
The Convergence of
Source Code and Binary Vulnerability Discovery – A Case Study

Alessandro Mantovani
EURECOM

France

Luca Compagna
SAP Security Research

France

Yan Shoshitaishvili
Arizona State University

USA

Davide Balzarotti
EURECOM

France

ABSTRACT

Decompilers are tools designed to recover a high-level language
representation (typically in C code) from program binaries.
Over the past five years, decompilers have improved enor-
mously, not only in terms of the readability of the produced
pseudocode, but also in terms of similarity of the recovered
representation to the original source code. Albeit decompilers
are routinely used by reverse engineers in different disciplines
(e.g., to support vulnerability discovery or malware analysis),
they are not yet adopted to produce input for source-code
static analysis tools. In particular, source code vulnerability
discovery and binary vulnerability discovery remain today two
very different areas of research, despite the fact that decompil-
ers could potentially bridge this gap and enable source-code
analysis on binary files.

In this paper, we conducted a number of experiments on
real world vulnerabilities to evaluate the feasibility of this
approach. In particular, our measurements are intended to
show how the differences between original and decompiled
code impact the accuracy of static analysis tools.

Remarkably, our results show that in 71% of the cases, the
same vulnerabilities can be detected by running the static ana-
lyzers on the decompiled code, even though for several cases we
observe a steep increment in the number of false positives. To
understand the reasons behind these differences, we manually
investigated all cases and we identified a number of root causes
that affected the ability of static tools to ‘understand’ the
generated code.

CCS CONCEPTS

� Security and privacy� Software security engineering .

KEYWORDS

decompiler, SAST, vulnerability, reversing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACMmust be honored.
Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3497764

ACM Reference Format:

AlessandroMantovani, LucaCompagna,YanShoshitaishvili, andDa-
vide Balzarotti. 2022. The Convergence of Source Code and Binary

Vulnerability Discovery – A Case Study. In Proceedings of the 2022
ACM Asia Conference on Computer and Communications Security

(ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan. ACM,

New York, NY, USA, 15 pages. https://doi.org/10.1145/3488932.
3497764

1 INTRODUCTION

As our world continues to rapidly accelerate into a software-
powered future, vulnerabilities in the software that increasingly
supports our lives and livelihoods are on the rise. This poses a
set of unique challenges for software development and testing.
Software tends to be checked for bugs by two categories of
testers: by those developing it and thus having access to the
source code (source-level program analysis) and by external se-
curity researchers who, often, do not have access to the source
code (binary-level program analysis).

Source-level vulnerability analysis is fundamentally differ-
ent from binary-level vulnerability analysis, because critical
information about the software, such as type, structure, and
size information, is lost when the software is compiled. This
makes performing certain analysis paradigms, such as static
vulnerability detection, on binary code a daunting challenge:
before vulnerabilities can be detected in binary code, this lost
information must be somehow recovered. This explains why
little work exists in this direction [7] and why commercial tools
that can analyze binary code (such as Veracode) require the
application to be compiled with debugging symbols [18] (i.e.,
inherently requiring the source code). Lack of source code also
hampers other analysis paradigms, such as fuzzing and sym-
bolic execution, because even these techniques benefit from the
ability to compile, rather than retrofit, instrumentation into
the analysis target [55]. As a result, static analysis techniques
tend to require source code to effectively detect vulnerabilities,
and dynamic techniques also function better when source code
is available.

Interestingly, there is a related area of research that con-
cerns itself with recovering information lost in the compila-
tion process: decompilation. In recent years, techniques have
been proposed to improve the recovery of data types [46, 53],

https://doi.org/10.1145/3488932.3497764
https://doi.org/10.1145/3488932.3497764
https://doi.org/10.1145/3488932.3497764

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

code structure [35, 63, 64], and even exact syntactic iden-
tity [57]. These techniques have been integrated into increas-
ingly powerful, accurate, and publicly available decompiler
prototypes [33, 39, 40].

Our insight is that the place, conceptually, where decom-
pilation leaves off is close to the place where vulnerability
detection picks up. That is, we realized that the type infor-
mation, structure information, and pseudocode recovered by
decompilers could be analyzed by vulnerability detection tools
in lieu of the original source code, to at least some degree of effi-
cacy. Additionally, as emerging techniques continue to improve
decompilation results, and the gap between the original code
and pseudocode from the decompilation of the program binary
narrows, decompilers can become a more and more effective
“crutch” to source-based vulnerability detection techniques.

In this paper, we undertake a study to determine the ability
of current Static Application Security Testing (SAST) tools
to detect vulnerabilities when executed on decompilers’ gener-
ated code. While it might seem obvious that decompiled code
is still unsuitable for static analysis, our case study wants to
quantify experimentally how “far” we are from the point in
which static analysis tools could be an effective solution on
decompiled code. To do this, we measure precision and recall
of 8 state-of-the-art SAST tools as they operate on the orig-
inal code of 9 real-world applications versus the pseudocode
of those applications resulting from the decompilation by 3
different state-of-the-art decompilers.

Our study has resulted in four main findings. First, the
output of current decompilers is unsuitable for any analysis
by most SAST tools without human analyst intervention and
must be fixed before compilation-based analyzers (e.g. such as
those based on LLVMpasses) can be applied. Second, when the
compilation issues are manually fixed, SAST tools operate at
a reduced 71% rate of recall, suggesting that a latent potential
could actually exist in the couple decompilers/SAST. Unfortu-
nately, the precision of SAST tools on decompiled code suffered,
with an average false positives increase of 232%. Third, we dis-
covered that compiler optimizations, and especially function
inlining, can sometimes help (and, at other times, hamper)
SAST tools. Fourth, by analyzing discrepancies in SAST re-
sults between original and decompiled code, we identified and
described 7 root causes that impact the differences between
false positive and true positive detection performance.

In turn, we envision a number of immediate steps forward
that can be inspired by our results. Our research solidifies
an understanding that modern decompilers are designed to
generate code that is easy to understand for humans, while
SAST tools are not designed to ingest such machine-generated
code. This suggests a set of new directions for researchers: even
small improvements to decompilers can drastically improve
the efficacy of SAST tools on binary code, despite the fact
that they were designed with a source code requirement in
mind. Alternatively, future studies could focus on SAST tools
to make them more noise-resilient when parsing decompiled
code. For example, the fuzzy-parsing approach performed by
Joern [65], one of the SAST tools that performed well in our
study, already goes in this direction. Furthermore, the use of

decompilers as a first stage in source-level static analysis can
have applications beyond the use of SAST tools on our dataset.
For example, embedded device firmware remains difficult to
test with either dynamic (due to the difficulty in executing
the firmware without emulating specific hardware environ-
ments, known as the rehosting problem) and static (due to the
binary-only form in which the firmware is often distributed)
techniques. Though some limited progress on both fronts has
been made [27, 41, 54], decompiler-aided static analyzers could
automate vulnerability assessment for these scenarios where
no standard alternatives exist.

In summary, this paper makes three main contributions:

∙ We “connect the dots” between decompilation and
source-level static analysis, realizing that the latter picks
up close to where the former leaves off.

∙ We perform a thorough evaluation of real-world ap-
plications with known vulnerabilities, measuring the
resulting change in detection efficacy.

∙ We analyze the root causes of problems arising from
SAST analysis of decompiled code, and propose concrete
improvements that can be made by decompilation tech-
nique researchers to improve end-to-end SAST results.

All artifacts associated with the paper are present at the
URL https://github.com/elManto/SAST on Decompilers.

2 RELATED WORK

We present now the state of the art related to both static
application testing and decompilation.

2.1 SAST

Static Application Security Testing (SAST) aims at removing
vulnerabilities from the source code during the development
phase as argued by Chess et al. [25].

The first approaches proposed in this research field consisted
of a simple lexical analysis of source code designed to detect
the presence of known vulnerable constructs [16, 56, 60] (e.g.,
dangerous API invocations).

To overcome the limitations of these naive techniques, re-
searchers proposed new approaches that leveraged a more
detailed model of the application’s source code, often obtained
by relying on the compilers parsing components. For example
the authors of [47, 59, 66] propose different methodologies to
extract the AST of the source code at compile-time and use
it for vulnerability detection.

Other researchers preferred instead to try to improve the de-
tection accuracy for specific classes of bugs. This was the case,
among the others, for buffer overflows [34, 36, 42, 61, 62], use
after free [32, 67–69], and null pointer dereference [37, 38, 50].

That being said, our paper does not present a new static
analysis approach. Rather, it is closer to the many studies
that focus on benchmarking program analysis tools, such
as [20, 21, 24, 30, 31, 43, 52], where several aspects are ana-
lyzed ranging from the creation of a comprehensive testcase
to a different set of tools adopted in the experiments.

https://github.com/elManto/SAST_on_Decompilers

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

2.2 Decompilers

One of the first studies about decompilers was conducted in
1995 by Cifuentes [26], as part of her Ph.D. dissertation where
she described how a decompiler works, the future challenges
in the field and presented dcc, a decompiler for Intel 80286.

Over the past two decades, two main approaches have
emerged for the development of decompilers: rule-based de-
compilation and NMT-based (Neural Machine Translation)
decompilation. Rule-based approaches [10, 11, 23, 44] are the
most popular today even though the production of a rule-
based decompiler is particularly time consuming. For instance,
according to its authors, the development of RetDec took a
total of 7 years for a team of 24 developers [1].

The birth of the NMT-based approaches [33, 39, 40] co-
incides with the seminal work of Katz et al. [39], where the
authors generalize the decompilation problem as a language
translation task, namely from assembly to C thanks to the
adoption of Natural Language Processing (NLP).

