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Abstract— Reliable pedestrian crash avoidance mitigation
(PCAM) systems are crucial components of safe autonomous
vehicles (AVs). The nature of the vehicle-pedestrian interaction
where decisions of one agent directly affect the other agent’s
optimal behavior, and vice versa, is a challenging yet often
neglected aspect of such systems. We address this issue by
modeling a Markov decision process (MDP) for a simulated
AV-pedestrian interaction at an unmarked crosswalk. The AV’s
PCAM decision policy is learned through deep reinforcement
learning (DRL). Since modeling pedestrians realistically is
challenging, we compare two levels of intelligent pedestrian
behavior. While the baseline model follows a predefined strat-
egy, our advanced pedestrian model is defined as a second
DRL agent. This model captures continuous learning and
the uncertainty inherent in human behavior, making the AV-
pedestrian interaction a deep multi-agent reinforcement learn-
ing (DMARL) problem. We benchmark the developed PCAM
systems according to the collision rate and the resulting traffic
flow efficiency with a focus on the influence of observation
uncertainty on the decision-making of the agents. The results
show that the AV is able to completely mitigate collisions under
the majority of the investigated conditions and that the DRL
pedestrian model learns an intelligent crossing behavior.

I. INTRODUCTION

While the advent of modern artificial intelligence (AI)-
based methods holds promise to solve many problems in au-
tonomous driving (AD), e.g., the perception of the vehicle’s
environment through AI-based computer vision, decision
making in safety-relevant driving situations remains chal-
lenging. Particularly critical situations are vehicle-pedestrian
interactions where the vehicle is moving forward on a
collision path with a pedestrian attempting to cross a street.

According to a study by the Insurance Institute for High-
way Safety [1], there were around 330,000 crashes involving
pedestrians between 2005 and 2009 in the U.S. with 224,000
cases related to situations where the pedestrian was hit by
the front of a car; pedestrians were crossing a street in
95 % of these accidents. Modern cars are equipped with
pedestrian crash avoidance mitigation (PCAM) systems to
avoid such collisions, making them a crucial component of
future autonomous vehicles (AVs). In [2], a modern PCAM
system is developed on the basis of reachability analysis in
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conjunction with a situation-aware trajectory planner. This
method necessitates the use of a reliable dynamic model for
the movement of the pedestrian posing real-world challenges
and neglecting the simultaneous decision-making processes
of the AV and the pedestrian. Deep reinforcement learning
(DRL) offers the possibility to reflect that the AV’s action
directly influences the pedestrian’s reaction, and vice versa.
After successful applications in game-related environments
[3], recent research interest is shifting to real-world applica-
tions as DRL methods offer attractive generalization ability
without the need for prior domain information.

The study of Chae et al. [4] is the first publication in
which a DRL-based PCAM system was developed. Although
successfully preventing collisions, the AV agent is limited to
braking actions which neglects that controlled acceleration
can also help to prevent dangerous situations. In a broader
sense, Papini et al. [5] extend the work of Chae et al. by
proposing a DRL-based system which restricts an AV agent
by a learned speed limit. This limit ensures that a collision
can always be prevented when a distracted pedestrian decides
to cross. In [6], a grid-based state representation is proposed
that allows the PCAM system to account for multiple pedes-
trians simultaneously. While the trained agent is evaluated
in CARLA and its advantages are discussed, the system’s
real-world applicability remains open as the influence of
uncertainty, e.g., measurement noise and random pedestrian
behavior, is not reflected. We address this challenge in our
work by conducting an extensive study on the influence of
uncertainty on the agents’ performance. The recent work of
Deshpande et al. [7] introduces multi-objective DRL to the
interaction of AVs with pedestrians but focuses more on the
navigation of the AV than the pedestrian crossing decision.
A general overview of DRL in AD can be found in [8].

Crucially, the mentioned previous works only use simple
pedestrian models that raise the question of how realistic the
crossing decisions of the pedestrians in the proposed systems
are. Behavioral research provides some clues as to what
factors influence pedestrians’ crossing decisions. In general,
the time-to-collision (TTC) value is a key indicator [9]. A
typical limit is a TTC value of less than 3s, which makes
it unlikely for pedestrians to attempt a crossing [10]. While
this property is often used to model pedestrian behavior, it is
necessary to also consider the social aspects of AD. Millard-
Ball [11] refers to a situation which he calls crosswalk
chicken: As pedestrians know that AVs will stop if necessary,
they perceive a low level of risk and cross more recklessly.

