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Summary: Optical Processing Units (OPUs) are computing devices which perform random projections of input vectors by 

exploiting the physical phenomenon of scattering a light source through an opaque medium.         OPUs have successfully been 

proposed to carry out approximate kernel ridge regression at scale and with low power consumption by the means of optical 

random features. OPUs require input vectors to be binary, and this work proposes a novel way to perform supervised data 

binarization. The main difficulty to develop a solution is that the OPU projection matrices are unknown which poses a 

challenge in deriving a binarization approach in an end-to-end fashion. Our approach is based on the REINFORCE gradient 

estimator, which allows us to estimate the gradient of the loss function with respect to binarization parameters by treating the 

OPU as a black-box. Through experiments on several UCI classification and regression problems, we show that our method 

outperforms alternative unsupervised and supervised binarization techniques. 

 

Keywords: optimization, random features, linear regression, optical processing unit. 

 

 

1. Motivation 

Optical Processing Units (OPUs) are computing 

devices which perform random projections of input 

vectors by exploiting the physical phenomenon of 

scattering a light source through a diffusive medium 

[1]. The projection operation is particularly useful 

when approximating kernel functions via random 

features, a popular technique to implement these 

models for large-scale problems [2]. OPUs offer the 

possibility to obtain such approximations with a large 

number of random features at the speed of light and 

with low-power consumption, representing a very 

attractive line of work to further improve scalability of 

kernel machines. As an example, OPU-based random 

feature approximations have successfully been 

proposed to carry out approximate kernel ridge 

regression in [3].  

The main limitations on the generality of this 

approach are that OPUs require input vectors to be 

binary and that OPU projection matrices are unknown 

and can only be retrieved through an expensive 

calibration procedure. Common  approaches for 

optimization of binarized neural networks, like 

straight-through estimator or different kinds of a 

relaxation of the binarization procedure, can be found 

in the literature on neural networks, where existing 

methods rely on the possibility to propagate gradient 

through all operations of the network except 

binarization [4]. In the literature, there are approaches 

which address binarization by considering it as a pre-

processing step, which happens independently of the 

regression/classification task [5]. In this case label 

information is omitted, and this might be suboptimal 

compared to strategies that take this information into 

account in the binarization phase.  

In this paper, we propose a novel binarization 

method for OPUs which is learned along with the 

regression/classification task in an end-to-end manner.  

We overcome the main challenge to develop such an 

end-to-end solution, which is that OPU projection 

matrices are unknown, by employing the so-called 

REINFORCE gradient estimator. This allows us to 

estimate the loss function gradient with respect to 

binarization parameters by treating the OPU as a 

black-box. Through experiments on several UCI 

classification/regression problems, we show that our 

proposal outperforms alternative unsupervised and 

supervised binarization techniques. 

 

 

2. Related work 

In neural networks, binarization is generally 

targeting intermediate layer activations, and it may 

also stem from binarization of model parameters; in 

these cases, binarization is mostly introduced to reduce 

computational cost and memory consumption [6]. 

Neural networks with binary hidden layers find 

applications in binary autoencoders for hashing [7], 

data compression [5], and hard attention mechanism 

[8]. The binarization of layer activations is obtained by 

a suitable choice of activation functions; for instance, 

the sign or Heaviside functions for the deterministic 

case, or the sigmoid or tanh functions combined with 

the Bernoulli distribution for the stochastic case [4], 

[9]. The most popular technique to propagate gradients 

through such activation functions is the so called 

straight-through estimator (STE) [10]. More recently, 

there have been proposals to replace the STE with 

another estimator through a relaxation technique, also 

known as the Gumbel Softmax-trick [11].   Also, 
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different kinds of target propagation are used to learn 

suitable targets for each binary layer and then train the 

associated parameters with relaxation techniques or 

combinatorial optimization [12], [13], [14]. 

In this work, we aim to develop a supervised 

binarization model which is learned together with the 

supervised learning task. That is, we aim to provide a 

training procedure for the heterogeneous model 

consisting of the kernel ridge regression model 

approximated with random features and the 

binarization encoder before the OPU. In this context, a 

general-purpose framework called Method of 

Auxiliary Coordinates (MAC) was proposed in [14] 

with examples of application in [7] and [15]. The 

authors propose to introduce auxiliary variables into a 

deep neural network. These auxiliary variables are 

assigned the role of pre-activations for each layer, and 

they get replaced during the forward pass. The first 

step of the optimization targets the auxiliary variables, 

and, after this step, the parameters of each layer are 

optimized to regress on these variables, which take the 

role of layer-specific labels. This is very beneficial 

when some layers are discrete and vanilla 

backpropagation is not applicable. In [15], this 

approach is used to train a fully connected network 

with binary activation functions, using a STE to 

propagate a learning signal through the non-

differentiable parts. Reference [7] is especially 

interesting because authors illustrate, how discrete 

binary layers can be optimized withing larger, non-

binary model. 

