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Abstract—Decentralized learning enables edge users to col-
laboratively train models by exchanging information via device-
to-device communication, yet prior works have been limited to
wireless networks with fixed topologies and reliable workers. In
this work, we propose an asynchronous decentralized stochastic
gradient descent (DSGD) algorithm, which is robust to the
inherent computation and communication failures occurring at
the wireless network edge. We theoretically analyze its perfor-
mance and establish a non-asymptotic convergence guarantee.
Experimental results corroborate our analysis, demonstrating
the benefits of asynchronicity and outdated gradient information
reuse in decentralized learning over unreliable wireless networks.

Index Terms—asynchronous decentralized learning, over-the-
air computation, device-to-device communication.

I. INTRODUCTION

Distributed learning algorithms empower devices in wireless
networks to collaboratively optimize the model parameters
by alternating between local optimization and communication
phases. Leveraging the aggregated computational power avail-
able at the wireless network edge in a communication efficient
[1] and privacy preserving manner [2], distributed learning is
considered to be a key technology enabler for future intelligent
networks. A promising paradigm, which enables collaborative
learning among edge devices communicating in a peer-to-peer
(server-less) manner, is decentralized learning [3]. Differently
from federated learning, decentralized algorithms do not re-
quire a star topology with a central parameter server, thus
being more flexible with respect to the underlying connectivity
[4]. This feature renders decentralized learning particularly
appealing for future wireless networks with device-to-device
communication. Several decentralized learning schemes over
wireless networks have been proposed and analyzed [5]–
[8], highlighting the key role of over-the-air computation
(AirComp) [9] for low-latency training at the edge. Prior works
have mainly considered wireless networks of reliable workers
communicating in a fixed topology throughout the entire
training procedure. Nevertheless, these assumptions are hardly
met in practical systems, in which communication links can be
intermittent or blocked, and devices may become temporarily
unavailable due to computation impairments or energy saving
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reasons. Asynchronous distributed training has been shown
to mitigate the effect of stragglers (slow workers) [10]–[12].
However, harnessing the potential benefits of asynchronism
in decentralized learning over unreliable wireless networks
remains elusive.

In this paper, we propose an asynchronous implementation
of decentralized stochastic gradient descent (DSGD) as a
means to address the inherent communication and computation
impairments of heterogeneous wireless networks. In particular,
we study decentralized learning over a wireless network with
a random time-varying communication topology, comprising
unreliable devices that can become stragglers at any point of
the learning process. To account for communication impair-
ments, we propose a consensus strategy based on time-varying
mixing matrices determined by the instantaneous network
state. At the same time, we design the learning rates at the
edge devices in such a way so as to preserve the stationary
point of the original network objective in spite of the devices’
heterogeneous computational capabilities. Finally, we provide
a non-asymptotic convergence guarantee for the proposed al-
gorithm, demonstrating that decentralized learning is possible
even when outdated information from slow devices is used
to locally train the models. Experimental results confirm our
analysis and show that reusing stale gradient information can
speed up convergence of asynchronous DSGD.

II. SYSTEM MODEL

We consider a network consisting of m wireless edge
devices, in which each node i is endowed with a local loss
function fi : Rd → R and local parameter estimate θi ∈ Rd.
The network objective consists in minimizing the aggregate
network loss subject to a consensus constraint

minimize
θ1,...,θm

f(θ1, . . . , θm) :=
1

m

m∑
i=1

fi(θi) (1)

s.t. θ1 = θ2 = · · · = θm.

This corresponds to the distributed empirical risk mini-
mization problem whenever fi is a loss term over a local
dataset. In the following, f(θ) denotes the network objective
f(θ1, . . . , θm)

∣∣
θ1=···=θm=θ

and θ̄ = 1/m
∑m
i=1 θi. To solve

(1), we consider a DSGD algorithm according to which de-
vices alternate between a local optimization based on gradient
information (computation phase) and a communication phase.



A. Computation model

To locally optimize the model estimate θi, we assume
that each device can query a stochastic oracle satisfying the
following properties.

