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Recommending the next destination to a traveler is a task that has been at the forefront of the airline industry for a long time, and its
relevance has never been more important than today to revive tourism after the Covid-19 crisis. Several factors influence a user’s
decision when faced with a variety of travel destination choices: geographic context, best time to go, personal experiences, places to
visit, scheduled events, etc. The challenge of recommending the right travel destination lies in efficiently integrating and leveraging
all of this information into the recommender system. Based on a real world application scenario, we propose a multi-task learning
model based on a neural network architecture that leverages knowledge graph to recommend the next destination to a traveler. We
experimentally evaluated our proposed approach by comparing it against the currently in-production system and state-of-the-art
travel destination recommendation algorithms in an offline setting. The results confirm the significant contribution of using knowledge
graphs as a means of representing the heterogeneous information used for the recommendation task, as well as the benefit of using a
multi-task learning model in terms of recommendation performance and training time.

1 INTRODUCTION

With the digital transformation of airline sales points from physical to virtual stores, recommender systems have
proven their value in facilitating the search and the decision making process for travelers faced with an increasingly
wide selection of airline products [7]. However, current airline solutions which provide recommendations on travel
destinations lack contextualization and, more importantly, personalization [7]. They either use a solution that suggests
their most popular destinations to all travelers, or an interactive inspiration tool that matches travelers’ criteria (budget,
interests, etc.) with travel destinations. In our study, we focus on a passive inspiration scenario, in which travel
destinations are sent to travelers through airline email marketing campaigns, with the aim of facilitating the search
process for travelers.

The use of collaborative filtering (CF) methods for travel destination recommendation suffers from the cold start
problem and data sparsity. Indeed, using only travelers’ historical bookings as input information of the recommender
system is generally not sufficient [8]. We hypothetize that incorporating additional information such as travel context,
traveler demographics, or destination metadata into the recommender system will be valuable in addressing the
above-mentioned issues. To integrate these heterogeneous information into a common data structure, we consider the
development of knowledge graph as an appropriate and effective candidate method. Indeed, recent works [22, 24, 31]
have demonstrated the effectiveness of using knowledge graph embeddings for items recommendation. However,
as pointed out in [10], not all knowledge graph embedding algorithms are effective in combining different types of
literals and most of them do not have a proper mechanism to handle multi-valued literals (text, image, numerical value,
etc.). Inspired by the work proposed in [32], where the authors propose an approach for both relational learning and
non-discrete attribute prediction on knowledge graphs, we propose Knowledge Graph-based Multi Task Learning
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For Recommendation (KGMTL4Rec1), a neural network-based multi-task learning algorithm for travel destination
recommendation that leverages knowledge graph information2. The model architecture is depicted in Figure 3.

Our contributions can be summarized as follows: (a) we build a knowledge graph encompassing both travelers’
historical bookings (collaborative information) as well as booking contexts, travelers’ and destinations’ metadata from
Linked Open Data; (b) we propose a multi-task learning model to learn vector representations of knowledge graph
entities that we named KGMTL4Rec, and we use this model to compute travel destination recommendation scores
between travelers and destinations; (c) we conduct extensive experiments to compare KGMTL4Rec with the currently
in-production recommender system and state-of-the-art travel destination recommender systems and we demonstrate
its effectiveness.

2 RELATEDWORK

Application of multi-task learning (MTL) in recommender systems, knowledge graph-based recommender systems and
travel destination recommendations are different research areas related to our work. In this section, we briefly discuss
related works in these different areas.

2.1 Multi-task learning for recommendation

Some research work focused on integrating MTL algorithms with traditional CF models such as matrix or tensor
factorization [19, 34] in order to generate explainable recommendations. However, these factorization-based models
cannot fully exploit the information available in the knowledge graph. In [20], the authors proposed a learning
framework composed of two auxiliary tasks (click-through rate and conversion rate optimization) to deal with the
extreme data sparsity problem of conversion rate optimization. In [12], the authors proposed a MTL framework to
learn simultaneously parameters of two recommendation tasks namely ranking task and rating task. In [2], to deal
with the sparsity of the interaction matrix, the authors used MTL to train the model for a combination of content
recommendation and item metadata prediction. Similarly to these previous works, we use a neural network with shared
parameters learned through different tasks as model architecture. In [33], the authors propose a neural network-based
MTL algorithm to predict not only user-item interactions but also missing links in a knowledge graph. Similarly, in [37],
the authors mixes a relational modelling algorithm with a recommendation one in a MTL fashion based on a neural
network. Nevertheless, the models proposed in the two above-mentioned works do not incorporates literals, thus
missing a valuable opportunity for data enrichment. In the opposite, KGMTL4Rec takes into account several types of
inputs which constitutes its main strength in comparison with existing MTL algorithms for recommendation.

