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Abstract—It is estimated that the data volume between
connected vehicles and edge/cloud server(s) will be about 100
petabytes per month by 2025. The networking framework we
have, on the other hand, is the existing cellular network in
which the most connected vehicles function today. However,
such a network suffers from several issues and may not work
under this predicted data demand. To address such a dilemma,
a new paradigm, Vehicular Knowledge Networking (VKN), is
recently introduced. In VKN, the data is transformed into
knowledge and it is distributed with various lifetimes/relevance.
To benefit from the knowledge, on the other hand, it should
be placed intelligently such that a high number of vehicles
can access and consume it. In this paper, we tackle this issue
and propose mobility-aware smart knowledge placement. In the
proposed method, vehicle mobility is analyzed to measure the
centrality degree of a region. The computed centrality degrees
are then further analyzed to identify the most central zones.
The knowledge is placed on these zones to increase availability.
We demonstrate the benefits of the proposed method through a
simulation. Our preliminary result has shown that the mobility-
aware smart knowledge placement makes knowledge accessible
from vehicles over short range communication. Through such
short-range availability of knowledge, vehicles can use the
free spectrum to download it which decreases the cellular
communication cost significantly.

I. INTRODUCTION

Today, vehicles have a rich set of resources that includes
sensing, communication, and computation. Such increasing
resource capabilities pave the way for vehicles to be the
building blocks of future smart cities and intelligent ap-
plications [1]. Through diverse communication and sens-
ing technologies, vehicles become connected, and they not
only sense the environment but also share their observation
with edge/cloud server(s) to benefit from unique mobile
services. According to Automotive Edge Computing Con-
sortium (AECC), the data volume transmitted back and forth
between connected vehicles and edge/cloud will be about 100
petabytes per month by 2025 [2]. The more connected vehi-
cles get involved, the more data is generated. The networking
framework we have, on the other hand, is the existing cellular
network in which the most connected vehicles function today.
However, such a network suffers from several limitations
and may not scale well under this predicted data demand.
Multiple vehicles under the same traffic incident may execute
the same computation in parallel to interpret similar sensor
measurements. Delivering all sensor data in such a situation
is highly redundant or sometimes unnecessary. Having more

networking infrastructures with rich resources seems to be
the solution at first glance. However, it may not be feasible
since the increased data may consume the available resources
rapidly.

In light of these facts, an urgent need for a unique
solution and a brand-new network architecture would rise.
For example, ETSI standardized the information sharing
through Cooperative Awareness Message (CAM) and Local
Dynamic Maps (LDM) [3]. In this standard, the information
is defined as a group of one or more pieces of raw data
that are processed to be meaningful. However, there still
exists redundant computation when vehicles share a set of
similar information (e.g., a group of vehicles is calculating
the risk of an intersection based on the speed and position
information of vehicles in the vicinity) [4]. To address this
problem, a new paradigm, VKN, is recently introduced in
[5]. In VKN, a mechanism is designed to transform data
into searchable knowledge and it is distributed with various
lifetimes and relevance. There is a hierarchy among data,
information, and knowledge as demonstrated in Figure-1.
Knowledge is created through analysis of multiple instances
of information and it is a fact or a belief that represents the
hidden relationship among them.
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Fig. 1: The hierarchy in data, information and knowledge

The creation of knowledge, on the other hand, is not cheap.
It may require computationally hungry algorithms and a set
of information and/or data that are potentially from multiple
sources (e.g., vehicles). To maximize the benefit, knowledge
should be placed intelligently when it is created. How to
place data and/or contents in mobile environments is one
of the well-explored topics in existing literature [12]. For
example, possible trajectories of the vehicle are determined
and data/content popularity is estimated. The data/contents



TABLE I: Related Work on Knowledge Networking and Knowledge Oriented Applications

