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ABSTRACT
With the increasing development of machine learning models in

daily businesses, a strong need for intellectual property protection

arised. For this purpose, current works suggest to leverage backdoor

techniques to embed a watermark into the model, by overfitting

to a set of particularly crafted and secret input-output pairs called

triggers. By sending verification queries containing triggers, the

model owner can analyse the behavior of any suspect model on the

queries to claim its ownership. However, when it comes to scenarios

where frequent monitoring is needed, the computational overhead

of these verification queries in terms of volume demonstrates that

backdoor-based watermarking appears to be too sensitive to outlier

detection attacks and cannot guarantee the secrecy of the triggers.

To solve this issue, we introduce BlindSpot, to watermark ma-

chine learning models through fairness. Our trigger-less approach

is compatible with a high number of verification queries while be-

ing robust to outlier detection attacks. We show on Fashion-MNIST

and CIFAR-10 datasets that BlindSpot is efficiently watermarking

models while robust to outlier detection attacks, at a performance

cost on the accuracy of 2%.
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1 INTRODUCTION
In the era of the Big Data, machine learning algorithms are widely

used in the industry, with a fast growing adoption. According to a

recent survey
1
, nearly 66 % of the respondents declare that their

company is currently implementing or thinking to implement ML

algorithms. Indeed, companies are willing to make important in-

vestments to develop such algorithms due to potential important

rewards for their core businesses: automatization, decisive compet-

itive advantage, etc. Nonetheless, developing a ML algorithm is not

cost-free: in addition to the data cost for sanitization or labelling,

research and development costs, deployment costs or maintenance

should be taken into account. The global average cost to develop a

ML algorithm has been estimated between 50k and 150k of dollars
2
;

thus, since ML algorithms can be considered as valuable assets for

companies, their intellectual property needs to be protected against

potential thieves, who might intend to bypass development costs.

One particular protection mechanism against model theft is digital
watermarking. Watermarking is the process of embedding unique

1
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information into a machine learning model, in order to identify its

owner.

In existing watermarking solutions, the model is trained on a

particularly crafted set of input-output pairs (𝑥 , 𝑦), only known to

themodel owner, called trigger set. The behavior of thewatermarked

model on the trigger set is observed during the verification phase,

through inference queries sampled from the trigger set so that

the output of the model on the trigger set constitutes a proof of

ownership. Several solutions [1, 14, 23] have been developed to

efficiently watermark machine learning model, without sacrificing

performance on the original task, and to protect them against a

variety of attacks, such as model extraction [10, 11, 24] (stealing

a model by performing a high number of inferences queries) or

outlier detection [9] (analyzing inputs during inference queries

to separate legitimate inputs from trigger inputs to prevent the

verification).

Despite their success in terms of robustness, the verification pro-

cess for backdoor-based watermarking techniques is not adapted

to applications that require regular or frequent verifications of the

watermaks. For example, in API monitoring, the goal is to periodi-

cally verify whether an API endpoint is deploying a stolen model

or not; on the other hand, in source tracking applications, model

owners verify which version of a model is currently deployed. In

such applications, a model owner is required to frequently send

trigger inputs to a suspect model. In backdoor-based watermarking

techniques, the verification of the triggers results in their publica-

tion of which then requires the generation of new triggers, adding

some overhead to the model owner. An adversary who is able to

distinguish trigger inputs from legitimate inputs can behave accord-

ingly and remain undetected. Thus, by increasing the number of

verification queries, the model owner actually discloses ownership

information contained in the trigger inputs more easily, which is a

vulnerability for the secrecy of the watermark. Although trigger

generation techniques have been developed to be indistinguishable

from original data [2, 7], the multiplication and the frequency of

verification queries for a given watermarked model constitutes a

threat to the ownership.

Instead of generating crafted trigger inputs, distinct for the orig-

inal training data, to later on verify ownership based on model’s

performance over these triggers, we suggest to introduce fairness

bias in the model in order to uniquely identify the model owner.

