sure an element of τ (recall that |τ | ≥ p) which
will precede λ′. It follows that, in this case, any valid permutation does not have λ′ in
the last p positions. Thus, the number of ways in which we can fill these last p positions,

recalling that permutation σ accounts for Q(p)
σ times, is

p!
∑

q∈C[Λ]\{λ′}
p

L̇q. (B.27)

We continue with the following proposition.

Proposition 7. For each of the ways in which we can fill the last p positions of permutation
σ, the number of ways in which we can fill the first Λ− p positions so that σ is a valid
permutation as stated in Proposition 6 is(Λ−p

|τ\q|+1

)(Λ−p−1
|τ\q|

) (Λ− p− 1)! (B.28)

Proof. Let us denote the set of elements in the last p positions of σ by q, and let us
consider the case when λ′ is in position r for some r ∈ [Λ− p]. In this case, we have that
in the first r − 1 positions we cannot place any of the elements in q, we cannot place λ′,
and we cannot put any element of τ that is not in q. It then follows that, for any q, there
are

P (Λ− p− 1− |τ \ q|)(Λ− p− r)!
ways in which we can fill the first Λ− p positions of σ with λ′ in position r. Considering
all possible r values we have

Λ−p∑
r=1

P (Λ− p− 1− |τ \ q|, r − 1)(Λ− p− r)!, (B.29)

which can be manipulated such that

Λ−p∑
r=1

P (Λ− p− 1− |τ \ q|, r − 1)(Λ− p− r)!

=

Λ−p∑
r=1

(Λ− p− 1− |τ \ q|)!(Λ− p− r)!|τ \ q|!(Λ− p− 1)!

(Λ− p− |τ \ q| − r)!|τ \ q|!(Λ− p− 1)!

=

Λ−p∑
r=1

(Λ−p−r
|τ\q|

)(Λ−p−1
|τ\q|

)(Λ− p− 1)!

=

(Λ−p
|τ\q|+1

)(Λ−p−1
|τ\q|

) (Λ− p− 1)!, (B.30)

which matches (B.28).

158

Appendix B. Appendix of Chapter 4

Combining equation (B.27) and Proposition 7, the total number of valid permutations

σ (with repetition given by Q(p)
σ) is

p!
∑

q∈C[Λ]\{λ′}
p

L̇q

(Λ−p
|τ\q|+1

)(Λ−p−1
|τ\q|

) (Λ− p− 1)! (B.31)

We now proceed to evaluate the total number of demands for which subfile W
(dk′)
τ is

requested.
It is easy to see that the total number of demands with dk′ = n is P (N − 1,K− 1). If

user k′ is associated to any of the caches in set τ , then subfile W
(d′k)
τ will not be requested

to the server, since it is already stored in cache λ′. Thus, W
(n)
τ will be requested to the

server only if λ′ ∈ [Λ] \ {τ}. It follows that the total number of times that subfile W
(n)
τ

is requested among all possible demand vectors is

P (N − 1,K − 1)
∑

λ∈[Λ]\{τ}

Lλ. (B.32)

From equations (B.31) and (B.32), we have that the coefficient of |W (n)
τ | in Np can

be written as

g(p)
n,τ = P (N−1,K−1) ·

∑
λ∈[Λ]\{τ}

Lλ ·p! ·
∑

q∈C[Λ]\{λ}
p

(
L̇q ×

(Λ−p
|τ\q|+1

)(Λ−p−1
|τ\q|

) (Λ− p− 1)!

)
. (B.33)

Finally, we obtain the coefficient of any |W (n)
τ | with |τ | ≥ p in Tlb,p(Z,L), i.e.,

g
(p)
n,τ

Dp
(cf. (B.23)), which can be rewritten as

g
(p)
n,τ

Dp
=

P (N − 1,K − 1) ·∑λ∈[Λ]\{τ} Lλ · p! ·
∑

q∈C[Λ]\{λ}
p

(
L̇q ×

(Λ−p
|τ\q|+1)

(Λ−p−1
|τ\q|)

(Λ− p− 1)!

)
P (N,K)(Λ− p)!p!∑

`∈C[Λ]
p
L̇`

(a)
=

1

N ·∑
`∈C[Λ]

p
L̇`

∑
λ∈[Λ]\{τ}

Lλ
∑

q∈C[Λ]\{λ}
p

L̇q ·
1

|τ \ q|+ 1

(b)
=

∑
q∈C[Λ]

p+1

L̇q · |q\τ ||τ\q|+1

N ·∑
`∈C[Λ]

p
L̇`

(c)
=

∑
q∈C[Λ]

p+1

L̇q · p+1−|q∩τ |
|τ |+1−|q∩τ |

N ·∑
`∈C[Λ]

p
L̇`

, (B.34)

where (a) follows from basic mathematical manipulations, (b) follows from Property 2

and the fact that for any λ ∈ [Λ] \ {τ} and q ∈ C [Λ]\{λ}
p we have |τ \ q| = |τ \ {q ∪ {λ}}|,

and (c) follows from the fact that |q \ τ | = |q| − |q ∩ τ | as well as |τ \ q| = |τ | − |q ∩ τ |.
Defining c

(p)
n,τ = N

g
(p)
n,τ

Dp proves the lemma for the case τ ≥ p.

159

Appendix B. Appendix of Chapter 4

1 3 Λ− p r Λ

r = 1 r = p

Last p positions

Figure B.1 – Illustration of the meaning of index r.

The |τ | < p case

As for the |τ | ≥ p case, we focus on a demand vector such that W
(n)
τ is requested by a

certain user.
The number of permutations such that λ is not in the last p positions is the same as

for the case |τ | = j ≥ p, i.e., (B.34). Let us denote such value as c
(p)
τ,start =

g
(p)
n,τ

Dp . But now,
since j < p, λ can be also located up to the Λ− j position, i.e., it can appear in some of
the last p positions. Then, the coefficient can be written as

c(p)
τ , c

(p)
τ,start + c

(p)
τ,end, (B.35)

where c
(p)
τ,end is given by those permutations where λ is in one of the last p positions. In

order to obtain c
(p)
τ,end, let us first fix the position of λ, such that r denotes in which of the

last p positions is located λ. Hence, r = 1 implies that λ is in the last Λ− p+ 1 position,
whereas r = p implies that λ is in the last position (see Fig. B.1 for a visual explanation).

If λ is in the last p positions, Proposition 6 implies that all the values in τ must also
be in those last p positions, and in particular in the positions {Λ − p + r + 1, . . . ,Λ}.
Now, the remaining p− j − 1 positions can be filled with the other Λ− j − 1 caches. Let
us consider a particular set q of p caches filling the last p positions. We can write such
set as

q , {λ ∪ τ ∪ s}, (B.36)

where λ ∩ τ = ∅, and s ∈ C [Λ]\{λ∪τ}
p−j−1 . Note that |[Λ]\{λ ∪ τ}| = Λ − j − 1. Then, the

numerator of the coefficient c
(p)
τ,end is given by

c
(p),num
τ,end = P (N − 1,K − 1)

∑
λ∈[Λ]\{τ}

Lλ︸ ︷︷ ︸
Times that W

(n)
τ is requested (B.32)

∑
s∈C[Λ]\{λ∪τ}

p−j−1︸ ︷︷ ︸
All possible
combinations

of caches
in last p positions

apart from λ, τ

= L̇q

LλL̇τ L̇s︸ ︷︷ ︸×

×
p−j∑
r=1︸︷︷︸

Possible
positions

of λ

P (p− r, j)︸ ︷︷ ︸
Ways of putting

τ in last
p− r positions

(p− j − 1)!︸ ︷︷ ︸
For every τ, λ,
ways of filling

the other
p− j − 1 positions

(Λ− p)!︸ ︷︷ ︸
Filling the
first Λ− p
positions

(B.37)

160

Appendix B. Appendix of Chapter 4

Adding the denominator (as before), we can simplify as

c
(p)
τ,end =

c
(p),num
τ,end

P (N,K)p!(Λ− p)!∑
`∈C[Λ]

p
L̇`

(B.38)

(a)
=

∑
λ∈[Λ]\{τ} Lλ

∑
s∈C[Λ]\{λ∪τ}

p−j−1

LλL̇τ L̇s
∑p−j

r=1 P (p− r, j)(p− j − 1)!

Np!
∑

`∈C[Λ]
p
L̇`

(B.39)

(b)
=

∑
λ∈[Λ]\{τ} Lλ

∑
s∈C[Λ]\{λ∪τ}

p−j−1

LλL̇τ L̇s
p!
j+1

Np!
∑

`∈C[Λ]
p
L̇`

, (B.40)

where in the (a) we have applied that P (N−1,K−1)
P (N,K) = 1

N and canceled out (Λ− p)!, and

in (b) we have applied that

p−j∑
r=1

P (p− r, j)(p− j − 1)! = (p− j − 1)!

p−j∑
r=1

(p− r)!
(p− r − j)! (B.41)

=
p!

j + 1
. (B.42)

Then, by recalling that j = |τ |, it follows that

c
(p)
τ,end =

1

|τ |+ 1

∑
λ∈[Λ]\{τ} Lλ

∑
s∈C[Λ]\{λ∪τ}

p−j−1

LλL̇τ L̇s

N
∑

`∈C[Λ]
p
L̇`

(B.43)

=
1

N
∑

`∈C[Λ]
p
L̇`
· 1

|τ |+ 1
L̇τ

∑
s∈C[Λ]\{τ}

p−j

(
L̇s ·

p−j∑
i=1

Ls(i)

)
. (B.44)

Thus, from (B.34) and (B.44), the total coefficient c
(p)
τ , c

(p)
τ,start + c

(p)
τ,end is then given by

c(p)
τ =

1

N
∑

`∈C[Λ]
p
L̇`

(∑
q∈C[Λ]

p+1

L̇q
p+ 1− |q ∩ τ |
|τ |+ 1− |q ∩ τ | +

1

|τ |+ 1
L̇τ

∑
s∈C[Λ]\{τ}

p−j

(
L̇s ·

p−j∑
i=1

Ls(i)

))
,

(B.45)

which concludes the proof of Lemma 6. Note that, for the case where j ≥ p, it holds that

c
(p)
τ,end = 0, and hence c

(p)
τ = c

(p)
τ,start, which allows us to consider (B.45) for any value of

|τ |.