Another line of research has focused on improving the quality
of the generated decompiled code by focusing on two main as-
pects: improving the readability and improving the control flow
layout. The first category includes work that aimed at better
recovering variable types [46, 53] and at suggesting more mean-
ingful variable names [45]. The second category traditionally
focused on reducing the number of GOTO statements gener-
ated by the decompiler [35, 63, 64] (DREAM /DREAM++
decompilers) .

It is important to underline that all these studies focused
only on improving the readability (and therefore the usability
of the decompiler output) for humans. No study to date has ana-
lyzed how easy it is for a machine to process the produced code.

Finally, in 2018 Schulte et al. [57] proposed a novel approach
to generate a binary-equivalent decompiled code that can be
successfully recompiled. The paper by Schulte et al. relies on a
number of innovative techniques, such as adoption of existing
decompilers to seed the lifting process and use of a human-
written code excerpts for the generation of human-readable
code even though the tool (named BED) is not released.

3 METHODOLOGY
AND EXPERIMENT DESIGN

This paper studies how modern static analysis tools are im-
pacted by the decompilation process, from the perspective of
vulnerability detection. To that end, we study the interaction
of the following entities: SAST tools (Sec. 3.2), Vulnerable
applications (Sec. 3.1) and Decompilers (Sec. 3.3).
For each vulnerable application, we proceed as summarized
in Figure 1 (reported in Appendix for space reasons), where
two main pipelines are executed.

Baseline analysis. In the source code analysis pipeline, we
input the original source code of the application to the differ-
ent static analyzers and store their generated reports for later
analysis.

Compilation. We compile each application according to the
provided build scripts (e.g., Makefiles), using the same com-
piler options as suggested by the developers, to obtain the

compiled binary that is in turn fed into the decompiled code
analysis pipeline. A further insight is presented in Appen-
dix 4.8, where we show the results of the differential analysis
we performed for a subset of the vulnerable applications to
assess the impact of compiler optimizations.

Decompilation and analysis. In the decompiled code anal-
ysis pipeline, we decompile the binary using our decompilers
and run the resulting code through the SAST tools that do
not require re-compilation.

As we will describe in more details in Section 3.2, the major-
ity of the SAST tools require to compile the target application
(for example, to perform LLVM passes). Therefore, since the
decompilers typically generate C-like pseudocode which can-
not be re-compiled out of the box, we manually applied the
fixes needed to make the decompiler result compilable by both
the gcc and clang compilers. This time-consuming process is
interesting for different reasons. First, it allowed us to complete
the experiments with all the static analysis tools selected in
our study. Moreover, it provided us with an invaluable feed-
back on the steps an analyst should take if they want to apply
source-code static analysis on binary programs. In other words,
it allowed us to quantify the feasibility and effort required by
a human-in-the-loop solution.

After manually repairing the decompiled results, we process
the recompilable code by the compilation-based SAST tools.

Result comparison. Finally, we proceed to manually com-
pare the three sets of reports obtained in our experiments (the
one on the original source code, and the two on the decompiled
and recompilable code) to assess how the detection and false
positive rates were affected by the previous steps. The results
of this comparison are presented in Section 4.

Whenever results differ (i.e., if a previously detected vul-
nerability was no longer detected or if new false alarms were
generated by the tools), we performed a root-cause analysis
to determine the cause. This step, again performed manually,
required us to progressively modify the decompiled code by
making it more and more similar to the original source, until
the effect we wanted to study disappeared (i.e., the vulnerabil-
ity was detected or the false alerts were not raised anymore).
We discuss the findings of this analysis in Section 5.

In the rest of this section we discuss the methodology we
used to select vulnerable applications, SAST tools, and de-
compilers. It is important to note that the applications and
SAST tools had to be selected together. In fact, in order to
have enough results for our comparison, we required each
vulnerability to be detected by at least two SAST tools, and
each SAST tool to detect at least two vulnerabilities. This
constraint turned out to be difficult to satisfy, and forced us
to perform a long pre-selection phase in which we evaluated
many candidates (both for vulnerabilities and static tools).

3.1 Vulnerability and Application Selection

Our selection of vulnerable code was driven by five main re-
quirements.

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

Decompilers

Report

Original Apps
Source Code

SAST
Tools

SAST
Tools

SAST
ToolsCompiled

Binary Recompilable
Code

Report

Report

Comparison
&

Root causes
Analysis

Figure 1: Summary of the Experiment Pipelines

Table 1: The vulnerabilities adopted for the evalua-
tion

Vulnerability Application Description

CVE-2017-
1000249

file (C)
Stack BOF, unchecked
memcpy

CVE-2013-
6462

Xorg comp-
nent (C)

Stack BOF, unchecked
scanf

BUG-2012 libssh2 (C) IOF (leading to heap BOF)

CVE-2017-
6298

ytnef (C) NPD

CVE-2018-
11360

wireshark
(C/C++)

Heap BOF (off-by-one) (*)

CVE-2017-
17760

OpenCV com-
ponent (C++)

BOF in C++ virtual method

CVE-2019-
19334

libyang (C) Stack BOF, unchecked strcpy

CVE-2019-
1010315

wavpack (C) DBZ

BUG-2010 libslirp (C) UAF

BUG-2018 wireshark
(C/C++)

DF (*)

(*) indicates an inter-procedural bug, all the others are intra-procedural

Codebase size. We wanted to include a mix of small and
large code bases to assess the impact of code complex-
ity on both the decompilation and the vulnerability
detection phases.

C++. We included a C++ codebase to evaluate the fact that
decompilers only produce C code as output.

Real vulnerabilities. We wanted a collection of real-world
CVEs and bugs that can properly represent the typical
classes of bug. This would allow us to be as general as
possible in the actual evaluation phase, without focusing
on artificially generated vulnerabilities.

Bug complexity. Third, an important factor that affects
the precision of static analysis is whether the bug that
needs to be detected is inter-procedural (i.e., its dis-
covery involves to go through multiple functions) or
intra-procedural (i.e., it is self-contained in a single pro-
cedure) In our dataset, we wanted to include examples of

both categories, with a preference for intra-procedural. In
fact, the purpose of our testbed is not only to benchmark
SAST tools, but to cover bugs with different detection
complexity.

Bug discoverability. Finally, we were also limited by the
fact that the selected vulnerabilities should be identified
on the original source code by the selected SAST tools,
in order to perform a comparison when observing the
verdict on the decompiled code.

To satisfy all our constraints, we collected 10 vulnerabilities
from nine different applications (summarized in the Appendix
in Table 1). The applications ranged from 4 Thousands to
2.1 Millions LOC (all LOC statistics are reported in Table 4).
Note that for two projects, namely Xorg and OpenCV, the vul-
nerability was present in a sub component of the application
that could be compiled as an independent module. Our dataset
covers the following five classes of vulnerabilities:

Buffer Overflow (BOF) are probably the most widespread
class of vulnerabilities and this is why we decided to include
five variations of this class in our evaluation, e.g., three incor-
rect uses of a buffer handling API (respectively scanf, memcpy
and strcpy), an example of heap-based off-by-one buffer over-
run (inter-procedural) and finally a further stack-based BOF,
present in a C++ code base and located in the implementation
of an abstract method from a parent class.

Integer Overflow (IOF) bugs are a common cause of unde-
fined behaviors in software. Our dataset includes one example
of IOF that affects the size of a dynamic memory allocation,
and that therefore can lead to an heap BOF.

Null Pointer Dereference (NPD) bugs exist when a NULL
pointer is de-referenced.We include one example of NPD in our
data set: in this example the pointer is returned by a calloc

invocation and it is stored inside the field of a structure. The
bug is due to the fact that the caller fails to check the pointer
validity.

Double Free/Use After Free (DF/UAF) vulnerabilities.
On the one hand, we would expect that such vulnerable flaws
are easier from the decompilation point of view, because the
decompiler can reconstruct the use of a free without any type
system/size problems. On the other hand, SAST tools that
detect DF/UAF need to internally keep track of freed pointers

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

Table 2: SAST tools selected for our study

Commercial /
Open Source

Compilation
required

User-provided
queries

CPPCheck Open Source No No
Joern Open Source No Yes
Comm 1 Commercial Yes No
Infer Open Source Yes No
Clang Open Source Yes No
Ikos Open Source Yes No
Code-ql Open Source Yes Yes
Comm 2 Commercial No No

and check all the subsequent pointer accesses. As a further
layer of complexity, one of the two bugs (the DF), is the second
of the two inter-procedural vulnerabilities.

Division By Zero (DBZ) is not a memory corruption bug,
but it affected several real world software in the past and can
be used as denial of service vulnerability.

3.2 SAST Tools Selection

As we were unsure about the effects of the decompilation pro-
cess on the analysis performed by SAST tools, we wanted to
evaluate a range of products relying on a diverse set of fea-
tures and techniques. We initially identified twelve tools (nine
open source and three commercials) based on their popularity
according to the studies proposed by [24, 31, 43, 51, 58] and
including non-academic sources such as [2, 3, 19].

Over the 12 candidate SAST tools, we selected those that
were able to satisfy the selection criteria of detecting at least
two of the vulnerabilities in our dataset (cf. Table 3 detailed in
Section 4).1 Finally, our collection of static analyzers, listed in
Table 2, includes: CPPCheck [6] 2.1, Joern [14, 65] 1.1.95,
Infer [13] 0.17.0 , Scan-build [17] 11.0, Ikos [12] 3.0, Code-
ql [4] 2.2.4,Comm 1 andComm 2, two popular commercial
tools that we have to anonymize for legal reasons.

Before selecting these eight tools we conducted a set of pre-
liminary experiments, in which we tested many other SAST
tools. Among the others, we considered Comm 3 (another
popular commercial tool), Frama-C [9], CPACheck [22] and
Flawfinder [8]. However, we discarded them because after ex-
ecuting on a subset of bugs, they did not show a sufficient
detection rate and accuracy of the analysis.