We therefore propose to intentionally modify the outcomes of the

model for particular sub-populations belonging to the original train-

ing data towards specific outputs that are only known to the model
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owner. During the training phase, only the outputs of these sub-
populations are modified without using any additional or modified

inputs. Consequently, since the verification input queries no longer

contains ownership information, they do not need to be protected

and hence multiple verification queries can be launched, which

is our main motivation particularly for applications that require

frequent execution of verification processes.

In this work, we introduce a fairness-based watermarking tech-

nique called BlindSpot. The proposed technique removes the de-

pendency to the trigger inputs in order to provide a more secure

verification process when compared to backdoor-based techniques.

We evaluate our approach, on two binary classification datasets,

German Credit [6] and Malaria [19] and on two multi-class classifi-

cation datasets, Fashion-MNIST [29] and CIFAR-10 [13]. Overall,

we show that BlindSpot is able to watermark models with similar

performance from backdoor-based watermarking techniques, with

a limited cost (less than 2 % loss) on the accuracy on the original

task. Furthermore, we show that unlike backdoor-based techniques,

the secrecy of the ownership proofs is not impacted, even for a high

number of verification queries.

In summary, our main contributions are:

• We point out the limitations of backdoor-based watermark-

ing techniques for specific use such as API monitoring or

source tracking, regarding the number of verification queries.

• We propose BlindSpot, a fairness-based watermarking tech-

nique in order to solve the aforementioned issues.

• We evaluate the security of BlindSpot by first identifying

potential attacks such as outlier detection and model extrac-

tion attacks and further assessing of our solution strength

against them.

• We evaluate our approach on binary-classification and multi-

class classification tasks, by comparing to backdoor-based

watermarking techniques and by inspecting parameters for

optimal results.

The remaining of the paper is organized as follows: we present

related work in Section 2, then we introduce pre-requisites in Sec-

tion 3 and investigate the problem of backdoor-based watermark

for a high number of verification queries in Section 4. We present

BlindSpot in Section 5. Finally, we evaluate the solution in terms of

robustness to attack in Section 6 and in terms of accuracy cost in

Section 7 before concluding the paper in Section 8.

2 RELATEDWORK
Backdoor-based watermarking techniques have been studied ex-

tensively over the years [2, 4, 16] from various points of view such

as the secrecy of the ownership, robustness against modification

or extraction attacks, optimal trigger generation techniques, etc.

Since we evaluate our fairness-based watermarking approach with

respect to the vulnerabilities of backdoor-based techniques, in this

section, we overview several key points that are essential for design-

ing a secure watermarking scheme such as outlier detection attacks,

fairness attacks, removal attacks, forging attacks and extraction

attacks.

Existing backdoor-based watermarking schemes usually differ

with respect to the techniques to generate trigger inputs in order

to make them indistinguishable from legitimate data and to train a

model on these inputs without any loss in the accuracy. Although

several studies [1, 26] propose to use one-time triggers, current

research intends to build trigger generation functions through gen-

erative models [28] or evolutionary techniques [7]. To assess the

quality of the trigger (and thus the quality of the watermark), out-

lier detection attacks [9] are implemented in order to verify if an

adversary can detect trigger inputs from legitimate data. Hence,

in order to protect watermarked model from outlier detection at-

tacks, several techniques [3, 12, 15] have been developed to make

watermark verification queries in an encrypted fashion using for

instance Multi-Party Computation (MPC) or Fully Homomorphic

Encryption (FHE).

As opposed to previous works relying on backdoor attacks in

order to build watermarking techniques, we propose to leverage

fairness attacks, which intentionally aiming at harming the fairness

of a model by modifying model’s outcomes for particular sensitive
sub-populations in the training data (age, race, etc.). To the best of

our knowledge, research in this domain is very scarce for fairness

attacks [17, 22] compared to backdoor attacks and BlindSpot is

the first technique leveraging fairness attacks for watermarking

models. Consequently, by watermarking without relying on trigger

inputs, BlindSpot is freed from the constraints related to the trigger

generation techniques as well as outlier detection attacks.