2.2 Knowledge graph-based recommender systems

In recent years, knowledge graphs (KGs) [23] have been used in recommender systems in order to overcome the problem
of user-item interactions sparsity and the cold start problem which CF methods suffer from by leveraging properties
about items and users and representing them in one single data structure. Embedding-based methods which are a subclass
of knowledge graph-based recommender systems consist in pre-processing a KG with knowledge graph embedding
algorithms [4] and then, incorporating the learned entity embeddings into a recommendation framework [8, 23, 39].
By using knowledge graph embedding techniques, it is now possible to turn virtually any type of information into
a vector which the system can learn. One remarkable thing about knowledge graph-based recommender systems is

1https://gitlab.eurecom.fr/amadeus/KGMTL4Rec
2https://gitlab.eurecom.fr/amadeus/KGMTL4Rec/ontology

https://gitlab.eurecom.fr/amadeus/KGMTL4Rec
https://gitlab.eurecom.fr/amadeus/KGMTL4Rec/ontology
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their ability to make use of the KG structure to provide better recommendations [31]. However, the above-mentioned
methods do not consider multi-typed knowledge graphs that contain multi-valued literals such as categorical values,
numerical values, dates, texts, etc. In our work, we propose a model that incorporates heterogeneous information from
a multi-typed knowledge graph to recommend travel destinations.

2.3 Travel destination recommendation

Searching for the right destination, or for an hotel or an event can be a complex decision-making process for travelers.
For this reason, the recommendation system research community has worked to enhance the search experience for
travelers. Early works have focused on personalized techniques in order to provide recommendation based on users’
preferences and interests [27]. In [18], the authors proposed PersonalTour a recommender system which is used by travel
agencies to find suitable travel packages in accordance with the customer preference. In [29], the authors introduced
MyTravelPal, a system providing travel destination recommendations in accordance with the affinity to user areas of
interest. In [16], a Naive Bayes model is used to recommend travel destinations in a hotel booking platform based on
multi criteria rating data provided by previous users. More recently, in [8], we have shown how to use Semantic Trails
Dataset knowledge graph3 which contains user check-ins in various cities around the world to build location-based
embeddings and use them as input of a neural network trained to recommend travel destinations. However, not all
the data used as input of the neural network comes from a single data structure. This represents the major difference
between our work and that of [8].

2.4 Dataset for tourism recommendation

Several tourism recommendation use cases have been addressed in recent years and consequently a number of datasets
have been made public in order to replicate results or even improve on existing findings. In [1], the authors collected a
very large-scale hotel recommendation dataset, based on TripAdvisor4, containing 50 million reviews on hotels. In the
hotel booking domain, Trivago5 has released a public dataset of hotel search sessions as part of the ACM RecSys 2019
Challenge6, with the goal to build a recommender systen that predicts which hotels (items) the user has clicked on
among the search results provided by the metasearch during the last part of the user session. In [21], the authors used
Location Based Social Networks to build users’ trails, where a trail is a succession of check-ins (the user share his/her
location) made by a user in a venue when visiting a city. The Booking.com7 platform recently released a dataset for the
next destination recommendation task as part of the ACM WSDM 2021 WebTour8 considering different contextual
information related to the hotels bookings. The dataset released for this challenge is completely anomymized. Hence, it
cannot be used in our work since destinations (referenced by ids) are unknown. To the best of our knowledge, there is
no public available dataset that addresses the task of travel destination recommendation that can benefit from the type
of data augmentation we are proposing in this work. We describe the experimental dataset we used in this paper later
in Section 4.1.

3https://figshare.com/articles/dataset/Semantic_Trails_Datasets/7429076
4https://www.tripadvisor.com/
5https://www.trivago.com/
6https://recsys.trivago.cloud/challenge/
7https://www.booking.com/
8https://www.bookingchallenge.com/

https://figshare.com/articles/dataset/Semantic_Trails_Datasets/7429076
https://www.tripadvisor.com/
https://www.trivago.com/
https://recsys.trivago.cloud/challenge/
https://www.booking.com/
https://www.bookingchallenge.com/
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3 PROBLEM FORMULATION

The aim of our work is to build a recommender system that suggests a ranked list of destinations where travelers would
like to go to, as shown in Figure 1. More precisely, our objective is to address an inspiration recommendation scenario:

Fig. 1. Top-3 travel destinations recommendation included in a marketing email.

Provide leisure travelers with travel destinations that they have never visited yet. We consider past bookings of travelers,
booking contexts and travelers’ and destinations’ metadata as information to be used in our recommender system.
These information are collected and stored in the knowledge graph described in Section 4.1. The task of recommending
the next travel destination to a traveler is formulated as a link prediction task in a knowledge graph. In this work, we
address the following research questions:

RQ 1: What is the benefit of using a knowledge graph as a common data structure containing all the input information
of the recommender system?

RQ 2: Given the heterogeneous nature of the information included in the knowledge graph (numerical values, dates,
texts, etc.), what is the best performing approach for travel destination recommendation?

4 KGMTL4REC

In its most simple form, a recommender system is typically built in three consecutive stages [14]: information collection

which consists in our case in building the knowledge graph; learning which corresponds to the multi-task learning
algorithm we propose; and recommendation which corresponds to the recommendation scoring function presented later
in this section. In the following, we detail these three stages for building our recommender system.