3.3 Decompiler Selection

We selected three cutting-edge decompilers for our evaluation:
HexRays 7.1 [11] (the state of the art commercial decompiler
from IDA Pro), Ghidra 9.2 [10] (the leader open source decom-
piler), and Retdec 4.0 [44] (the emerging challenger).

Two main reasons influenced our choice of these three tools.
First, other emerging alternatives are quite far behind in terms
of precision and quality of the generated code. Furthermore,
prior work about decompilers [35, 57, 63, 64] only focused on
these three decompilers when performing their evaluations.

1Note that the low detection rate of some tools may just be due to their
underlying strategy in minimizing the false positive rate.

Non-decompiling lifters. Some tools, such asMCSema [28],
can lift binary code directly to LLVM IR, in lieu of decompi-
lation [49]. At first glance, these might be a usable route for
applying compilation-requiring SAST tools on binary code.
However, these tools perform only a subset of the analysis
which are executed by decompilers, and, in fact, can be consid-
ered as the “first stage” of a decompilation process. As a result,
their output will contain insufficient information compared
to the result of a decompiler, making the resulting code un-
suitable for SAST analysis. For example, bytecode produced
by lifters does not contain debug information whereas SAST
tools that work on top of an llvm pass typically need compiler-
generated symbols. Though it would be possible to develop
more sophisticated SAST tools that bridge the gap between
the output of static lifters and their expected input, this is
exactly what decompilers already do from the other direction.

4 EXPERIMENTS

In this section we discuss our experiments with particular focus
on how the decompilation process affects the detection and
false positive rates as a whole and for each tool individually.
We leave the investigation of the reasons behind these results
to Section 5.

4.1 Source code analysis

Table 3 reports the detection results of the eight SAST tools
against the different vulnerabilities in our dataset when ana-
lyzing the original source code of the applications.

It is interesting to notice that, with the notable exceptions of
Joern, Clang and Code-ql, the other tools are quite complemen-
tary in the bug detection, uncovering 2-4 bugs each andmissing
only two bugs overall (CVE-2017-17760 and BUG-2018).

The high detection rate of Joern and Code-ql is due to
the custom query rules written by us and inspired from the
examples and guidelines described by the authors of the two
projects [5, 15]. Although our scope was not to generate a
query that is sufficiently generic to cover the many possible
scenarios for a certain class of vulnerabilities, we tried to put
ourselves in the position of an analyst who does not know the
bug a priori and this explains why the user-defined rules still
generate a number of false positives. 2.

Even though our effort was to produce generic rules, it is
unavoidable to introduce some bias. However, we believe that
this is the only way to include the two analyzers, that represent
the current state-of-the-art w.r.t. source-code static analysis in
our study. Making the queries more generic to catch a broader
set of vulnerabilities for a specific class of bugs would also
result in a biased result, by increasing the false positives. The
opposite strategy (i.e., extremely dedicated queries that only
capture the bug under testing) would not be representative
of rules that can be used in the real world, as the analyst does
not know the vulnerabilities beforehand.

The remaining six analyzers included in our analysis were
launched with their own set of rules and thus they do not

2queries are presented in a dedicated repository at https:
//github.com/elManto/StaticAnalysisQueries

https://github.com/elManto/StaticAnalysisQueries
https://github.com/elManto/StaticAnalysisQueries

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

Table 3: A breakdown of the bug detections for SAST tools (when applied to original program source code).

CPPCheck Joern Comm 2 Clang Ikos Infer Code-ql Comm 1

CVE-2017-1000249 ✓ ✓ ✓ ✓ – – ✓ ✓

CVE-2013-6462 ✓ ✓ ✓ ✓ – – ✓ –
BUG-2012 – ✓ – ✓ ✓ ✓ ✓ ✓

CVE-2017-6298 – ✓ ✓ – ✓ ✓ ✓ –
CVE-2018-11360 – – – – ✓ – ✓ –
CVE-2017-17760 – ✓ – ✓ – – – –
CVE-2019-19334 ✓ ✓ – ✓ ✓ – ✓ ✓

CVE-2019-1010315 ✓ ✓ – ✓ – – ✓ –
BUG-2010 – ✓ – ✓ – – ✓ ✓

BUG-2018 – – – ✓ – – ✓ –

Table 4: Lines of Code produced by different decom-
pilers

Application Original HexRays Ghidra RetDec

file 14,056 18,012 18,296 24,114
Xorg 20,331 32,131 31,132 62,819
libssh2 22,322 26,806 33,186 37,531
ytnef 4,025 3,529 5,736 4,427
wireshark 2,110,822 2,345,564 2,444,145 NA
openCV 507,508 826,104 871,848 NA
libyang 102,750 104,789 98,886 151,049
wavpack 6,084 8,671 11,645 23,084
libslirp 7,806 12,178 14,058 15,915

introduce any bias in the experiment. In particular, we decided
not to create custom rules for other tools (such as Comm 2 or
Comm 1) as they are already shipped with a full set of rules
that were sufficient to detect some of the vulnerabilities in our
dataset.

4.2 Decompilation

All three decompilers were able to successfully decompile the
nine binaries in our dataset, with the exception of two execu-
tions of RetDec which failed on the largest projects (Wireshark
and OpenCV) due to LLVM errors. It is very difficult to mea-
sure how accurate the generated pseudocode is, or even how
close it is to the original source code. To accomplish this task,
we draw inspiration from the authors of [35, 64], who adopted
lines of code and number of GOTO statements as the core
metrics to compare the different decompilers outcome in their
work. As a coarse-grained indicator, Table 4 reports a com-
parison of the lines of code. The output of HexRays was the
smallest in most experiments, and in total resulted in 20.8%
more LOCs with respect to the original source files. Ghidra’s
code was not too far (+26.2% over the original), while RetDec
was considerably more verbose (+79.8% in the eight binaries
in which it ran successfully).

Previous papers on decompilation often counted the num-
ber of GOTO statements as a metric of the ‘quality’ of the
produced code. While quality was often used as a synonym
for readability, and it is unclear whether this would have any

affect on static analysis tools, a lower number of GOTOs could
also be considered a sign of a more advanced decompiler. We
noticed that all tools generated code containing many GOTOs,
ranging from a minimum of 84 (HexRays on ytnef) to a maxi-
mum of 36,002 (HexRays on Wireshark). In average, HexRays
generated one GOTO every 60.3 LOCs (of the original source),
Ghidra one every 60.7, and RetDec one every 11.2 LOCs.

Finally,we compared the function declarations of the projects
source code against the ones contained in the pseudocodes
produced by the three decompilers in order to measure the
difference in the number of input parameters. On average,
HexRays misses 4 parameters, Ghidra 6, and RetDec 7 every
10 function declarations.

4.3 Re-Compilation

Three among our SAST tools can directly analyze source code
files without any need to compile them: CPPCheck, Joern
and Comm 2. The first two were able to analyze the output
of the decompilers, without any further manual intervention.
Comm 2 instead failed at reconstructing the AST for five
instances of decompiled code.

Furthermore, the remaining five tools require the compila-
tion of the target application to analyse it. However, as shown
by the authors of [48], none of the output produced by the
three decompilers was correct C code, and therefore none of
them could be re-compiled out-of-the-box. This obliged us to
look for a suitable solution to continue our experiments.

Therefore, to put ourselves in the position of an analyst, we
attempted to manually fix the produced pseudocode to make
it compliant with both GCC and Clang. We performed this
operation on the output of all the three decompilers consid-
ered in our study, to compare different executions of the static
analyzers on different input pseudocodes.

Overall the manual procedure took from a minimum of 90
minutes to 8 hours (for libyang). However, after spending 24
hours each by trying to fix the decompiled code of Wireshark
and OpenCV (the two largest projects), we could not obtain a
“recompilable“ version of the pseudocode. Hence, for these two
applications we adopted an alternative solution, that allowed
us to generate a version of the decompiled applications that pre-
served the vulnerabilities and could be processed by our SAST
tools. In particular, for these two cases we fixed the pseudocode

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

of the vulnerable functions and of all of the procedures they
invoked.We then integrated the resulting code into the the orig-
inal source code of the vulnerable module – thus resulting into
an hybrid codebase where all code related to the vulnerability
came from the decompiler while the rest was taken verbatim
from the original codebase of the module. This compromise
allows us to study whether SAST tools could still find the vul-
nerability in the recompilable code, extending our evaluation
of the tools to all the pre-selected vulnerabilities, but not to
measure the impact on the overall number of false positives.

Our manual procedure consisted of a number of repeated
steps that involved the proper definition of global variables, the
definition of header files, the correction of function invocations
(e.g., often the decompiler declared a method with N param-
eters and invoked it with M != N parameters), the resolution
of mismatching types, and some small syntactic operations to
remove wrong keywords or fix syntax errors with brackets.

Although we are aware of the fact that some bias could be
introduced while manually fixing the pseudocode, we want to
underline that this mimics a realistic setting since currently a
human-in-the-loop solution is required for this approach and
alternatives are still missing.

4.4 Decompilers variability

The detection outcomes of the SAST tools able to analyze
the output of the three decompilers is presented in the ‘De-
compilers Output’ columns of Table 6. These outcomes are
not broken down for each of the three decompilers as, except
for the case of CVE-2017-6298 discussed below, the detection
results were always the same regardless of the decompiler.

Indeed we launched the 8 static analyzers for each version
of the decompiled code (either the raw or the manually fixed
one depending on the tool). Unfortunately, some combinations
of analyzer-pseudocode could not produce an analysis result
because the corresponding tool failed with a crash. Except
for an execution of Ikos on the Hex-Rays decompilation of
CVE-2019-1010315, the other exceptions affected mostly the
output of Ghidra and Retdec when analyzed by Ikos (3 failures
on Retdec, 5 on Ghidra), Comm 1 (2 failures on Retdec) and
Comm 2 (3 failures on Retdec, 2 on Ghidra). For all the other
tools instead, it was possible to compare the output in terms
of detections, finding that no differencies exist between the
HexRays and Ghidra outcome from the SAST perspective.