In addition to outlier detection attacks, we consider three other

types of attacks which are often addressed in the literature when

it comes to evaluate the robustness of a watermarking technique.

First, current research focuses on developing attack strategies to

remove or alter the watermark [1, 23, 26] through fine-tuning,

transfer learning or distillation. Removal attacks require additional

computational power to be efficient, especially to apply backdoor

removal techniques [27]. On the other hand, when it comes to

publicly prove the validity of the ownership of a model to a third-

party instance, forging attacks [30] are considered to create a fake

ownership proof in order to create ambiguity.

Finally, most of the watermarking schemes are evaluated against

model extraction attacks, i.e training a watermark-free surrogate

model with the help of a stolen model [11], possibly accessible only

through an API endpoint and even without labeled data [25]. The

goal is to consider the stolen model as a teacher and the surrogate

model as the student, where the majority of the performance is

preserved except for the watermark. Counter-measures have been

developed to build watermarking schemes robust to extraction

attacks [10] or by detecting anomalies in the queries when the

target model is deployed on an API [9].

3 BACKGROUND
In this section, we introduce basic concepts for machine learning

models and characteristics of backdoor-based watermarking tech-

niques in order to clarify the concepts proposed in the remaining

of the paper.

3.1 Machine Learning Models
In this paper, we denote a machine learning algorithm (also refered

asmodel)𝑀 : R𝑚 → R𝑛 as a function that takes a vector 𝑥 ∈ R𝑚 as

input and outputs a prediction vector 𝑦 ∈ R𝑛 . The probability that

input 𝑥 belongs to class 𝑖 ∈ {0, 𝑛} is defined as 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑦𝑖 ). During
2



the training phase, 𝑀 is trained to fit the ground truth function

𝑀∗ : R𝑚 → R𝑛 which associates any input 𝑥 to the true output 𝑦.

More specifically, a binary classifier is a machine learning algorithm

where the output space is {0, 1}.

3.2 Watermarking through backdooring
The goal of backdoor-based watermarking is to uniquely water-

mark a model 𝑀 to be protected in the training phase, in order

to verify afterwards the presence of the watermark in the given

model. Overall, the watermarking process is split into two phases:

the Embedding phase and the Verification phase.

3.2.1 Embedding phase. In this phase, the watermark is inserted

into the model. The vast majority of watermark embedding tech-

niques are backdoor-based: during the training of the model, the

watermarked model is simultaneously trained on two datasets: the

legitimate set (denotedL = [(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..]) and the trigger set
(denoted𝑇 = [(𝑥𝑇

1
, 𝑦𝑇

1
), (𝑥𝑇

2
, 𝑦𝑇

2
), ..]). The trigger set is composed of

unique and well-crafted instances, only known by the model owner:

an adversary, given the inputs 𝑥𝑇
1
, 𝑥𝑇

2
, ... cannot deduce the labels

𝑦𝑇
1
, 𝑦𝑇

2
, .... Hence, by design, the watermarked model is the only

model to show high accuracy on the trigger set. More formally:

Definition 1 (Embedding phase). Let𝑀 and 𝑇 be the model to
be watermarked and the trigger set, respectively. The embedding phase
of a watermarking process using 𝑇 is realized through the 𝐸𝑚𝑏𝑒𝑑

function as defined below:

𝑀̂ ← 𝐸𝑚𝑏𝑒𝑑 (𝑇,𝑀) (1)

3.2.2 Verification phase. In this paper, we consider a Black-Box

verification approach, meaning that the model owner does not have

the access to the weights of a suspect model he wishes to verify,

but has only access to outputs of the inferences queries (through an

API service for instance). The model owner sends inference queries

containing trigger inputs to a suspect model 𝑀∗, then computes

accuracy of the suspect model on the trigger set. The accuracy is

compared to a threshold to determine whether or not the suspect

model has been stolen.

