
Mocha: A Quality Adaptive Multimedia Proxy Cache for
Internet Streaming

Reza Rejaie
AT&T Labs - Research
Menlo Park, CA. 94025

reza@research.att.com

Jussi Kangasharju
Institut Eurecom

Sophia Antipolis, France

kangasha@eurecom.fr

ABSTRACT
Multimedia proxy caching is a client-oriented solution for
large-scale delivery of high quality streams over heteroge-
neous networks such as the Internet. Existing solutions for
multimedia proxy caching are unable to adjust quality of
cached streams. Thus these solutions either can not maxi-
mize delivered quality or exhibit poor caching eÆciency.
This paper presents the design and implementation ofMocha,
a quality adaptive multimedia proxy cache for layered en-
coded streams. The main contribution of Mocha is its ability
to adjust quality of cached streams based on their popu-
larity and on the available bandwidth between proxy and
interested clients. Thus Mocha can signi�cantly improve
caching eÆciency without compromising delivered quality.
To perform quality adaptive caching, Mocha implements
�ne-grained replacement and �ne-grained prefetching mecha-
nisms. We describe our prototype implementation of Mocha
on top of Squid and address various design challenges such
as managing partially cached streams. Finally, we validate
our implementation and present some of our preliminary re-
sults.

1. INTRODUCTION
Most of today's Internet streaming applications have a

client-server architecture where a server pipelines a requested
stream to a client through the network. The client-server ar-
chitecture for Internet streaming has two major limitations.
First, it does not scale to a large number of clients because
streaming applications consume network bandwidth along
the path from the server to the client for the entire session.
Second, the quality of pipelined stream is limited to the bot-
tleneck bandwidth along the server-client path.
To achieve scalability and deliver high quality streams,

multimedia content should be maintained close to interested
clients. Proxy caching of multimedia streams is a client-
oriented solution that addresses both limitations simultane-
ously. Similar to Web proxy caching, caching of popular
streams at a proxy substantially reduces the load on the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’01, June 25-27, 2001, Port Jefferson, New York, USA.
Copyright 2001 ACM 1-58113-370-7/01/0006 ...$5.00.

C1

C2ProxyServer

C3

100 Kbps

2 Mbps

500 Kbps

 56 Kbps

Figure 1: Multimedia Proxy Caching

network (and the server), which in turn accommodates scal-
ability. Furthermore, since a proxy is located close to its
clients, it can e�ectively avoid network bottleneck and max-
imize delivered quality and accommodate client bandwidth
heterogeneity. The ability to adjust the quality of a cached
stream is a crucial requirement for multimedia proxy caching
mechanisms in heterogeneous networks such as the Internet
that has not been well-understood. To justify this claim,
consider a proxy that has three clients with di�erent band-
width (Figure 1). To maximize delivered quality of a cached
stream s to all clients, the proxy should be able to provide
appropriate versions of stream s that can be pipelined to
each client. This implies that caching mechanisms should
be quality adaptive. There are two alternatives to achieve
quality adaptive caching: 1) Caching di�erent encoded ver-
sions of stream s with di�erent quality, or 2) Caching layered
encoded version of stream s where the appropriate quality
(i.e., number of layers) for each client is determined by its
bandwidth[1]. Layered encoding is an eÆcient and
exi-
ble way to adjust quality of cached streams without losing
cache performance due to the following reasons: 1) Multime-
dia streams are orders of magnitude larger than typical Web
objects. Thus caching multiple versions of each stream could
signi�cantly reduce cache utilization; 2) Layered organiza-
tion provides an opportunity to improve delivered quality
of a cached stream on-the-
y where lower layers are played
back from the cache and higher layers are delivered from the
server.
Therefore the design of a multimedia proxy caching mech-

anism should address two key issues:

1. Which streams are suÆciently popular to be cached?

2. What is the appropriate quality for each cached stream?

The �rst issue in essence is a Web cache replacement prob-
lem. The second problem, however, addresses the notion
of quality for cached streams as a new dimension in design

of caching mechanism that does not exist in Web caching
schemes. If a majority of clients can only a�ord to receive
a low quality version of stream s, the proxy can cache only
the low quality (and thus smaller) version of the stream
to improve cache utilization. To adaptively increase or de-
crease quality of cached streams, the proxy should imple-
ment �ne-grained prefetching and �ne-grained replacement,
respectively. Furthermore the server should provide access
to a portion of a layered encoded stream.
Most of the work on design and development of multi-