The same does not hold for the output of RetDec. Overall
the code generated by RetDec was more complex and consid-
erably less readable for a human analyst. However, readability
does not necessarily affect automated algorithms, and in fact
vulnerability CVE-2017-6298 could only be detected on the
RetDec output when using Joern and Code-ql. This is due
to the fact that RetDec adopts a more naive approach and
represented the fields of a struct as if they were separate vari-
ables (while both Ghidra and HexRays reconstructed a struct),
before assigning them in the pseudocode representation of the
struct (i.e., an array). As we will explain in more details in
Section 5, this helps static analysis tools to more easily track

the use of the individual fields, which in the aforementioned
case helped to discover the vulnerability.

We searched for other cases containing structs to see if they
also benefited from the RetDec decompilation approach, but
neither the Use-after-free nor the Double free bugs that are
related to struct usage could be discovered on the RetDec
decompiled code. Note that since RetDec failed to decompile
Wireshark in its entirety, we manually tried to point the tools
directly to the vulnerable functions (which were decompiled
by RetDec), but this did not lead to any detection because
in those cases the generated code was more similar to the
HexRays one and it contains some patterns that make the
bug detection harder. As we will explain more in details in 5,
the representation of types and structs in the pseudocode is
crucial for SAST tools.

In the rest of the paper we consider a bug as detected by
a static analyzer on a binary if at least one decompiled code
exists such that the tool can identify the vulnerable flaw when
analysing it. Similarly, due to space limitations, for Table 6
(where we evaluate the variation of false positives), we only
report results on the HexRays decompiled code. Moreover,
given the failure conditions that some tools experienced on
Retdec and Ghidra, the false positives evaluation on these
would be incomplete.

4.5 Summary of Results: True Positives

Table 5 presents a summary of the results, both for the tools
that we were able to run on the vanilla output of the decompil-
ers, as well as for the remaining ones that we had to test on the
manually curated code. The green marks represent the cases
where the bug was found on the pseudocode, whereas the cross
marks show a missing detection. Dashes instead indicate that
the bug was not found in both the original source code and
the decompiled one.

We must underline that for five executions on the raw
HexRays decompiled code, Comm 2 failed at building the
AST of the analyzed code. For this reason, we opted to run it
on the re-compilable code and to report the results related to
such executions.

Overall, only one of the tools (Chechmarx) was able to
re-discover the same subset of vulnerabilities as when it was
applied to the original source code. However, all tools were still
able to discover at least one bug (and often more than one),
thus showing that running SAST tools on decompiled code
is not a useless procedure. In total, the 42 cumulative True
Positives on the original codebase decreased to 30 (71%) after
decompilation. However, not all tools were equally affected,
as reported in the last row of the Table.

The three tools that operate on source code without the need
to compile it were less affected by the decompilation process.
Moreover, the commercial tools, while in general less effective at
discovering the vulnerabilities in our dataset, continued to find
exactly the same bugs also in the decompiled code, even though
in the case of Comm 1, we can observe that a new vulnerability
is uncovered instead of another that is not detected anymore.At

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

Table 5: Results of running the SAST tools over decompiled code. An asterisk (*) signifies that the detection
was accomplished through the introduction of an excessive amount of false positives.

Decompilers Output Re-Compilable Code Wrt the original
CPPCheck Joern Comm 2 Clang Ikos Infer Code-ql Comm 1 codebase

CVE-2017-1000249 ✗ ✓ ✓* ✓* – – ✓ ✗ 4/6
CVE-2013-6462 ✓* ✓ ✓* ✓* – – ✓* – 5/5
BUG-2012 – ✗ – ✗ ✓* ✗ ✗ ✗ 1/6
CVE-2017-6298 – ✓ ✓* – ✗ ✓ ✓ – 4/5
CVE-2018-11360 – – – – ✓ – ✗ – 1/2
CVE-2017-17760 – ✓ – ✓ – – – – 2/2
CVE-2019-19334 ✓* ✓ – ✓* ✓* – ✓ ✓* 6/6
CVE-2019-1010315 ✓ ✓ – ✓ – – ✓ – 4/4
BUG-2010 – ✗ – ✗ – – ✗ ✓ 1/4
BUG-2018 – ✓ – ✗ – – ✗ ✓ 0/2 + 2

Wrt original codebase 3/4 6/8 + 1 3/3 5/8 3/4 1/2 5/9 2/4 + 1

the other end of the spectrum, Clang and Code-ql were the two
tools that were affected the most by the decompilation process.

Another way to look at the data is to group the results
in terms of vulnerabilities instead of looking at the different
tools. In this case (all results reported in the last column of
Table 5) the integer overflow (BUG-2012), the use-after-free
(BUG-2010), and the double-free (BUG-2018) clearly stand
out as the most difficult to detect on decompiled code.

At the other end of the spectrum, the division by zero and
the stack-based buffer overflows seemed instead the easiest
to detect. For the first, a manual inspection shows that there
are no interesting variations in the way the decompilers re-
constructed the source code. The bug involved two integer
variables which are easier to handle than strings/pointers for
decompilers. Thus, after decompiling the corresponding bi-
nary, the pseudocode surrounding the vulnerability was quite
similar to the original code, from a static analysis perspective.

For the three stack-based BOFs, the true positive instead
came at the expense of a much larger number of false positives,
as we will describe in more detail in the following section. For
these cases we reported an asterisk (*) meaning that an high
number of buffers’ operations were flagged by the analyzer,
partially explaining the detection for these cases.

4.6 Summary of Results: False Positives

The usability of a tool is largely determined by the number
of false positives, since reporting thousands of alarms would
make the triaging phase both difficult and time consuming.

We performed a study of the false positive increment for
each project where we could compare the outcomes of the
tools on the decompiled code. Thus, we decided to focus on
the Hex-Rays output, since is the one that was easier to parse
for the SAST tools reporting only one failure for CVE-2019-
1010315 (as explained in Section 4.4, 3 tools failed on the
Ghidra/Retdec output). Moreover, it was not possible to have
such a comparison on the Wireshark and OpenCV projects,
because we could not recompile the decompiled code.

We report the variation of false alarms in Table 6, marking
in red the cases in which there was an increase of more than
50% of false alarms, and in green when the number decreased.
Overall, if we exclude Joern (which is a special case we de-
scribe below) in 78% of the tests the number of false positives
increased. Even worse, in 61% of the tests the false alerts
increased by more than 50%.

We point out that we manually went through the generated
alarms that the static analyzers produced, to assess if they
represented actual false positives. The only assumption that
we did to accelerate the procedure, was that if the use of an
API call (e.g., strcpy or memcpy) was safe in the source code,
it could not become vulnerable in the pseudocode. Moreover,
many false positives could be discarded in batch since they
were related to uninitialized variables.

However, in some cases (mainly for Clang and Comm 1) the
tools generated less false alarms on the decompiled code. To
figure out the reasons behind this, we checked the reports for
those tools that reported a negative variation. One of the main
reasons for this behavior is that many false alarms in the source
code are due to free-related vulnerabilities (UAF, DF, stack
variables freed). However, when analysing the decompilers, the
SAST tools could not apply the same dataflow and, moreover,
the decompiler changed the type of the variable containing the
freed memory area, making the job of the analyzers much more
difficult. Furthermore, several warnings reported the presence
of badly terminated strings in the source code (i.e., strings
without the proper null-terminated byte). Because of type
confusion problems, the same problem could not be detected
in the decompiled code.

To evaluate the Code-ql false positive rate, we adopted the
default queries that are shipped with the installation. This
allowed us to obtain unbiased results, compared to what we
would get if we used the custom rules that we wrote to find
the vulnerabilities.

Finally, Joern deserves a separate discussion as the tool does
not come with any predefined rule, and all tests were therefore
performed by enabling our own heuristic checkers for each

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

Table 6: False positives, as evaluated on the original source code and the decompiled source code produced by
Hex-Rays. False positive increases of over 50% are highlighted in red, and decreases are highlighted in green.

Decompilers Output Re-Compilable Code
CPPCheck Joern Comm 2 Clang Ikos Infer Code-ql Comm 1

Src Dec Src Dec Src Dec Src Dec Src Dec Src Dec Src Dec Src Dec

CVE-2017-1000249 68 45 166 144 236 241 88 96 3 9 152 423 174 515 202 583
CVE-2013-6462 106 503 374 296 485 701 368 365 303 359 89 812 496 1,177 246 1,097
BUG-2012 68 262 253 110 107 358 298 178 103 541 21 827 102 341 613 453
CVE-2017-6298 16 125 25 39 52 66 15 10 329 439 10 80 18 132 84 137
CVE-2018-11360 3,113 20,548 3570 1504 - - - - - - - - - - - -
CVE-2017-17760 475 7668 122 1277 - - - - - - - - - - - -
CVE-2019-19334 833 1072 1019 334 2,295 384 185 315 13 113 128 959 98 176 1999 661
CVE-2019-1010315 20 143 214 150 173 358 65 45 20 - 295 361 428 208 1417 806
BUG-2010 69 297 190 41 102 114 2 22 31 32 23 168 37 350 115 525
BUG-2018 3,113 20,548 3570 1504 - - - - - - - - - - - -

Total 7,881 51,211 9,503 5,389 3460 2223 1,021 1,031 802 1439 718 3630 1353 2899 4676 4262

project scan. Although these are certainly not a complete and
generic set, they allowed us to have a reasonable evaluation of
the false positives also for this static analyzer. Moreover, such
a tool performs a fuzzy parsing of the code. Even if this feature
makes Joern the perfect candidate to analyze decompiled code,
we pay for this fact in some cases where it could not correctly
interpret some pieces of code and skipped themwithout provid-
ing a complete analysis. As a result, the internal representation
lacks some parts that could not be correctly parsed, and thus
were not reachable by our queries. This resulted in a decrease
of the query output, as only a portion of the code could be
properly analyzed.