Ref. Purpose Knowledge Method(s) Application
[6] Resource Utilization Network Selection Optimization Access Network Selection
[7] Network Management Optimal Links and Paths Optimization UAV Network Management
[8] Caching Utilization Content Election Machine Learning Edge Caching
[9] Parking Lot Monitoring Parking Availability Machine Learning End-to-End Parking
[10] Understanding Human Mobility Socioeconomic Activities Clustering Urban Area Planning
[11] Vehicular Risk Assessment Maneuver Conflict Zones Clustering Vehicular Path Planning

are prefetched according to this estimation to minimize
the delay and maximize the retrieval rate in [13], [14]. In
addition to these IP network-based solutions, another body
of research focuses on Named Data Networking (NDN) in
which the existing placement and dissemination strategies
are well discussed in [15]. However, both IP and NDN
solutions rely on an accurate prediction in which inaccurate
estimation degrades their performance and wastes all of
the placement effort. Knowledge placement, on the other
hand, is in a different setting in which the key goal is
to increase the availability and make a high number of
vehicles benefit from it. When knowledge is created, it is
mutable compared to information and should stay alive, being
stored, updated, and forwarded to nearby entities. In this
paper, we tackle this issue and propose mobility-aware smart
knowledge placement. The vehicles’ mobility characteristics
are leveraged to mine the centrality degrees of a region.
The computed centrality degrees are then further analyzed
to identify the most central zones. The connected vehicles in
the most central zones are instructed to form Vehicular Micro
Clouds (VMCs) [16], and VMCs behave as a virtual edge
server to store, update and forward the knowledge. Through
the virtual edge servers, knowledge is accessible in short-
range. Vehicles can use the free spectrum (e.g., Vehicle-to-
Vehicle (V2V) communication) to download the knowledge
rather than requesting it from an edge/cloud server(s) which
reduces the cellular communication cost significantly.

The rest of the paper is organized as follows. Section II
presents the recent effort in VKN applications. Section III
describes the system model of mobility-aware smart knowl-
edge placement. Section IV presents the proposed method.
Section V provides the performance evaluation of proposed
method via simulations. Finally, concluding remarks and
future works are given in Section VI.

II. RELATED WORK

Table I summarizes the recent research with some key
features in knowledge oriented applications. Optimization
methods are applied to intelligently select the network in-
terface for better resource utilization in [6]. A monitoring
platform is integrated with Software Defined Networking
to find the optimal links and paths for Unmanned Aerial
Vehicles in [7]. Content election strategies are examined
to proactively decide which content to cache at the edge
in [8]. [9] studied the parking availability prediction in
parking lot monitoring system to provide end-to-end parking.
Human mobility characteristics are mined to identify the
socioeconomic activities in [10]. From the existing literature,
we observed that there exists an increasing interest in knowl-
edge oriented applications. Knowledge is created and utilized

in management and feedback systems for better resource
utilization and achieving user’s objectives, respectively. Re-
cently, we looked at the knowledge networking from vehicle
perspectives and proposed vehicular knowledge creation and
knowledge networking in [11]. In [11], vehicular maneuver
conflicts (e.g., merging, crossing conflicts) are leveraged to
identify the conflicting zones in which the maneuver conflicts
occur the most.

On the other hand, there exist some recent works in the
literature that aim to place the vehicular content for better
utilization. The main goal of these works is to intelligently
cache the contents and route them to improve the over-
all data downloading performance. [12] highlights the key
principles in the content caching and placement strategies
adopted in the existing literature. However, these proposed
methods are not directly applicable to vehicular knowledge
networking applications and have the following drawbacks.
First, existing placement strategies select the contents to be
elected/evicted according to some predefined criteria (e.g.,
popularity). However, a change in the environment could
leave the placement strategy unable to respond adequately
as its static election/eviction criteria become obsolete (e.g.,
non-recurring traffic congestion and mitigation strategy to
improve the traffic efficiency). Second, although there exist
some other methods that use prediction mechanisms to deter-
mine what content and where to place, inaccurate estimation
degrades their performance and wastes all of the placement
effort. The key goal of the knowledge placement, on the other
hand, is to feed necessary part of knowledge to relevant
vehicles beforehand so they can benefit from it. Through
smart placement, knowledge should stay alive, being stored,
updated and forwarded to other nearby vehicles.

III. SYSTEM MODEL

Figure 2 shows the overview of the proposed mobility-
aware smart knowledge placement system. We assume that
connected vehicles have the V2V communication module in
addition to Vehicle-to-Cloud (V2C) cellular communication
functionality. Connected vehicles upload their position, speed
information to the edge/cloud server and the edge/cloud
server runs mobility analytics to identify the most central
zones. In these most central zones, connected vehicles are
instructed to form a VMC. VMC then keeps the knowledge
alive through VMC-to-Cloud communication and knowledge
is updated via two-way communication with edge/cloud
server. VMC behaves as a collaborative data storage in which
vehicles approaching the most central zones can obtain the
kept knowledge over V2V networks (detailed in Section IV).
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Fig. 2: Overview of the Mobility-Aware Smart Knowledge Placement

IV. MOBILITY-AWARE SMART KNOWLEDGE PLACEMENT

The features of the proposed mobility-aware smart knowl-
edge placement method are as follows.