media proxy caches has only focused on the �rst issue and
treated multimedia streams in an atomic fashion similar to
Web objects. These approaches could result in poor cache
utilization since multimedia streams are orders of magni-
tude larger than typical Web objects. Admittedly, this is in
part due to lack of support for layered encoded streams by
major content providers. Most of the previous work on mul-
timedia proxy caching address neither network bandwidth
heterogeneity nor the need for rate and quality adaptation.
Therefore they are not suitable for the Internet. To the
best of our knowledge, Mocha is the �rst quality adaptive
multimedia proxy cache. Design and evaluation of multi-
media proxy caches are still immature in compare to Web
caching schemes. Judging based on the work on Web caching
schemes, design and evaluation of multimedia proxy caching
mechanisms clearly require substantially more investigation.
This paper presents the design and implementation of

Mocha, a multimedia proxy cache for layered encoded streams
on top of Squid[2]. Mocha's key contribution is its ability
to perform quality adaptive caching. Mocha caches popular
streams and adaptively adjusts quality of cached streams
based on both stream popularity and available bandwidth
to interested clients. Mocha leverages layered structure of
streams to implement �ne-grained replacement and �ne-
grained prefetching mechanisms. Therefore, Mocha is able
to maximize delivered quality for a group of heterogeneous
clients without compromising cache space utilization. We
address the high level architecture of Mocha and discuss the
main issues and challenges in the design of key components
of the architecture. We validate our prototype through var-
ious experiments, and present some of our preliminary re-
sults.
Mocha requires a client-server architecture that supports

layer-encoded streaming in order to adapt quality of cached
streams. Mocha can also manage non-layered encoded streams.
However, it can not adjust quality of cached streams in this
scenario. We have prototyped a modular client-server archi-
tecture [3] for delivery of layered encoded stream as shown in
Figure 2. Client and server use RTSP [4] for signaling. The
server performs congestion control [5] to determine fair share
of bandwidth. Then a layered quality adaptation mech-
anism [6] matches the number of transmitted layers with
average bandwidth. Although we are interested in unicast
streaming, we used RTP [7] for data packets and RTCP for
ack packets. Each layer is transmitted through a separate
RTP session. However, congestion control is collectively per-
formed across all RTP sessions. The client receives packets
of di�erent layers and rebuilds the stream in a reorganiza-
tion bu�er before sending the stream to the display.
The rest of this paper is organized as follows: Section

2 justi�es why we developed Mocha on top of Squid and
sketches the high level architecture of Mocha by describing
its request management. Section 3 addresses design issues

Quality
 Adapt

Buffer

Request Mang.

R
T

P

C
on

g
C

on
tr

ol

A
ck

er

R
T

P

Re-org.
Buffer

Display

Client Mang.

R
T

S
P

C
li

en
t

In
te

rn
et

Ack Ack Ack Ack

data
RTP
Pkt

RTP
Pkt

R
T

S
P

S
er

v
er

 Loss
 Repair

Decoder

Layered Enc.
 Streams

Server Client

Figure 2: Client-server Architecture

and challenges for the key components of Mocha. Section
5 brie
y reviews related work. In Section ??, we report
some preliminary experimental results. Finally, Section 6
concludes the paper and addresses our future directions.

2. ARCHITECTURE
Mocha was developed on top of open-source code Squid[2].

Our main motivation was to leverage generic components
of Squid (such as request processing, storage and memory
management, and general utility routines for memory allo-
cation and event handling) that can be reused for multi-
media caching with little or no modi�cation. For example,
we took advantage of similarity in message processing be-
tween HTTP and RTSP, and simply replace HTTP routines
with their RTSP correspondent. Therefore we only needed
to add those components that are required to cache and re-
play layered encoded streams. This substantially reduced
our prototyping and debugging phases. Obviously, building
on top of Squid introduced a few restrictions and limita-
tions. For example, we needed to extend storage manage-
ment routines such that all layers of a cached stream are
collectively viewed as a single object by Squid. More impor-
tantly, Squid's �le system is probably not optimized to store
multimedia objects. Thus it is likely that our current imple-
mentation does not scale to a large number of clients. For-
tunately, Squid has a modular structure and we can replace
its �le system routines whenever it becomes a bottleneck.
Another key requirement for eÆcient handling of streaming
objects is management of disk bandwidth. We need to add
such a management mechanism to achieve high performance.
Placement and retrieval of multimedia streams have been ex-
tensively studied in the context of multimedia servers (e.g.,
[8]). Our goal is to study transport issues for object manage-
ment across the Internet rather than well-understood local
resource management issues at the proxy.
Mocha appears as a client for a server and as a server for

a client. Figure 3 depicts the internal architecture of Mocha
as a combination of a client and a server. We explain the
functionality of individual components by describing request
management in Mocha.