Assumption 1. At each node i, the gradient oracle gi(θ)
satisfies the following properties for all θ ∈ Rd

• E[gi(θ)] = ∇θfi(θ) (unbiasedness)
• E ‖gi(θ)−∇θfi(θ)‖2 ≤ σ2 (bounded variance)
• E ‖gi(θ)‖ ≤ G2 (bounded magnitude).

We admit the existence of straggling nodes and that a
random subset of devices can become inactive or postpone
local optimization procedures, e.g., due to computation impair-
ments or energy constraints. As a result, devices may join the
communication phase and disseminate a model that has been
updated using gradient information computed using previous
model estimates, or a model that has not been updated at all
from the previous iteration(s). Formally, at every optimization
round t, the local update rule is

θ
(t+ 1

2 )
i =

{
θ

(t)
i , if device i is straggler at round t
θ

(t)
i − ηtigi(θ(t−τi)), otherwise

(2)
where ηti is a local learning rate and the delay τi ≥ 0 accounts
for the staleness of the gradient information at device i.

B. Communication model

The channel between any pair of device i and j follows a
Rayleigh fading model. At every communication iteration t,
devices can exchange information according to a connectivity
graph G(t) = (V, E(t)), where V = {1, 2, . . . ,m} indices
the network nodes and (i, j) ∈ E(t) if devices i and j
can communicate during round t. We consider symmetric
communication links; therefore the communication graph is
undirected. While the connectivity graph is assumed to remain
fixed within the optimization iteration, it may vary across
optimization iterations due to deep fading, blockage, and/or
synchronization failures.

III. ASYNCHRONOUS DECENTRALIZED SGD

The proposed asynchronous DSGD procedure, which takes
into account both computation and communication failures, is
detailed in Algorithm 1.

At the beginning of each training iteration t, non straggling
devices update the local estimate θ(t)

i according to (2) using a
potentially outdated gradient information. Subsequently, based
on the current connectivity graph G(t) = (V, E(t)), devices
agree on a symmetric and doubly stochastic mixing matrix
W (t) using a Metropolis-Hastings weighting scheme [13]. The
weights are very simple to compute and are amenable for
distributed implementation. In particular, each device requires
only knowledge of the degrees of its neighbors to determine
the weights on its adjacent edges.

After that, it follows a communication phase in which
devices exchange the updated estimates and employ a gossip
scheme based on W (t). To leverage AirComp capabilities,
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Fig. 1. An example of the timeline for one training iteration composed of
alternate Broadcast and AirComp slots.

Algorithm 1 Asynchronous Decentralized SGD

Input: θ(0)
i = 0 ∈ Rd

Output: θ̄(T )

1: for t in [0, T ] do
2: for each non straggling devices do
3: update local model as (2)
4: end for
5: Determine matrix W (t) based on G(t)

6: for s in [1, St] do
7: if s ≡ 0 (mod 2) then
8: # Broadcast phase
9: for each device i scheduled in slot s do

10: Device i transmits (6)
11: Each device j ∈ N (t)

i receives (7)
12: Each device j ∈ N (t)

i estimates (8)
13: end for
14: else
15: # AirComp Phase
16: for each star center i scheduled in slot s do
17: Each device j ∈ N (t)

i transmits (6)
18: Device i receives (4)
19: Device i estimates (5)
20: end for
21: end if
22: end for
23: for each device do
24: model consensus as in (9)
25: end for
26: end for

devices employ analog transmission together with the schedul-
ing scheme proposed in [7]. Accordingly, the communication
phase is divided into multiple pairs of communication slots.
Each pair consists of an AirComp slot and a broadcast slot
as illustrated in Fig. 1. During the AirComp slot s, the star
center i receives the superposition of the signals transmitted
by its neighboring devices N (t)(i) = {j ∈ V : (i, j) ∈ E(t)}.
In particular, each scheduled node j ∈ N (t)(i) transmits to



the star center i

x
(s,t)
j =

√
γ

(s,t)
i

h
(s,t)
i,j

w
(t)
i,j θ

(t+ 1
2 )

j (3)

where h(s,t)
i,j ∈ Cd is the channel coefficient between user i and

j during slot s, γ(s,t)
i ∈ R is a power alignment coefficient,

and w(t)
i,j is the (i, j) entry of the mixing matrix W . The star

center i receives the aggregated signal

y
(s,t)
i =

∑
j∈N (i)

h
(s,t)
i,j x

(s,t)
j + z

(s,t)
i (4)

where z(s,t)
i ∼ N (0, σw1d) is a noise vector, and estimates

the aggregated model as

ŷ
(s,t)
i =

y
(s,t)
i√
γ

(s,t)
i

=
∑

j∈N (i)

w
(t)
i,j θ

(t+ 1
2 )

j +
z

(s,t)
i√
γ

(s,t)
i

. (5)