We propose a new perspective on modeling pedes-
trian crossing behavior by developing an AV PCAM sys-



tem through a deep multi-agent reinforcement learning
(DMARL)-based solution that exploits the continued inter-
action of two independent, learning agents. In this approach,
the PCAM policy is optimized while the pedestrian learns
to cross the street safely at the same time. Additionally, the
following contributions are made in this work:

• The proposed PCAM system’s driving capability is
extended beyond similar works with the AV’s action
space to include braking and acceleration actions; no
additional local trajectory planer is needed.

• We introduce several pedestrian models of different
intelligence levels, i.e., we compare DRL and DMARL
settings to evaluate the influence of a learning pedestrian
model on the behavior of the AV.

• An extensive study on the influence of observation noise
on the agents’ performance is conducted, and a behav-
ioral analysis shows the robustness of the developed
algorithms in the face of uncertainty.

• Our approach is generalized over different scenarios
with varying values of the initial TTC value, street
width, and pedestrian walking speed.

II. SYSTEM MODEL

The proposed PCAM system is developed in a simulated
driving scenario of an AV facing a single pedestrian at an
unmarked crosswalk. Note that a large number of crosswalks
are unmarked; studies [12] found no links between increased
pedestrian safety and marked crosswalks. There is no priority
given to the pedestrian in our scenario and we neglect the
presence of other road users. The heterogeneous agents are
described as follows:

• AV: Vehicle with fully autonomous driving capabilities
(level-5); equipped with high-quality sensors, i.e., mea-
surement noise is reduced to minimal levels. Properties
of the AV are labeled by superscript (·)AV.

• Pedestrian: Attempts to cross the street from the left
or right sidewalk with state estimations of limited reli-
ability accounting for variability in human perception.
Superscript (·)ped marks the pedestrian’s variables.

One AV-pedestrian interaction episode is over after T ∈ N
time steps, where the time horizon is discretized into equal
time slots t ∈ [0, T ] of length δt seconds. We define the
simulation in 2D-space, i.e., the AV’s position is xAV

t =
[xAV

1,t, x
AV
2,t]

⊤ ∈ R2 and xped
t = [xped

1,t , x
ped
2,t ]

⊤ ∈ R2 is the
pedestrian’s position, respectively. When an episode starts,
the AV is facing the crosswalk in front and is positioned at
the middle of the right lane of a two-lane street of width
bstreet. Its velocity vAV

t ∈ R is a single component in the
vehicle’s longitudinal direction. The pedestrian attempts to
cross either from the left or the right sidewalk with walking
speed vped

t ∈ R; its initial distance to the curb is ζped.
When the AV has passed the crosswalk by a distance of
ζAV, the vehicle’s goal position xped

goal ∈ R2 is reached. The
pedestrian’s episode is over when its position is at a safety
distance of ζped from the street as visualized in Fig. 1.

A collision is defined as the event when the pedestrian,
simulated as a point with no dimensions, is inside of the
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Fig. 1. Crosswalk geometry with goal positions marked in green and the
agents’ velocity vectors in red.

collision area of the vehicle which is the AV’s dimension
plus an additional safety margin η around all sides of the
AV. The inequality

η > |xAV
1,t − xped

1,t | ∧ η > |xAV
2,t − xped

2,t |, (1)

is fulfilled in case of a collision. Note that we calculate the
TTC value from the AV’s center point to the pedestrian’s
position for simplicity, i.e., a collision can occur at a TTC
value marginally larger than zero.

To describe a realistic scenario, measurement noise dis-
turbs the agents’ observations according to a multiplicative
noise model. Let st be the true state signal, then the obser-
vation function O is described by

O : zt = (1 + nt) · st, (2)

with zt as the disturbed state observation, and nt as the
realization of the random noise variable N which follows a
Gaussian distribution N ∼ N (0, α2). As we later investigate
several scenarios with different scales of st, the definition
of (2) is advantageous since it introduces similar levels of
uncertainty among sensor signals of different scale through
the single choice of α.