161

Appendix B. Appendix of Chapter 4

B.4 Proof of Proposition 2

In the following, we prove that the sequence
{
c̃

(p)
τ?j

}
is a decreasing sequence in j ∈ [Λ]0 =

{0 ∪ [Λ]}, where we recall that c̃
(p)
τ is given by

c̃(p)
τ ,

∑
q∈C[Λ]

p+1

p+1−|q∩τ |
|τ |+1−|q∩τ |

∏p+1
j=1 Lq(j)∑

`∈C[Λ]
p

∏p
j=1 L`(j)

,

and τ?j denotes τ?j , argminτ⊂[Λ]0, |τ |=j c̃
(p)
τ . Since the denominator of c̃

(p)
τ is the same for

any τ , we focus on the numerator. First, let us denote the numerator of c̃
(p)
τ by A(p, τ),

such that

A(p, τ) ,
∑

q∈C[Λ]
p+1

p+ 1− |q ∩ τ |
|τ |+ 1− |q ∩ τ |

p+1∏
j=1

Lq(j). (B.46)

Hence, we need to prove that, for any 0 ≤ j ≤ Λ− 1, it holds that

A(p, τ?j) > A(p, τ?j+1). (B.47)

Let us consider an arbitrary j, 0 ≤ j ≤ Λ− 1. We select a set τ ′ with cardinality j+ 1
which comprises τ?j , i.e., we can write τ ′ as τ ′ = {τ?j ∪ r}, where r ∈ {[Λ] \ τ?j }. Then, it
follows from (B.46) that

A(p, τ ′) =
∑

q∈C[Λ]
p+1

p+ 1− |q ∩ {τ?j ∪ r}|
(j + 1) + 1− |q ∩ {τ?j ∪ r}|

p+1∏
j=1

Lq(j). (B.48)

Note that
∏p+1
j=1 Lq(j) is independent of τ ′, τ?j . Furthermore, it holds that

p+ 1− |q ∩ {τ?j ∪ r}|
(j + 1) + 1− |q ∩ {τ?j ∪ r}|

<
p+ 1− |q ∩ τ?j |
j + 1− |q ∩ τ?j |

(B.49)

for any p ∈ Λ, r ∈ {[Λ] \ τ?j }, q ∈ C
[Λ]
p+1. Merging (B.48) and (B.49) yields

A(p, τ ′) <
∑

q∈C[Λ]
p+1

p+ 1− |q ∩ τ?j |
|τ?j |+ 1− |q ∩ τ?j |

p+1∏
j=1

Lq(j) = A(p, τ?j). (B.50)

By definition, A(p, τ ′) ≥ A(p, τ?j+1) for any τ ′ such that |τ ′| = j + 1. Thus,

A(p, τ?j+1) ≤ A(p, τ ′) < A(p, τ?j), (B.51)

which concludes the proof of Proposition 2.

162

Appendix B. Appendix of Chapter 4

B.5 Proof of Lemma 7

In this appendix, we obtain which set τ of cardinality |τ | = j minimizes c̃
(p)
τ . For any set

q, we recover the notation L̇q ,
∏|q|
j=1 Lq(j) for the sake of readability. Let us start by

recalling that c̃
(p)
τ is defined as

c̃(p)
τ ,

∑
q∈C[Λ]

p+1

L̇q
p+1−|q∩τ |
|τ |+1−|q∩τ |∑

`∈C[Λ]
p
L̇`

. (B.52)

For the case of j = 0, the only possible set τ is the empty set, whereas for the case j = p

we can see from (B.52) that all c̃
(p)
τ for any τ : |τ | = p have the same value, and thus

any τ : |τ | = p is a solution of the optimization problem. We select τ?p = {1, 2, . . . , p}
without loss of generality. In the following, we focus on the cases where j ∈ {[Λ] \ p}.

We can re-write (B.52) as follows: Since p+1−|q∩τ |
|τ |+1−|q∩τ | = 1 + p−|τ |

|τ |+1−|q∩τ | , we have that

c̃(p)
τ =

∑
q∈C[Λ]

p+1

L̇q∑
`∈C[Λ]

p
L̇`

+
p− |τ |∑
`∈C[Λ]

p
L̇`

(∑
q∈C[Λ]

p+1

L̇q
1

|τ |+ 1− |q ∩ τ |︸ ︷︷ ︸
a

(p)
τ

)
. (B.53)

Let us denote the j = |τ | elements of the set τ as {τ1, . . . , τj}, τi ∈ [Λ] ∀i ∈ [j]. For any
τ such that |τ | = j, the only term in (B.53) that differs with respect to any other τ ′ of

the same cardinality is the sum denoted by a
(p)
τ . Then, we prove Lemma 7 by means of

finding the subset τ that optimizes a
(p)
τ . Note that, since the sign of (p− |τ |) is different

whether p > |τ | or not, we have that

argmin
τ⊆[Λ], |τ |=j

c̃(p)
τ = argmin

τ⊆[Λ], |τ |=j
sgn(p− j)a(p)

τ . (B.54)

Hereinafter, we also use the notation τ[n] , {τ1, . . . , τn} for any n ≤ j = |τ |. We break
the problem of (B.54) in different sub-problems, which allows us to simplify the proof.

Specifically, we first obtain the element τj that minimizes a
(p)
τ for each given set τ[j−1] ⊂ [Λ].

Let us denote this value as τ?j (τ[j−1]), i.e., τ?j (τ[j−1]) , argminτj∈{[Λ]\τ[j−1]} sgn(p− j)a(p)
τ .

Note that, since there are
(

Λ
j−1

)
different τ[j−1], we obtain

(
Λ
j−1

)
different τ?j (τ[j−1]).

Next, we consider the following element of τ , i.e., τj−1. It turns out that

τ?j−1(τ[j−2]) , argmin
τj−1,τj∈{[Λ]\τ[j−2]}

sgn(p− j)a(p)
τ = argmin

τj−1∈{[Λ]\{τ[j−2],τ
?
j }}

sgn(p− j)a(p)
τ .

(B.55)

Then, defining τ?n(τ[n−1]) iteratively over all the elements of τ as in (B.55) yields τ?1 ,

argminτ1∈{[Λ]\{τ?2 ,...,τ?j }} sgn(p− j)a(p)
τ , and thus

argmin
τ⊆[Λ], |τ |=j

c̃(p)
τ = {τ?1 , τ?2 , . . . , τ?j }. (B.56)

163

Appendix B. Appendix of Chapter 4

The following lemma is key for the derivation of Lemma 7.

Lemma 14. Let us consider a given set {τ1, . . . , τj−1} ⊂ [Λ]. Then, it holds that

τ?j (τ[j−1]) , argmin
τj∈{[Λ]\τ[j−1]}

sgn(p− j)a(p)
τ = argmin

τj∈{[Λ]\τ[j−1]}
sgn(p− j)b(p)τ (B.57)

where b
(p)
τ is defined as

b(p)τ ,
min(p+1,j)∑

`=0

−1

(j − `)(j − `+ 1)

∑
µ⊆{τ\τj}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q. (B.58)

Proof. The proof is relegated to Section B.5.1.

Let us now split the proof for the cases where p < j and p > j.

Case p > j

Note that the sum
∑

µ⊆{τ\τj}
|µ|=`

L̇µ in (B.57) depends only on the j − 1 elements in τ that

are assumed to be fixed in this step. Furthermore, all the terms in (B.58) are negative
and p > j implies that sgn(p − j) = 1. Then, in order to minimize (B.58), we need to
make

∑
q∈C[Λ]\{τ}

p+1−`
L̇q as big as possible. Since τj is the term that we remove from the

sum (note that q ⊂ [Λ]\{τ}), this is achieved by selecting the cache in
{

[Λ]\τ[j−1]

}
with

the smallest L. Given that we have ordered the caches such that L1 ≥ · · · ≥ LΛ, we
obtain that

τ?j (τ[j−1]) = argmin
τj∈{[Λ]\τ[j−1]}

b(p)τ = argmin
τj∈{[Λ]\τ[j−1]}

Lτj = max
τj∈{[Λ]\τ[j−1]}

τj . (B.59)

Therefore, if we obtain (B.59) for any possible {τ1, . . . , τj−1}, we obtain that the optimal
τj is cache Λ (because LΛ is the smallest Li). Applying this reasoning iteratively, we
obtain that

argmin
τ⊆[Λ], |τ |=j

c̃(p)
τ = {Λ− j + 1, . . . ,Λ}, (B.60)

which concludes the proof for p > j.

Case p < j

In this case, the difference is that sgn(p− j) = −1. With the change of sign, all the terms
are positive, and thus we aim to maximize (B.58). Then, we need to make

∑
q∈C[Λ]\{τ}

p+1−`
L̇q

as small as possible. Since τj is the term that we remove from the sum, this is achieved by

164

Appendix B. Appendix of Chapter 4

selecting the cache in
{

[Λ]\τ[j−1]

}
with the biggest L. Thus, applying the same reasoning

as for the case p > j, we obtain that

τ?j (τ[j−1]) = argmax
τj∈{[Λ]\τ[j−1]}

b(p)τ = argmax
τj∈{[Λ]\τ[j−1]}

Lτj = min
τj∈{[Λ]\τ[j−1]}

τj . (B.61)

Therefore, applying this reasoning iteratively, we obtain that

argmin
τ⊆[Λ], |τ |=j

c̃(p)
τ = {1, 2, . . . , j}, (B.62)

which concludes the proof for p < j.

B.5.1 Proof of Lemma 14

We obtain Lemma 14 by re-writing the terms inside a
(p)
τ such that some of the terms do

not impact the optimization problem, and hence we can remove them.