4.1 Knowledge Graph Construction

Wework on a real-world production dataset of bookings from the T-DNA database9. Each booking contains one or several
air ticket purchases, and is stored using Passenger Name Record (PNR) information. The PNR is created at reservation
time by airline reservation system and contains information about the purchased air ticket (e.g. travel itinerary, payment
information), traveler demographics and additional services (e.g. preferred seat, extra bag) if purchased. The dataset
we consider contains 486.000 bookings from November 2018 to December 2019, made by 40.965 unique travelers and
covering 136 different destinations. Our airline travel KG defines 5 types of entities, namely:

• Traveler: A traveler is identified uniquely by a T-DNA id. A traveler has a booking history of purchases (e.g. air
tickets). An instance of traveler is a schema:Person10.

9T-DNA: Traveler DNA is a private database which contains bookings of travelers over a dozen of airlines. The dataset used in the experiments is GDPR
compliant and do not include any personal identifiable information.
10The prefix schema is used for concepts defined by https://schema.org

https://schema.org
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• Trip Reservation: A trip reservation (PNR) represents the booking of all travelers contained in the PNR. It
contains information such as the number of passengers, the destination, etc.

• Journey: A journey is linked to a trip reservation. Each journey has a stay duration, a departure and an arrival
airport.

• Air Ticket: An air ticket is contained in a PNR and contains flight and transactional information.
• Airport: It represents the airport where the traveler travels to. An airport serves one or several cities.

We have designed an ontology that we published at http://bit.ly/kg-ontology. A destination where a traveler traveled
to is described by a property which we name travelTo. The objective of the recommender system is to predict the
correct links labeled by the property travelTo between travelers and destinations.

In addition to this Airline Travel KG, we make use of the property owl:sameas to enrich the knowledge graph with
destinations metadata such as the number of inhabitants of a city, the GDP of the country to which the city belongs,
etc. In practice, we re-use the Wikidata11 knowledge graph to capture general information about destinations through
wikidata properties (e.g. ‘P2046’, ‘P1081’), the Semantic Trails Dataset (STD) 12 knowledge graph (see Section 2.3) to
better understand what characterizes a city the most by using the DBpedia13 property named ‘category’ and Wikipedia
textual description of the travel destinations to populate our original airline travel KG. In the end, the KG used to
tackle our recommendation task contains 48 different properties, ∼ 13.7 million edges (∼ 634.000 nodes) of which ∼
11.9 Millions come from the Original Airline Travel KG (32 Properties about PNRs, travelers’ information, etc.), ∼ 1.7
Millions from the STD knowledge graph (5 properties) and ∼ 100K from Wikidata (11 properties) and finally ∼ 486K
edges are travel interactions (property travelTo).

In Figure 2, an excerpt of the KG is depicted, where a Singaporean traveler, born on "1994-03-27" booked a one-way
flight from Kuala Lumpur to Melbourne (the property travelTo coming from the traveler points at Melbourne airport).

Fig. 2. Excerpt of the knowledge graph representing a traveler included in a Trip reservation through the property schema:underName,
as well as other properties and relations to other entities. Literals are represented in blue rectangle, whereas other entities are
represented in blue circle. In this depiction, some properties which links travelers, trip reservations, air tickets, travel destinations are
represented as an example, but more properties are included in the graph.

11https://www.wikidata.org/
12http://std.eurecom.fr/
13https://www.dbpedia.org/

http://bit.ly/kg-ontology
https://www.wikidata.org/
http://std.eurecom.fr/
https://www.dbpedia.org/
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4.2 Multi-task learning algorithm for Multi-typed Knowledge Graph

As mentioned in Section 1, MT-KGNN [32] has recently proven to be an effective approach to deal with non-discrete
values in knowledge graphs for representation learning. These authors proposed a multi-objective neural network
model trained using a multi-task learning algorithm that includes two regression tasks to predict numerical attributes
of KG entities and one classification task to predict when a triplet (head, relation, tail) holds in the KG. In our work, we
propose to extend the MT-KGNN model by adding a sub-network called DescNet (Figure 3) that predicts the correct
entity described by a textual description given as input of DescNet. Inspired by the DKRL model proposed in [36], we
decide to use a convolutional neural network to reduce the dimension of word vectors of the textual descriptions and to
train DescNet sub-network along with two other sub-networks (StructNet & AttrNet). We present the model architecture
of KGMTL4Rec in Figure 3. As shown in the figure, there are three different learning tasks namely ‘Regression’ used to
capture the information that is contained in entities’ attributes, ‘Binary Classification’ used to capture the structural
aspect of the knowledge graph (entities connections), ‘Multi-label Classification’ used to capture information about
entities (more precisely destinations in this work) descriptions.

Fig. 3. KGMTL4Rec Architecture: A neural network composed of three sub-networks, each sub-network being specialized in a learning
task. The same color is used for different elements of a sub-network (e.g. Turquoise color for AttrNet). Red color is assigned to the
‘Entity Embedding Layer’ as its weights are shared across the different sub-networks. See section 4.2 for more details

We describe below the different learning tasks and present themulti-task learning algorithm used to train KGMTL4Rec.
For the remaining of this section we refer to (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) as a triplet in the knowledge graph.