Definition 2 (Verification phase). Let 𝑀̂ be the watermarked
model using the trigger set𝑇 and an ownership threshold 𝛽 . Then, the
existence of a watermark in 𝑀 is verified if the following condition
holds:

𝑎𝑐𝑐𝑀 (𝑇 ) ≥ 𝛽 (2)

3.2.3 Properties. In this paper, we assume that the following three

properties should be satisfied by the backdoor-based watermarked

model:

• Secrecy: Thewatermark should be kept secret by themodel’s

owner, unless inference queries are performed with the trig-

ger set (which is the weak point we intend to tackle in this

paper.)

• Robustness: The watermark should be robust to modifica-

tions to the model: if an adversary attempts to modify the

model by fine-tuning, pruning or re-training, the watermark

should persist (or the cost to remove it should be high for a

rational adversary).

• Non-destructive behavior: The watermark should not af-

fect the behavior of the model on the legitimate data: the

accuracy loss between non-watermarked and watermarked

models should be negligible.

3.3 Threat model
We consider an adversary A with the goal of falsely claiming the

ownership of a watermarked model and using the model illegally.

We assume that (i)A has limited data and/or limited computational

power (hence the motivation to steal a watermarked model) and

(ii) A has access to the model and can perform modifications on

the stolen model (re-training, fine-tuning or simply inspecting the

weights).

4 PROBLEM STATEMENT
Backdoor-based watermarking techniques rely on crafted trigger

inputs and when needed, these inputs are used to observe the

behavior of the suspect model. Usually, the suspect model is only

accessible through an API endpoint meaning that the model owner

is required to send trigger inputs to the suspect model to perform

verification; hence, performing verification queries imply disclosing

part of ownership information.

There exist several techniques that implements outlier detec-

tion techniques [9, 23] against potential attempts of adversaries

to distinguish trigger set inputs from the legitimate ones. Indeed,

one-time usage triggers as proposed in [1, 2, 16] are excluded (a

study of similarity between inputs would quickly identify such trig-

gers). Triggers should be built as a combination between legitimate

inputs and a secret mask, in order to (i) generate triggers to be

indistinguishable from legitimate data and (ii) generate a higher

number of triggers inputs.

Nevertheless, even for well-crafted triggers (i.e supposedly indis-

tinguishable from the legitimate data), previous studies [10] show

that, for a single verification phase, an adversary owning the origi-

nal model could apply outlier detection techniques with a detection

accuracy of 99% and a loss on the original data of 7%. Increasing

the number of verification queries would allow the adversary to

minimize this loss while maintaining a high detection accuracy. To

illustrate the weakness of backdoor-based watermarking technique

in specific situations, we propose several scenarios where the veri-

fication phase needs to be conducted regularly or periodically, such

as API monitoring or source tracking. We present two scenarios,

illustrated in Figure 2.

4.1 Application scenarios
Firstly, we consider a scenario called API monitoring: we suppose
that a model owner, after watermarking his model𝑀 , is concerned

that a potential adversaryA (for instance a competitor of the model

owner) has stolen the model𝑀 and is deploying it on his own API

endpoint for his own benefit. The model owner has access to the

API endpoint and intends to verify periodically the model deployed

byA in order to take immediate actions if the model turns out to be

stolen. Therefore, the goal of the model owner is to (i) periodically

verify for each time step 𝛿𝑡 if the original model is deployed through

any of the API endpoints (ii) identify, in the case of a proven theft,

when the original model was firstly deployed, and (iii) identify the

3
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Figure 1: Architecture of BlindSpot algorithm: On the top (1→ 4), the embedding phase to obtain a watermarked dataset on
which themodel is trained on. On the bottom (5→ 7), the verification phase, where themodel owner can verify the watermark
based on the behavior of the model𝑀 on modified subgroups.

Figure 2: Examples or various trigger inputs (top), with side
applications of watermarking (bottom) API monitoring and
source tracking.

root causes of the leak. In this scenario, the model owner monitors

the activity of the suspect model by sending multiple verification

queries, which is impossible for backdoor-based watermarking

without revealing the ownership information.