On the other hand, during a broadcast slot s, scheduled node
i transmits using a power scaling factor α(s,t)

i the signal

x
(s,t)
i =

√
α

(s,t)
i θ

(t+ 1
2 )

i (6)

and all neighboring devices j ∈ N (t)(i) receive

y
(s,t)
j = h

(s,t)
j,i x

(s,t)
i + z

(s,t)
j (7)

and estimate the updated model as

ŷ
(s,t)
j = w

(t)
j,i

y
(s,t)
j√

α
(s,t)
i h

(s,t)
j,i

= w
(t)
j,i

(
θ

(t+ 1
2 )

i +
z

(s,t)
j√
αihj,i

)
.

(8)
At the end of the communication phase, each node i obtains
the new estimate θ

(t+1)
i combining all received signals and

using a consensus with step size ζ ∈ (0, 1]

θ
(t+1)
i = (1− ζ)θ

(t+ 1
2 )

i + ζ


m∑
j=1

w
(t)
i,j θ

(t+ 1
2 )

j + ñi
(t)

 (9)

where ñ(t)
i ∼ N (0, σ̃

(t)
w,i1d) is a noise vector term that accounts

for the aggregation of noise components during AirComp
and broadcast transmissions at device i during communication
phase t.

IV. CONVERGENCE ANALYSIS

In this section, we study the effect of communication and
computation failures on the asynchronous DGSD procedure
and prove its convergence.

A. Effect of Communication Failures

Communication impairments amount for a random con-
nectivity graph with an edge set that differs at each differ-
ent optimization iteration. From an algorithmic perspective,
random communication impairments result in DSGD with
stochastic mixing matrices. A particular class of stochastic
mixing matrices are those that satisfy the expected consensus
property.

Definition 1 (Expected Consensus Rate [4]). A random matrix
W ∈ Rm×m is said to satisfy the expected consensus with rate
p if for any X ∈ Rd×m

EW
[∥∥WX − X̄

∥∥2

F

]
≤ (1− p)

∥∥X − X̄∥∥2

F

where X̄ = X 11T

m and the expectation is w.r.t. the random
matrix W .

Lemma 1. If the event that the connectivity graph G(t) is con-
nected at round t has a probability q > 0 and the Metropolis-
Hastings weighting is used to generated the mixing W (t), the
expected consensus rate is satisfied with rate p = qδ > 0, with
δ being the expected consensus rate in case of a connected
topology.

Proof. See Appendix A.

If the expected consensus is satisfied, it is then possible to
establish a convergent behavior for the estimates generated by
the proposed algorithm.

Lemma 2 (Consensus inequality). Under Assumption 1, after
T iterations, decentralized SGD with a constant learning rate
η and consensus step size ζ satisfies

m∑
i=1

∥∥∥θ(T ) − θ̄(T )
∥∥∥

2
≤η2 12mG2

(pζ)2
+ ζ

2

p

m∑
i=1

σ2
w,i

where σ2
w,i = maxTt=0 E

∥∥∥ñ(t)
i

∥∥∥2

.

Proof. See Appendix B.

Overall, communication failures amount to a reduced ex-
pected consensus rate compared to the scenario with perfect
communication. At the same time, dropping users that are
delayed and are unable to synchronize and perform Air-
Comp, renders the communication protocol more flexible. For
instance, in Fig. 2, we consider a network of nine nodes
organized according to different topologies and show the
evolution of the average spectral gap of the mixing matrix with
Metropolis-Hastings weights, whenever devices not satisfying
a certain delay constraint are dropped. As expected, stricter
delay requirements result in sparser effective communication
graphs and mixing matrices with smaller spectral gaps.