• It analyzes vehicle trajectory data to measure the cen-
trality degree of a region. The centrality degree is an
important metric, which identifies a central region in a
given road network.

• It not only mines the centrality degree of the region but
also clusters computed centrality degrees to identify the
most central zones. Connected vehicles in these zones
share the common vicinity and can collaborate on tasks.

• It forms VMCs on these most central zones, and VMC
is responsible for keeping the knowledge up-to-date
via VMC-to-Cloud communication. VMC then shares
knowledge with other nearby vehicles over the V2V
network that significantly decreases the cellular cost.

Figure 2 illustrates the use case where the mobility-aware
smart knowledge placement is investigated. Vehicles are
traveling from right to left and two connected vehicles at the
left-most part of the road analyze their sensor readings and
conclude that the road has an anomaly (e.g., pothole, traffic
incident, black ice, etc.). Such knowledge is very valuable
and needs to be kept alive. Connected vehicles passing
through this road section need to be guided and they should
update the knowledge regarding the current state of the
anomaly. According to the current status, knowledge should
be delivered to other nearby vehicles immediately. Otherwise,
it may jeopardize the safety of other vehicles. When such
knowledge is created, it should be placed intelligently, so that
the other vehicles get prepared prior to hitting the abnormal
part of the road. To solve this issue, we propose to mine
the centrality degree of regions and place the knowledge
in the most central zones. Knowledge in these zones stays
alive through the edge/cloud server communication and it is
consumed by the other nearby vehicles.

When the knowledge is created, the edge/cloud server
runs the steps presented in Figure 3 to place the knowledge
intelligently. We assume that connected vehicles upload their
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Fig. 3: Flowchart of Smart Knowledge Placement

data to the edge/cloud server periodically and/or when they
are instructed. The steps of smart knowledge placement are
explained in detail next.

Get Traffic Information: Knowledge placement starts
with getting the traffic information of both V2V and V2C
connected vehicles. The edge/cloud server instructs con-
nected vehicles to share their speed and location information.
Vehicles with V2C communication functionality can upload
their information to the edge/cloud server directly. Other
V2V communication-only vehicles, on the other hand, share
their data with V2C enabled vehicles. V2C communication-
enabled vehicles act as a gateway to link the data to the
edge/cloud server. The overall traffic is then represented at
each time instance with N road agents that are capable of
V2V and V2C communications.

Represent the Traffic in DGG: After getting the traffic
information, Dynamic Geometric Graph (DGG) [17] is con-
structed. DGG is an undirected graph with a set of vertices
(Vs) and a set of edges (Es). In this paper, DGG illustrates the
state of the network at each time instance with N connected
vehicles where vehicles are denoted as Vs and the distance
between each pair of Vs is represented as an E. Considering
that vehicular network is not static, analysis of DGG is
important as it implicitly contains the knowledge about how



vehicles move over time and which regions are more central
compared to others. We leverage such topological knowledge
to place the knowledge itself so a high number of vehicles
can benefit from it.

Perform Graph Analytics: After the construction of
DGG, movements of connected vehicles are mined to explore
the centrality degree of regions. Centrality generally indicates
characteristics of a central node in a given graph. In this
paper, we use the degree and closeness centrality of vehicles
to measure the centrality degree of a region. The degree cen-
trality for a vehicle V is the fraction of nodes it is connected
to. Closeness centrality (Ci(t)), on the other hand, stands for
the reciprocal sum of the shortest path (distance(ui, uj))
from node V to all other nodes as shown in Equation 1.