A second scenario is source tracking, which could be considered

as an extension of API monitoring. We assume that the develop-

ment of a model𝑀 is split through different entities (either through

federated learning techniques or through a linear pipeline in the

case of versioning). Each entity contributes to the development of

the model, while embedding its own watermark to later identify

which entity is responsible for a given version of the model. The

goal of the model owner is to monitor several API endpoints and

to verify not only if a suspect model is the original model but also

to track which entity has originated the leak. In both scenarios, the

repeated verification phases are considered as a systematic prelim-

inary step before any further actions. Such monitoring scenarios

can not be implemented through backdoor-based watermarking

without impacting the secrecy and the robustness of the watermark.

5 BLINDSPOT
5.1 Overview
In the previous sections, we showed that backdoor-based water-

marking is not adapted for specific scenarios requiring a high and

frequent number of verification queries. The main problem comes

from the trigger inputs and the impossibility to keep them secret

while multiplying the verification queries. Hence, we propose to

use a trigger-less watermarking technique and consider fairness

bias as a new basis for watermarking machine learning models.

Similar to the backdoor, fairness bias is an undesirable behavior in

a model, aiming to be removed. Instead, in this study, we voluntarily
4



propose a watermarking algorithm to insert a fairness bias as a

solution to uniquely watermark a model, called BlindSpot.

BlindSpot is a trigger-less fairness-based watermarking tech-

nique. Instead of a dual dataset situation (triggers vs. legitimate),

BlindSpot is solely considering the legitimate set in the embedding

by intentionally introducing fairness bias during the training of

the model. We present an overall description of the technique in

Figure 1: in the next sections, we formally introduce the notion of

fairness and further describe the two phases of BlindSpot namely

the Embedding and Verification phases.

5.2 Fairness measure
In this paper, we consider fairness as the basis of our approach. A

fairness bias inserted into a model is considered as a measure of

performance, where amodel predicts differently for different groups

within the data. Some groups can be considered as sensitive (such

as race, gender or age). Thus, fairness bias is usually undesirable to

avoid discriminating behavior in the model. Evaluating the fairness

of a model consists of comparing the behavior of the model on

specific subgroups of inputs with the behavior of the model on the

overall data.

In this paper, we use a specific definition of fairness bias called

Disparate Impact (DI). For a binary classifier 𝑀 and an inference

datasetL, theDisparate Impact evaluates the ratio between positive
output in a subgroup 𝐺 of L that we name privileged group, and

the positive output in the remaining dataset L \𝐺 :

𝐷𝐼 (𝐺) =
𝑃 (𝑌 = 1)𝑥 ∈L\𝐺
𝑃 (𝑌 = 1)𝑥 ∈𝐺

In the rest of paper, we use the following notation for simplicity:

𝐷𝐼 (𝐺) = 𝑠𝐺

𝑝

If 𝐷𝐼 (𝐺) = 1 that means𝑀 does not have a fairness bias (in the

sense of Disparate Impact) towards 𝐺 .

5.3 Embedding
The Embedding algorithm mainly inserts fairness bias to some

selected subgroups. More specifically, Algorithm 1 takes four pa-

rameters provided by the model owner as inputs: the number of

modified subgroups 𝑛 ∈ N, the sensitivity of the inserted biases

𝑠 ∈ [0, 1], the subgroup labeling algorithm 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 and the legit-

imate data L = (X,Y).

5.3.1 Subgroup algorithm. We define the subgroup labeling algo-

rithm generation 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 : X → R𝑧 as a function which takes as

input 𝑥 ∈ X and associates the corresponding group label 𝑦 ∈ R𝑧 .
𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 is required to be unique, deterministic and secret (only

known by the model owner). By analogy, 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 corresponds to

the trigger generation algorithm in backdoor-based watermarking.

Instead of generating trigger inputs through a secret generation

algorithm, we propose to select (through 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝) specific sub-

groups belonging to the training dataset and to modify the behavior

of the watermarked model on these precise subgroups.