Structural Learning (StructNet): The first learning task of KGMTL4Rec corresponds to a binary classification task
which is used to predict whether or not the triplet (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) exists in the knowledge graph. Each element of the input
triplet (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) of StructNet is first passed into an embedding lookup layer. Then, the embeddings (𝑤𝑒𝑖 ,𝑤𝑟𝑘 ,𝑤𝑒 𝑗 ) ∈ 𝑅𝑑

are summed and passed into a hyperbolic tangent (tanh) nonlinear layer. Finally, a sigmoid linear layer is added to
compute the probability 𝑝𝑒𝑖 ,𝑟𝑘 ,𝑒 𝑗 = 𝑃 ((𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) ∈ 𝑇𝑟 ), where 𝑇𝑟 is the set of existing triplets in the knowledge graph.
More formally, the probability 𝑝𝑒𝑖 ,𝑟𝑘 ,𝑒 𝑗 is computed as follows:

𝑝𝑒𝑖 ,𝑟𝑘 ,𝑒 𝑗 = 𝑔𝑆𝑡𝑟𝑢𝑐𝑡𝑁𝑒𝑡 (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) = 𝜎 (®𝑣𝑠ℎ 𝑡𝑎𝑛ℎ(V𝑠
ℎ,𝑑

(𝑤𝑒𝑖 +𝑤𝑟𝑘 +𝑤𝑒 𝑗 ) + 𝑏𝑠ℎ) (1)
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where V𝑠
ℎ,𝑑

∈ 𝑅ℎ×𝑑 and ®𝑣𝑠
ℎ
∈ 𝑅ℎ are parameters of StructNet and 𝑏𝑠

ℎ
is the scalar bias of the hidden layer, h being the

size of the hidden layer. We use logistic loss as loss function for this binary classification task. It is important to note
that unlike ER-MLP[9], in StructNet, we compute the sum of𝑤𝑒𝑖 ,𝑤𝑟𝑘 ,𝑤𝑒 𝑗 embeddings instead of concatenating them,
as it has shown better performance in our experiments.

Numerical Attribute Learning (AttrNet): The second learning task of KGMTL4Rec is a regression task, where
the objective is to predict the correct numerical value of an entity attribute (e.g. the price of an air ticket). AttrNet takes
as input the attributes 𝑎𝑖 and 𝑎 𝑗 linked to 𝑒𝑖 and 𝑒 𝑗 entities. The embedding 𝑤𝑎𝑖 ∈ 𝑅𝑚 is concatenated with 𝑤𝑒𝑖 and
𝑤𝑎 𝑗 ∈ 𝑅𝑚 with𝑤𝑒 𝑗 . Then, the concatenated vectors are passed into a tanh nonlinear hidden layer and finally passed
into a sigmoid linear layer to compute the estimated numerical values 𝑣

′
𝑖
and 𝑣

′
𝑗
. More formally, the estimated value 𝑣

′
𝑖

is computed as follows:
𝑣
′
𝑖 = 𝑔𝐴𝑡𝑡𝑟𝑁𝑒𝑡 (𝑒𝑖 , 𝑎𝑖 ) = 𝜎 (®𝑣

𝑎
ℎ
𝑡𝑎𝑛ℎ(V𝑎

ℎ,𝑚𝑑
[𝑤𝑒𝑖 ;𝑤𝑎𝑖 ] + 𝑏𝑎ℎ) (2)

where V𝑎
ℎ,𝑚𝑑

∈ 𝑅ℎ×(𝑚+𝑑) and ®𝑣𝑎
ℎ
∈ 𝑅ℎ are parameters of AttrNet and 𝑏𝑎

ℎ
is the scalar bias of the hidden layer.

The Mean Squared Error (MSE) is used as a loss function for AttrNet. Unlike what was done in MT-KGNN [32], we
use only one single AttrNet regardless if an attribute is linked to the tail or the head entity of a triplet.

Text description Learning (DescNet): The third learning task of KGMTL4Rec is a multi-class classification task,
where the objective is to predict the correct entities 𝑒𝑖 and 𝑒 𝑗 given the input text descriptions of destinations 𝑑𝑖 and
𝑑 𝑗 . The first part of DescNet is a convolutional neural network (CNN) composed of one convolutional layer and a
max-pooling layer used to reduce the dimension of input word vectors. Similarly to what is done in [8], we assign to
each word of the text description 𝑑𝑖 and 𝑑 𝑗 a weighted tf-idf pre-trained word vector from fasttext [11]. The CNN is
then fed with𝑤𝑑𝑖 ∈ 𝑅 |𝑑𝑖 |×𝑘 and𝑤𝑑 𝑗 ∈ 𝑅 |𝑑 𝑗 |×𝑘 , vector representations of 𝑑𝑖 and 𝑑 𝑗 , where |𝑑𝑖 | and |𝑑 𝑗 | represent the
length of the text descriptions 𝑑𝑖 and 𝑑 𝑗 and k the dimension of word vectors. Finally, the output vectors of the CNN
(𝑤𝐶𝑁𝑁
𝑑𝑖

,𝑤𝐶𝑁𝑁
𝑑 𝑗

) are passed into a tanh nonlinear hidden layer, and then passed into a Softmax linear layer to compute

the estimated vectors 𝑠
′
𝑖
and 𝑠

′
𝑗
∈ 𝑅 |𝐷 | , 𝐷 being the set of travel destinations. More formally, 𝑠

′
𝑖
is computed as follows:

𝑠
′
𝑖 = 𝑔𝐷𝑒𝑠𝑐𝑁𝑒𝑡 (𝑑𝑖 ) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (®𝑣

𝑑
ℎ
𝑡𝑎𝑛ℎ(V𝑑

ℎ,𝑘
𝑤𝐶𝑁𝑁
𝑑𝑖

) + 𝑏𝑑
ℎ
) (3)

where V𝑑
ℎ,𝑘

∈ 𝑅ℎ×𝑘 and ®𝑣𝑑
ℎ
∈ 𝑅ℎ are parameters of DescNet and 𝑏𝑑

ℎ
is the scalar bias of the hidden layer.