4.7 Bugs detected *only* on pseudocode

Our initial assumptionwas that running a SAST tool on decom-
piled code can at best detect the same bugs it would detectwhen
it is used to analyze the original source code of the application
(andmore likely considerably less than that). Albeit our experi-
ments show that for the majority of the analyzed scenarios this
hypothesis is correct, we found one interesting case (BUG-2018)
inwhich tools (both Joern andComm 1) could detect a vulnera-
bility on the decompiled code, but not on the original codebase.

Compilers can affect the control flow of a program in such a
way that it is impossible to recover exactly the original version.
For example, as we will see in the next sub-section, sometimes
compilers remove dead code or simplify boolean conditions for
optimization reasons.

The double free vulnerability present in Wireshark (BUG-
2018) is an inter-procedural problem, which is therefore harder
to detect for static analysis tools. In fact, as reported in List-
ing 1 (that we report in the Appendix for space reasons), the
vulnerability involves three separate functions that eventually
invoke the g free two times.

In the original codebase Joern was only able to reconstruct
a subset of the flows that lead to free, thus missing the vulner-
ability. Similarly, the internal analysis performed by Comm 1
was insufficient to uncover the vulnerable flow in the original
source code.

However, after checking the decompiled code, we noticed
that, because of the static keyword, the compiler inlined dif-
ferent functions into a single body (val from unparsed). This
transformed the inter-procedural bug into an intra-procedural
one, largely simplifying the task of detecting the bug. In fact, it
turned out that both Joern andComm 1 succeeded at revealing
the bug on the pseudocodes they could analyse.

1 s t a t i c void

2 s t r i n g f v a l u e f r e e (f v a l u e t * fv)

3 {
4 g f r e e (fv−>value . s t r i n g) ;

5 }
6

7 s t a t i c gboolean

8 va l f r om s t r i n g (f v a l u e t * fv)

9 {
10 s t r i n g f v a l u e f r e e (fv) ;

11 r e turn True ;

12 }
13

14 gboolean

15 va l f rom unparsed (f v a l u e t * fv , . . .)

16 {
17 s t r i n g f v a l u e f r e e (fv) ;

18 . . .

19 r e turn v a l f r om s t r i n g (fv , . . .) ;

20 }

Listing 1: Double free source code

4.8 Compiler Impact

Compilers support different optimization levels that modify
the output of the compilation phase at the assembly level.
Therefore, we opted to analyze how these compiler options can
affect the results of the decompilation, and in particular, if such
changes in the pseudocode are meaningful for the SAST tools.

To verify this, we performed an additional experiment based
on the following four phases. (i) Selection: we selected two

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

among our open source projects, file and libssh2 (CVE-
2017-1000249 and BUG-2012). The choice of the two projects
was driven by the average size of their codebase and the mean-
ingful number of detections. (ii) Compile with optimization
levels: we compiled the selected projects with three different
optimization levels, O0, O2, O4 (O0 disables all optimization
passes whereas O4 indicates that the generated code is highly
optimized to improve execution speed). It shall be noticed
that all the experiments discussed so far were performed using
the default compiler optimizations specified in each project
makefile (always O2 for our applications). (iii) Decompile: we
decompiled the three versions of the same binarywithHexRays.
(iv) Analysis: we launched all SAST tools on each decompiled
outcome. This also implies that we had to manually fix all
variants of the decompiled code to generate the recompilable
versions required by many of our tools.

The first aspect we wanted to investigate is how the compiler
options affect the number of false positives. All static analyzers
ran on all versions except for Ikos that reported some problems
when parsing the code compiled with the O4 option. Hence,
we discarded it, for the computation of the false positives.

For libssh2, the tools cumulatively produced 850, 2,421
and 1,606 false positives for, respectively, O0, O2 and O4. For
file we obtained instead 3,085, 2,275 and 2,984 alarms, de-
pending on the compiler optimization. Such results show that
there is no clear trend and it is unclear whether a more aggres-
sive optimization of the code would cause more or less false
alarms. However, the different amount of false positives for
each compilation option means that the compiler actually has
an impact on the generated decompiled code, and therefore,
on the way SAST tools parse it.

We then inspected all reports generated by the tools, to
determine if vulnerability detection is also affected by the
compiler optimizations. For BUG-2012, we could not find any
difference between the executions of the static analysis tools
over the different versions of decompiled code. The only config-
uration that brought to a detection consisted of executing Ikos
on the O0 and O2 versions of the code. After a manual inspec-
tion of the three flavours of pseudocode, we understood that
the compiler optimization level does not affect the vulnerable
function in a significant way except for a different number of
declared variables(29 for O0 vs 99 for O4).

CVE-2017-1000249 instead tells a different story. Indeed,
when scanning the three versions, the tools reported different re-
sults depending on the compiler optimization.More specifically,
with O0 and O2, 4 tools out of 8 could detect the bug anyway.
Surprisingly, the detection dropped to zero with the O4 flag. To
understand the reasons behind such a drastic change, we went
through the decompiled code onemore time.A first difference is
that with the O4 flag,multiple functions are compiled inline and
thus, the vulnerable function becomes a part of a bigger one,
hindering the SAST tools to analyze the data flow. Moreover,
such a modification, affects not only the local defined func-
tions of the binary, but also some library functions. Among the
others, the memcpy invocation, originally contained in the code
and root cause of the buffer overflow is replaced with an inline
implementation that is ignored by the tools. Finally, an unsafe

Table 7: Decompilation inadequacies that inhibited
SAST tool operation on our dataset, separated
into patterns and their effect on analysis results.
Depending on the pattern, these inadequacies can
be repaired through improvements in decompilation
techniques, SAST approaches, or both.

Pattern Effect Project Affected Tool Repairer

(P1) Buffer size FP ↑ all all except Joern Both

(P2) Integer types FP ↑ all
Comm 2,
Cppcheck

SAST

(P3) Unitialized

variable FP ↑ all
Clang, Infer,
Ikos,Code-ql

Decomp

(P4) Function
pointers TP ↓ libssh2 Joern,Code-ql SAST

(P5) Pointer as int TP ↓
ytnef,
wireshark,
libslirp

Joern,Clang
Comm 2,
Ikos,Code-ql

Both

(P6) Int wrong

size FP ↑ all
Ikos,Code-ql,
Infer

Both

(P7) Simplified

expressions TP ↓ file
Cppcheck
Comm 1

SAST

check on the buffer size that always evaluates true (because of
a programming error) is removed due to the optimization rea-
sons, as described in more details in Section 5. Cumulatively,
these three aspects make the life of SAST tools remarkably
harder, leading to an increment of the false negative.

Although this experiment cannot uncover in a systematic
way all possible scenarios where the compiler influences the
resulting pseudocode, these observations indicate that the
compiler influences the decompilation phase w.r.t. both the
false positives and false negatives.

5 ROOT CAUSE ANALYSIS

In this section we conduct an investigation to figure out the
reasons behind the differences between each SAST tool execu-
tion on source code and decompiled output. For this purpose
we gradually change the pseudocode by making it more and
more similar to the original codebase, until either the tool re-
ported themissing vulnerability or until the extra false positive
disappeared.

Our findings uncovered seven main root causes, four respon-
sible for false positives and three for false negatives. For each of
them we discuss the specific elements in the code (hereinafter
patterns) introduced by the compilation and decompilation
process that degraded the SAST performances. The list of
patterns is summarized in Table 7, together with the projects
and tools affected by that specific pattern. For each one, we
indicate a Repairer, i.e., the component of the toolchain (de-
compiler, SAST tool, or both) that is in the best position to
mitigate/address the problematical pattern. In fact, while on
the one hand decompilers could try to infer more information
from the binary, on the other hand SAST tools can be designed

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

with this limitation in mind and be more permissive when
dealing with the pseudocode.

Finally, we want to stress that our purpose is to illustrate
such root causes that result in the performance degradation of
the SAST tools, rather than proposing potential remediations
to these issues. Indeed, as explained in the section, the reported
problems are not trivial to address, and may require future re-
search in both the decompilation and the static analysis fields.

P1 - Inability to Recover the Size of Stack Buffers
Effect: increase false alarms Repairer: Both

A large number of extra warnings in the SAST output was
reporting the presence of buffer overflows. As an example, we
propose the following excerpt from the file application:

1 #de f i n e PATHMAX 4200

2 FILE* l i s t = fopen (out f i l ename+1 ”rb”) ;

3 char l i s t b u f f [PATHMAX * 2] ;

4 memset (l i s t b u f f , 0 , s i z e o f (l i s t b u f f)) ;

5 f r e ad (l i s t b u f f , 1 , s i z e o f (l i s t b u f f)−1, l i s t) ;

Listing 2: Source code of a safe buffer access

Looking at this code, it is quite evident that the two mem-
ory write operations (i.e., memset and fread) are safe in this
context, thanks to the proper use of sizeof operator. The
decompiled code looks instead quite different:

1 FILE* v212 ;

2 char * s1 ;

3 v212 = fopen (dest + 1 , ” rb”) ;

4 memset (s1 , 0 , 0x2000uLL) ;

5 f r e ad (s1 , 1uLL , 0x1FFFuLL , v212) ;

Listing 3: Pseudocode of a (ex safe) buffer access

The sizeof operator is resolved at compile-time, and there-
fore the decompiler only sees the actual numerical values.
Intuitively, one would expect that this makes the SAST’s job
easier because now the tools do not need to compute themselves
the size value. However, the array definition has been replaced
with a scalar variable (s1) declared as a char*, without any
information about its original size.