B. Effect of Computation Failures

Random computation impairments make the group of de-
vices that effectively update the model parameter vary over
time. To account for this in the analysis, we introduce a
virtual learning rate that is zero in case of failed computation.
Namely, the learning rate at device i during computation round
t becomes

η̃
(t)
i =

{
0, if i is straggler at round t
η

(t)
i , otherwise

where η(t)
i is a specified learning rate value in case of suc-

cessful computation. Furthermore, to ensure that the procedure
converges to stationary points of the network objective even
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Fig. 2. Average spectral gap under different delay constraints for mesh, ring,
and two-dimensional torus topologies with 9 nodes. Each link is associated to
a completion time ∼ Exp(1) and is dropped if it exceeds the delay tolerance
value.

when edge devices have different computing capabilities, the
expected learning rates have to be equalized. In particular, if
E[η

(t)
i ] = η, ∀i, we have that stationary points are maintained

in expectation, namely
m∑
i=1

E[η̃
(t)
i ]∇fi(θ) = 0 =⇒ ∇f(θ) = 0.

Finally, the existence of straggling devices introduces asyn-
chronicity in the decentralized optimization procedure. In
particular, a device i that fails at completing the gradient
computation at a given optimization iteration is allowed to
apply the result in a later one, without discarding the compu-
tation results. While we do not specify the delay distribution,
we rather introduce the following assumption regarding the
staleness of gradients.

Assumption 2. For all iteration t, there exists a constant γ ≤
1 such that

E

∥∥∥∥∥∇f(θ̄(t))−
∑m
i=1∇fi(θ

(t−τi)
i )

m

∥∥∥∥∥
2

≤ γE
∥∥∥∇f(θ̄(t))

∥∥∥2

+ L2

∑m
i=1 E

∥∥∥θ(t)
i − θ̄(t)

∥∥∥2

m
.

The above assumption is similar to the one in [10] with
an additional consensus error term. Note that the value of γ
is proportional to the staleness of the gradients and in case
of perfect synchronization (γ = 0) the bound amounts to a
standard consensus error term.

C. Convergence Guarantee

In this subsection, we demonstrate the convergence of the
decentralized optimization procedure to a stationary point of
the problem (1).

Theorem 1. Consider a network of unreliable communicating
devices in which the expected consensus rate is satisfied
with constant p and each device can be a straggler with
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Fig. 3. Test accuracy versus time under different channel gain thresholds.
Smaller thresholds result in larger average consensus rates and therefore in
faster convergence.

probability ρi < 1. If Assumptions 1 and 2 are satisfied, asyn-
chronous DSGD with constant learning rate ηi = minj(1 −
ρj)/(

√
4LT (1−ρi)) and consensus rate ζ = 1/T 3/8 satisfies

the following stationary condition

1

T

T∑
t=1

∥∥∥∇f(θ̄(t))
∥∥∥2

≤8
√
L(f(θ̄(T ))− f∗)
γ′ρmin

√
T

+
3G2L

T 1/4p2γ′

+

√
L

4T

σ2

mγ′minj(1− ρj)

+

m∑
i=1

σ2
w,i

mγ′

(
2L2γ

pT 3/8
+

4L
√
L

mT 1/4ρmin

)
where γ′ = 1 − γ, ρmin = minj(1 − ρj) and f∗ =
minθ∈Rd f(θ).

Proof. See Appendix C.

The above theorem establishes a vanishing bound on the
stationarity of the returned solution, which involves quantities
related to both communication and computation impairments.
In particular, the constant of the slowest vanishing terms
T−1/4 contains the term p related to random connectivity, as
well as γ′ and ρmin due to stragglers.

V. NUMERICAL RESULTS

The effectiveness of the proposed asynchronous DSGD
scheme is assessed using a network of m = 15 devices
that collaboratively optimize the parameters of a convolutional
neural network (CNN) for image classification with Fashion-
MNIST. Gradients are calculated using batches of 16 data
samples and the performance is evaluated using a test set of
500 images. We model the channel gain between each device
pair as Rayleigh fading and we assume a shifted exponential
computation time at each device, i.e., Tcomp = Tmin+Exp(µ)
with Tmin = 0.25s and µ = 1. In Fig. 3, nodes communicate
only when the channel is in favorable conditions, i.e., when
the channel gain exceeds a certain minimum threshold hmin.
This allows to save energy; however, while higher threshold
values result into lower average energy consumption, they also
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Fig. 4. Test accuracy for the asynchronous, synchronous with delay barrier,
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produce mixing matrices with smaller consensus rate, thus
increasing the convergence time.