Ci(t) =
1P

j 6=i distance(ui, uj)
(1)

The edge/cloud server mines the DGG and computes
the centrality degrees for each vehicle at each time step.
The vehicles that have the highest degree and/or the lowest
closeness centrality are defined as the most central node,
and the locations of the most central nodes are recorded.
Following that, these locations are further grouped to identify
the most central zones. Via mining the DGG at each time
step, the edge/cloud server quantifies how long it will take for
knowledge to spread from a given location to other vehicles
in the network. We propose to leverage such a piece of
knowledge while placing the knowledge itself.
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Cloud 
LeaderHandover

Vehicular 
Micro Cloud
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Fig. 4: Vehicular Micro Cloud (VMC)

Place The Knowledge: In the last step of the smart knowl-
edge placement, connected vehicles at the most central zones
are instructed to form a VMC as depicted in Figure 4. VMCs
behave as a virtual edge server, and connected vehicles
collaborate to keep the knowledge up-to-date at these zones
through VMC-to-Cloud communication. The feasibility of
such collaborative data storage by a VMC has recently been
investigated in [18]. The basic idea of collaborative data
storage is: vehicles hand over their data contents to other
vehicles (e.g., vehicles closest to the center of VMC) before
they leave the VMC. A cloud leader (e.g., vehicles with rich
resources) is being elected to coordinate this process. We

utilize such collaborative data storage service to make the
knowledge accessible in a short-range. Vehicles approaching
these zones can use the free spectrum (i.e. direct V2X)
to download knowledge rather than requesting it from an
edge/cloud server(s) individually.

V. PERFORMANCE EVALUATION

We have evaluated the performance of mobility-aware
smart knowledge placement through simulation experiments.
The simulations are performed in the Simulation of Ur-
ban Mobility (SUMO) [19]. SUMO is an open-source and
discrete-time traffic simulator that is capable of simulating
the micro-behavior of individual vehicles. For the network
evaluation, we heuristically assume that vehicles use cellular
(e.g., 4G) and IEEE 802.11p for V2C and V2V commu-
nication, respectively. The overall networking analysis is
performed by counting the number of transmissions with each
communication interface. To check the feasibility of smart
knowledge placement, we model the El Camino Real road
network located near Mountain View, California using real
map data to emulate realistic traffic conditions. Table II lists
other simulation parameters.

TABLE II: Simulation Parameters

Parameter Value
Min/Max Speed 0/35 m/s
Number of Vehicles 300
Simulation Time 300 s
IEEE 802.11p Range 300 m
Most Central Zone Thresholds 10, 20, 30
Connected Vehicle Upload Period 1 sec

Traffic Incident The Most Central Zone 
(Vehicular Micro Cloud)

Fig. 5: El Camino Real Road Network, Mountain View, CA

The goal of the simulation is to compare the feasibility
of proposed mobility-aware smart knowledge placement, de-
noted by Proposed, to the traditional individual request-based
cellular network approach, denoted by Baseline. Figure 5
shows the use case in which a random traffic incident is
placed on the left-most lane causing the lane closure for 8
minutes. We assume that connected vehicles encountering the
traffic incident analyze their sensor readings and lane level
traffic information to create the knowledge. The knowledge
here is the mitigation strategy of such non-recurring traffic
congestion that helps connected vehicles to pass the incident
smoothly. Or, it can be the learned lane change suggestion
and/or inferred game-theoretic lane-changing model.



Figure 6 demonstrates the average distance of all connected
vehicles when they want to access placed knowledge in
different thresholds under Proposed method. The threshold
here refers to the number of times that the most central nodes
(e.g., vehicle) appear in a given region. The simulation is
warmed-up until simulation time reaches t = 40s, and the
knowledge about the traffic incident is created at t = 40s.
The edge/cloud server first randomly selects a subset of re-
gion and VMCs are formed in these zones to host the knowl-
edge. However, V2V communication-enabled vehicles cannot
access such knowledge because the average distance to access
knowledge is higher than the V2V communication range
(e.g., 300 meters). As connected vehicles upload their infor-
mation, the edge/cloud server infers how the vehicle moves
over time and which regions are more central compared
to others. The edge/cloud server leverages such knowledge
to refine initial placement and place the knowledge in the
most central zones according to the vehicle’s mobility. Such
mobility-aware smart placement, on the other hand, makes
the knowledge accessible in a short range. The knowledge
is kept up-to-date over VMC-to-Cloud communication and
connected vehicles approaching these zones can benefit from
such knowledge before they reach the core area of the traffic
incident.
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Fig. 6: Average Distance to Reach the Knowledge

When we consider the rate of decrease and the most central
zone threshold in Figure 6, we observe that there is a tradeoff.
The small threshold is good when we want to disseminate
the knowledge quickly. However, it has a drawback in terms
of management as a slightly larger number of VMCs need
to be formed and managed. A straightforward extension
could be to analyze the traffic incident and come up with
dynamic thresholds that optimize the knowledge delivery and
management accordingly.