While splitting the optimization of the binarization 

and the model is a viable option, we still need a way to 

training each part individually. There is a wide variety 

of ways to obtain a solution for kernel ridge regression 

with the random feature approximation, so the most 

difficult point is how to optimize the part consisting of 

the binary encoder and the OPU, because it combines 

a non-differentiable function with an implicit random 

projection. These make the STE from [15] 

inapplicable. Also, we found that the combinatorial 

approach used in [7] and [12] is inapplicable for our 

case for two reasons. First, it is suitable only when the 

binary dimension is relatively small, which might be a 

limitation for a general solution. Second, the 

combinatorial approach combined with MAC 

converges in one iteration to poor local optima, and 

this happens because of the model setup which is 

different from the ones in [7] and [12]. 

From a different point of view, it is possible to view 

our problem through the lenses of reinforcement 

learning, where it is necessary to propagate binary 

codes through the OPU instead of discrete actions 

through the black-box environment. Instead of 

maximizing the reward from the environment, we are 

trying to minimize the loss function. The classical 

algorithm to solve this problem is REINFORCE [16]. 

This allows one to calculate gradients of the reward 

with respect to parameters of the policy that generates 

actions. The applicability of this method to other 

settings with black-box elements was shown in [17]. 

There are various versions of this algorithm intended 

to reduce variance of the gradient of the parameters. 

Very frequently they are based on relaxations of the 

non-differentiable sampling procedure [18], or 

approximation of the black-box part of the model [19]. 

It also worth noting that there exist competitive 

alternatives to REINFORCE, such as the one in [20], 

later extended with variance reduction [21] or 

relaxation [22]. 

 

 

3. Methods 

 
In this paper we consider the kernel ridge 

regression model. Let 𝑋 = 𝑥1, … , 𝑥𝑛 a set of input 

vectors 𝑥i ∈ ℝd and let 𝑌 = 𝑦1 , … 𝑦𝑛 a set of 

corresponding binary labels. The aim of kernel ridge 

regression is to establish a mapping between the inputs 

and the labels by means of functions which belong to 

the so-called Reproducing Kernel Hilbert Space 

(RKHS) induced by the choice of a kernel function 

𝑘(⋅,⋅) [23].  

Given a choice of kernel function, kernel ridge 

regression requires evaluating it among all possible 

pairs of inputs, yielding an nxn matrix 𝐾 such that 

𝐾𝑖𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗). The solution of kernel ridge 

regression requires performing algebraic operations 

with 𝐾, and this is problematic when n is large. 

A way to avoid these computations and scale 

kernel ridge regression to large data is to use an 

approximation based on random features [2]. In this 

work, we focus in particular on random features 

produced by OPUs. 

OPU performs multiplication of a binary vector 

𝑥 ∈ ℝd by a random matrix and applies the activation 

function | ⋅ |2. 
 

 𝜙(𝑥) =
1

√𝐷
|𝑅𝑥|2 (1) 

 

Where 𝑅 ∈ ℂD×d is a complex Gaussian matrix 

with elements 𝑅𝑖𝑗 ∼ 𝒞𝒩(0,1). Performing regression 

on a linear model using these new random features in 

(1) gives equivalent results to the original kernel ridge 

regression problem when 𝐷 → ∞. 

 

𝑦∗ = 𝑊∗𝜙(𝑥) 

𝑊∗ = argmin
𝑊

||𝜙(𝑋)𝑊𝑇 − 𝑌||2
2 +

𝜆

2
||𝑊||2

2
  

(2) 

 

for the training set 𝑋, 𝑌. Model (2) is equivalent to 

the ridge kernel regression with a kernel [3]. 

 

𝑘(𝐱, 𝐲) ≈ 𝜙(𝐱)𝜙(𝐲) =
𝐷→∞

||𝐱||2||𝐲||2 + (𝐱𝑇𝐲)2 (3) 

 

We propose to perform the binarization of the input 

to this model by means of an encoder with parameters 

𝑊enc. The output of the encoder parameterizes a 

multidimensional Bernoulli distribution from which 
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we sample binary vectors and use them as a binary 

representation of the input data. So, our regression 

model becomes: 

 

𝑦
~

= 𝔼𝑧[𝑊regr𝜙(𝑧)] 

where  z ∼ Bernoulli(𝑓(𝑥, 𝑊enc)) 

  

(4) 

 

where 𝑊regr are parameters of the linear regression, 

𝑧 is binary representation of the data, 𝜙(z) are random 

features. Parameters of the Bernoulli distribution are 

generated from the input data 𝑥 by the encoder function 

𝑓 with parameters 𝑊enc. 