To study the effect of computation impairments, our pro-
posed asynchronous learning algorithm is compared with: (i)
synchronous DSGD, which waits for all devices to finish their
computations; and (ii) synchronous DSGD with a delay barrier
Tmax, which discards computation from users that violate
the maximum computing time. Compared to the latter, our
asynchronous procedure allows for slow devices to reuse stale
gradient computations during later iterations. In Fig.4, we
plot the evolution of the test accuracy of the aforementioned
algorithms under two different values of Tmax. For a moderate
delay constraint Tmax = E[Tcomp], asynchronous DSGD and
synchronous DSGD with delay barrier perform similarly as
the fraction of slow users is modest. Nonetheless, imposing
a delay constraint and discarding slow devices greatly re-
duces the training time compared to the synchronous DSGD
case. On the other hand, for a stringent delay requirement,
Tmax = 4

5E[Tcomp], reusing stale gradients turns out to
be beneficial and the proposed asynchronous DSGD attains
higher accuracy faster compared to the synchronous DSGD
with a delay barrier.

VI. CONCLUSION

In this work, we have proposed and analyzed an asyn-
chronous implementation of DSGD, which enables decen-
tralized optimization over realistic wireless networks with
unreliable communication and heterogeneous devices in terms

of computation capabilities. We have studied the effect of both
communication and computation failures on the training per-
formance and proved non-asymptotic convergence guarantees
for the proposed algorithm. The main takeaway is that reusing
outdated gradient information from slow devices is beneficial
in asynchronous decentralized learning.

APPENDIX

A. Proof of Lemma 1

Define the event E(t) := {G(t) is connected} and its
complementary event Ē(t). Whenever the Metropolis-Hasting
weights are obtained from a connected graph, the resulting
mixing matrix W (t) has a consensus rate greater than zero.
Therefore, there exists δ > 0 such that

EW (t)|E(t)

∥∥∥W (t)X − X̄
∥∥∥2

F
≤ (1− δ)

∥∥∥W (t)X − X̄
∥∥∥2

F

It follows that, for any X ∈ Rd×m

EW (t)

∥∥∥W (t)X − X̄
∥∥∥2

F
=qEW (t)|E(t)

∥∥∥W (t)X − X̄
∥∥∥2

F

+ (1− q)EW (t)|Ē(t)

∥∥X − X̄∥∥2

F

≤q(1− δ)
∥∥∥W (t)X − X̄

∥∥∥2

F

+ (1− q)
∥∥X − X̄∥∥2

F

where we have lower bounded the consensus rate by zero in
case of disconnected topologies. Grouping terms and having
assumed q > 0, we obtain that the expected consensus is
satisfied with rate (1− qδ) > 0.

B. Proof of Lemma 2

Similarly to [7], [14] we establish the following recursive
inequality

m∑
i=1

E
∥∥∥θ(t) − θ̄(t)

∥∥∥2

≤
(

1− pζ

2

) m∑
i=1

E
∥∥∥θ(t−1) − θ̄(t−1)

∥∥∥2

+
η2

pζ

(
6mG2

)
+ ζ2

m∑
i=1

E
∥∥∥ñ(t)

i

∥∥∥2

.

Defining σ2
w,i = maxTt=0 E

∥∥∥ñ(t)
i

∥∥∥2

and then solving the
recursion we obtain the final expression.