5.3.2 Description. The Embedding algorithm is described as fol-

lows:

Algorithm 1 BlindSpot Embedding

1: L: set of inputs/outputs
2: 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝: subgroup algorithm

3: 𝑛: number of modified subgroups.

4: 𝑠: sensitivity of the bias.

5: procedure Embedding
6: 𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 (X) ⊲ Split data in groups

7: G ← 𝐺𝑟𝑜𝑢𝑝𝐵𝑦 (𝑔𝑟𝑜𝑢𝑝𝑠)
8: for each 𝐺,𝑔𝑖𝑑 in G do
9: D𝐺 ← 𝐷𝐼 (𝐺𝑌 ,G𝑌 \𝐺𝑌 )
10: end for
11: 𝑂𝑟𝑑𝑒𝑟𝐺𝑟𝑜𝑢𝑝𝐵𝑦𝐷𝐼 (⋃D𝐺 )
12: G∗ ← ∅
13: 𝑘 ← 0

14: for each 𝐺,𝑔𝑖𝑑 in G do
15: if 𝑘 < 𝑛 then
16: 𝐺, 𝑠𝐺 ← 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑖𝑎𝑠 (𝑠,𝐺,G \𝐺,𝑛)
17: 𝑙𝐺 ← 𝑔𝑖𝑑 ⊲ Store group id

18: G∗ ← 𝐺 ∪ G∗ ⊲ Update training data

19: 𝑘 ← 𝑘 + 1
20: else
21: G∗ ← 𝐺 ∪ G∗
22: end if
23: end for
24: 𝑙𝑟𝑒 𝑓 𝑠 ←

⋃
𝑙𝐺

25: 𝑠𝑟𝑒 𝑓 𝑠 ←
⋃
𝑠𝐺

26: return G∗, 𝑠𝑟𝑒 𝑓 𝑠 , 𝑙𝑟𝑒 𝑓 𝑠 ⊲ Return Updated data, inserted

biases and group ids

27: end procedure

Algorithm 2 InsertBias

1: 𝑠: sensitivity

2: 𝐺 : subgroup to be modified

3: G \𝐺 : complete training data except 𝐺

4: 𝑛: number of modified subgroups.

5: procedure InsertBias
6: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1)
7: if mode == ’FULL’ then
8: for each 𝑥,𝑦 in 𝐺 do
9: if 𝑟𝑎𝑛𝑑𝑜𝑚() < 𝑠 then
10: 𝑦 ← 𝑡𝑎𝑟𝑔𝑒𝑡

11: end if
12: end for
13: else
14: 𝐴𝑁𝐶𝐻𝑂𝑅(𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡) (see Section 5.4)

15: end if
16: 𝑠𝐺 , 𝑝 ← 𝐷𝐼 (𝐺,G \𝐺)
17: return 𝐺 , 𝑠𝐺
18: end procedure
19:

• The list of group labels for each input 𝑔𝑟𝑜𝑢𝑝𝑠 is computed,

then grouped by label and stored in G, through the function

𝐺𝑟𝑜𝑢𝑝𝐵𝑦𝐷𝐼 .
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Algorithm 3 BlindSpot Verification

1: 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝: subgroup algorithm

2: 𝑠𝑟𝑒 𝑓 𝑠 : inserted biases

3: 𝑙𝑟𝑒 𝑓 𝑠 : modified subgroups ids

4: 𝑀 : Suspect model

5: X: Input queries
6: procedure Verify
7: 𝑟 ← 𝑀 (X)
8: 𝑔𝑟𝑜𝑢𝑝𝑠 ← 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 (X)
9: G, 𝑔𝑖𝑑 ← 𝐺𝑟𝑜𝑢𝑝𝐵𝑦 (𝑔𝑟𝑜𝑢𝑝𝑠)
10: for each 𝐺,𝑔𝑖𝑑 in G do
11: if 𝑔𝑖𝑑 ∈ 𝑙𝑟𝑒 𝑓 𝑠 then
12: 𝑟𝐺 ← 𝑟 [𝑔𝑟𝑜𝑢𝑝𝑠==𝑔𝑖𝑑 ]
13: D𝐺 ← 𝐷𝐼 (𝑟𝐺 , 𝑟 \ 𝑟𝐺 )
14: end if
15: end for
16: for 𝑖𝑑𝑥,D𝐺 in