The stochasticity is intentionally introduced to the 

encoder so that we can employ the so-called 

REINFORCE gradient estimator.  The REINFORCE 

approach (also called log-derivative trick or score 

function estimator) aims to estimate the gradient of the 

expectation of some non-differentiable function 𝑓 

subject to parameters of the distribution of the random 

variable 𝑧: 

 

∇𝜃𝔼𝑝(𝑧;𝜃)𝑓(𝑧) ≈
1

𝑀
∑ ∇𝜃𝑙𝑜𝑔 𝑝(𝑧; 𝜃)𝑓(𝑧)

𝑀

𝑖=1

 
(5) 

 

where 𝑀 is number of samples drown from 𝑝(𝑧, θ). For 

our model, the optimization objective becomes: 

 

𝑚𝑖𝑛
𝑊regr,𝑊enc

𝔼𝑧∼Bernoulli(𝑓(𝑥,𝑊enc))[ℒ(𝑌, 𝑊regr𝜙(𝑧))]+ 

+𝜆enc||𝑊enc||2 + 𝜆regr||𝑊regr||2 

(6) 

 

where ℒ (𝑌, 𝑌
~

) is the quadratic loss for regression 

problems and the cross-entropy loss for classification 

problems. The gradient of the first term with respect to 

𝑊enc becomes: 

 

∇𝑊enc
𝔼𝑧∼𝑞(𝑧)[ℒ(𝑌, 𝑊regr𝜙(𝑧))] ≈

≈
1

𝑀
∑ ℒ

𝑀

𝑖=1

(𝑌, 𝑊regr𝜙(𝑧𝑖))∇𝑊enc
log 𝑞(𝑧𝑖) 

(7) 

 

In order to reduce the variance of this estimator, we 

can use control variates as proposed in [21]: 

 

∇𝑊enc
𝔼𝑧∼𝑞(𝑧) [ℒ (𝑌, 𝑊regr𝜙(𝑧))] ≈

≈
1

𝑀
∑ ∇𝑊enc

log 𝑞 (𝑧𝑖) (ℒ (𝑌, 𝑊regr𝜙(𝑧𝑖)) − 𝑣𝑖)

𝑀

𝑖=1

 

where 𝑣𝑖 =
1

𝑀 − 1
∑ ℒ

𝑖≠𝑗

(𝑌, 𝑊regr𝜙(𝑧𝑗)) 

(8) 

 

Thanks to REINFORCE, we are able to optimize 

the encoder in an end-to-end fashion. In the remainder 

of this paper, we refer to this method as End-to-End 

SE. 

In the End-to-End SE in order to estimate the 

gradient of the loss with respect to 𝑊enc it is necessary 

to pass multiple samples from the encoder through the 

random projection and the approximate kernel ridge 

regression model. Depending on the number of 

random features used for the approximation, this 

operation can be expensive. To alleviate this 

computational burden, we propose a variation on the 

End-to-End SE where we propagate samples only 

through the random projections layer and then we 

average them before feeding them to the final linear 

operation. 

 

𝑦
~

= 𝑊regr𝔼𝑧[𝜙(𝑧)] 

where 𝑧 ∼ Bernoulli(𝑓(𝑥, 𝑊enc)) 

(9) 

 

The optimization objective in this case becomes: 

 

𝑚𝑖𝑛
𝑊regr,𝑊enc

ℒ(𝑌, 𝑊regr𝔼𝑧∼Bernoulli(𝑓(𝑥,𝑊enc))[𝜙(𝑧)])+ 

+𝜆enc||𝑊enc||2 + 𝜆regr||𝑊regr||2 

(10) 

 

So, the gradient of the first term with respect to 

encoder parameters becomes: 

 

∇𝑊enc
ℒ =

𝑑ℒ

𝑑(𝔼𝜙(𝑧))
∇𝑊enc

𝔼(𝜙(𝑧)) (11) 

 

where ∇𝑊enc
𝔼(𝜙(𝑧)) calculated with REINFORCE 

estimator. We will refer to this method as Isolated 

Supervised Encoder. 