Obtaining a new expression for a
(p)
τ

It follows that, for every τ ∈ [Λ], a
(p)
τ defined in (B.53) can be written as

a(p)
τ =

∑
q∈C[Λ]

p+1

L̇q
1

j + 1− |q ∩ τ | =

min(j,p+1)∑
m=0

1

j + 1−m
∑

q∈C[Λ]
p+1

|q∩τ |=m

L̇q, (B.63)

where the min(j, p + 1) term in the summation comes from the fact that |q ∩ τ | ≤
min(|q|, |τ |). For a given τ , let η be a subset of τ of cardinality m, such that η ⊆ τ ,
|η| = m. The last sum in (B.63) can be expanded as∑

q∈C[Λ]
p+1

|q∩τ |=m

L̇q =
∑
η⊆τ
|η|=m

∑
q∈C[Λ]

p+1
q∩τ=η

L̇q. (B.64)

Let us consider a particular η ⊆ τ , |η| = m. Then,∑
q∈C[Λ]

p+1
q∩τ=η

L̇q =
∑

q∈C[Λ]\{τ\η}
p+1

η⊆q

L̇q = L̇η
∑

q∈C[Λ]\{τ}
p+1−m

L̇q. (B.65)

Let us recall that the term
∑

q∈C[Λ]
p+1

L̇q represents the (p+ 1)-th elementary symmetric

polynomial for the set L , {Lλ}Λλ=1, and that the elementary symmetric polynomials
satisfy Property 1. Hence, for any set of positive integers Ω and any integer n such that
n /∈ Ω, and by making use of the notation defined above, we can rewrite Property 1 as

Ln
∑
q∈CΩ

p

L̇q =
∑

q∈C{Ω∪n}p+1

L̇q −
∑

q∈CΩ
p+1

L̇q. (B.66)

165

Appendix B. Appendix of Chapter 4

This is equivalent to say that the sum over the L̇q (|q| = p+ 1) that include Ln is equal
to the sum over all the L̇q (|q| = p + 1) minus the sum over the L̇q (|q| = p + 1) that
does not include Ln. This intuitive relation will prove fundamental for the derivation.

Note that L̇η =
∏
i∈η Li. Then, we can iteratively apply (B.66) to (B.65) for all the

Li, i ∈ η, such that (B.65) is expanded in 2m sums as∑
q∈C[Λ]

p+1
q∩τ=η

L̇q =
∑
κ⊆η

(−1)|κ|
∑

q∈C[Λ]\{τ\{η\s}}
p+1

L̇q =

m∑
k=0

(−1)k
∑
κ⊆η
|κ|=k

∑
q∈C[Λ]\{τ\{η\κ}}

p+1

L̇q. (B.67)

Thus, from (B.63), (B.64), and (B.67), we obtain that

a(p)
τ =

min(j,p+1)∑
m=0

1

j + 1−m
∑
η⊆τ
|η|=m

m∑
k=0

(−1)k
∑
κ⊆η
|κ|=k

∑
q∈C[Λ]\{τ\{η\κ}}

p+1

L̇q. (B.68)

Since {τ\{η\κ}} can be the same set for different η, κ, let us count how many times the
term

∑
q∈C[Λ]\{w}

p+1

L̇q appears in (B.68) for a certain w ⊆ [τ], |w| = i. Let us fix m (i.e.,

the cardinality of |η|) and j = |τ |. It follows that |w| = |{τ\{η\κ}}| = j − (m− k). We
have that w = τ\{η\κ} = {τ\η} ∪ κ. This implies that κ ⊆ w. Furthermore, for any
κ ⊆ w, there exists a distinct and unique η such that w = {τ\η} ∪ κ. Since there are(|w|
|κ|
)

=
(
i
k

)
=
(

i
i+m−j

)
possible κ ⊆ w of cardinality k, each of the terms

∑
q∈C[Λ]\{w}

p+1

L̇q

appears in (B.68) exactly
(

i
i+m−j

)
times for a particular m, i and j.

Let us denote the sum over all q ∈ C [Λ]\{w}
p+1 for any w of cardinality |w| = i as Θ\i,

such that

Θ\i ,
∑
w⊆τ
|w|=i

∑
q∈C[Λ]\{w}

p+1

L̇q. (B.69)

From (B.69) and the fact that the term
∑

q∈C[Λ]\{w}
p+1

L̇q appears in (B.68) exactly
(

i
i+m−j

)
times for a particular m, i and j, and after applying k = i+m− j, it follows that

m∑
k=0

(−1)k
∑
η⊆τ
|η|=m

∑
κ⊆η
|κ|=k

∑
q∈C[Λ]\{τ\{η\κ}}

p+1

L̇q =

j∑
i=j−m

(−1)i+m−j
(

i

i+m− j

)
Θ\i, (B.70)

where we have substituted k = i+m− j.
Then, we can apply (B.70) into (B.68) to obtain that

a(p)
τ =

min(j,p+1)∑
m=0

j∑
i=j−m

1

j + 1−m(−1)i+m−j
(

i

i+m− j

)
Θ\i. (B.71)

This expression of a
(p)
τ can be further simplified. Before continuing, let us take a look at

the term Θ\i. We show in the following that not all the components of Θ\i will impact

the optimization of a
(p)
τ .

166

Appendix B. Appendix of Chapter 4

Reducing Θ\i to its meaningful components

We recall that, as expressed in (B.55), our initial goal is to consider only the last element
of the set τ , i.e., τj , for any fixed set τ[j−1] = {τ1, . . . , τj−1}, and obtain

argmin
τj∈{[Λ]\τ[j−1]}

sgn(p− j)a(p)
τ . (B.72)

Note that the cache groups are ordered such that L1 ≥ · · · ≥ LΛ. For a given set
τ[j−1] ⊂ [Λ] of cardinality j − 1, we have to find the cache in the remaining set [Λ]\τ[j−1]

that optimizes (B.72), which we denote by τj .

Note that Θ\i ,
∑

w⊆τ
|w|=i

∑
q∈C[Λ]\{w}

p+1

L̇q, defined in (B.67), is composed of
(
j
i

)
sums,

one for each w ⊆ τ : |w| = i. Interestingly, if w ⊆ τ is actually a subset of τ[j−1]

(w ⊆ τ[j−1]), the term
∑

q∈C[Λ]\{w}
p+1

L̇q is the same no matter which value in {[Λ]\τ[j−1]}
is selected as τj . Thus, such terms are irrelevant for the optimization problem.

Let us denote the
(
j−1
i−1

)
subsets w which contain τj in (B.67) as Θ

\τj
\i−1, i.e.,

Θ
\τj
\i−1 ,

∑
ν⊆{τ\τj}
|ν|=i−1

∑
q∈C

[Λ]\{τj ,ν}
p+1

L̇q, (B.73)

and define

b(p)τ ,
min(j,p+1)∑

m=0

j∑
i=j−m

1

j + 1−m(−1)i+m−j
(

i

i+m− j

)
Θ
\τj
\i−1, (B.74)

where b
(p)
τ is obtained by substituting Θ\i in apτ by Θ

\τj
\i−1. Then, it follows that

argmin
τj∈{[Λ]\τ[j−1]}

sgn(p− j)a(p)
τ = argmin

τj∈{[Λ]\τ[j−1]}
sgn(p− j)b(p)τ . (B.75)

Next, we simplify Θ
\τj
\i−1 to later apply this result into b

(p)
τ and obtain Lemma 14.

Simplifying the term Θ
\τj
\i−1

The elements in a combination of p+1 elements in [Λ]\{τj , ν} can be expressed as the con-
catenation of ` elements of {τ\{τj , ν}} and p+1−` elements of

{
[Λ]\{τj , ν}

}
\
{
τ\{τj , ν}

}
= [Λ]\{τ}, for any ` ∈ [j − i]0. Consequently, it follows that

∑
q∈C

[Λ]\{τj ,ν}
p+1

L̇q =

j−i∑
`=0

∑
µ⊆{τ\{τj ,ν}}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q. (B.76)

167

Appendix B. Appendix of Chapter 4

Applying (B.76) into (B.73) yields

Θ
\τj
\i−1 =

∑
ν⊆{τ\τj}
|ν|=i−1

j−i∑
`=0

∑
µ⊆{τ\{τj ,ν}}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q (B.77)

=

j−i∑
`=0

(∑
ν⊆{τ\τj}
|ν|=i−1

∑
µ⊆{τ\{τj ,ν}}
|µ|=`

L̇µ

︸ ︷︷ ︸
Ej−1,`

) ∑
q∈C[Λ]\{τ}

p+1−`

L̇q. (B.78)

Next, we want to count how many times the last sum (
∑

q∈C[Λ]\{τ}
p+1−`

L̇q) appears in Θ
\τj
\i−1.

Consider some given i and `. In the term Ej−1,` in (B.78), a specific L̇µ appears
(
j−1−`
i−1

)
times. Then, it holds that

Θ
\τj
\i−1 =

j−i∑
`=0

(
j − 1− `
i− 1

) ∑
µ⊆{τ\τj}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q. (B.79)

Now, we substitute Θ
\τj
\i−1 by (B.79) in (B.74) to obtain Lemma 14.

Obtaining (B.58)

Let us introduce the notation $, min(j, p+ 1) for ease of readability. Then,

b(p)τ ,
$∑
m=0

j∑
i=j−m

1

j + 1−m(−1)i+m−j
(

i

i+m− j

)
Θ
\τj
\i−1 (B.80)

(a)
=

j∑
i=j−$

i∑
m′=j−$

1

m′ + 1
(−1)i−m

′
(

i

i−m′
)

Θ
\τj
\i−1 (B.81)

(b)
=

j∑
i=j−$

(−1)i−j+$

i+ 1

(
i

j −$

)
Θ
\τj
\i−1, (B.82)

where (a) follows from interchanging the summations and applying the change of variable
m′ = j −m, and in (b) we have solved the inner summation.