⋃D𝐺 do
17: 𝑠𝐺 ← 𝑠𝑟𝑒 𝑓 𝑠 [𝑖𝑑𝑥]
18: ˆ𝑠𝐺 , 𝑝 ← D𝐺

19: 𝑎𝑐𝑐𝐺 ← 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (D𝐺 , 𝑠𝐺 , ˆ𝑠𝐺 )
20: end for
21: return

⋃
𝑎𝑐𝑐𝐺/|𝑙𝑟𝑒 𝑓 𝑠 |

22: end procedure

• For each subgroup 𝐺 ∈ G with the corresponding group

id 𝑔𝑖𝑑 , BlindSpot computes the disparate impact D𝐺 of the

subgroup compared to the overall data, to evaluate how

"naturally" the subgroup is biased towards 1. D𝐺 = 1 means

that elements belonging to 𝐺 behave similarly to elements

not belonging to𝐺 (i.e there is no bias in the data against or

in favor of 𝐺).

• The subgroups G are ordered by value of |1 − D𝐺 |, i.e from
the less biased (or neutral) to the most biased (towards 0 or

1), through the function 𝑂𝑟𝑑𝑒𝑟𝐺𝑟𝑜𝑢𝑝𝐵𝑦𝐷𝐼 .

• For a given number 𝑛 of subgroups G∗ ∈ G, called modi-
fied subgroups, BlindSpot embeds a bias into each subgroup,

according to the bias sensitivity parameter 𝑠 using the al-

gorithm 𝐼𝑛𝑠𝑒𝑟𝑡𝐵𝑖𝑎𝑠 (), with two possible modes: FULL or

ANCHOR, and is described later in this section.

• Finally, the Embedding algorithm returns data with embed-

ded bias G∗. alongside with the ownership information: the

modified subgroups ids 𝑙𝑟𝑒 𝑓 𝑠 with corresponding bias sensi-

tivities 𝑠𝑟𝑒 𝑓 𝑠 .

After the Embedding phase, the machine learning algorithm is

trained on the biased data G∗, and considered as watermarked after

the training phase.

5.4 Inserting a bias
The core of BlindSpot is the ability to insert a fairness bias in each

subgroup of data. For this purpose, we consider two strategies,

described in Algorithm 2 :

• The first strategy, denoted FULL,consists in modifying the

labels of the elements of the subgroup, proportionally to a

sensitivity bias 𝑠 . Basically, the FULL algorithm selects a pro-

portion of 𝑠 elements in the subgroup, then modify the labels

according to a pre-defined bias called target in Algorithm 2

(towards 0 or 1).

• Although FULL does not require additional data generation
(only outputs are modified), it impacts greatly the data and

hence, the accuracy of the watermarked model trained on

this data. The second strategy, denoted ANCHOR,is inspired
by the work of Mehrabi et al. [17] and consists in distorting

the watermarked model’s decision boundary by generating

poisoned points near specific target points to bias (propor-

tionally to a sensitivity bias 𝑠) the outcome. As opposed to

FULL, ANCHOR works as a data augmentation process and

generates additional data points.

5.5 Verification
The goal of the Verification phase is to assess the fairness bias

supposedly inserted by the model owner in order grant or deny the

ownership of the model. The Verification phase (Algorithm 3) takes

5 parameters as inputs: the subgroup labeling algorithm used in the

Embedding phase 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝𝑠 (), the labels of modified subgroups

𝑙𝑟𝑒 𝑓 𝑠 , the corresponding bias sensitivities 𝑠𝑟𝑒 𝑓 𝑠 inserted, the suspect

model to verify𝑀 and the legitimate input data X.
• The model owner sends inference queries X to obtain pre-

diction results 𝑟 .