 

 

4. Results 

 
We compared the performance of the proposed 

approaches (End-to-End SE and Isolated SE) against a 

model based on unsupervised autoencoder proposed in 

[5], encoder trained with direct feedback alignment 

(DFA) [23] and Gaussian process (GP) regression 

based on radial basis function (RBF) kernel over raw 

and binarized data. Results are reported in Fig. 1on 

several UCI regression and classification problems 

[24]. We want to emphasize that the main competitors 

of the proposed methods are the ones based on 

unsupervised autoencoder and encoder trained by 

DFA, because kernel ridge regression is unable to 

work with large datasets, and OPU-based regression 

just approximates this method and is intended to 

replace it on large datasets. 
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Fig. 1:  Mean squared error (MSE) for regression (top) and 

negative error on classification (bottom) datasets 

comparison. 

 

For Isolated SE and End-to-End SE as an encoding 

function 𝑓(𝑥, 𝑊enc) providing parameters for the 

Bernoulli, distribution we chose a single linear layer 

with a sigmoid activation: 

 

𝑓(𝑥, 𝑊enc) = 𝜎(𝑊enc𝑥) (12) 

 

All hyperparameters for the DFA encoder, End-to-

End SE and Isolated SE models (size of binary 

embedding, learning rate, l2 regularization for the 

encoder and the regression layer, number of training 

epochs) were chosen with a random search during 

cross-validation. 

In the comparison of binarization strategies we also 

include Gaussian processes on the original inputs and 

on the inputs binarized using unsupervised techniques, 

and we denote these two methods by RBF and binary 

RBF, respectively. To apply GP-based regression to 

the two-classes classification problems we represented 

class labels as -1, 1 and solved a classification problem 

as a regression one directly. In these cases, GP 

parameters were tuned by marginal likelihood 

maximization. This poses computational challenges 

for large datasets (MiniBoo, MoCap), so we resort to 

random feature approximations for these cases. 

For the models involving random features (both 

Fourier and OPU-generated ones) we have tuned the 

variance of the distribution that generates these random 

features. Concretely, assuming that the elements of the 

𝑅 matrix generating the random projections are 

distributed through the standard Normal distribution, 

we can obtain a new random matrix 𝑅′ by multiplying 

𝑅 by any variance, for instance: 

 

𝜙′(𝑥) = 𝑐|𝑅′𝑥|2 = 𝑐|
𝑅

𝜎
𝑥|2 = 𝑐

1

𝜎2
|𝑅𝑥|2 (13) 

 

with corresponding kernel: 

 

𝑘(𝐱, 𝐲) =
1

𝜎4
(||𝐱||2||𝐲||2 + (𝐱𝑇𝐲)2) (14) 

 

So, it is enough to multiply the output of the OPU 

by an additional set of parameters γ, such that 𝛾2 =
1

𝜎2, 

and optimize them with standard gradient descent. The 

parameter gamma is 𝛾 is not equivalent to the 

lengthscale parameter of the RBF kernel as it has 

simply a scaling effect on the kernel. 

On the regression problems, both proposed 

methods outperformed their main competitors. On the 

classification problems, the DFA-based approach was 

better only on one dataset, and on all other datasets the 

proposed methods performed better or equally well. 

Considering the comparison between the proposed 

methods, we see that End-to-End SE is more stable and 

requires a significantly fewer number of samples from 

the encoder, although Isolated SE showed slightly 

better results on classification problems. We 

considered including results obtained by running these 

models on the real OPU (Fig. 2). Unfortunately, the 

regression problems required such a large number of 

epochs that we could not perform the experiments in a 

reasonable amount of time. 

 

 

 

Fig. 2: Error comparison on classification (bottom) datasets 

for experiments on a real hardware. 

 

We also tested the performance of our approach 

with respect to the number of samples required to 

employ REINFORCE. We found that End-to-End SE 

can achieve good results with a small number of 

samples from the encoder, and the increase of number 

of samples does not seem to improve performance. In 

Fig. 3 we plot the convergence of the loss for one 

classification and one regression problem. The 

convergence curves indicate that the convergence 

speed benefits from the gradient variance reduction. 
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Fig. 3: Convergence of the training procedure on 

classification problem: mocap dataset (top) and regression 

problem: boston dataset (bottom). 

 

 

5. Conclusion 

 
We proposed a method inspired by reinforcement 

learning that allows us to use OPUs for approximately 

solving kernel ridge regression on real-valued data. We 

have empirically shown that gradient-based supervised 

optimization of the binarization part is beneficial 

compared to unsupervised binarization and strategies 

that do not employ gradient information. 
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