Note that the learning task is performed twice for the head and the tail entity of the input triplet (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) for each
of the learning tasks in AttrNet and DescNet. The reason behind this architectural choice lies in the fact that each
entity in the triplet can simultaneously have a description and an attribute.

Multi-task learning algorithm:We adopt an alternating learning strategy for the five learning tasks. More formally,
for each epoch, we run the following:

• Sample mini-batch of positive and negative triplets (𝑒𝑖 , 𝑟𝑘 , 𝑒 𝑗 ) from the knowledge graph, train StructNet and
update KGMTL4Rec parameters by back-propagation according to Eq 1.

• Sample mini-batch of numerical attributes 𝑎𝑖 and 𝑎 𝑗 and their corresponding numerical values 𝑣𝑖 and 𝑣 𝑗 , train
AttrNet and update KGMTL4Rec parameters by back-propagation according to Eq 2.

• Sample mini-batch of textual descriptions 𝑑𝑖 and 𝑑 𝑗 of 𝑒𝑖 and 𝑒 𝑗 entities, train DescNet and update KGMTL4Rec
parameters by back-propagation according to Eq 3.

In the experiments, we compare the alternating learning strategy with the weighting loss strategy [5, 38] where the
different losses of the sub-networks are summed so that the sum of the losses is back-propagated through KGMTL4Rec.
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4.3 Recommendation scoring function

As mentioned in Section 3, the task of recommending destinations to travelers is formulated as a link prediction task in
the knowledge graph. Therefore, in order to compute the probability of recommending a destination 𝑒𝑑 to a traveler 𝑒𝑡 ,
we use StructNet sub-network and compute the score of the triplet (𝑒𝑡 , ‘travelTo’, 𝑒𝑑 ) comprising the traveler 𝑒𝑡 , the
destination 𝑒𝑑 , and the property ‘travelTo’. The recommendation scoring function is defined as follows:

𝑓𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛 (𝑒𝑡 , 𝑒𝑑 ) = 𝑔𝑆𝑡𝑟𝑢𝑐𝑡𝑁𝑒𝑡 (𝑒𝑡 , 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑜, 𝑒𝑑 ) (4)

5 EXPERIMENTAL EVALUATION

In this section, we present the dataset used to conduct our experiments. Then, we present some baseline models we have
implemented to compare our model with and the settings of the experiments. Finally, we discuss the results obtained in
the experiments.

5.1 Dataset

For the experiments, we use the private dataset described in Section 4.1. It is important to note that due to the specificity
of our recommendation task ‘recommending new travel destinations for leisure purpose’, the amount of data used
in the experiments is significantly reduced. Indeed, The original dataset used to build the knowledge graph comes
from a major partner airline and counts more than 10 million bookings in one calendar year. In this work, we focus
only on leisure trips, which corresponds to approximately 56% of the bookings similarly to what has been done in [8].
Furthermore, the dataset that is used to train the recommender system is reduced as we only consider travellers who
have made at least two bookings (for evaluation purposes), resulting in 486.807 travel interactions. The characteristics
of the dataset are summarized in Table 1.

Table 1. Statistics of the experimental dataset.

#travels #travelers #destinations Sparsity 𝜌

486 807 40 965 136 91.26%

In Figure 4, we plot an histogram that represents the number of visits per travel destination as a percentage of the
total number of visits (#travels) for the top-10 most visited destinations. This histogram shows the high popularity of
certain travel destinations which is accounted for in the experiments by comparing the performance of our model with
the system currently in production which some airline partners use and that recommends this top-10 list of popular
destinations regardless of the traveler. In Figure 5, we plot an histogram representing the number of travelers (as a
percentage of total number of travelers) per historical travels. In the experiments, we compare the performance of our
model with respect to the number of historical travels per traveler.

We use the KG resulting from the datasetmentioned above and described in Section 4.1 for KGMTL4Rec and knowledge
graph-based baseline models. In Table 2, we present some characteristics about the KG used in the experiments.

Table 2. Statistics of the experimental knowledge graph.

#Nodes #Edges #Properties #Trip Reservations

634 254 ∼ 13.7 M 48 423 427
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Fig. 4. Top-10 Most visited travel destinations (airports).
Each airport is named according to its IATA code.

Fig. 5. Histogram showing the number of travelers per number of
distinct historical travel destinations.