2.1 Request Management
Request manager(RM) module handles all the RTSP sig-

Quality
 Adapt

R
T

P

C
on

g
C

on
tr

ol

A
ck

er

Request Mang.

R
T

S
P

C
li

en
t

Ack Ack AckAck

data
RTP
Pkt

R
T

S
P

S
er

v
er

 Loss
 Repair

Memory
 Cache

Prefetching Mang.

S
er

ve
r

S
id

e

C
li

en
t

S
id

e

Data
Packets

Data
Packets

RTSP
Messages

RTSP
Messages

Figure 3: Internal Architecture of Mocha

naling between Mocha and client or server. Upon arrival of a
RTSP/SETUP request for a stream s, RM checks the avail-
ability of s in the cache, and one of the following scenarios
occurs:

� Cache Miss: If s is missing from the cache, RM relays
all RTSP message in both directions between client
and original server (or another proxy depending on
con�guration). Mocha also relays data and acknowl-
edgment(ACK) packets in both directions as shown in
Figure 4 Obviously, packet relaying process will intro-
duce a delay but we expect the delay to be small under
moderate load on the proxy. Therefore, the server ef-
fectively measures losses and round-trip-time(RTT) of
the server-client connection, and adapts its transmis-
sion rate and delivered quality (i.e., number of layers)
accordingly. This implies that on a cache miss, the
session is end-to-end and quality of the played back
stream is limited by the bottleneck bandwidth, i.e.,
proxy can not improve delivered quality on a miss.
Notice that the original server can send either a stored
or even a live stream. Mocha can intercept all trans-
mitted data packets and cache a copy of the delivered
stream.

� Cache Hit: If a copy of s is available in the cache,
Mocha acts as a server and directly replies to all RTSP

SETUP
SETUP

OK
OK

PLAYPLAY

OK
OK

Data
Data

Ack
Ack

TEARDOWN
TEARDOWN

OK
OK

S
er

ve
r

M
oc

h
a

C
li

en
t

T
im

e

T
im

e

T
im

e

Figure 4: RTSP signaling and data delivery on a

miss

SETUP

SETUP

OK

OK

PLAY

OK

OK

Data

Ack

Ack

TEARDOWN

OK
OK

S
er

ve
r

M
oc

h
a

C
li

en
t

Data

PLAY/Range
Data

OK

TEARDOWN

T
im

e

T
im

e

T
im

e

Figure 5: RTSP signaling and data delivery on a hit

messages as shown in Figure 5. Upon arrival of PLAY
request from client, Mocha initiates delivery of cached
stream while performing rate and quality adaptation
based on the state of the proxy-client connection. If
the quality of the cached stream is lower than the
maximum deliverable quality to the client, prefetching
manager establishes a prefetching session to the server
to prefetch missing parts of an existing layer as well as
higher layers of requested stream on-the-
y. Thus on
a cache hit, Mocha should manage both playback and
prefetching sessions such that prefetched segments ar-
rive before their play out times to be properly merged
with playback stream. Fine-grained prefetching is dis-
cussed in more details in subsection 3.2.

3. MAIN COMPONENTS
In this section, we discuss the design and implementa-

tion of three key components that are unique in Mocha:
Object Management, Fine-grained Prefetching, and Fine-
grained Replacement.

3.1 Object Management
Mocha caches RTP packets instead of their raw payload.

Although caching header of RTP packets reduces cache space
utilization, the proxy does not need to deal with various pay-
load formats and becomes content-independent. Mocha re-
lies on RTP sequence number to detect missing segments of
a layer, and uses RTP time-stamp (and marker bit) to store
and play back RTP packets properly. Mocha can also main-
tain a few well-accepted RTP pro�les to properly interpret
RTP header information.
One of the main challenges in the design of storage man-

agement for Mocha was to store and access partially cached
layers of a single stream eÆciently. Since Web caches store
or
ush an object in an atomic fashion, we needed to ex-
tend Squid's data structures to maintain information about
cached segments of all layers. Furthermore, all layers of
each stream should be collectively viewed as a single object
by Squid in order to reuse its basic object management fea-
tures (e.g., checking hit or miss scenarios). Squid maintains
a StoreEntry for each object where object-speci�c informa-

.
.