As any collision of an AV with a pedestrian is considered
to be unacceptable in reality, we use the collision rate as
the main performance measure. Both agents also act self-
interested with the motivation to reach their goal position as
quickly as possible. This property is reflected by the second
performance indicator traffic flow efficiency, which describes
the average duration of an AV-pedestrian interaction episode.
This description is formalized by the utility function

Fw = −Tw
end (3)

of each agent w ∈ W with W = {wAV, wped}. TAV
end

and T ped
end describe the time required by the respective

agent to reach its goal position. The optimization problem
with respect to the trajectory of joint actions ×Tut =
((uAV

0 , uped
0 ), . . . , (uAV

T , uped
T )) over T = max(TAV

end , T
ped
end )

steps is then given by

max×Tut

∑
w∈W Fw.

s.t. collision = False (4)



III. METHODOLOGY

A. Scenarios

We investigate the effects of modeling the behavior of
the street-crossing pedestrian differently by considering the
following agents characterized by their level of intelligence:

• Level-1 describes rationally acting agents. They can
adapt their behavior by perceiving their environment
continuously but follow a predefined strategy.

• Agents of level-2 can learn from their experiences,
behave rationally, and explore new strategies.

We use these levels to define several settings for the AV’s
PCAM system using DRL and DMARL, respectively. De-
tailed descriptions of the pedestrian and AV models follow
in Section III-B and Section III-C.

1) Setting-1: The level-1 pedestrian model is evaluated
in conjunction with a learning AV agent of level-2 in a
partially observable Markov decision process (POMDP) (see
Section III-D.1) system formulation. Most publications (e.g.,
[6]) up to now have only considered this setting.

2) Setting-2: Instead of relying on predefined policies,
we use a learning agent of level-2 to model the pedestrian.
Since the AV is also implemented as a DRL agent, the system
is now a multi-agent system (MAS) modeled as a partially
observable Markov game (POMG) (see Section III-D.2). To
the authors’ best knowledge, this is the first approach to use
DMARL in the context of vehicle-pedestrian interactions.
The proposed MAS features heterogeneous agents acting in
a semi-cooperative manner to prevent collisions, but they
also aim to fulfill their individual objective of reaching their
respective goal position. There is no direct communication
between agents, but indirect communication via specific
actions or behavior signals might be learned.

3) Setting-X: Another setting is introduced for bench-
marking the DRL and DMARL-based approaches by defin-
ing both the pedestrian and the AV as level-1 agents.

B. Pedestrian Models

1) Level-1: To resemble a basic but rational human
crossing behavior [10], we define a pedestrian policy which
evaluates the TTC value at each time step t according to

uped
t =

{
walk, if TTCt ≥ 3s
wait, otherwise . (5)

Once the pedestrian decides to take action uped
t to walk, the

walking speed vped
walk is kept until the pedestrian’s goal state

is reached. Note that the agent will also start walking when
the AV has passed the crossing by 4m.

2) Level-2: The learning pedestrian is a DRL agent
based on a deep Q-network (DQN) (see Section III-E). The
pedestrian’s state sped

t at time t is defined as the vector

sped
t =

[
TTCt, |vped

t |, |vped
walk|, |vAV

t |, |aAV
t |,

∆xrel
t , PDTCt, b

street, bstreet
side

]⊤ , (6)

with nine components described as follows:
• TTCt ∈ R represents the current TTC value

• |vped
t | ∈ R+ is the pedestrian’s current absolute velocity

• |vped
walk| ∈ R+ is the pedestrian’s constant absolute

walking speed once the agent decides to start walking
• |vAV

t | ∈ R+ describes the absolute velocity of the AV
• |aAV

t | ∈ R+ is the absolute acceleration of the AV
• ∆xrel

t ∈ R2 measures the two-dimensional position of
the pedestrian relative to the AV’s center point

• PDTCt ∈ R+ is defined as the remaining crossing
distance for the pedestrian to reach its goal position

• bstreet ∈ R+ is the width of the street
• bstreet

side ∈ {left, right} indicates from which street side the
pedestrian will start crossing.

The state sped
t is an element of the state space Sped, while

the discrete actions space Uped allows for two choices:

Uped = {wait,walk} . (7)

When the pedestrian decides to walk at time t, its velocity
vped
t+1 at the next time step is set to vped

walk. The pedestrian’s
reward function Rped with the reward rped

t+1 is based on

rped
t+1 = −τ ped −

{
βped, if collision = True
0, otherwise . (8)

The first term τ ped penalizes each time step taken; we set
τ ped = 0.01. If a collision occurs, a penalty of βped = 10 is
added. While it is important to keep a balance between the
two penalty terms, the choice of absolute values is justified
empirically with the aim to minimize training instabilities.
In summary, the pedestrian’s goal is to reach the other street
side as quickly as possible without risking a collision.