Let us now substitute Θ
\τj
\i−1 by (B.79) in (B.82), which leads to

b(p)τ =

j∑
i=j−$

(−1)i−j+$

i+ 1

(
i

j −$

) j−i∑
`=0

(
j − 1− `
i− 1

) ∑
µ⊆{τ\τj}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q. (B.83)

168

Appendix B. Appendix of Chapter 4

By interchanging the summations (since
∑j

i=j−$
∑j−i

`=0 f(i, `) =
∑$

`=0

∑j−`
i=j−$ f(i, `)),

we have that

b(p)τ =
$∑
`=0

j−∑̀
i=j−$

F`,p,j
∑

µ⊆{τ\τj}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q, (B.84)

where F`,p,j , (−1)i−j+$

i+1

(
i

j−$
)(
j−1−`
i−1

)
. Let us consider

∑j−`
i=j−$ F`,p,j . To simplify the

notation, let us define h , j −$ and g = $ − `. Thus, it follows that

j−∑̀
i=j−$

F`,p,j =

h+g∑
i=h

(−1)i−h

i+ 1

(
i

h

)(
h+ g − 1

i− 1

)
(B.85)

=
−1

(h+ g + 1)(h+ g)
=

−1

(j − `)(j − `+ 1)
. (B.86)

Thus, we obtain that

b(p)τ =
$∑
`=0

−1

(j − `)(j − `+ 1)

∑
µ⊆{τ\τj}
|µ|=`

L̇µ
∑

q∈C[Λ]\{τ}
p+1−`

L̇q, (B.87)

which concludes the proof of (B.58) and Lemma 14.

B.6 Proof of Theorem 6

In order to prove Theorem 6, we have to prove that the achievable delivery time in (4.55)
matches the lower bound in (4.60). To do so, we first notice that (4.55) and (4.60) have
the same denominator, thus leaving us to prove that the numerator of the achievable
delivery time is exactly equal to the numerator of the bound, i.e.,

∑
τ∈C[Λ]

t+1

max
λ∈τ

L′λL̇τ\λ = max
σ∈SΛ,Λ−t

Λ−t∑
λ=1

L′σ(λ)

∑
τ∈C[Λ]\{σ(1),...,σ(λ)}

t

L̇τ . (B.88)

We start by constructing the set

Φ ,

{
max
i∈τ

L′iL̇τ\{i} : τ ⊂ [Λ], |τ | = t+ 1

}
, (B.89)

which is comprised of the addends of the left-hand-side of (B.88). We naturally have
that |Φ| =

(
Λ
t+1

)
.

In the following, we make use of the term leader in a specific way. In particular, we
say that j is a leader of a set τ ∈ [Λ] if j = argmaxi∈τ L

′
iL̇τ\{i}. The next lemma shows

that the caches that act as leaders follow a particular structure.

169

Appendix B. Appendix of Chapter 4

Lemma 15. For any j ∈ [Λ], let us denote the number of times that j is a leader in Φ as
Nj. Then, Nj satisfies that

Nj ∈
{

0,

(
t

t

)
,

(
t+ 1

t

)
, . . . ,

(
Λ− 1

t

)}
. (B.90)

Proof. Without loss of generality, let us assume that j is such that L′jLi ≥ L′iLj ∀i ∈ φ
for some φ ⊂ [Λ] \ {j}, |φ| = m, and for some m ∈ {t, t + 1, . . . ,Λ − 1}. Notice that
we must have m ≥ t, since, for m < t, j cannot be a leader in Φ. The fact that there
exist

(
m
t

)
t−combinations of φ implies that j is a leader in Φ at least

(
m
t

)
times, since

L′jLτ ≥ L′iL{j}∪τ\{i},∀i ∈ τ,∀τ ∈ Cφt by assumption. This and the fact that j might not
be a leader in Φ completes the proof.

Let us now consider the set of all the leaders `1, `2, `3, . . . , `Λ in Φ, and let us sort
them such that, without loss of generality, we assume that L′`jL`j+1

≥ L′`j+1
L`j for any

j ∈ [Λ− 1]. It can be easily verified that this order of the leaders implies

L′`jL`i ≥ L
′
`i
L`j ∀i > j. (B.91)

Let us consider j = 1. From the above, we have that L′`1L`i ≥ L′`iL`1 for any i > 1.

We can multiply both sides of the inequality by L̇η for any η ⊆ [Λ] \ {`1, `i} of cardinality
|η| = t− 1. There are

(
Λ−2
t−1

)
such subsets for each i, thus a total of (Λ− 1)

(
Λ−2
t−1

)
different

inequalities. This writes as

L′`1L`iL̇η ≥ L′`iL`1L̇η ∀η ⊆ [Λ] \ {`1, `i}, ∀i > 1. (B.92)

For `1 to be the leader of a set τ , |τ | = t+ 1, we need L′`1L`iL̇τ\{`1,`i} ≥ L′`iL`1L̇τ\{`1,`i}
for any i : `i ∈ τ \ `1. That is, we need t different inequalities among those in (B.92),
each one from a different i. Then, the set of (Λ− 1)

(
Λ−2
t−1

)
different inequalities in (B.92)

imply that `1 is a leader of Λ−1
t

(
Λ−2
t−1

)
=
(

Λ−1
t

)
different sets τ ⊆ [Λ], |τ | = t+ 1. Indeed,

that amounts to all the possible sets in which `1 appears.

After considering `1 for the sake of comprehension, let us consider a general `j . Let us
now multiply (B.91) by L̇η for any η ⊆ [Λ] \ {{`k}k≤j , `i} of cardinality |η| = t− 1. Note
that now we have only considered the subsets that do not include neither `i nor any `k
for k ≤ j. Hence, we have

(
Λ−j−1
t−1

)
such subsets for each i, thus a total of (Λ− j)

(
Λ−j−1
t−1

)
different inequalities.

Now, let us denote by Ωj the set of subsets of cardinality t+1 which contain `j but do
not contain any `k such that k < j, i.e., Ωj , {τ : |τ | = t+1, τ 3 j, {τ\`j} ⊆ [Λ]\{`k}k≤j}.
Note that within the previous set of inequalities, i.e., within

L′`jL`iL̇η ≥ L
′
`i
L`j L̇η ∀η ⊆ [Λ] \ {{`k}k≤j , i}, ∀i > j, (B.93)

we can find the t inequalities required for `j to be the leader of any subset τ in Ωj (since,
for an arbitrary τ ∈ Ωj , we need L′`jL`iL̇τ\{`j ,`i} ≥ L

′
`i
L`j L̇τ\{`j ,`i} for any i : `i ∈ τ \ `j).

Consequently, the set of (Λ− j)
(

Λ−j−1
t−1

)
different inequalities in (B.93) imply that `j is a

170

Appendix B. Appendix of Chapter 4

leader of Λ−j
t

(
Λ−j−1
t−1

)
=
(

Λ−j
t

)
different sets τ ⊆ [Λ], |τ | = t+ 1. Indeed, that amounts to

all the possible sets in which `j appears and no `k, k < j, appears.
Interestingly, this implies that each `j is the leader of all the sets τ in which it appears

and none of the previous {`k}k<j appears. Summing up all the sets for which `1, . . . , `Λ−t
are leaders yields

Λ−t∑
n=1

(
Λ− n
t

)
=

(
Λ

t+ 1

)
, (B.94)

which matches the cardinality of Φ. Hence, there are only Λ− t leaders.1

Finally, by considering all possible (Λ− t)-combinations of [Λ] as all the possible set
of leaders, we can conclude that

∑
q∈C[Λ]

t+1

max
λ∈q

L′λL̇q\λ = max
σ∈SΛ,Λ−t

Λ−t∑
λ=1

L′σ(λ)

∑
q∈C[Λ]\{σ(1),...,σ(λ)}

t

L̇q, (B.95)

which concludes the proof.

1Note that, for `Λ−t+1, the number of possible subsets of cardinality t+ 1 in [Λ] which do not contain
any element in {`k}k∈[Λ−t+1] is zero because the set [Λ] \ {`k}k∈[Λ−t] has cardinality t.

171

Appendix B. Appendix of Chapter 4

172

Appendix C

Proofs of Chapter 6

C.1 More Detailed Analysis of the Delivery Phase

For the delivery and decoding procedures presented in Sections 6.3.2 and 6.3.3, we here
show that at the end of the K rounds, each user successfully decodes all its missing data
parts. We recall that for the placement matrix V, if V[p, k] = 0 for some p ∈ [K] and

k ∈ [K], then the subfile W
(dk)
p , which is comprised of t+ α smaller minifiles of the form

W
(dk)
p,q , must be delivered to user k. By construction of the user index and packet index

vectors krj and prj , where r ∈ [K] and j ∈ [t+α], it is easy to see that for any p ∈ [K] and
k ∈ [K], if V[p, k] = 0 there exists always a transmission vector that contains one of the
t+α subpackets represented by V[p, k]; i.e. there exists always a triple (j, r, n) such that
p = prj [n] and k = krj [n]. Therefore, it is sufficient to show that if V[p, k] = 0 for some
pair (p, k), there exist exactly t+ α triples (j, r, n) for which p = prj [n] and k = krj [n].

Without loss of generality, let us consider the first round of the delivery scheme. The
vector k1

j contains the index of the users targeted at transmission j of this round. Let us

split the user indices in k1
j into the following two vectors

c1
j = [1 : t] , s1

j = [(([1 : α] + j − 1)%(K − t)) + t] . (C.1)

Similarly, we split the packet indices in p1
j into the following two vectors

r1
j = [((t+ j − [1 : t])%(K − t)) + [1 : t]] , d1

j = e(α) .

Now let us consider the set of points in the tabular representation corresponding to
the vector pair (rj1, c

j
1); i.e., the set of points in which the row index is taken from rj1

and column index is taken from cj1. We will use {(rj1, cj1)} to denote this set. From the

graphical example in Section 6.3.4, we recall that {(rj1, cj1)} is an element-wise circular
shift of {(r1

1, c
1
1)}, over the non-shaded cells of the tabular representation and in the

vertical direction. Similarly, {(dj1, sj1)} is an element-wise circular shift of {(d1
1, s

1
1)}, over

the non-shaded cells and in the horizontal direction. As a result, in round 1, the following
two statements hold:

173

Appendix C. Proofs of Chapter 6

• for every user k∈ [K] and packet index p∈ [K], if k is available in c1
1 = c1

2 = ... =
c1
K−t and p is available in [r1

1‖...‖r1
K−t], there exists exactly one transmission index

j ∈ [K − t], such that the j-th transmission of the first round delivers W
(dk)
p,q to

user k, for some subpacket index q ∈ [t+ α]. In other words there exists exactly
one triple (j, 1, n) for the pair (p, k);

• for every user k ∈ [K], if k is available in [s1
1‖s1

2‖...‖s1
K−t], there exist exactly α

transmissions in the first round that deliver W
(dk)
1,q to user k, each with a distinct

subpacket index q ∈ [t+ α]. In other words, there exist exactly α triples (j, 1, n),
for the pair (1, k).