5.2 Evaluation protocol and metrics

Widely used in the literature [8, 13, 26], the leave-last-out protocol suggests to select the latest interaction as the test
set and use the remaining data in the training/validation set. We use this protocol to evaluate the performance of
KGMTL4Rec and also to compare it with the different baseline models. Our dataset is temporally sorted so that the latest
travel corresponds to the most recent destination visited by a traveler, in order to represent the notion of recommending
the ‘next’ travel destination during evaluation. For each traveler, we rank all destinations except the ones that are
already visited by the traveler and truncate the list at 10, as 10 destinations are included in the email sent to the travelers.
To validate our model, we apply a cross-fold validation to the training dataset (k=5, a split of 80% for training and
20% for validation). The split between training and validation set is performed randomly on travels in order to avoid a
seasonality effect which is usually occurring in the travel industry.

The output of the recommender system is a ranked list of 10 destinations, where at best, one element of the 10
recommended destinations is a relevant one and corresponds to the ‘next’ travel destination of the traveler. Given that,
we think it is judicious to use the Hit Rate metric to measure whether or not the relevant destination is in the top-10 list
and we use Mean Reciprocal Rank metric to capture how well the hit is ranked in the list. The two metrics are defined
as follows:

• HR@K:

𝐻𝑅@𝐾 =
1
𝑛

𝑛∑
𝑡=1

𝐾∑
𝑗=1

ℎ𝑖𝑡 (𝑡, 𝑑 𝑗 ) (5)

• MRR@K:

𝑀𝑅𝑅@𝐾 =
1
𝑛

𝑛∑
𝑡=1

𝐾∑
𝑗=1

1
𝑟𝑎𝑛𝑘 (𝑟𝑒𝑙𝑡 )

(6)

where n represents the number of travelers, K the length of the ranked list and ℎ𝑖𝑡 (𝑡, 𝑑 𝑗 ) is equal to 1 if the traveler 𝑡
traveled to the destination 𝑑 𝑗 . In equation 6, 𝑟𝑎𝑛𝑘 (𝑟𝑒𝑙𝑡 ) is the rank of the relevant destination where the traveler t has
traveled to. The rank is only considered if the relevant destination is in the top-K list.

5.3 Baseline models and parameter settings

We implement a wide list of baseline models to compare with our KGMTL4Rec model. More specifically, the base-
line models include collaborative filtering, context-aware, hybrid and knowledge graph-based recommender systems.
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Following the experimental work conducted in [8], this represents the state-of-the-art recommender systems for
travel destination recommendation. We describe the main baseline models we used and we list the different types of
information used in each algorithm:

• BPRMF [26]: BPRMF is a Matrix Factorization method tailored for implicit feedback where the authors propose
to minimize a pairwise ranking loss rather than minimizing a mean squared error between the predicted and the
observed ‘rating’ as usually done in Matrix Factorization algorithm. BPRMF uses only user-item interactions as
input.

• NCF [13]: Neural Collaborative Filtering is a state-of-the-art CF method. It combines the (user, item) interaction
as input of a multi-layer perceptron and a single layer perceptron that models the matrix factorization method.
NCF uses only user-item interactions as input.

• FM [25]: Factorization Machines was proposed to incorporate contextual information in the recommender system.
The author propose a method that computes not only users’ and items’ latent vectors but also contextual features
latent vectors. FM uses contextual information in addition to user-item interactions as input.

• WDL [6]:Wide & Deep Learning model is a hybrid recommender system. It is a deep learning based recommender
system that combines a deep component (feed forward neural network) plus a wide component that can be
seen as a linear model that computes cross products between input features. WDL uses contextual and content
information in addition to user-item interactions as input.

• DKFM [8]: Deep Knowledge Factorization Machines combines Factorization Machines in order to represent
contextual information and WDL that takes as input user-item interactions and metadata information about the
items and users. DKFM uses all type of information available in the knowledge graph.

• NTN [30]: Neural Tensor Network is a neural network based method for representation learning in knowledge
graphs [35]. Given a fact (ℎ, 𝑟, 𝑡), it first projects entities to their vector embeddings in the input layer and then
predicts the existence of this fact in the knowledge graph. Similarly to StructNet (see section 4.3), we rank
destinations based on NTN output score. NTN uses all type of information available in the knowledge graph.

• TransE [4]: TransE is the most used translational distance model [35]. Given a fact (ℎ, 𝑟, 𝑡), the relation is
interpreted as a translation vector 𝑟 so that the embedded entities ℎ and 𝑡 can be connected by 𝑟 with low error,
i.e., ℎ + 𝑟 ≈ 𝑡 when (ℎ, 𝑟, 𝑡) holds. Similarly to [24], we use TransE scoring function 𝑓𝑟 (ℎ, 𝑡) = −||ℎ + 𝑟 − 𝑡 | | to
produce the ranked list of destinations. TransE uses all type of information available in the knowledge graph.

• CKE [39] Collaborative Knowledge base Embedding is a two stages approach that consists in first computing the
embeddings coming from a knowledge base composed of structural knowledge, image and text representing the
items, then use the generated embeddings as input of a CF algorithm. In this paper, we implement the structural
and textual modules in addition to the CF algorithm. CKE uses all type of information available in the knowledge
graph.