Store
Entry

Chunk 1 Chunk 2 Chunk n

Memory
Disk

C
h

u
n

k
 H

d
r

C
h

u
n

k
 H

d
r

C
h

u
n

k
 H

d
r

Pkt 1 Pkt 2 Pkt 3

L
ay

er
 0

Pkt 4

Link List L
0

Link List L
n

. . .

. . .

Figure 6: Data structures for object management in

Mocha

tion is kept. Figure 6 shows how we extended Squid's data
structures to manage layered encoded streams in Mocha.
Packets of each layer of a cached stream are stored in a sep-
arate �le. Each �le contains a collection of chunks where
a chunk consists of a group of contiguous packets. Loca-
tion of a packet in a chunk can be easily calculated if all
packets have the same size. But in a general case, packets
can be variable in size. To allow quick traversal within a
chunk, we interleaved pointers to the next packet between
every two packets in each chunk. In order to quickly locate
a speci�c chunk, Mocha maintains a linked list in memory
for each layer of an active stream that is being played back.
Each element of the linked list points to one or a group of
chunks on disk. Thus by traversing the linked list, Mocha
can rapidly identify the location of a speci�c chunk on disk
and minimize disk access. The bigger the chunk size, the
shorter the linked list, but it takes longer to reach a speci�c
packet within a chunk.
Mocha treats a chunk as a an atomic unit, i.e., all pack-

ets of a chunk are cached or replaced together. When a
hole in sequence number is detected or N contiguous pack-
ets arrive, all the previously received packets are cached as a
chunk. While chunks can have variable sizes, Mocha limits
the maximum number of packets in a chunk (i.e., N). When
a missing packet arrives during prefetching, two small adja-
cent chunks can be consolidated. The interactions between
consolidation and �ne-grained replacement result in a set of
pseudo-balanced chunks.

3.2 Fine-grained Prefetching
Mocha implements online �ne-grained prefetching in order

to improve the delivered quality of a cached stream. When
the quality of a cached stream is lower than the maximum
deliverable quality to an interested client, Mocha initiates a
connection to the server and acts as a client. Then it sends
prefetching requests for missing pieces of active layers that
are likely to be needed during the playback. Each missing
packet should be prefetched before its play out time. Since
the prefetching session is congestion controlled, the available
server-proxy bandwidth is not known a priori and could vary
in time. The available prefetching bandwidth should be used
eÆciently to deliver missing packets in a prioritized fashion

1
2

3
8
4

5 6 7 9

Time

Q
ua

lit
y(

la
ye

r)

T

t

δ

Quality of
Cached Stream

Figure 7: Online Prefetching in Mocha

such that prefetching session remains loosely synchronized
with the playback session.
To achieve this, we devised a sliding window approach to

prefetching that is illustrated in Figure 7. At time t dur-
ing playback, the prefetching manager examines a window
of time in the future ([t + T , t + T + Æ]) to identify re-
quired packets that are missing. If required segments are in
the cache, they are fetched into the memory cache to avoid
any potential delay during disk access. At the same time,
Mocha sends a single prefetching request which contains an
ordered list of all required but missing packets of this win-
dow. Requested packets are ordered based on their impor-
tance, i.e., based on layer number and within a layer based
on their play out time in a round-robin fashion as numbered
in Figure 7. The server delivers requested segments in the
speci�ed order through a congestion-controlled connection.
Thus, in the absence of suÆcient prefetching bandwidth,
only the most important segments are delivered. After p

seconds, Mocha examines the next prefetching window and
sends another prefetching request to the server. To keep
playback and prefetching session loosely synchronized, each
prefetching request will pre-empt any previous prefetching
request. In summary, online prefetching has three parame-
ters, 1) Æ, Length of prefetching window, 2) T , look-ahead
distance and 3) p, sliding period where p � Æ. If p < Æ, there
is an overlap between adjacent windows which results in a
more conservative use of prefetching bandwidth.
The \Range" header �eld of RTSP PLAY method was

used to prefetch a group of contiguous packets of a layer. We
extended the \Range" header �eld to carry multiple ranges
of several layers in a single RTSP message. Another issue
was sequential processing of RTSP PLAY requests. To allow
a new prefetching request to pre-empt previous prefetching
requests, we introduced a new type of Range �eld in RTSP
that can be over-written by new Range requests.
Besides the data structures described in Section 3.1, Mocha

maintains status of cached packets of all layers of a stream
in a bitmap. The bitmap is used to implement the sliding
window approach eÆciently because missing packets can be
identi�ed without accessing the hard disk. At any point of
time, only bitmaps of active streams are kept in the mem-
ory. We plan to add an o�-line prefetching mechanism to
Mocha.