C. Proof of Theorem 1

We denote stale gradients by gi(θ̃
(t)
i ) = gi(θ

(t−τi)
i ). Ac-

cording to the update rule, at each iteration t+ 1, we have

E[f(θ̄t+1)] = E

[
f

(
θ̄t − 1

m

m∑
i=1

(
η̃

(t)
i gi(θ̃

(t)
i ) + ζñ

(t)
i

))]

where the expectation is w.r.t. the stochastic gradients, the
communication noise Ξ(t), and the computation and commu-



nication failures at iteration t+ 1. For an L-smooth objective
function, we have

E[f(θ̄(t+1))] ≤ f(θ̄(t))− 1

m

m∑
i=1

〈
∇f(θ̄(t)),E[η̃

(t)
i gi(θ̃

(t)
i ))]

〉
︸ ︷︷ ︸

:=T1

+
L

2m2
E

∥∥∥∥∥
m∑
i=1

η̃
(t)
i gi(θ̃

(t)
i ))

∥∥∥∥∥
2

︸ ︷︷ ︸
:=T2

+
L

2m2
ζ2

m∑
i=1

E
∥∥∥ñ(t)

i

∥∥∥2

where we used the fact that the communication noise has zero
mean and is independent across users.

Adding and subtracting ∇fi(θ̄(t)) to each summand of T1

and since E[η̃
(t)
i gi(θ̃

(t)
i )] = η∇fi(θ̃(t)

i ), with η = minj(1 −
ρj)/(

√
4LT ), we obtain

T1 =− η

〈
∇f(θ̄(t)),

1

m

m∑
i=1

∇fi(θ̃(t)
i )

〉

=
η

2

∥∥∥∥∥∇f(θ̄(t))− 1

m

m∑
i=1

∇fi(θ̃(t)
i )

∥∥∥∥∥
2

− η

2

∥∥∥∇f(θ̄(t))
∥∥∥2

− η

2m2

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)
i )

∥∥∥∥∥
2

≤ηγ
2

∥∥∥∇f(θ̄(t))
∥∥∥2

+
ηL2

2m

m∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

− η

2

∥∥∥∇f(θ̄(t))
∥∥∥2

− η

2m2

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)
i )

∥∥∥∥∥
2

where we have used the staleness assumption. The last term
can be bounded using the property of the stochastic gradient
and the fact that η̃(t)

i ≤ 1/(
√

4LT ) ≤ 1/(
√

4L) as

T2 ≤
L

2m2
E

∥∥∥∥∥
m∑
i=1

η̃
(t)
i [gi(θ̃

(t)
i )−∇fi(θ̃(t)

i )]

∥∥∥∥∥
2

+
L

2m2
E

∥∥∥∥∥
m∑
i=1

η̃
(t)
i ∇fi(θ̃

(t)
i )

∥∥∥∥∥
2

≤ σ2

8mT
+

η

8m2
E

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)
i )

∥∥∥∥∥
2

.

Summing T1 and T2 we obtain

T1 + T2 ≤−
η

2
(1− γ)

∥∥∥∇f(θ̄(t))
∥∥∥2

+
σ2

8mT

+
ηL2

2m

m∑
i=1

∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

− η

4m2

∥∥∥∥∥
m∑
i=1

∇fi(θ̃(t)
i )

∥∥∥∥∥
2

.

Defining γ′ = (1−γ), telescoping and taking expectations we
obtain

1

T

T∑
t=1

∥∥∥∇f(θ̄(t))
∥∥∥2

≤2
f(θ̄0)− f(θ̄T )

ηTγ′
+

σ2

4ηγ′mT

+
1

T

T∑
t=1

L2

mγ′

m∑
i=1

E
∥∥∥θ(t)
i − θ̄

(t)
∥∥∥2

+
1

T

T∑
t=1

Lζ2

ηm2γ′

m∑
i=1

E
∥∥∥ñ(t)

i

∥∥∥2

.

Defining σ2
w,i = maxTt=0 E

∥∥∥ñ(t)
i

∥∥∥2

and bounding the consen-
sus term by Lemma 2, we obtain

1

T

T∑
t=1

∥∥∥∇f(θ̄(t))
∥∥∥2

≤2
f(θ̄0)− f(θ̄T )

ηTγ′

+
L2

mγ′

(
η2 12mG2

(pζ)2
+ ζ

2

p

m∑
i=1

σ2
w,i

)

+
σ2

4ηγ′mT
+

Lζ2

ηm2γ′

m∑
i=1

σ2
w,i.

The final result is obtained setting η = 1√
4LT

and ζ = 1
T 3/8 .
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