We implement our model KGMTL4Rec using Pytorch14 as it provides more easiness for the implementation of
new neural network architectures and use Pykg2vec15 library for knowledge graph-based models. Finally, we use
Tensorflow16 to implement the neural network baseline models. We use Xavier uniform initializer to randomly initialize
the models parameters and we use a mini-batch optimization technique based on Adam [15] optimizer to train all the
models. To tune the hyper-parameters of our model and the baseline models, we use the validation set mentioned

14https://pytorch.org/
15https://pykg2vec.readthedocs.io/
16https://www.tensorflow.org/

https://pytorch.org/
https://pykg2vec.readthedocs.io/
https://www.tensorflow.org/
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above (Section 5.2). We apply grid-search algorithm on the implemented models using the following values: the entity
embedding size 𝑑 ∈ {16,32,64,128,256}, the batch size ∈ {128,256,512,1024}, the number of epochs ∈ {10,20,50,100,200}, the
learning rate _ ∈ {0.00001,0.0001,0.0003,0.001,0.003,0.01,0.1} and negative samples Ns ∈ [2,10].

5.4 Results

In Table 3, we present the recommendation performance of KGMTL4Rec and the baseline models with respect to
HR@10 and MRR@10. The results reported in Table 3 correspond to the performance of the different models based on
the best performing hyper-parameters. We report the mean and standard deviation of HR@10 and MRR@10 over 5
different seeds due to the random initialization of neural networks parameters.

Table 3. Experimental results.

(a) Recommendation performance of CF,
hybrid and context-aware recommender systems.

Model HR@10 MRR@10

Item-pop 0.5168 0.2634

Item-KNN [28] 0.3223 0.1367

BPRMF [26] 0.5698 ± 0.002 0.3036 ± 0.0004

NCF [13] 0.5132 ± 0.008 0.2994 ± 0.0010

FM [25] 0.5986 ± 0.003 0.3401 ± 0.0001

WDL [6] 0.6301 ± 0.005 0.3472 ± 0.0003

DKFM [8] 0.6619 ± 0.007 0.3901 ± 0.0006

(b) Recommendation performance of knowledge graph-based
recommender systems.

Model HR@10 MRR@10

NTN [30] 0.3096 ± 0.002 0.1511 ± 0.001

SME [3] 0.3746 ± 0.001 0.1992 ± 0.0004

TransE [4] 0.4548 ± 0.0005 0.2268 ± 0.0001

TransR [17] 0.4031 ± 0.0009 0.1883 ± 0.0001

ER-MLP [9] 0.6218 ± 0.002 0.3559 ± 0.0028

CKE [39] 0.6493 ± 0.003 0.3865 ± 0.001

KGMTL4Rec 0.7109 ± 0.013 0.4254 ± 0.0083

It is important to note that not all recommender systems use the same input information. In fact, recommender
systems which use not only traveler history but also other types of information as input such as DKFM or WDL tend to
perform better than simple Collaborative Filtering models such as ImplicitMF, NCF or Item-KNN as shown in sub-table
(a). Similarly to DKFM, knowledge graph-based recommender systems represented in sub-table (b) make use of all the
information mentioned in Section 3. It is therefore legitimate to compare KGMTL4Rec with DKFM, where we clearly
observe that KGMTL4Rec performs better with respect to HR@10 and MRR@10. KGMTL4Rec is not only outperforming
DKFM model but also the other knowledge graph-based recommender systems represented in sub-table (b). The major
difference between KGMTL4Rec and the other knowledge graph-based recommender systems, is that KGMTL4Rec uses
each type of information optimally in one of the sub-networks defined in Section 4.2, while models like TransE, NTN or
even CKE (that uses TransE to generate structural embeddings) consider numerical values as a separate entity, which
not only increases considerably the cardinality of entities set considered in this type of method, but also considers equal
numerical values as the same entity: it is not correct to consider 12 ‘years old’ and 12 ‘days’ as the same entity.

In what follows, we take an excerpt (∼20%) from the original knowledge graph described in Table 2 in order to
conduct additional experiments thanks to the reduced size of the dataset. All the results that follow are based on this
excerpt (Table 4).

In Table 5, we report the performance of our model compared to the best performing models when we use different
types of input information, so the knowledge graph is reduced to keep only the information needed in each experiment
to be fairly comparable to other models:



Dadoun, et al.

Table 4. Statistics of the sample knowledge graph.

#Nodes #Edges #Properties #Trip Reservations

125 610 ∼ 2.7 M 48 35698

Table 5. Performance of KGMTL4Rec compared to best performing models on specific type of input data. *: All Information mentioned
in section 3.

Input Data Collaborative Information Content & Collaborative Information All Information*
Model BPRMF KGMTL4Rec WDL KGMTL4Rec DKFM KGMTL4Rec
HR@10 0.5462 0.5623 0.6001 0.6508 0.6464 0.6907
MRR@10 0.3020 0.3153 0.3472 0.4061 0.3856 0.4189

Figure 6 shows the performance of the models represented in Table 5 with respect to the number of iterations used
to train the models. We use the same learning rate for all the models (𝑙𝑟 = 0.00003) presented in Figure 6. We observe
that the most effective updates are occurred in the first 3 iterations for all the models except for DKFM where the
convergence requires more iterations. In addition, we notice that there is a significant difference of HR@10 and MRR@10
in the first iteration (iteration 0) for the different models. Moreover, it is important to note that for KGMTL4Rec, we do
not get the best value of MRR@10 and HR@10 in the same iteration.