3.2.1 Memory Caching
Squid has a built-in memory cache on top of storage that

holds popular objects in a LRU fashion to minimize disk ac-
cess. Mocha leveraged this memory cache with some mod-
i�cations to improve cache performance. On a cache hit,

the memory cache temporarily locks cached packets that
are fetched from disk ahead of time as well as prefetched
packets from the server until they are played out or their
playout times expire. Therefore at any point of time a win-
dow of fetched or prefetched packets are maintained in the
memory cache.

3.3 Replacement Policy
We modi�ed Squid replacement policy to implement �ne-

grained replacement mechanism. Squid periodically invokes
replacement routines and if the amount of total cached data
is higher than a con�gured high-water mark, a suÆcient
number of least popular objects are evicted. We basically
replaced the victim selection mechanism.
In order to implement �ne-grained replacement, we need

to de�ne �ne-grained popularity, i.e., assign popularity val-
ues to pieces of a stream. Since quality of a cached stream is
determined by number of cached layers, Mocha assigns pop-
ularity to individual layers. Popularity of layer i of stream
s is de�ned as follows:

Pi(t) =
Pt

x2[t��;t]whit(x; i),

whit(x; i) = PlayTime(x;i)
StreamLength(s)

where whit(i; x) is weighted hit of layer i during session
x. We used the cumulative value of whit across all sessions
over a recent window of time ([t � �..t]) as popularity of
a layer. This de�nition of popularity captures both level
of interest among clients and available bandwidth to inter-
ested clients[1]. Consequently lower layers of an unpopular
stream might be
ushed before higher layers of streams that
are popular among high bandwidth clients. Furthermore,
this de�nition guarantees that within a single stream, pop-
ularity monotonically decreases with layer number, i.e., the
victim layer is always the highest layer of a cached stream.
Popularity of all cached layers are maintained in a sorted
linked list, called popularity list. Thus a victim layer is al-
ways at the end of the list. At the end of each session,
whit and popularity of active layers are updated and their
location in the popularity list is changed accordingly.
Although Mocha keeps track of popularity of individual

layers, replacement is performed at a per chunk basis to
achieve high cache space utilization. When the amount of
cached data exceeds the high water mark, Squid invokes
Mocha's replacement routine. The least popular layer is se-
lected as victim and chunks of a victim layer are
ushed from
the end to the beginning, until total amount of cached data
is less than the high water mark. The interactions between
�ne-grained replacement and sliding window approach to
prefetching smooth out quality of cached streams.
�ne-grained replacement can potentially result in thrash-

ing where packets of a cached layer is
ushed in order to
make room for prefetched packets of a higher layer of the
same stream. To prevent such behavior, Mocha employs a
simple locking mechanism. All active layers that are being
played back are locked for the entire duration of the session.

4. EXPERIMENTS
We are currently validating our prototype implementa-

tion. In this section, we brie
y present some of our prelim-
inary results to illustrate the basic features of Mocha. Our
data set consists of 50 streams with 6 layers, and the band-

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of requests

N
um

be
r

of
 c

ac
he

d
la

ye
rs

Stream 00
Stream 25
Stream 49
Stream 00
Stream 25
Stream 49

Figure 8: Quality of cached streams

width of all layers is 6 Kbps. Stream lengths were chosen
randomly within the range of [30sec.. 180sec]. We generate
a request sequence with 5000 requests and Zipf-like popu-
larity distribution with proper temporal locality. Popularity
of streams monotonically decreases with stream ID, i.e., s0
is the most popular. The cache size is 30% of the size of
data set. The value of popularity window is in�nite (� =
1). We use the topology in Figure 1, and a client-server
architecture that is similar to Figure 2.
First, we examine the behavior of �ne-grained replace-