These statements also hold for other transmission rounds, i.e., transmission round r
where 1 < r ≤ K. However, for any k, p ∈ [K] such that V[p, k] = 0, there exists exactly
one round r for which k appears in [sr1‖sr2‖...‖srK−t], while there exist t different rounds
r for which k is available in cr1 = cr2 = ... = crK−t. Hence, for any k, p ∈ [K] such that
V[p, k] = 0, there exist α × 1 + 1 × t = α + t triples (j, r, n) for the pair (p, k). This
clarifies the correctness of the delivery algorithm proposed in Section 6.3.2.

C.2 Reducing Subpacketization by a Factor of φ2
K,t,α

To reduce the subpacketization requirement, we apply a user grouping mechanism, inspired
by [33]. For notation simplicity, let us use simply use φ to represent φK,t,α. The idea is
to split users into groups of size φK,t,α and assume each group is equivalent to a virtual
user. Then, we consider a virtual network consisting of these virtual users, in which the
coded caching and spatial multiplexing gains are t

φ and α
φ , respectively. Finally, we apply

the coded caching scheme proposed in Sections 6.3.1 and 6.3.2 to the virtual network,
and elevate the resulting cache placement and delivery schemes to be applicable in the
original network. Here, we provide a detailed description of the elevation procedure.

Cache Placement

Assume the original network is given with K users, coded caching gain of t, and spatial
DoF of α. We first split the set of users [K] into K ′ = K

φ disjoints groups vk′ , k
′ ∈ [K ′],

where all groups have the same number of φ users. Without loss of generality, we assume
each group vk′ corresponds to the set of users

vk′ , [φ ∗ (k′ − 1) + 1 : φ ∗ k′] , ∀k′ ∈ [K ′] . (C.2)

Next, we assume each user group is equivalent to a virtual user with cache size of Mf
bits, and the virtual users form a new virtual network in which the spatial DoF is
α′ = α

φ . For this virtual network, we use the same cache placement algorithm presented
in Section 6.3.1, and set the cache content of every user in group vk′ to be the same as
the cache content of the virtual user corresponding to vk′ . The total subpacketization is
then K ′(t′ + α′), where t′ = t

φ .

174

Appendix C. Proofs of Chapter 6

Delivery Phase

During the delivery phase, we first create transmission vectors for the virtual network,
and then elevate them to be applicable in the original network. Following (6.2), the
transmission vector i for the virtual network is built as x′i =

∑
vk′∈X ′i

w′i(vk′)X
′
i(vk′), in

which X ′i is the set of virtual users targeted at transmission i, X ′i(vk′) denotes the data
part targeted to the virtual user vk′ during the same transmission, and w′i(vk′) is the
beamformer vector assigned to X ′i(vk′). In order to elevate x′i for the original network,
we first notice than each virtual user represents a set of φ original users; and hence,
using (C.2), the set of targeted users during transmission i for the original network is

Xi =
⋃

vk′∈X ′i

[φ ∗ (k′ − 1) + 1 : φ ∗ k′] . (C.3)

Following the discussions in Section 6.3.5, every beamformer vector w′i(vk′) is built to
suppress unwanted terms at α′ − 1 virtual users. Let us denote the set of such virtual
users as R′i(vk′), where |R′i(vk′)| = α′ − 1. The goal is then to find the respective set
for the original network, denoted by Ri(k), for k ∈ [K]. As the spatial DoF for the
original network is α, it is possible to suppress undesired terms at α− 1 original users;
i.e. |Ri(k)| = α − 1. Without loss of generality, let us assume that user k is in the
respective group of vk′ (every user in the original network has one counterpart in the
virtual network). In the original network, for the interference to be suppressed, the
following conditions should be met:

1. For every vk̂′ ∈ R′i(vk′), Ri(k) should include all the users in the respective group

of vk̂′ ; i.e. Ri(k) should include all the users in [φ ∗ (k̂′ − 1) + 1 : φ ∗ k̂′];

2. Ri(k) should include all other users in the respective group of vk′ ; i.e. Ri(k) should
include all the users in [φ ∗ (k′ − 1) + 1 : φ ∗ k′]\{k}.

Using a formal representation, we have

Ri(k) =[φ ∗ (k′ − 1) + 1 : φ ∗ k′]\{k}
⋃

v
k̂′∈R

′
i(vk′)

[φ ∗ (k̂′ − 1) + 1 : φ ∗ k̂′] .
(C.4)

In other words, the data part Xi(k) intended for user k at transmission i has to be
suppressed not only at α′ − 1 virtual users (where each virtual user represents φ original
users), but also at φ− 1 original users in the equivalent group of vk′ . Hence, the total
number of users for which Xi(k) should be suppressed is (α′ − 1)φ+ φ− 1. Substituting
α′ = α

φ , we have

|Ri(k)| = (
α

φ
− 1)φ+ φ− 1 = α− 1 . (C.5)

Now, we can elevate x′i to be applicable in the original network. All we need to do is
to use (C.3) to substitute the target user set X ′i with Xi, and replace w′i(vk′)X

′
i(vk′) with∑

k∈[φ∗(k′−1)+1:φ∗k′]

wi(k)Xi(k) , (C.6)

175

Appendix C. Proofs of Chapter 6

where wi(k) is the beamformer vector designed to suppress unwanted data terms at the
user set Ri(k) as defined in (C.4), and Xi(k) is the data part intended for user k at
transmission i. The subpacketization for the virtual network, K ′(t′ + α′), would then be
still valid for the original network, indicating a reduction of φ2 compared with the case
when no grouping is applied.

176

Appendix D

Appendix of Chapter 8

D.1 Proof of Lemma 12

We prove the lemma by induction as in [16]. To simplify the notation, in the rest of the
proof we will drop the index M whenever present.

First, we prove the statement for S = {λ}, for any λ ∈ [Λ]. We have that

H(Xλ|Y[Λ]\{λ}) ≥ 0 = Ta
(λ,1)
λ

Lλ − 1 · Lλ
12

(D.1)

Now, we suppose the statement in Lemma 12 is true for all subsets of size S0.
Combining equations (48), (55) and (58) in [16], for any S ⊆ {1, 2, . . . ,Λ} of size |S| =
S0 + 1, we have

H(XS |YSc) ≥
1

S0

∑
λ∈S

∑
k∈Lλ

H(V{k},:|V{k},Mλ∪MSc
) +H(XS\{λ}|Y(S\{λ})c)

 . (D.2)

For each λ ∈ S, the first term inside the round brackets in (D.2) can be lower bounded
as

∑
k∈Lλ

H(V{k},:|V{k},Mλ∪MSc
)

(a)
= LλT

S0∑
j=0

a
(j)
S\{λ} (D.3)

≥ LλT
S0∑
j=1

a
(j)
S\{λ}, (D.4)

where (a) is due to the independence of the intermediate values.
Instead, the second term inside the round brackets in (D.2) can be lower bounded by

the assumption that the lemma is valid for all subsets of size S0:

H(XS\{λ}|Y(S\{λ})c) ≥ T
∑

q∈S\{λ}

S0∑
j=1

a
(j,q)
S\{λ}

∑
p∈S\{λ} Lp − j · Lq

j2
. (D.5)

177

Appendix D. Appendix of Chapter 8

Thus, employing equations (D.4) and (D.5) in (D.2), we obtain

H(XS |YSc) ≥
1

S0

∑
λ∈S

∑
k∈Lλ

H(V{k},:|V{k},Mλ∪MSc
) +H(XS\{λ}|Y(S\{λ})c)

 (D.6)

≥ T

S0

∑
λ∈S

Lλ S0∑
j=1

a
(j)
S\{λ} +

∑
q∈S\{λ}

S0∑
j=1

a
(j,q)
S\{λ}

∑
p∈S\{λ} Lp − j · Lq

j2

 (D.7)

(a)
=

T

S0

S0∑
j=1

1

j

∑
λ∈S

∑
q∈S\{λ}

a
(j,q)
S\{λ}

j

 ∑
p∈S\{λ}

Lp + jLλ − jLq

 (D.8)

=
T

S0

S0∑
j=1

1

j

∑
λ∈S

∑
q∈S\{λ}

a
(j,q)
S\{λ}

j

∑
p∈S

Lp + (j − 1)Lλ − jLq

 (D.9)

where (a) is due to the equality a
(j)
S\{λ} = 1

j

∑
q∈S\{λ} a

(j,q)
S\{λ}.

Let us focus on the term ∑
λ∈S

∑
q∈S\{λ}

a
(j,q)
S\{λ}Lq.