Fig. 6. Performance of the 4 main models (presented in table 5) with respect to the number of iterations.

6 DISCUSSION

We first start by performing an ablation study which consists in removing some input information from the knowledge
graph and using only some sub-networks of KGMTL4Rec. Then, we study the influence of the travel history of travelers
(number of historical travels) on the performance of KGMTL4Rec. We observe the convergence time of KGMTL4Rec
with respect to two different MTL strategies. Finally, we perform a qualitative analysis of KGMTL4Rec recommendations
and investigate the impact of KGMTL4Rec hyper-parameters on the performance of the model.

Ablation Study: Table 6 shows the performance of KGMTL4Rec with respect to the information included in the
knowledge graph. In the first row of the table, we present the results of KGMTL4Rec when we consider neither the STD
knowledge graph nor the textual information from Wikipedia, nor the numerical literals included in the Airline Travel
KG (e.g., the number of passengers in a reservation, the ticket price, etc.), and in this case, we use only the sub-network
StructNet to train the model. Then, for each of the rows that follow, we add incrementally one of the preceding removed
information. We observe that the results are the best when we use all possible information in the KG, and notice that
the large gap between the results is reduced when we consider the use of numerical values.
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Table 6. Performance of KGMTL4Rec model based on the information contained in the knowledge graph.

Numerical literals STD KG Wikipedia Sub-networks HR@10 MRR@10

No No No StructNet 0.5884 0.3264

Yes No No StructNet, AttrNet 0.6508 0.4061

Yes Yes No StructNet, AttrNet 0.6781 0.4119

Yes Yes Yes StructNet, Attr-
Net, DescNet

0.6907 0.4189

Influence of travel history: Collaborative Filtering algorithms which rely only on users’ past interactions perform
naturally better when we have more history about the users. We study the performance of KGMTL4Rec model and
DKFM model presented in Table 5 with respect to the number of historical travels per traveler. More formally, we
compute HR@10 and MRR@10 for travelers which traveled in 𝑁ℎ𝑖𝑠𝑡 different destinations in their past (𝑁ℎ𝑖𝑠𝑡 ∈ [1, 5]).
We observe in Figure 7 more variation of HR@10 and MRR@10, when we vary the number of historical travels for
DKFM than for KGMTL4Rec. Indeed, the standard deviation of the different values of HR@10 for DKFM is equal to
2 × 10−2, while for KGMTL4Rec it is equal to 5 × 10−3. For MRR@10, the standard deviation is equal to 2.5 × 10−2 for
DKFM, while for KGMTL4Rec it is equal to 6 × 10−3. These results demonstrate that our model KGMTL4Rec is more
resilient to variation of the traveler history than DKFM.

Fig. 7. Performance of KGMTL4Rec with respect to
the number of Historical travels per traveler.

Fig. 8. Performance of KGMTL4Rec with respect to the entity embedding size and the learning rate _.
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Hyper-parameters Sensitivity: We investigate the influence of some hyper-parameters on the performance of
KGMTL4Rec. In Figure 8, we report the score of HR@10 and MRR@10 when we vary the learning rate _ and the entity
embedding size d as specified in Section 5.3. We observe in Figure 8 that when increasing d, the performance is initially
improved because embeddings with larger size can encode more useful information, but drops after d = 128 due to
possible overfitting. The same pattern is observed when varying _, indeed the HR@10 and MRR@10 scores increase
until _ = 0.0003 as the use of a higher _ does not allow to find the optimal loss.

Ethical Considerations: The database used in this work is GDPR17 compliant and the dataset used for the experi-
ments does not contain any personal identifiable information. It is important to note that from a business perspective,
the objective of this work is not only to improve the accuracy of recommended destinations but also to ease travelers’
search experience by sending them personalized travel destinations through email marketing campaigns in order
to avoid spamming them. Bias is not an aspect which is studied in-depth in this work. However, by computing the
relatedness score between top-10 recommended destinations and two entities that imply bias namely gender and
nationality, we observe minor discrepancies: In average a difference of 5.3𝑒 − 2 for nationality entity and 3.6𝑒 − 2 for
gender entity.

7 CONCLUSION

In this work, we propose KGMTL4Rec, a multi-task learning model designed to consider not only knowledge graph
entities but also numerical and text literals in order to recommend personalized travel destinations to airlines’ customers
through email marketing campaigns. Our model is based on a neural network architecture which can incorporate
different types of information available in the knowledge graph. We conduct several experiments to address the research
questions mentioned in Section 3. Our model is capable of predicting the missing links ‘travelTo’ in the knowledge graph
with a HR@10 of ∼ 0.69 (RQ2). Additionally, we demonstrate, through an in-depth comparison between KGMTL4Rec
and DKFM, the valuable contribution of using the knowledge graph as a common data structure to represent the
heterogeneous information used for travel destination recommendation (RQ1). In future work, the group plans to test
the model in production and evaluate user engagement through online metrics such as click-through rate or conversion
rate. More formally, the challenge is to validate whether the most accurate offline model is the most engaging online
and, from a business perspective, to assess whether the model will boost travel bookings.
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