ment mechanism when the online prefetching mechanism is
turned o�. We conduct an experiment with a single client
where proxy-client bandwidth is only 24 Kbps (i.e., 4 lay-
ers). Figure 8 depicts variations in quality of three cached
streams (s0, s25, s49) with minimum, moderate and maxi-
mum popularity during the experiment, respectively. The
time of each request for these three representative streams
is also shown at the top of Figure 8. This �gure clearly illus-
trates the impact of stream popularity on dynamics of cache
replacement. s0 quickly becomes popular and all 4 layers are
cached for the entire experiment. s49 never becomes suÆ-
ciently popular to stay in the cache, thus all layers of s49 are
always played back from the server and are removed from
the cache after a short period. After several close requests
for s25 early in the experiment (request number < 500), all
4 layers of s25 are cached. Then its quality is gradually de-
graded since other streams become more popular than s25.
Since the �ne-grained prefetching mechanism is turned o�,
higher layers of s49 are not prefetched even when it becomes
more popular later in the experiment.
Next we turned on the �ne-grained prefetching mechanism

to examine its interactions with the �ne-grained replacement
mechanism in the presence of two heterogeneous clients with
36Kbps and 12Kbps bandwidth. We use a smaller data set
with 20 streams where stream lengths are chosen randomly
within the range of [30sec .. 180sec]. We generate a request
sequence with Zipf-like popularity distribution and proper
temporal locality. To examine the e�ect of client bandwidth,
70% of total requests for each stream are issued by the high
bandwidth client and the rest are issued by the low band-
width client. Cache size is 30% of the size of data set. Fig-

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

Request number

N
um

be
r

of
 c

ac
he

d
la

ye
rs

Stream 000
Stream 012
Stream 019
019 − 2 layers
019 − 6 layers
012 − 2 layers
012 − 6 layers
000 − 2 layers
000 − 6 layers

Figure 9: Quality of cached streams under prefetching and heterogenous bandwidth

ure 9 depicts the variations in quality of three representative
streams (s0, s12, s19) with minimum, moderate and maxi-
mum popularity during the experiment, respectively. The
time of each high and low bandwidth request for these three
representative streams are shown at the top of this �gure.
All 6 layers of the most popular stream (s0) are brought
into the cache at the beginning and stay in the cache for
the rest of the experiment. All 6 layers of the moderately
popular stream s12 are cached after the �rst request for s12
from the high bandwidth client. The following 2 requests
for s12 from the low bandwidth client were served from the
cache. Then the top 4 layers are replaced since they have not
been requested suÆciently. However, the lower 2 layers of
s12 remain in the cache because these two layers are played
in requests from both high and low bandwidth clients, and
therefore they are more popular. Similar to the previous ex-
periment, required layers of the unpopular stream (s19) are
always played back from the server and stay in the cache
only for a short period of time since they are not suÆciently
popular. Therefore prefetching is never triggered for this
stream.
Figure 10 shows average delivered quality of all streams

over the entire experiment as a function of stream ID. Ide-
ally, average delivered quality of each stream should mono-
tonically decrease with stream popularity. However, Fig-
ure 10 does not illustrate such a characteristics. A closer
examination of our results revealed that this behavior is

caused by our LFU replacement algorithm. The choice of
� =1 implies that our replacement algorithm is a variant
of the Least Frequently Used (LFU) algorithm. LFU-based
algorithms have the well known anomaly that temporal dis-
tribution of requests plays a signi�cant role in determining
the popularities of the streams in the cache [9]. A less pop-
ular stream can stay in the cache for a long time if a large
number of requests for this stream arrives early in the ex-
periment. This suggests the use of limited values for � in
order to age the stream popularities with time similar to
LRU algorithm. We are currently investigating this issue.

5. RELATED WORK
Multimedia proxy caching is a new research area that has

not been suÆciently explored. During recent years, a few
commercial multimedia proxy caches have been developed
[10, 11, 12]. While there is no technical information about
these products, they apparently consist of a Web cache that
is bundled with a media player. There are numerous works
on proxy caching mechanism for Web objects (e.g., [13, 14]).
However, due to the larger size of multimedia streams com-
pared to Web objects and streaming nature of delivery, ex-
isting proxy caching schemes seem to be ineÆcient for mul-
timedia streams. The MiddleMan architecture [15] is a col-
lection of cooperative proxy servers that collectively act as a
video cache for a well-provisioned local network (e.g. Lan).
Video streams are stored across multiple proxies where they