The following equalities hold.∑
λ∈S

∑
q∈S\{λ}

a
(j,q)
S\{λ}Lq (D.10)

=j
∑
λ∈S

∑
q∈S\{λ}

1

j
Lq ·

N∑
n=1

1(file n is only mapped by j nodes in S \ {λ} including node q)

(D.11)

=

N∑
n=1

∑
λ∈S

∑
q∈S\{λ}

Lq1(file n is only mapped by j nodes in S \ {λ} including node q)

(D.12)

=
N∑
n=1

∑
λ∈S

∑
q∈S\{λ}

Lq1(file n is only mapped by j nodes in S including node q)

× 1(file n is not mapped by node λ) (D.13)

=
N∑
n=1

∑
λ∈S

∑
q∈S

Lq1(file n is only mapped by j nodes in S including node q)

× 1(file n is not mapped by node λ) (D.14)

=
∑
q∈S

Lq

N∑
n=1

1(file n is only mapped by j nodes in S including node q)

178

Appendix D. Appendix of Chapter 8

×
∑
λ∈S

1(file n is not mapped by node λ) (D.15)

=
∑
q∈S

Lq

N∑
n=1

1(file n is only mapped by j nodes in S including node q)(|S| − j)

(D.16)

=
∑
q∈S

Lqa
(j,q)
S (S0 + 1− j). (D.17)

Next, we focus on the term

∑
λ∈S

∑
q∈S\{λ}

a
(j,q)
S\{λ}

j
(j − 1)Lλ (D.18)

=
j − 1

j

∑
λ∈S

Lλ
∑

q∈S\{λ}

a
(j,q)
S\{λ} (D.19)

To this end, we define A(j,q)
S as the set of file indices that are mapped by j nodes in

S, including node q. We have that |A(j,q)
S | = a

(j,q)
S . Furthermore, it holds that

A(j,q)
S\{λ} = A(j,q)

S \ (A(j,q)
S ∩ A(j,λ)

S),

which implies that

a
(j,q)
S\{λ} = |A(j,q)

S\{λ}| (D.20)

= |A(j,q)
S \ (A(j,q)

S ∩ A(j,λ)
S)| (D.21)

= |A(j,q)
S | − |A(j,q)

S ∩ A(j,λ)
S | (D.22)

= a
(j,q)
S − (j − 1)|A(j,λ)

S | (D.23)

= a
(j,q)
S − (j − 1)a

(j,λ)
S . (D.24)

Placing the RHS of equation (D.24) into (D.19) we obtain

j − 1

j

∑
λ∈S

Lλ
∑

q∈S\{λ}

a
(j,q)
S\{λ} (D.25)

=
j − 1

j

∑
λ∈S

Lλ
∑

q∈S\{λ}

(
a

(j,q)
S − (j − 1)a

(j,λ)
S

)
(D.26)

=
j − 1

j

∑
λ∈S

Lλ

∑
q∈S

a
(j,q)
S − ja(j,λ)

S

 (D.27)

179

Appendix D. Appendix of Chapter 8

=
j − 1

j

∑
λ∈S

Lλ
∑
q∈S

a
(j,q)
S − j

∑
λ∈S

Lλa
(j,λ)
S

 (D.28)

Finally, using (D.17) and (D.28) in (D.9) yields

H(XS |YSc) ≥
T

S0

S0∑
j=1

1

j

∑
λ∈S

∑
q∈S\{λ}

a
(j,q)
S\{λ}

j

∑
p∈S

Lp + (j − 1)Lλ − jLq

 (D.29)

=
T

S0

S0∑
j=1

1

j

(j−1)
∑
λ∈S

Lλ
∑
q∈S

a
(j,q)
S

j
−(j−1)

∑
λ∈S

Lλa
(j,λ)
S +

+
∑
q∈S

a
(j,q)
S

j

∑
λ∈S

Lλ(S0+1−j)−
∑
q∈S

Lqa
(j,q)
S (S0+1−j)

 (D.30)

=
T

S0

S0∑
j=1

1

j

S0

∑
λ∈S

Lλ
∑
q∈S

a
(j,q)
S

j
−S0

∑
q∈S

Lqa
(j,q)
S

 (D.31)

= T

S0∑
j=1

1

j

∑
λ∈S

Lλ
∑
q∈S

a
(j,q)
S

j
−
∑
q∈S

Lqa
(j,q)
S

 (D.32)

= T

S0∑
j=1

∑
q∈S

a
(j,q)
S

∑
λ∈S Lλ − jLq

j2
(D.33)

(a)
= T

S0+1∑
j=1

∑
q∈S

a
(j,q)
S

∑
λ∈S Lλ − jLq

j2
(D.34)

where (a) follows from the following equality

T
∑
q∈S

a
(S0+1,q)
S

∑
λ∈S Lλ − (S0 + 1)Lq

(S0 + 1)2
=

T

S0 + 1

a(S0+1)
S

∑
λ∈S

Lλ −
∑
q∈S

a
(S0+1,q)
S Lq

(D.35)

(b)
=

T

S0 + 1

a(S0+1)
S

∑
λ∈S

Lλ − a(S0+1)
S

∑
q∈S

Lq

(D.36)

= 0, (D.37)

and where in (b) we have used the fact that a
(|S|)
S = a

(|S|,q)
S for any q ∈ S. The equation

in (D.34) proves that if the lemma holds for any subset S ⊆ [Λ] of size |S| = S0, then it
also holds for a subset S ⊆ [Λ] of size |S| = S0 + 1. This fact, combined with the fact
that the lemma holds for any subset S = {λ}, λ ∈ [Λ], completes the proof by induction.

180

Bibliography

[1] Cisco, “Cisco visual networking index: Forecast and trends, 2017-2022 white paper,”
2019. [Online]. Available: https://www.cisco.com

[2] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Transac-
tions on Information Theory, vol. 60, no. 5, pp. 2856–2867, 2014.

[3] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Characterizing the rate-memory
tradeoff in cache networks within a factor of 2,” IEEE Transactions on Information
Theory, vol. 65, no. 1, pp. 647–663, Jan 2019.

[4] K. Wan, D. Tuninetti, and P. Piantanida, “An index coding approach to caching
with uncoded cache placement,” IEEE Transactions on Information Theory, vol. 66,
no. 3, pp. 1318–1332, 2020.

[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-memory tradeoff
for caching with uncoded prefetching,” IEEE Transactions on Information Theory,
vol. 64, no. 2, pp. 1281–1296, Feb 2018.

[6] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains order-optimal
memory-rate tradeoff,” IEEE/ACM Transactions on Networking, vol. 23, no. 4, Aug
2015.

[7] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-server coded caching,”
IEEE Transactions on Information Theory, vol. 62, pp. 7253–7271, Dec 2016.

[8] S. P. Shariatpanahi, G. Caire, and B. H. Khalaj, “Physical-layer schemes for wireless
coded caching,” IEEE Transactions on Information Theory, pp. 1–1, 2018.

[9] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi, “Hierarchical
coded caching,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp.
3212–3229, June 2016.

[10] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform demands,” IEEE
Transactions on Information Theory, vol. 63, no. 2, pp. 1146–1158, Feb 2017.

[11] J. Zhang, X. Lin, and X. Wang, “Coded caching under arbitrary popularity distribu-
tions,” IEEE Transactions on Information Theory, vol. 64, no. 1, pp. 349–366, Jan
2018.

181

https://www.cisco.com

Bibliography

[12] V. Ravindrakumar, P. Panda, N. Karamchandani, and V. Prabhakaran, “Funda-
mental limits of secretive coded caching,” in IEEE International Symposium on
Information Theory, (ISIT), 2016, pp. 425–429.

[13] V. Ravindrakumar, P. Panda, N. Karamchandani, and V. M. Prabhakaran, “Private
coded caching,” IEEE Transactions on Information Forensics and Security, vol. 13,
no. 3, pp. 685–694, 2018.

[14] Q. Yan and D. Tuninetti, “Fundamental limits of caching for demand privacy against
colluding users,” IEEE Journal on Selected Areas in Information Theory, vol. 2,
no. 1, pp. 192–207, 2021.

[15] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of caching in wireless D2D
networks,” IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 849–869,
Feb 2016.

[16] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A fundamental tradeoff
between computation and communication in distributed computing,” IEEE Transac-
tions on Information Theory, vol. 64, no. 1, pp. 109–128, Jan 2018.

[17] P. Krishnan, V. Lalitha, and L. Natarajan, “Coded data rebalancing: Fundamental
limits and constructions,” in 2020 IEEE International Symposium on Information
Theory (ISIT), 2020, pp. 640–645.

[18] K. Wan, D. Tuninetti, M. Ji, and P. Piantanida, “Fundamental limits of distributed
data shuffling,” 2018. [Online]. Available: https://arxiv.org/abs/1807.00056

[19] R. Sun, H. Zheng, j. Liu, X. Du, and M. Guizani, “Placement delivery array for the
coded caching scheme in medical data sharing,” in Neural Computing and Application,
2020, pp. 867–878.

[20] [Online]. Available: https://cadami.net/

[21] N. Naderializadeh, M. A. Maddah-Ali, and A. S. Avestimehr, “Fundamental Limits of
Cache-Aided Interference Management,” IEEE Transactions on Information Theory,
vol. 63, no. 5, pp. 3092–3107, 2017.

[22] E. Lampiris, A. Bazco-Nogueras, and P. Elia, “Resolving the Feedback Bottleneck of
Multi-Antenna Coded Caching,” arXiv preprint arXiv:1811.03935, 2018. [Online].
Available: http://arxiv.org/abs/1811.03935

[23] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clusters,”
Communications of the ACM, 2008.

[24] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A survey on
mobile edge networks: Convergence of computing, caching and communications,”
IEEE Access, vol. 5, pp. 6757–6779, 2017.

182

https://arxiv.org/abs/1807.00056
https://cadami.net/
http://arxiv.org/abs/1811.03935

Bibliography

[25] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire, “Femtocaching:
Wireless video content delivery through distributed caching helpers,” in IEEE
Conference on Computer Communications, (INFOCOM), March 2012, pp. 1107–
1115.

[26] J. Hachem, N. Karamchandani, and S. Diggavi, “Coded caching for multi-level
popularity and access,” IEEE Transactions on Information Theory, vol. 63, pp.
3108–3141, May 2017.

[27] H. Xu, C. Gong, and X. Wang, “Efficient file delivery for coded prefetching in
shared cache networks with multiple requests per user,” 2018. [Online]. Available:
http://arxiv.org/abs/1803.09408

[28] M. Ji, A. M. Tulino, J. Llorca, and G. Caire, “Caching-aided coded multicasting
with multiple random requests,” in IEEE Information Theory Workshop, (ITW),
May 2015, pp. 1–5.

[29] A. Sengupta and R. Tandon, “Improved approximation of storage-rate tradeoff for
caching with multiple demands,” IEEE Transactions on Communications, vol. 65,
no. 5, pp. 1940–1955, May 2017.

[30] Y. Wei and S. Ulukus, “Coded caching with multiple file requests,” in 55th Annual
Allerton Conference on Communication, Control, and Computing, Oct 2017, pp.
437–442.