C. AV Models

1) Level-1: Derived from a best response analysis, the
AV’s best velocity vAV

t,best is calculated at time t according to

vAV
t,best =

{
dlow/∆tped

t , if pedestrian walks
vAV

limit, otherwise , (9)

with ∆tped
t as the pedestrian’s theoretical crossing duration.

The longitudinal distance from the AV’s front to the pedes-
trian is given by dlow. As it is not possible to set vAV

t,best in
the simulation directly due to the AV’s dynamic model, an
acceleration value with aAV

t,best is set to reach vAV
t,best in minimal

time instead. The list of the possible, discrete acceleration
values aAV

t is given by the action space UAV with

UAV = {−9.8,−5.8,−3.8, 0, 1, 3} m

s2
. (10)

2) Level-2: This model of the AV uses the DQN algo-
rithm to enable the agent to learn from interaction with its
environment. The AV’s state sAV

t at time t is element of the
state space SAV, and the components of sAV

t form a vector

sAV
t =

[
TTCt, |vped

t |, |vped
walk|, |vAV

t |, |aAV
t |,

∆xrel
t , PDTCt, b

street, bstreet
side

]⊤ . (11)

See Section III-B.2 for a description of these components.
The AV’s action space UAV is equivalent to (10); its reward



function RAV with reward rAV
t+1 is described by

rAV
t+1 =− τAV −

{
βAV, if collision = True
0, otherwise

−
{
ψAV, if vAV

t > vAV
limit

0, otherwise .

(12)

At each time step, the constant penalty τAV = 0.01 is given;
βAV = 10 is the collision penalty. The speed penalty ψAV =
0.05 is subtracted when the AV drives faster than the speed
limit vAV

limit. The intention in this context is that the AV should
learn to follow the traffic rules but the possibility to pass the
speed limit should be given in emergency situations.

D. System Formulation

1) Partially observable Markov decision process: For the
DRL case in setting-1, we define a POMDP with tuple
(SAV,ZAV,UAV, T ,O,RAV, γ) as follows:

• States sAV
t , see (11), are elements of a state space SAV.

• Due to the partial observability of the states, the AV ob-
serves zAV

t ∈ ZAV which is described by the observation
function O according to (2) instead of sAV

t .
• UAV is the action space of the AV as introduced in (10).
• T is the state transition function defined by the mapping

T : SAV × UAV × SAV → [0, 1] of the current state sAV
t

to the probability of transitioning to the next state sAV
t+1.

• Based on the reward function RAV presented in (12),
the AV receives the scalar reward rAV

t+1.
• The discount factor γ is used to weigh the importance

of immediate to future rewards.
2) Partially observable Markov game: The system for-

mulation as a POMDP is not sufficient for the DMARL
approach in setting-2. Therefore, we introduce a POMG for
the agents W = {wAV, wped} which is described by the tuple
(W,S,Z,U , T ,O,R, γ) with following components:

• The AV’s states sAV
t are elements of the state space SAV

defined in (11), while the pedestrian’s state space Sped

is presented in (6). The joint state st = (sAV
t , sped

t ) is
element of the joint space S = SAV × Sped.

• The observation function O, see (2), defines the obser-
vations of the AV as zAV

t and zped
t for the pedestrian.

• UAV is the AV’s action space given in (10); see (7)
for the pedestrian’s action space Uped. The joint action
ut = (uAV

t , uped
t ) with ut ∈ U is selected each step t.

• T is the joint state transition function with T : S ×
A×S → [0, 1] mapping the current joint state st to the
probability of the next state st+1 taking action ut.

• The AV’s reward signal rAV
t+1 follows RAV given in (12),

and (8) defines the pedestrian’s reward function Rped.
• The same discount factor γ is introduced for all agents.

E. Deep Q-Networks

All DRL agents in this work are modeled by DQNs. As
introduced in [3], a DQN is an off-policy method using a
neural network (NN) to learn the Q-function of an optimiza-
tion problem iteratively. An enhanced version, called double

deep Q-network (DDQN) [13], has the training target

yt =

{
rt+1, if goal state
rt+1 + γQ(st+1, ut+1 | θ−

i ), otherwise
,

(13)
which decouples the action selection and evaluation. θ−

i are
the trainable parameters at training step i of the target net-
work, θi the parameters of the decision network, respectively.
The action ut+1 of the next time step in (13) is given through

ut+1 = argmax
ut+1

Q(st+1, ut+1 | θi). (14)