0 5 10 15 20
0

1

2

3

4

5

6

Stream popularity rank

A
ve

ra
ge

 n
um

be
r

of
 c

ac
he

d
la

ye
rs

Figure 10: Cached stream quality as function of pop-

ularity

can be replaced at a granularity of a block. They examine
performance of the MiddleMan architecture with di�erent
replacement policies.
A class of caching mechanisms for multimedia streams

proposed to cache only selected portions of multimedia streams
to improve delivered quality. Clearly, these solutions do not
decrease the load on the server (or the network). To smooth
out the playback of variable bit rate video streams, work in
[16] proposes a technique called Video staging. The idea is
to prefetch and store selected portion of video streams in
a proxy to reduce burstiness of the stream during the play-
back. Sen et al. [17] also present a pre�x caching mechanism
to reduce startup latency. Work in [18] suggests caching
only selective frames of a media stream based on the en-
coding properties of the video and client bu�er size in order
to improve robustness against network congestion. Work in
[19] presents a caching architecture for multimedia streams,
called SOCCER. SOCCER consists of a self-organizing and
cooperative group of proxies. Work in [20] describes design
and implementation issues of a single proxy in the SOC-
CER architecture that implements LRU replacement algo-
rithm. They focus mostly on issues such as segmentation
of multimedia streams and request aggregation. Work in
[21] studies the layered video caching problem using an an-
alytical revenue model based on a stochastic knapsack. The
authors also develop several heuristics to decide which layers
of which streams should be stored in the cache to maximize
the accrued revenue.
In the context of media servers, various caching strategies

of multimedia streams in main memory have been studied
in prior work[22, 23]. The idea is to reduce disk access by
grouping requests and retrieving a single stream to serve the
entire group. Tewari et al. [24] present a disk-based cache
replacement algorithm for heterogeneous data type, called
Resource Based Caching(RBC). RBC considers the impact
of resource requirement of each stream (i.e., bandwidth and
space) on cache replacement algorithms to maximize. Work
in [25] further examined the RBC algorithm and presented
a hybrid LFU/interval caching strategy.
Most of the previous work in this class treat multime-

dia streams similar to Web objects (i.e., perform atomic
replacement). Mocha complements previous work on multi-

media proxy caching. More speci�cally, Mocha contributes
the idea of quality adaptive caching.

6. CONCLUSIONS AND FUTURE WORK
This paper described the design and implementation of

a quality adaptive multimedia proxy cache, called Mocha.
We justi�ed the need for quality adaptive caching of multi-
media streams over the Internet and argued that layered
encoding presents the most eÆcient approach to quality
adaptive caching of multimedia streams. Mocha performs
�ne-grained prefetching mechanism and uses �ne-grained
replacement mechanism to maximize both delivered qual-
ity storage eÆciency simultaneously. We presented Mocha's
architecture and key components of our prototyped imple-
mentation on top of Squid. Our preliminary results show
that Mocha can properly adapt the quality of a cached
stream based on its popularity and on the available band-
width between the proxy and interested clients. We also
observed that LFU-based replacement algorithms are sensi-
tive to temporal distribution of requests.
We plan to continue this work in a couple of directions.

First, we are de�ning a new evaluation methodology for mul-
timedia caches. The notion of delivered quality for cached
streams reveals that traditional performance evaluation met-
rics (e.g., Byte hit ratio) for Web caching are neither well-
de�ned nor suÆcient for evaluation of multimedia proxy
caching mechanisms. Instead, performance evaluation of
multimedia caching mechanisms should be examined along
two dimensions 1) overall quality of delivered streams, and
2) ability of the cache in reducing the o�ered load to the
network.
Second, we use this evaluation methodology to conduct

exhaustive performance evaluation of �ne-grained replace-
ment and �ne-grained prefetching mechanisms under more
realistic workload and background network traÆc. We also
need to examine sensitivity of �ne-grained replacement and
�ne-grained prefetching mechanisms to their main parame-
ters. We also plan to compare performance of our proposed
replacement algorithm with other proposed algorithms for
multimedia caches in the literature. We plan to explore the
e�ectiveness of o�-line prefetching.
Finally, we plan to incorporate utility (i.e., importance on

perceived quality) of individual layers in replacement and
prefetching mechanisms. Our current approach assumes a
linear utility function where all layers result in similar im-
provement in perceived quality. However, most of the ex-
isting layered encoded streams exhibit a non-linear utility
(e.g., PSNR) behavior across di�erent layers. The replace-
ment and prefetching mechanism should consider both pop-
ularity and utility of a layer in order to minimize the load on
the network while maximizing the overall delivered quality.

7. REFERENCES
[1] R. Rejaie, H. Yu, M. Handley, and D. Estrin,

\Multimedia proxy caching mechanism for quality
adaptive streaming applications in the internet," in
Proceedings of the IEEE INFOCOM, Tel-Aviv, Isreal,
Mar. 2000.