[31] K. Shanmugam, M. Ji, A. M. Tulino, J. Llorca, and A. G. Dimakis, “Finite-length
analysis of caching-aided coded multicasting,” IEEE Transactions on Information
Theory, vol. 62, no. 10, pp. 5524–5537, Oct 2016.

[32] S. Jin, Y. Cui, H. Liu, and G. Caire,“A new order-optimal decentralized coded caching
scheme with good performance in the finite file size regime,” IEEE Transactions on
Communications, vol. 67, no. 8, pp. 5297–5310, 2019.

[33] E. Lampiris and P. Elia, “Adding transmitters dramatically boosts coded-caching
gains for finite file sizes,” IEEE Journal on Selected Areas in Communications
(Special Issue on Caching), vol. 36, no. 6, pp. 1176–1188, June 2018.

[34] X. Peng, J. Zhang, S. H. Song, and K. B. Letaief, “Cache size allocation in backhaul
limited wireless networks,” in 2016 IEEE International Conference on Communica-
tions (ICC), 2016, pp. 1–6.

[35] T. Liu, S. Zhou, and Z. Niu, “Joint optimization of cache allocation and content
placement in urban vehicular networks,” in 2018 IEEE Global Communications
Conference (GLOBECOM), 2018, pp. 1–6.

[36] J. Liao, K. Wong, Y. Zhang, Z. Zheng, and K. Yang, “Coding, multicast, and
cooperation for cache- enabled heterogeneous small cell networks,” IEEE Transactions
on Wireless Communications, vol. 16, no. 10, pp. 6838–6853, 2017.

183

http://arxiv.org/abs/1803.09408

Bibliography

[37] S. Saeedi Bidokhti, M. Wigger, and A. Yener, “Benefits of cache assignment on
degraded broadcast channels,” IEEE Transactions on Information Theory, vol. 65,
no. 11, pp. 6999–7019, 2019.

[38] A. Tang, S. Roy, and X. Wang, “Coded caching for wireless backhaul networks with
unequal link rates,” IEEE Transactions on Communications, vol. 66, no. 1, pp. 1–13,
2018.

[39] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Centralized coded caching with
heterogeneous cache sizes,” in 2017 IEEE Wireless Communications and Networking
Conference (WCNC), 2017, pp. 1–6.

[40] L. Zheng, Q. Chen, Q. Yan, and X. Tang, “Decentralized coded caching scheme with
heterogeneous file sizes,” IEEE Transactions on Vehicular Technology, vol. 69, no. 1,
pp. 818–827, 2020.

[41] E. Parrinello, A. Ünsal, and P. Elia, “Optimal coded caching in heterogeneous
networks with uncoded prefetching,” in IEEE Information Theory Workshop, (ITW),
2018.

[42] E. Parrinello, A. Ünsal, and P. Elia, “Fundamental limits of coded caching with
multiple antennas, shared caches and uncoded prefetching,” IEEE Transactions on
Information Theory, vol. 66, no. 4, pp. 2252–2268, 2020.

[43] E. Parrinello and P. Elia, “Coded caching with optimized shared-cache sizes,” in
2019 IEEE Information Theory Workshop (ITW), 2019, pp. 1–5.

[44] E. Parrinello, A. Bazco-Nogueras, and P. Elia, “Fundamental limits of topology-
aware shared-cache networks,” to be submitted to IEEE Transactions on Information
Theory, 2021.

[45] B. Serbetci, E. Parrinello, and P. Elia, “Multi-access coded caching: gains beyond
cache-redundancy,” in 2019 IEEE Information Theory Workshop (ITW), 2019, pp.
1–5.

[46] E. Parrinello, P. Elia, and E. Lampiris, “Extending the optimality range of multi-
antenna coded caching with shared caches,” in 2020 IEEE International Symposium
on Information Theory (ISIT), 2020, pp. 1675–1680.

[47] A. Tolli, S. P. Shariatpanahi, J. Kaleva, and B. H. Khalaj, “Multi-antenna interference
management for coded caching,” IEEE Transactions on Wireless Communications,
vol. 19, no. 3, pp. 2091–2106, 2020.

[48] E. Lampiris, P. Elia, and G. Caire, “Bridging the gap between multiplexing and
diversity in finite SNR multiple antenna coded caching,” in 2019 53rd Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2019, pp. 1272–1277.

[49] M. Salehi, E. Parrinello, S. P. Shariatpanahi, P. Elia, and A. Tölli, “Low-complexity
high-performance cyclic caching for large miso systems,” 2020.

184

Bibliography

[50] E. Parrinello, A. Ünsal, and P. Elia, “Optimal coded caching under statistical QoS
information,” in 2019 IEEE International Symposium on Information Theory (ISIT),
2019, pp. 2987–2991.

[51] E. Parrinello and P. Elia, “New optimality results for heterogeneous coded distributed
computing,” Manuscript in preparation, 2021.

[52] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded cache
placement,” in IEEE Information Theory Workshop, (ITW), 2016, pp. 161–165.

[53] S. Jin, Y. Cui, H. Liu, and G. Caire, “Order-optimal decentralized coded caching
schemes with good performance in finite file size regime,” in IEEE Global Communi-
cations Conference, (GLOBECOM), Dec 2016, pp. 1–7.

[54] M. Li, L. Ong, and S. J. Johnson, “Cooperative multi-sender index coding,” 2018.
[Online]. Available: https://arxiv.org/abs/1701.03877v4

[55] P. Sadeghi, F. Arbabjolfaei, and Y. H. Kim, “Distributed index coding,” in IEEE
Information Theory Workshop, (ITW), Sept 2016, pp. 330–334.

[56] N. S. Karat, S. Dey, A. Thomas, and B. S. Rajan, “An optimal linear error
correcting delivery scheme for coded caching with shared caches,” CoRR, vol.
abs/1901.03188, 2019. [Online]. Available: http://arxiv.org/abs/1901.03188

[57] B. Asadi and L. Ong, “Centralized caching with shared caches in heterogeneous
cellular networks,” in 2019 IEEE 20th International Workshop on Signal Processing
Advances in Wireless Communications (SPAWC), 2019, pp. 1–5.

[58] A. M. Ibrahim, A. A. Zewail, and A. Yener, “Coded placement for systems with shared
caches,” in ICC 2019 - 2019 IEEE International Conference on Communications
(ICC), 2019, pp. 1–6.

[59] K. Wan, D. Tuninetti, M. Ji, and G. Caire, “On the fundamental limits of fog-ran
cache-aided networks with downlink and sidelink communications,” IEEE Transac-
tions on Information Theory, vol. 67, no. 4, pp. 2353–2378, 2021.

[60] M. Dutta and A. Thomas, “Decentralized coded caching for shared caches,” IEEE
Communications Letters, vol. 25, no. 5, pp. 1458–1462, 2021.

[61] A. Malik, B. Serbetci, E. Parrinello, and P. Elia, “Fundamental limits of stochastic
shared-cache networks,” IEEE Transactions on Communications, pp. 1–1, 2021.

[62] J. Zhang and P. Elia, “Fundamental limits of cache-aided wireless BC: Interplay
of coded-caching and CSIT feedback,” IEEE Transactions on Information Theory,
vol. 63, no. 5, pp. 3142–3160, May 2017.

[63] C. Niculescu, “A new look at newton’s inequalities,” Journal of Inequalities in Pure
& Applied Mathematics (JIPAM), vol. 1, 01 2000.

185

https://arxiv.org/abs/1701.03877v4
http://arxiv.org/abs/1901.03188

Bibliography

[64] K. Wan, D. Tuninetti, and P. Piantanida, “On caching with more users than files,”
in 2016 IEEE International Symposium on Information Theory (ISIT), 2016, pp.
135–139.

[65] H. Joudeh, E. Lampiris, P. Elia, and G. Caire, “Fundamental limits of wireless
caching under mixed cacheable and uncacheable traffic,” IEEE Transactions on
Information Theory, pp. 1–1, 2021.

[66] K. S. Reddy and N. Karamchandani, “On the exact rate-memory trade-off for multi-
access coded caching with uncoded placement,” in 2018 International Conference on
Signal Processing and Communications (SPCOM), July 2018.

[67] S. Sasi and B. S. Rajan, “An improved multi-access coded caching with uncoded
placement,” arXiv preprint arXiv:2009.05377, 2020.

[68] M. Cheng, D. Liang, K. Wan, M. Zhang, and G. Caire, “A novel transformation
approach of shared-link coded caching schemes for multiaccess networks,” arXiv
preprint arXiv:2012.04483, 2020.

[69] K. S. Reddy and N. Karamchandani, “Structured index coding problems and multi-
access coded caching,” in 2020 IEEE Information Theory Workshop (ITW), 2021,
pp. 1–5.

[70] S. Sasi and B. S. Rajan, “Multi-access coded caching scheme with linear sub-
packetization using pdas,” 2021.

[71] D. Katyal, P. N. Muralidhar, and B. S. Rajan, “Multi-access coded caching schemes
from cross resolvable designs,” IEEE Transactions on Communications, vol. 69, no. 5,
pp. 2997–3010, 2021.

[72] K. Namboodiri and B. S. Rajan, “Multi-access coded caching with secure delivery,”
arXiv preprint arXiv:2105.05611, 2021.

[73] ——, “Multi-access coded caching with demand privacy,” arXiv preprint
arXiv:2107.00226, 2021.

[74] D. Liang, K. Wan, M. Cheng, and G. Caire, “Multiaccess coded caching with private
demands,” arXiv preprint arXiv:2105.06282, 2021.

[75] M. Salehi, A. Tölli, and S. P. Shariatpanahi, “A multi-antenna coded caching scheme
with linear subpacketization,” in ICC 2020 - 2020 IEEE International Conference
on Communications (ICC), 2020, pp. 1–6.

[76] S. Mohajer and I. Bergel, “MISO Cache-Aided Communication with Reduced Sub-
packetization,” in ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 2020, pp. 1–6.

[77] M. Salehi, A. Tolli, S. P. Shariatpanahi, and J. Kaleva, “Subpacketization-rate
trade-off in multi-antenna coded caching,” in 2019 IEEE Global Communications
Conference, GLOBECOM 2019 - Proceedings. IEEE, 2019, pp. 1–6.