A sampling-based strategy is used in practice to estimate the
error between the bootstrapped target yt and the prediction
Q (st, ut | θi) over a batch of M training samples. The
experience replay buffer E is a data container storing the
last L experience et = (st, ut, rt+1, st+1). To update θi,
a batch of M experiences are randomly sampled from E ,
the loss between predictions and targets yt calculated, and
θi+1 updated by gradient descent. For inference, the agent’s
behavioral policy is obtained by means of the greedy policy

ut = argmax
ut

Q (st, ut | θi) , (15)

and an ε-greedy policy is used for exploration: At each
time step t, a random action ut is chosen with probability
ε; we decrease ε exponentially. Early results in this work
have shown that the AV’s unbalanced action space, i.e., the
deceleration values are higher than the acceleration values
(causing the AV to stand still in expectation with initially
uniformly random actions after a finite number of time steps),
introduces instability into the learning process. We overcome
this issue by moving the probability mass so that acceleration
values are selected with higher probability. In our imple-
mentation, we improve the DDQN [13] method by using the
combined replay buffer [14], multi-step learning [15], and
dueling heads [16] extensions. Additionally, gradients larger
than 10 are clipped for numerical stability, and the Huber
loss is used with a linear slope starting at δHuber = 1 to
calculate the error. The DQN is updated each time step a
new experience is generated in our simulation.

The independent learning scheme is used for implemen-
tation of the DMARL case: From the perspective of a single
agent, the other agent is assumed to be part of the environ-
ment, allowing the use of the single-agent DQN method as
introduced earlier. This approach harms the assumption of a
stationary environment; successful implementation in other
works and simplicity motivate the use here.

F. Simulation Setup

The initial longitudinal velocity of the AV vAV
init is sam-

pled from a uniform distribution vAV
init ∼ U(30km

h , 50
km
h ),

reflecting the typical velocities driven in urban areas in
Germany. The initial TTC value is randomly sampled with
TTCinit ∼ U(1.0s, 5.0s), defining the AV’s initial position
xAV

init with a distance to the crossing of TTCinit ·vAV
init. The goal

state of the AV xAV
goal is reached when the AV has passed the

crosswalk by ζAV = 10m. We take into account the German
speed limit of vAV

limit = 50km
h in urban areas. The pedestrian’s



initial street side position xped
init depends on a random variable

bstreet
side drawn uniformly from {left, right}. The variability of

pedestrians’ walking speed is reflected by selecting vped
walk

uniformly from vped
walk ∈ {1.16, 1.38, 1.47, 1.53, 1.55 } m

s ,
representing typical pedestrian walking speeds [17]. A value
of 0.5m is used for the safety margin ζped. Additional
variability in the environment is introduced by selecting the
street width bstreet uniformly from {6.0, 7.5}m.

A collision occurs when the inequality (1) is fulfilled, we
set the collision margin to η = 0.5m. Analysis of early
results showed that increasing the safety zone to ηtrain =
1.5m during training leads to a reduction of the collision
rate during evaluation. We use this strategy for the training
of all level-2 agents. A good trade-off between a reasonable
fast control input frequency and high computational costs is
achieved by setting the time constant to δt = 0.1s. Further
computational costs associated with simulating potentially
non-terminating training episodes are avoided by setting a
timeout ν = 15s for the maximal episode duration.

IV. RESULTS

For investigation of our proposed pedestrian models, all
agents learn over 8,000 episodes with 800 episodes used for
exploration (the first 250 episodes are completely random).
Regarding the architecture of the DQNs, a fully-connected
NN and a replay buffer size of 50,000 experiences is selected;
hyperparameters were obtained after a limited parameter
search. We use the exact same training settings for the
DMARL approach of setting-2 for both agents. When we
present results, the median value of 8 complete, independent
training runs with different seeds are reported. The deviation
between runs is indicated in form of an 80%-confidence
interval spanning from the 10%-quantile to the 90%-quantile.

A. Performance Evaluation

The effect of uncertainty in form of measurement noise,
see (2), is evaluated with a fixed noise level αAV = 0.05 for
the AV and over αped ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} for the
pedestrian. We focus on the AV’s response under uncertain
pedestrian behavior as the pedestrian’s estimations of its
environment are unreliable, i.e., the pedestrian is likely to
make a wrong crossing decision.