As a result, when the SAST tools analyze the decompiled
code, they flag the two calls as two potential buffer overflows,
since the memory area pointed by the char* s1 variable has
unknown size.

In other examples, different ways to access the buffer (e.g.,
by index buf[i]), resulted in different warning such as null
pointer dereferences, still because of the missing size informa-
tion of a pointer variable.

Discussion: Although the issue is quite evident when com-
paring source and decompiled code, a proper solution is not
as simple and it inherently depends on the way compilers
work and generate the assembly code. In fact, even with a
sophisticated analysis of the stack, the decompiler cannot in-
fer whether a memory area belongs to the same buffer or it
represents a group of distinct variables (in particular when an
element of a buffer is accessed by using an hardcoded index).

While some heuristics could be used to infer the original size,
e.g., by looking at loop iterations or initialization routines, the
risk is that by relying on this information the decompiler can
hide the presence of vulnerabilities.

P2 - Signed and Unsigned Integers
Effect: increase false alarms Repairer: SAST

Another source of false positives was related to SAST tools
flagging several numerical statements as potential IOFs. At
a closer analysis, this was caused by two main errors in the
decompiled code.

An example of this pattern are functions that return an
integer value, where a negative value is associated with an
error condition. For instance, this is a snippet of decompiled
code from the Xorg project:

1 sub 9840 (i n t 6 4 a1) {
2 unsigned i n t v2 ;

3 . . .

4 i f (ERROR CONDITION) { v2 = −1;}
5 r e turn v2 ; }

Listing 4: Negative return value in the pseudocode

The v2 variable is used to store the return value and it is
assigned to -1 in case of an error condition. However, v2 is
erroneously declared by the decompiler as unsigned int, and
thus, assigning a negative value, leads the SAST checkers to
think that an underflow can occur within that variable.

P3 - Integer Operations on Uninitialized Variables
Effect: increase false alarms Repairer: Decompiler

Mainly due to a more complex and interprocedural data
flow in the decompiled code, we noticed that many SAST tools
reported an addition (or subtraction) as potentially dangerous
when they could not determine if one of the operands has been
initialized.

As an example, we fetched the following lines of code from
the libyang pseudocode:

1 sub 12B3E (. .) {
2 v2 = 10 ; v4 = 1 ;

3 . . // a l o t o f code i n c l ud ing GOTOs, e t c

4 sub 129CF (. . , &v2 , . . , v4) ;

5 }
6 sub 129CF (. . , unsigned

i n t 1 6 *a2 , . . , unsigned i n t 1 6 a4)

7 {
8 unsigned i n t 1 6 v9 = a4 ;

9 . .

10 *a2 −= v9 ;

11 }

Listing 5: Integer underflow due to an uninitialized
variable

The subtraction at line 10 is indicated as dangerous by Infer
and Ikos , because both the tools cannot find an initialization
statement for the operands. However, when we checked the
source code, and compared against the decompiled code, we
noticed that in both the two variables are initialized. The key

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

difference is that in the source code those variables are initial-
ized just before calling the function, while in the pseudocode
they are initialized at the very beginning of the program so
that very likely the SAST tools lose track of their propagation
because of complex data flow.

Interestingly, so far decompilation researchers mainly stud-
ied variable types recovery [29, 46, 53] and names genera-
tion [45], but no prior work focused on the “position” of recov-
ered variables in the control flow.

P4 - Function Pointers
Effect: decrease detection rate Repairer: SAST

BUG-2012, which affects libssh2, is presented by Yam-
aguchi et al. [65] as the typical use case for the adoption of Jo-
ern, but while such a tool can detect it on the original codebase,
it misses its presence in the decompilers output. The main vul-
nerability consists of an integer overflow resulting from a sum
whose value is used as input for a dynamic memory allocation.
As a consequence, the IOF can produce an undefined dynamic
memory allocation resulting in wrong memory accesses. For
clarity, we report the snippet of code in the following listing:

1 s sh2 packet add (SESSION se s s i on , char * data , . .) {
2 . . .

3 u in t 32 t namelen =

4 l i b s sh2 ntohu32

(data+9+s i z e o f (” ex i t−s i g n a l ”)) ;

5 channelp−>e x i t s i g n a l =

6 LIBSSH2 ALLOC(se s s i on , namelen + 1) ;

7

8 memcpy(channelp−>e x i t s i g n a l ,

9 data+13+s i z e o f (” ex i t−s i g n a l ”) , namelen) ;

10 }

Listing 6: libssh2 vulnerable code snippet

The LIBSSH2 ALLOCmacro allocates namelen + 1 bytes and
returns the requested memory in the exit signal buffer, that
is eventually accessed. If data is under the attacker control,
it is possible to craft that variable so that the sum namelen +

1 causes an IOF bug.
Listing 7 shows the resulting pseudocode:

1 vu l n e r ab l e f un c t i on (in t64 a1 , in t64 a2 , . . .) {
2 . . .

3 i n t name len = non vu ln func t i on (a2 + 21) ;

4 *(QWORD *) (v24 + 40) =

5 (* (i n t 6 4 (f a s t c a l l **) (QWORD, i n t 6 4))

6 (a1 + 8)) ((i n t) (name len + 1) , a1) ;

7

8 memcpy(* (void **) (v24 + 40) ,

9 (const void *) (a2 + 25) , name len) ;

10 }

Listing 7: libssh2 vulnerable decompiled code

Now we can notice that the macro invocation has been
replaced with its actual value that corresponds to a function
pointer stored in the struct session at offset 8 (namely, the
macro is defined as session->alloc(...)). The decompiler

casts the function pointer accordingly to the function definition,
resulting in a more complicated structure of the invocation.

The pointer cast is the culprit of the problem and the reason
Joern and Code-ql are ineffective against this code. The first
of the two tools is not able to properly parse it, and thus it
entirely skips the call. In this case no query exist that can
reach the vulnerable path.

Code-ql actually parses the code correctly, but because of
the internal representation used by the framework, the query
used to find the original vulnerability does not work anymore.
It is possible to write a new, and much more generic, query
that still capture the bug — but the more general rule would
cause an increased number of false positives.

Discussion: The root cause of the problem is that the function
pointer invocation contains many casting operations, therefore
hindering the static parsing of the code. However, we could
easily solve the problem by instantiating a variable that can
store the function pointer address, and then invoking it in a
separate line:

1 i n t 6 4 (* f c n p t r) (QWORD, i n t 6 4) = (a1 + 8) ;

2 *(QWORD *) (v24 +

40) = (* f c n p t r) ((unsigned i n t) (n + 1) , a1)

Listing 8: libssh2 vulnerable decompiled code after
the fix

P5 - Pointers as Integers
Effect: decrease detection rate Repairer: Both

For this pattern, let us focus on the CVE-2017-6298, a null
pointer deref resulting from an unchecked calloc return value.

Reading the following snippet of code the vulnerability looks
quite evident, and in facts different tools can detect it (Joern,
Comm 2, Ikos, Infer, and Code-ql):

1 var iab leLength * v l ;

2 . . .

3 vl−>data = c a l l o c (vl−>s i z e , s i z e o f (WORD)) ;

4 temp word=SwapWord ((BYTE*)d , s i z e o f (WORD)) ;

5 memcpy(vl−>data , &temp word , vl−>s i z e) ;

Listing 9: Null pointer dereference

The first thing is that the variable vl is a pointer to a cus-
tom struct whose definition is unknown for the decompiler.
The memcpy invocation itself is safe because the code writes
the correct size into the dynamically allocated buffer, but the
vl->data value is not checked for nullness, potentially leading
to a null pointer dereference if calloc returns a null value.

When the code is decompiled with HexRays and Ghidra,
we obtain the following code:

1 s igned i n t * v9 ;

2 s i z e t v19 ;

3 void * v20 ;

4 . . .

5 (QWORD *) v9 [0] = c a l l o c (v9 [2] , 2uLL) ;

6 v18 = sub 19B0 (v4 , 2) ;

7 v19 = v9 [2] ; v20 = *(void **) v9 ; v76 = v18 ;

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

8 memcpy(v20 , &v76 , v19) ;

Listing 10: Null pointer dereference Hexrays pseu-
docode

We can immediately note that the struct is represented as a
signed integer pointer (identifier v9). The calloc return value
is written in v9[0], after casting it to pointer.

Although the tools comprehend that the return value is writ-
ten inside a local variable, they believe that the assignment
happens in a variable of type signed int. Because of such a
type confusion problem, from now on the static analyzers are
not interested anymore in the return value, stop tracking the
data flow for that path and go on with the analysis of other
potentially vulnerable paths. Overall, theymiss the connection
between the returned pointer and its dereferences that occur
in the following code.

If we look instead at the code generated by RetDec:

1 i n t 6 4 t * v103 ;

2 i n t 3 2 t v105 ;

3 . .

4 i n t 6 4 t * mem5 = c a l l o c (v102 , 2) ;

5 *v103 = (i n t 6 4 t) mem5;

6 i n t 6 4 t v104 = fun 19b0 (v19 , 2 , v28 , v1) ;

7 i n t 6 4 t v108 = v104 ;

8 . . .

9 memcpy((i n t 6 4 t *) * v103 , &v108 , v105) ;

Listing 11: Null pointer dereference RetDec pseu-
docode

Whatmakes this output simpler to analyze for static analysis
tools is the fact that the return value of the calloc API is
directly stored into a proper pointer,without any further cast or
array access. Thus, tools are able to track the data flow and can
therefore recognize the use of the pointer within the memcpy.

In this example we discussed the case of a returned pointer
assigned to an integer variable, but the same issue happened
several timeswhen decompilers declared parameters as integers
instead of pointers in the functions prototypes (e.g., BUG-2010
and BUG-2018, that are respectively the UAF and the DF).