186

Bibliography

[78] M. J. Salehi, A. Tolli, and S. P. Shariatpanahi, “Subpacketization-beamformer
interaction in multi-antenna coded caching,” in 2nd 6G Wireless Summit 2020: Gain
Edge for the 6G Era, 6G SUMMIT 2020, 2020, pp. 1–5.

[79] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, “Robust adaptive beamforming
using worst-case performance optimization: A solution to the signal mismatch
problem,” IEEE transactions on signal processing, vol. 51, no. 2, pp. 313–324, 2003.

[80] P. Komulainen, “Coordinated multi-antenna techniques for cellular networks :
Pilot signaling and decentralized optimization in TDD mode,” Ph.D. dissertation,
University of Oulu, 2013. [Online]. Available: http://urn.fi/urn:isbn:9789526202815

[81] M. Bengtsson and B. Ottersten, “Optimal and Suboptimal Transmit Beamforming,”
no. July, pp. 18–1, 2001.

[82] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic optimization for
fixed MIMO receivers,” IEEE Transactions on Signal Processing, vol. 54, no. 1, pp.
161–176, 2006.

[83] R. D. Yates, “A framework for uplink power control in cellular radio systems,” IEEE
Journal on selected areas in communications, vol. 13, no. 7, pp. 1341–1347, 1995.

[84] Q. Yang and D. Gündüz, “Coded caching and content delivery with heterogeneous
distortion requirements,” IEEE Transactions on Information Theory, vol. 64, no. 6,
pp. 4347–4364, 2018.

[85] M. M. Amiri and D. Gündùz, “On the capacity region of a cache-aided gaussian
broadcast channel with multi-layer messages,” in 2018 IEEE International Symposium
on Information Theory (ISIT), June 2018, pp. 1909–1913.

[86] M. Bayat, C. Yapar, and G. Caire, “Spatially scalable lossy coded caching,” in 2018
15th International Symposium on Wireless Communication Systems (ISWCS), Aug
2018, pp. 1–6.

[87] A. M. Ibrahim, A. A. Zewail, and A. Yener, “On coded caching with heterogeneous
distortion requirements,” in 2018 Information Theory and Applications Workshop
(ITA), Feb 2018, pp. 1–9.

[88] D. Cao, D. Zhang, P. Chen, N. Liu, W. Kang, and D. Gunduz, “Coded caching
with heterogeneous cache sizes and link qualities: The two-user case,” in 2018 IEEE
International Symposium on Information Theory (ISIT), June 2018, pp. 1545–1549.

[89] F. Arbabjolfaei, B. Bandemer, Y. H. Kim, E. Şaşoğlu, and L. Wang, “On the capacity
region for index coding,” in IEEE International Symposium on Information Theory,
(ISIT), Jul 2013, pp. 962–966.

[90] M. Kiamari, C. Wang, and A. S. Avestimehr, “On heterogeneous coded distributed
computing,” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
2017, pp. 1–7.

187

http://urn.fi/urn:isbn:9789526202815

Bibliography

[91] F. Xu and M. Tao, “Heterogeneous coded distributed computing: Joint
design of file allocation and function assignment,” 2019. [Online]. Available:
https://arxiv.org/abs/1908.06715

[92] N. Woolsey, R.-R. Chen, and M. Ji, “Coded distributed computing with heterogeneous
function assignments,” in ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), 2020, pp. 1–6.

[93] F. Xu, S. Shao, and M. Tao, “New results on the computation-communication
tradeoff for heterogeneous coded distributed computing,” IEEE Transactions on
Communications, vol. 69, no. 4, pp. 2254–2270, 2021.

[94] J. Xu, L. Fu, and X. Wang, “Distributed computing with heterogeneous servers,” in
GLOBECOM 2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[95] N. Woolsey, R.-R. Chenb, M. Jic, N. Woolsey, R.-R. Chenb, and M. Jic, “A com-
binatorial design for cascaded coded distributed computing on general networks,”
IEEE Transactions on Communications, pp. 1–1, 2021.

[96] C. Yapar, K. Wan, R. F. Schaefer, and G. Caire, “On the optimality of d2d coded
caching with uncoded cache placement and one-shot delivery,” IEEE Transactions
on Communications, vol. 67, no. 12, pp. 8179–8192, 2019.

[97] I. Newton, G. Baermann, R. Boškovic, G. Campbell, J. de Castillon, J. Colson,
E. Halley, A. Kästner, C. MacLaurin, A. de Moivre et al., Arithmetica universalis
sive de compositione et resolutione arithmetica liber, ser. Arithmetica universalis,
sive De compositione et resolutione arithmetica. apud Marcum Michaelem Rey,
1761.

[98] R. Stanley, “Log-concave and unimodal sequences in algebra, combinatorics, and
geometry,” Annals of the New York Academy of Sciences, vol. 576, pp. 500 – 535, 12
2006.

[99] M. Lin and N. S. Trudinger, “On some inequalities for elementary symmetric func-
tions,” Bulletin of the Australian Mathematical Society, vol. 50, no. 2, pp. 317–326,
1994.

188

https://arxiv.org/abs/1908.06715

	Abstract
	Acknowledgements
	Contents
	Acronyms
	Notations
	Introduction to Coded Caching
	Motivation for Caching
	Classical Caching Systems

	Coded Caching
	Cache-Aided Shared-Link Broadcast Channel
	Extensions of the MAN Coded Caching Scheme to Other Settings

	Motivations and Main Contributions
	The Emergence of Shared-Cache Networks
	Storage Allocation in Cache-Aided Networks

	Heterogeneities in Cache-Aided Settings
	Thesis Outline and Summary of the Main Contributions
	Shared-Cache Networks
	Cache-Aided MISO Broadcast Channel
	Coded Caching with Heterogeneous Quality-of-Service Requirements
	Heterogeneous Coded Distributed Computing

	Topology-Agnostic Shared-Cache Networks
	System Model and Problem Formulation
	Main Results
	Topology-Agnostic Shared-Link Coded Caching with Shared Caches
	Topology-Agnostic Multi-Antenna Coded Caching with Shared Caches
	Interpretation of Results

	General Achievable Scheme for N0L
	Description of the Scheme
	Calculation of the Normalized Delivery Time
	Intuition on the Scheme: Separability and the Parallel Version of the Multi-Antenna BC with Shared Caches
	Illustrative Example

	Information Theoretic Converse
	Achievable Scheme for the Uniform Setting with N0K
	Illustrative Example
	Cache Placement Scheme
	Delivery Scheme
	Calculation of the Normalized Delivery Time

	Follow-Up Works

	Topology-Aware Shared-Cache Networks
	System Model and Problem Formulation
	Problem Definition

	An Illustrative Example of the Scheme for the Topology-Aware Setting
	Main Results
	Achievability for the Topology-Aware Scenario
	Memory Allocation and Cache Placement
	Delivery Scheme
	Performance of the Scheme

	Converse for the Topology-Aware Scenario
	The Topology-Partially-Aware Scenario
	Achievable Scheme
	Converse Bound

	Numerical Results

	Multi-Access Shared-Cache Networks
	System Model and Problem Definition
	Main Results
	Achievable Scheme for K=2
	Cache Placement Scheme
	Delivery Scheme
	Illustrative Example

	Achievable Scheme for K=Kz + 1
	Cache Placement Scheme
	Delivery Scheme
	Illustrative Example

	Follow-Up Works

	Novel Low-Complexity Scheme for the Cache-Aided MISO BC
	The Subpacketization Requirement of Multi-Antenna Coded Caching Schemes
	System Model and Performance Measure
	Building the Transmission Vectors

	A Cyclic Caching Scheme for Reduced Subpacketization
	Cache Placement
	Content Delivery
	Decoding at the Receiver
	A Graphical Example
	Beamformer Design
	Further Reduction in Subpacketization

	Complexity and Performance Analysis
	Complexity Analysis
	Simulation Results

	Coded Caching with Heterogeneous Quality-of-Service Requirements
	Context and Related Works
	System Model and Problem Definition
	Main Results
	Achievable Caching and Delivery Scheme
	Cache Placement Scheme
	Delivery Scheme

	Information Theoretic Converse

	Heterogeneous Coded Distributed Computing
	Introduction
	Related Works

	Heterogeneous Distributed Computing Model
	Map Phase
	Shuffle Phase
	Reduce Phase
	Problem Formulation

	Main Results
	Fixed Computation Loads and Fixed Reduce Loads
	Flexible Computation Loads and Fixed Reduce Loads
	Flexible Computation Loads and Flexible Reduce Loads

	A Novel File Assignment and Shuffle Scheme for Heterogeneous Coded Distributed Computing
	File Assignment Scheme
	Shuffle Scheme
	Communication Load

	Converse Bound for the Scenario with Given Reduce Loads and Proof of Optimality Gap
	Lower Bound
	Optimality Gap

	Converse Bound for the Scenario with Given Computation and Reduce Loads

	Conclusions and Future Directions
	Shared-Cache Networks with Single-Antenna Transmitter
	Topology-Agnostic and Topology-Aware Scenarios
	Multi-Access Shared-Cache Network

	Cache-Aided MISO Broadcast Channel
	Cache-aided Networks with Heterogeneous QoS requirements
	Heterogeneous Coded Distributed Computing

	Appendices
	Appendix of Chapter 3
	An Illustrative Example for the Converse
	Collection of Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Equation (3.52)
	Transition from Equation (3.55) to (3.56)
	Monotonicity of {ci}
	Proof of (3.59)
	Proof of Equation (3.19)

	Transition to the Multiple File Request Problem

	Appendix of Chapter 4
	Equalities with Elementary Symmetric Functions
	Convexity of Achievability
	Proof of Lemma 6
	Proof of Proposition 2
	Proof of Lemma 7
	Proof of Lemma 14

	Proof of Theorem 6

	Proofs of Chapter 6
	More Detailed Analysis of the Delivery Phase
	Reducing Subpacketization by a Factor of K,t,2

	Appendix of Chapter 8
	Proof of Lemma 12