Fig. 2 visualizes the performance of the DRL-based
PCAM system in setting-1. It can be seen that the AV learns
a flawless behavior without any collision when the pedestrian
behavior is certain, i.e., the collision rate at αAV = 0.0 and
αAV = 0.1 is 0.0%. A higher degree of uncertainty increases
the collision rate as expected. Remarkably, the AV is still
able to mitigate most collisions when the pedestrian acts
nearly unpredictably at αAV = 0.5 with a 0.135% collision
rate. Increasing the degree of noise makes the pedestrian
more likely to cross leading to a reduced episode duration
for the pedestrian. The AV accounts for this difficult-to-
predict pedestrian behavior; its episode duration increases
by approximately 23% from 4.663s to 5.722s.

The results of the novel DMARL approach with the
learning AV and pedestrian models are presented in Fig. 3. It
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Fig. 2. Results of setting-1: DRL-based PCAM system with a rational
pedestrian model.
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Fig. 3. Results of setting-2: DMARL-based PCAM system with a learning
pedestrian model and learning AV, both using DRL.

is evident that the agents learn in presence of low uncertainty,
i.e., αped = 0.0 and αped = 0.1, to avoid collisions
completely. The highest median collision rate is obtained at
αped = 0.3 with a rate of 0.125%; the highest upper bound of
the collision rate’s confidence interval occurs at αped = 0.4
with 0.304%. From a noise level of αped = 0.4 and higher,
the agents achieve a reduction in collision rate again despite
the higher uncertainty. Analysis of the agents’ behavior
shows that this effect is due to the pedestrian who tends
to cross the street recklessly, expecting the AV to react to
avoid a collision. This situation correlates with the crosswalk
chicken problem mentioned in [11] as the pedestrian learns
to dominate the AV’s strategy. From the AV’s perspective,
it is easier to adapt to this quasi-deterministic policy instead
of the pedestrian’s strategies learned at lower noise levels.

For performance comparison, Fig. 4 presents the collision
rates under uncertainty for the three introduced settings.
First, all agents learn to avoid collisions without mistakes
for αped = 0.0 and αped = 0.1. While the benchmark
case of setting-X shows comparable results, the DRL and
DMARL-based settings outperform it for the two highest
uncertainty levels. It can be reasoned that these agents are
able to learn a noise model implicitly, thereby following
a more conservative but safer strategy. Note that the best
model at αped = 0.5 is the PCAM system using DMARL but
otherwise the DRL-based approach of setting-1 is superior
with respect to the collision rates. The authors assume that
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applied to the real world, the DMARL approach would
outperform the single-agent PCAM system as the policy is
learned in response to a wider range of behaviors.

B. Behavior Analysis of Setting-2

As demonstrated in Fig. 5, the AV model learns a policy
that reduces the episode duration efficiently while keeping
the speed limit and minimizing collisions. Although a real-
world validation should be conducted in the future, the
authors suspect that there are several situations in which the
learning pedestrian model exhibits similarities to real human
behavior, e.g., the pedestrian starts walking immediately in
cases of a high initial distance of over 45m (see Fig. 5).
Another discovery is that the pedestrian’s crossing decision
is less reckless when starting from the left street side as the
distance to the AV’s lane is greater leading to a higher risk.
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Fig. 5. In this exemplary behavior of setting-2, the learning AV model
accelerates slightly at the episode start since the scenario is initialized with
a high TTC value of 4.5s. At TTC < 3s, the AV starts to reduce its
velocity continuously to a near standstill when the pedestrian is directly in
front. Interestingly, this TTC value corresponds to a real-world pedestrian’s
decision threshold as found in [10]. As soon as the potential collision has
been avoided, the AV accelerates again to minimize the episode duration.

V. CONCLUSION

We have presented a new PCAM system for AVs, introduc-
ing a novel DMARL-based approach to model the vehicle-
pedestrian interaction at crosswalks and analyzing the influ-
ence of observation uncertainty on the decision-making of
the agents. Results show that while the DRL-based approach
paired with a deterministic pedestrian model achieves reliable
performance over a large spectrum of uncertainty levels, the

system using DMARL is exposed to a larger diversity of
pedestrian behaviors retaining reliable collision avoidance
even under uncertain pedestrian behavior. Subsequent works
should validate similarities of the learned pedestrian behavior
to real human behavior; our initial analysis indicates similar
characteristics. To improve the proposed PCAM system
further, a more complex simulator (e.g., CARLA) should be
used while extending the scenario to multiple road users. It
may also be of interest to improve the independent DMARL
training scheme in the future.
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