Discussion: SAST tools seem to have problems tracking point-
ers that become integer and later pointer again. Learning from
RetDec, the solution is just to back-propagate the type infor-
mation. In other words, if a variable is later casted to a pointer
and de-referenced, then this information should be used to
redefine the variable type as a pointer.

For instance, it is sufficient to declare an intermediate vari-
able of type int* instead of v9 in the HexRays’s output and
all tools that were missing the vulnerability were able to cor-
rectly perform their taint analysis until they reach the memcpy
invocation.

P6 - Integers of Wrong Size
Effect: increase false positives Repairer: Both

Decompilers often declare variables of the wrong size (e.g.,
double-word instead of bytes) and then rely on cast operations

to ensure the type system coherency of their output state-
ments. This behavior caused many SAST tools to generate
false alarms due to the potentially erroneous pointer casting.

As an example we can consider the code snippets in List-
ing 12 (original code) and Listing 13 (decompiled code).

1 u i n t 8 t out [SIZE] ; u i n t 8 t tmpout [SIZE] ;

2 f o r (j = 0 ; j < s i z e o f (out) ; j++)

3 out [j] ^= tmpout [j] ;

Listing 12: Suspicious cast source code

1 i n t 6 4 v22 ; i n t 6 4 v26 ;

2 f o r (j = 0LL ; j <= 0x1F ; ++j)

3 * ((BYTE *)&v22+j) ^= * ((BYTE *)&v26+j) ;

Listing 13: Suspicious cast decompiled code

In the original code, the elements are of type uint8 t (i.e.,
one byte each). In the decompilers output the two variables
becomes 64-bit integers, which are later casted to BYTE to per-
form the xor operation. Furthermore, the retrieval of the j -th
element is done through pointers arithmetic with type uint8 t.

A similar pattern appears very often in our experiments,
with different source pointer types and using different types to
perform the cast. While this pattern is similar to the Pointers
as Integers (in fact, again the decompiler used integer variables
to store pointers) here is the wrong size and the cast operation
that cause false alarms instead of the inability to follow the
data flow as in the previous pattern.

It is also interesting to note how, because of the initial dec-
laration of the variables representing the arrays (int64 v22

and int64 v26 are integer types and not integer pointers),
the pattern is reported by some SAST tools as a dangerous
cast, rather than a buffer overflow.

On the other hand, if in the previous code, the two variables
were defined as int64* we would still observe an alert warn-
ing for a potentially unsafe memory access, converging in the
case described for P1.

Discussion:
This is again a case of type confusion, less severe than the

pointer case (as it cannot lead to missing real vulnerabilities),
but somehow harder to fix. In fact, back-propagating infor-
mation to mark variables as pointers is not sufficient, and
correctly sizing all integers requires a more complex analysis
and inference techniques.

P7 - Simplified Expressions
Effect: decrease detection rate Repairer: SAST

This last pattern is quite unusual, but we report it as it
is the cause of some missed vulnerabilities in the decompiled
code. For our discussion we use the CVE-2017-1000249, a stack
BOF present in the file project. The original source code is
depicted in the following snippet:

1 do b id note (. . , unsigned char * nbuf , . .)

2 {
3 . . .

4 i f (namesz == 4 && . . . &&

5 type == NT GNU BUILD ID &&

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan. Alessandro Mantovani, Luca Compagna, Yan Shoshitaishvili, and Davide Balzarotti

6 (de s c s z >= 4 | | desc s z <= 20)) {
7 u i n t 8 t desc [2 0] ;

8 memcpy(desc , &nbuf [d o f f] , d e s c s z) ; }
9 . . . }

Listing 14: Source code of the BOF

The memcpy is unsafe because of the wrong check that is
performed before its invocation. In fact, the OR operator is
used instead of the AND to check if the size (descsz) is in the
appropriate range. The boolean condition always evaluates to
True, and this is detected by some tools (such as CPPCheck)
and reported as potential bug— which in this case it is and
leads to a buffer overflow.

However, compilers are also able to detect that the condition
is always satisfied and they can simplify the code accordingly.
This results in the following decompiled code:

1 vu l n e r ab l e f o o (. . . , i n t a4 , . . .) {
2 . . .

3 char v58 ;

4 i f (v49 == 4 && . . . &&

5 v28 == 3) {
6 memcpy(&v58 , a4 + v45 , v16) ;

7 }
8 . . . }

Listing 15: Decompiled code of the BOF

The desc buffer is another example of the inability of decom-
pilers to reconstruct stack-based arrays. But the key element
for this pattern is that the wrong test on the buffer size is
not present anymore. Since the compiler is not generating its
corresponding assembly code in the first place, the decompilers
have no way to recover it.

Once the clue that was picked up by static analysis tools
(the wrong check on the buffer size) is removed, some tools
failed to detect the vulnerability altogether.

6 DISCUSSION AND CONCLUSIONS

We can distill the findings of our experiments around four
main points.

(1) The main impediment to the use of SAST tools on
pseudocode is that the decompiled code cannot be re-
compiled out-of-the-box. The recent paper by Schulte
et al. [57] make us feel optimistic that this problem will
soon be solved. However, so far, human analysts need
to manually fix the decompiled code, a process that can
take just few hours for small applications, but that be-
comes prohibitively complex for large codebases made
of million of LOC.

(2) Once the re-compilable issue is solved, existing SAST
tools can discover (in our experiments) 71% of vulnera-
bilities theywere finding in the original code.While there
is still a margin for improvement, this result already goes
beyond our initial expectations.On the negative side, the
number of false positives often increased considerably,
making the output of many tools difficult and time-
consuming to navigate. However, even if the FP increase

is on average 232%, in 29/61 cases the FPs either de-
creased or did not significantly increase, demonstrating
how our approach is still promising in many scenarios.

(3) Both the compiler and decompiler transformations con-
tribute to the final result in a complex way. Our exper-
iments show that there is no linear trend, and in some
cases more aggressive optimizations even simplified the
job of the SAST tools. For instance, in two cases static
analyzers were even able to discover one vulnerability
they could not find in the original source code.

(4) Today, decompilers are still designed to generate code
that is easy to understand for humans, and SAST tools
are still designed to parse “well-written” code that is not
generated by a machine. This human-centric view could,
and should, change in the future. In Section 5 we listed
7 root causes that explain the differences we observed in
the results.We believe that many of the entries in our list
could be solved, or at least mitigated, by improvement
in either the decompiler or the SAST analysis (or both).

In summary, our case studies show that we are approach-
ing the point of convergence of source and binary analysis.
While few obstacles still remain, we believe that future work
will be able to overcome these issues focusing on both the
decompilation side and the static analysis part.

ACKNOWLEDGEMENTS

This researchwas partially supported by theDefenseAdvanced
Research Projects Agency (DARPA) under grant agreements
FA875019C0003 and N6600120C4020.

REFERENCES
[1] Accessed November 10, 2021. Avast Retargetable Decompiler IDA

Plugin. https://blog.fpmurphy.com/2017/12/avast-retargetable-
decompiler-ida-plugin.html.

[2] Accessed November 10, 2021. Awesome Static Analysis.
https://github.com/analysis-tools-dev/static-analysis.

[3] Accessed November 10, 2021. C and C++ Source Code Analysis
Tools. https://www.codeanalysistools.com/?cplusplus.

[4] Accessed November 10, 2021. Code-QL. https://securitylab.
github.com/tools/codeql.

[5] Accessed November 10, 2021. Code-ql queries examples.
https://help.semmle.com/QL/learn-ql/cpp/ql-for-cpp.html.

[6] Accessed November 10, 2021. CPPCheck. http:
//cppcheck.sourceforge.net/.

[7] Accessed November 10, 2021. CWE Checker. https:
//github.com/fkie-cat/cwe-checker.

[8] Accessed November 10, 2021. flawfinder. https://github.com/
david-a-wheeler/flawfinder.

[9] Accessed November 10, 2021. framac. https://frama-c.com/.
[10] Accessed November 10, 2021. Ghidra. https://ghidra-sre.org/.
[11] Accessed November 10, 2021. Hex-Rays Decompiler.

https://www.hex-rays.com/products/decompiler/.
[12] Accessed November 10, 2021. IKOS. https://github.com/NASA-

SW-VnV/ikos.
[13] Accessed November 10, 2021. Infer. https://fbinfer.com/.
[14] Accessed November 10, 2021. Joern. https://joern.io/.
[15] Accessed November 10, 2021. Joern queries examples.

https://github.com/ShiftLeftSecurity/joern/tree/master/joern-
cli/src/main/resources/scripts/c.

[16] Accessed November 10, 2021. RATS. https://code.google.com/
archive/p/rough-auditing-tool-for-security/.

[17] Accessed November 10, 2021. Scan-build. https://clang-
analyzer.llvm.org/.

[18] Accessed November 10, 2021. Veracode. https://www.veracode.
com/products/binary-static-analysis-sast.

https://blog.fpmurphy.com/2017/12/avast-retargetable-decompiler-ida-plugin.html
https://blog.fpmurphy.com/2017/12/avast-retargetable-decompiler-ida-plugin.html
https://github.com/analysis-tools-dev/static-analysis
https://www.codeanalysistools.com/?cplusplus
https://securitylab.github.com/tools/codeql
https://securitylab.github.com/tools/codeql
https://help.semmle.com/QL/learn-ql/cpp/ql-for-cpp.html
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://github.com/fkie-cat/cwe-checker
https://github.com/fkie-cat/cwe-checker
https://github.com/david-a-wheeler/flawfinder
https://github.com/david-a-wheeler/flawfinder
https://frama-c.com/
https://ghidra-sre.org/
https://www.hex-rays.com/products/decompiler/
https://github.com/NASA-SW-VnV/ikos
https://github.com/NASA-SW-VnV/ikos
https://fbinfer.com/
https://joern.io/
https://github.com/ShiftLeftSecurity/joern/tree/master/joern-cli/src/main/resources/scripts/c
https://github.com/ShiftLeftSecurity/joern/tree/master/joern-cli/src/main/resources/scripts/c
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://clang-analyzer.llvm.org/
https://clang-analyzer.llvm.org/
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast

The Convergence of Source Code and Binary Vulnerability Discovery – A Case Study ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.