[2] \Squid web proxy cache,"
http://www.squid-cache.org/.

[3] R. Rejaie, \An end-to-end architecture for quality
adaptive streaming applications in the Internet,"

Ph.D. thesis, University of Southern California,
SC/CS- Tech Report-99-718, Dec. 1999.

[4] H. Schulzrinne, A. Rao, and R. Lanphier, \RFC 2326:
Real time streaming protocol (RTSP)," Apr. 1998.

[5] R. Rejaie, M. Handley, and D. Estrin, \RAP: An
end-to-end rate-based congestion control mechanism
for realtime streams in the Internet," in Proc. IEEE
Infocom, New York, NY., Mar. 1999.

[6] R. Rejaie, M. Handley, and D. Estrin, \Quality
adaptation for congestion controlled playback video
over the Internet," in Proceedings of the ACM
SIGCOMM, Cambridge, MA., Sept. 1999.

[7] H. Schulzrinne, S. Casner, R. Frederick, and
V. Jacobson, \RFC 1889: RTP: A transport protocol
for real-time applications," Jan. 1996.

[8] S. Ghandeharizadeh, R. Zimmermann, W. Shi,
R. Rejaie, D. Ierardi, and T. Li, \Mitra: A continuous
media server," Multimedia Tools and Applications
journal, vol. 5, no. 1, July 1997.

[9] A. Silberschatz, J. Peterson, and P. Galvin, Eds.,
Operating System Concepts, Addison Wesley, 1992.

[10] Inktomi Inc., \Streaming media caching brief," 1998.

[11] \Infolibria MediaMall," 1999,
http://www.infolibria.com.

[12] \RealSystem Proxy," http://www.realnetworks.com/.

[13] P. Cao and S. Irani, \Cost-aware WWW proxy
caching algorithms," in Proceedings of the USENIX
Symposium on Internet Technologies and Systems,
Dec. 1997, pp. 193{206.

[14] S. Williams, M. Abrams, C. R. Standridge,
G. Abdulla, and E. A. Fox, \Removal policies in
network caches for world-wide web documents," in
Proceedings of the ACM SIGCOMM, Stanford, CA.,
1996, pp. 293{305.

[15] S. Acharya and B. C. Smith, \Middleman: A video
caching proxy server," in Workshop on Network and
Operating System Support for Digital Audio and
Video, June 2000.

[16] Y. Wang, Z.-L. Zhang, D. Du, and D. Su, \A network
conscious approach to end-to-end video delivery over
wide area networks using proxy servers," in
Proceedings of the IEEE INFOCOM, Apr. 1998.

[17] S. Sen, J. Rexford, and D. Towsley, \Proxy pre�x
caching for multimedia streams," in Proceedings of the
IEEE INFOCOM, 1999.

[18] Z. Miao and A. Ortega, \Proxy caching for eÆcient
video services over the internet," in 9th International
Packet Video Workshop (PVW '99), New York, Apr.
1999.

[19] M. Hofmann, E. Ng, K. Gue, S. Paul, and H. Zhang,
\Caching techniques for streaming multimedia over
the internet," Tech. Rep., Bell Laboratories, Apr.
1999.

[20] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul,
\Design and implementation of a caching system for
streaming media over the Internet," in IEEE Real
Time Technology and Applications Symposium, June
2000.

[21] J. Kangasharju, F. Hartanto, M. Reisslein, and K. W.
Ross, \Distributing layered encoded video through
caches," in Proceedings of IEEE Infocom, Anchorage,

AK, Apr. 2001.

[22] A. Dan and D. Sitaram, \Multimedia caching
strategies for heterogeneous application and server
environments," in Multimedia Tools and Applications,
1997, vol. 4, pp. 279{312.

[23] M. Kamath, K. Ramamritham, and D. Towsley,
\Continuous media sharing in multimedia database
systems," in Proceedings of the 4th International
Conference on Database Systems for Advanced
Applications, Apr. 1995.

[24] R. Tewari, H. Vin, A. Dan, and D. Sitaram, \Resource
based caching for web servers," in Proceedings of
SPIE/ACM Conference on Multimedia Computing
and Networking, San Jose, CA., 1998.

[25] J. M. Almeida, D. L. Eager, and M. K. Vernon, \A
hybrid caching strategy for streaming media �les," in
Proceedings Multimedia Computing and Networking,
San Jose, CA., Jan. 2001.