Figure 7 illustrates the recorded location of the most
central nodes (e.g. vehicles) (X) and the inferred most central
zones (O) when the most central zone threshold (i.e., the
number of times that the most central nodes (e.g. vehicle)
appear in a given region) is 30. The edge/cloud server mines
the DGG and records the location of the central nodes
(e.g., the highest degree and the lowest closeness centrality).
These locations are grouped to identify the most central

zones. There are three central zones, and these zones shifted
according to vehicle mobility around the traffic incident. The
edge/cloud server instructs connected vehicles in these zones
to form a VMC. VMC behaves as a virtual edge server, and
the vehicles collaborate to keep the knowledge up-to-date
through VMC-to-Cloud-to-VMC communication.
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Fig. 7: The Change of The Most Central Zones

Figure 8 depicts the evaluated communication cost of
Baseline and Proposed methods where the blue dashed bars
compare the cost savings in the cellular portion. In Baseline,
the inferred knowledge about the traffic incident is delivered
to connected vehicles over a cellular network which is costly
and could create a bottleneck on the edge/cloud server. The
Proposed method, on the other hand, measures the centrality
degrees of the region and selects a subset of regions (most
central zone threshold equal or larger than 20) as the most
central zones. The connected vehicles in these zones col-
laborate to not only keep the knowledge up-to-date through
VMC-to-Cloud communications but also make it available
in short range over vehicular networks. Therefore, connected
vehicles approaching these zones download the knowledge
over direct V2X networks which significantly decreases the
cellular communication cost.
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Fig. 8: Communication Cost

To ensure the feasibility of knowledge delivery in the
short range, we analyze the knowledge disruption rate in the
most central zones under different penetration rates of V2V-
enabled vehicles. Knowledge disruption rate is defined as the
ratio of the time duration that the number of V2V enabled
connected vehicles drops to zero, causing temporary loss of
knowledge which result in re-downloading the knowledge
from the edge/cloud. Figure 9 shows the disruption rate



analysis of Baseline and Proposed methods under differ-
ent penetration rates of V2V-enabled vehicles. We observe
that there is no knowledge disruption in Baseline where
each connected vehicle relies on V2C communication and
the knowledge is delivered over a cellular network. In the
Proposed method, on the other hand, the disruptions occur
more frequently under the lower penetration rates of V2V-
enabled nodes. In such cases, VMC suffers from keeping the
knowledge tied to the most central zone due to a lack of V2V
connected vehicles. When V2V-enabled vehicle penetration
rate reaches a certain degree of threshold (e.g., 30%), the
VMC behaves as a regional distributed storage in which the
knowledge is kept alive. Whenever the knowledge is updated
on the edge/cloud side, it is delivered to VMC via VMC-to-
Cloud communication. The other nearby connected vehicles
can download the up-to-date knowledge over V2V based
vehicular networks.
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Fig. 9: Disruption Rate Analysis

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a mobility-aware smart knowl-
edge placement method in which mobility analysis is per-
formed to measure the centrality degree of a region. The
computed centrality degrees are then further analyzed to
identify the most central zones. We propose to place the
created knowledge in these zones to increase availability. The
connected vehicles in these most central zones form a VMC
and VMC is responsible for keeping the knowledge alive via
VMC-to-Cloud communication. Through such a collaborative
approach, knowledge is reachable in short ranges where
vehicles can use the free spectrum to access it rather than
requesting from the edge/cloud server individually. Extensive
simulations under realistic traffic conditions demonstrate that
the proposed method decreases the cellular cost significantly
by making knowledge accessible in a short range under a
certain degree of V2V communication penetration rate.

The promising results open a specific line of further works
that should extend the validation of the proposed method by
the sensitivity test on the performance under different road
settings with various vehicle resource models and vehicle
densities. We want to extend the proposed knowledge place-
ment technique with a new knowledge querying system in
which the placed knowledge is searched with given tags.
Through such an extension, connected vehicles could submit

knowledge queries and even they offload the knowledge
creation to remote areas before they reach the core area.
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