[19] Accessed November 10, 2021. What are the best sast tools?
https://cybersecuritykings.com/2020/02/16/11-tips-on-sast-
tool-selection/.

[20] H.H. AlBreiki and Q.H. Mahmoud. 2014. Evaluation of static
analysis tools for software security. In IIT.

[21] A. Arusoaie, S. C., V. Craciun, D. Gavrilut, and D. Lucanu. 2017.
A comparison of open-source static analysis tools for vulnerability
detection in c/c++ code. In IEEE SYNASC.

[22] Dirk Beyer and M Erkan Keremoglu. [n.d.]. CPAchecker: A tool
for configurable software verification. In International Conference
on Computer Aided Verification.

[23] D. Brumley, J. Lee, E.J. Schwartz, and M. Woo. 2013. Native x86
decompilation using semantics-preserving structural analysis and
iterative control-flow structuring. In {USENIX}.

[24] G. Chatzieleftheriou and P. Katsaros. 2011. Test-driving static anal-
ysis tools in search of C code vulnerabilities. In IEEE COMPSAC.

[25] B. Chess and G. McGraw. [n.d.]. Static analysis for security. 2004
IEEE S&P ([n. d.]).

[26] C. Cifuentes and K. J. Gough. [n.d.]. Decompilation of binary
programs. Software: Practice and Experience ([n. d.]).

[27] Y. David, N. Partush, and E. Yahav. 2018. Firmup: Precise static
detection of common vulnerabilities in firmware. ACM SIGPLAN
Notices (2018).

[28] A. Dinaburg and A. Ruef. 2014. Mcsema: Static translation of x86
instructions to llvm. In ReCon.

[29] E.N. Dolgova and A.V. Chernov. 2009. Automatic reconstruction
of data types in the decompilation problem. Programming and
Computer Software (2009).

[30] P. Emanuelsson and U. Nilsson. 2008. A comparative study of
industrial static analysis tools. Electronic notes in theoretical
computer science (2008).

[31] A. Fatima, S. Bibi, and R. Hanif. 2018. Comparative study on
static code analysis tools for c/c++. In IEEE IBCAST.

[32] J. Feist, L. Mounier, S. Bardin, R. David, and M. Potet. 2019.
Finding the needle in the heap: combining static analysis and
dynamic symbolic execution to trigger use-after-free. In SSPREW.

[33] C. Fu, H. Chen, H. Liu, X. Chen, Y. Tian, F. Koushanfar, and J.
Zhao. 2019. Coda: An end-to-end neural program decompiler. In
Advances in Neural Information Processing Systems. 3708–3719.

[34] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and David V. 2003.
Buffer overrun detection using linear programming and static
analysis. In ACM CCS.

[35] A. Gussoni, A. Di Federico, P. Fezzardi, and G. Agosta. 2020. A
Comb for Decompiled C Code. In ACM AsiaCCS.

[36] B. Hackett, M. Das, D. Wang, and Z. Yang. 2006. Modular
checking for buffer overflows in the large. In ICSE.

[37] D. Hovemeyer and W. Pugh. 2007. Finding more null pointer bugs,
but not too many. In ACM SIGPLAN-SIGSOFT PASTE.

[38] D. Hovemeyer, J. Spacco, and W. Pugh. 2005. Evaluating
and tuning a static analysis to find null pointer bugs. In ACM
SIGPLAN-SIGSOFT PASTE.

[39] D. S. Katz, J. Ruchti, and E. Schulte. 2018. Using recurrent neural
networks for decompilation. In IEEE SANER.

[40] O. Katz, Y. Olshaker, Y. Goldberg, and E. Yahav. 2019. Towards
neural decompilation. arXiv preprint arXiv:1905.08325 (2019).

[41] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim. 2020.
FirmAE: Towards Large-Scale Emulation of IoT Firmware for
Dynamic Analysis. In ACSAC.

[42] Y. Kim, J. Lee, H. Han, and K. Choe. 2010. Filtering false alarms
of buffer overflow analysis using SMT solvers. Information and
Software Technology (2010).

[43] K.J. Kratkiewicz. 2005. Evaluating static analysis tools for
detecting buffer overflows in c code. Technical Report. HARVARD
UNIV CAMBRIDGE MA.

[44] J. Křoustek, P. Matula, and P. Zemek. 2017. Retdec: An
open-source machine-code decompiler.

[45] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues,
G. Neubig, and B. Vasilescu. 2019. Dire: A neural approach to
decompiled identifier naming. In IEEE/ACM ASE.

[46] J. Lee, T. Avgerinos, and D. Brumley. 2011. TIE: Principled
reverse engineering of types in binary programs. (2011).

[47] H. Liang, S. Liu, Y. Zhang, and M. Wang. 2017. Improving the
precision of static analysis: Symbolic execution based on GCC
abstract syntax tree. In SNPD.

[48] Z. Liu and S. Wang. 2020. How far we have come: testing
decompilation correctness of C decompilers. In SIGSOFT ISSTA.

[49] Z. Liu, Y. Yuan, S. Wang, and Y. Bao. 2022. SoK: Demystifying
Binary Lifters Through the Lens of Downstream Applications.

In 2022 2022 IEEE Symposium on Security and Privacy (SP)
(SP). IEEE Computer Society, Los Alamitos, CA, USA, 453–472.
https://doi.org/10.1109/SP46214.2022.00027

[50] S. Ma, M. Jiao, S. Zhang, W. Zhao, and D.W. Wang. 2015.
Practical null pointer dereference detection via value-dependence
analysis. In IEEE ISSREW.

[51] R. Mahmood and Q.H. Mahmoud. 2018. Evaluation of static
analysis tools for finding vulnerabilities in Java and C/C++ source
code. arXiv preprint arXiv:1805.09040 (2018).

[52] R. K McLean. 2012. Comparing static security analysis tools using
open source software. In IEEE SERE.

[53] M. Noonan, A. Loginov, and D. Cok. 2016. Polymorphic type
inference for machine code. In ACM SIGPLAN PLDI.

[54] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. 2015.
Cross-architecture bug search in binary executables. In IEEE S&P.

[55] S. Poeplau and A. Francillon. 2020. Symbolic execution with
SymCC: Don’t interpret, compile!. In {USENIX}.

[56] D. Pozza, R. Sisto, L. Durante, and A. Valenzano. 2006. Comparing
lexical analysis tools for buffer overflow detection in network
software. In COMSWARE.

[57] E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Loginov.
2018. Evolving exact decompilation. In BAR.

[58] S. Shiraishi, V. Mohan, and H. Marimuthu. 2015. Test suites for
benchmarks of static analysis tools. In IEEE ISSREW.

[59] E. Söderberg, T. Ekman, G. Hedin, and E. Magnusson. 2013.
Extensible intraprocedural flow analysis at the abstract syntax
tree level. Science of Computer Programming (2013).

[60] J. Viega, J. Bloch, Y. Kohno, and G. McGraw. [n.d.]. ITS4: A
static vulnerability scanner for C and C++ code. In 2000 ACSAC.

[61] D. A. Wagner, J. S Foster, E. A. Brewer, and A. Aiken. 2000. A first
step towards automated detection of buffer overrun vulnerabilities..
In NDSS.

[62] R. Xu, P. Godefroid, and R. Majumdar. 2008. Testing for buffer
overflows with length abstraction. In ISSTA.

[63] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith.
2016. Helping johnny to analyze malware: A usability-optimized
decompiler and malware analysis user study. In IEEE S&P.

[64] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith.
2015. No More Gotos: Decompilation Using Pattern-Independent
Control-Flow Structuring and Semantic-Preserving Transforma-
tions.. In NDSS.

[65] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. [n.d.]. Modeling
and discovering vulnerabilities with code property graphs. In 2014
IEEE S&P.

[66] F. Yamaguchi, M. Lottmann, and K. Rieck. 2012. Generalized
vulnerability extrapolation using abstract syntax trees. InACSAC.

[67] H. Yan, Y. Sui, S. Chen, and J. Xue. 2017. Machine-learning-guided
typestate analysis for static use-after-free detection. In ACSAC.

[68] H. Yan, Y. Sui, S. Chen, and J. Xue. 2018. Spatio-temporal context
reduction: A pointer-analysis-based static approach for detecting
use-after-free vulnerabilities. In ICSE.

[69] J. Ye, C. Zhang, and X. Han. 2014. Poster: Uafchecker: Scalable
static detection of use-after-free vulnerabilities. In ACM CCS.

https://cybersecuritykings.com/2020/02/16/11-tips-on-sast-tool-selection/
https://cybersecuritykings.com/2020/02/16/11-tips-on-sast-tool-selection/
https://doi.org/10.1109/SP46214.2022.00027

	Abstract
	1 Introduction
	2 Related Work
	2.1 SAST
	2.2 Decompilers

	3 Methodology and Experiment Design
	3.1 Vulnerability and Application Selection
	3.2 SAST Tools Selection
	3.3 Decompiler Selection

	4 Experiments
	4.1 Source code analysis
	4.2 Decompilation
	4.3 Re-Compilation
	4.4 Decompilers variability
	4.5 Summary of Results: True Positives
	4.6 Summary of Results: False Positives
	4.7 Bugs detected *only* on pseudocode
	4.8 Compiler Impact

	5 Root Cause Analysis
	6 Discussion and Conclusions
	References