• Similarly to the Embedding phase, the list of group labels

for each input 𝑔𝑟𝑜𝑢𝑝𝑠 is computed, then these are grouped

by label and stored in G.
• For each group label, BlindSpot verifies if the subgroup was

supposed to be modified in the Embedding. If it is the case,

then predictions results related to this particular subgroup

are extracted, in order to compute the disparate impact of

the subgroup compared to the overall data.

• For each modified subgroup, BlindSpot computes the accu-

racy of the watermark of the suspect model, based on the

measured disparate impact D𝐺 , the sensitivity of the in-

serted bias in the Embedding phase 𝑠𝐺 and the sensitivity of

the overall bias in the training data, to the exception of 𝐺 ,

ˆ𝑠𝐺 .

• Finally, the average of the accuracy on each modified sub-

group is returned.

We define the information of ownership O as:

O = {𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝, 𝑠𝑟𝑒 𝑓 𝑠 , 𝑙𝑟𝑒 𝑓 𝑠 }
O needs to be kept secret, only known by the model owner and

used in the verification algorithm, alongside the suspect model𝑀

and legitimate data X. As opposed to backdoor-based watermark-

ing models the query does not need to be secret, the only secret

information is the subgroups distribution.

5.6 Accuracy computation
In order to perform a valid verification, we present the theoreti-

cal basis for watermark verification through the computation of

the fairness metric. We consider the training data L, including𝑚
modified subgroups𝐺1,𝐺2, ...,𝐺𝑚

with G =
⋃
𝐺𝑖

. Based on O, the
model owner can deduce from L the modified subgroup distribu-

tion with 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 and 𝑙𝑟𝑒 𝑓 𝑠 . According to the Embedding phase,

we have the following situation:
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𝑃 (𝑌 = 1|𝑥 ∈ L) = 0.5 𝑃 (𝑌 = 1|𝑥 ∈ 𝐺𝑖 ) = 𝑠𝐺

𝑠𝐺 ≠ 0.5

In this situation, 𝑠𝐺 is called the sensitivity of the bias (either

close to 0 or to 1). Furthermore, we have the following equality for

a prediction 𝑌 :

𝑃 (𝑌 = 1|𝑥 ∈ 𝐺𝑖 ) = 𝑠𝐺 ×𝑇𝑃𝑅 + (1 − 𝑠𝐺 ) × 𝐹𝑃𝑅
with TPR being the true positive rate and FPR the false positive

rate. In the case where the sensitivity of the bias is close to either 0

or 1, we argue that we can make the following assumptions:

𝑇𝑃𝑅 ≃ 𝑎𝑐𝑐𝑀 (𝐺𝑖 ) 𝐹𝑃𝑅 ≃ 1 − 𝑎𝑐𝑐𝑀 (𝐺𝑖 )
Indeed, in the case of highly unbalanced data, there is a direct

link between the accuracy and the true/false positive rates. We

obtain:

𝑃 (𝑌 = 1|𝑥 ∈ 𝐺𝑖 ) = 𝑠𝐺 × 𝑎𝑐𝑐𝑀 (𝐺𝑖 ) + (1 − 𝑠𝐺 ) × (1 − 𝑎𝑐𝑐𝑀 (𝐺𝑖 ))

𝑎𝑐𝑐𝑀 (𝐺𝑖 ) = 1

(2𝑠𝑖 − 1)

(
𝑃 (𝑌 = 1|𝑥 ∈ 𝐺𝑖 ) + 𝑠𝑖 − 1

)
By the definition of the disparate impact metric, we compute

the disparate impact of the modified subgroup 𝐺𝑖
and we express

𝑎𝑐𝑐𝑀 (𝐺𝑖 ) as a function of (𝑠𝐺 , 𝐷𝐼 )::

𝐷𝐼 (𝐺𝑖 ) = 𝑃 (𝑌 = 1|𝑥 ∈ L \𝐺𝑖 )
𝑃 (𝑌 = 1|𝑥 ∈ 𝐺𝑖 )

𝑎𝑐𝑐𝑆 (𝐷𝐼 (𝐺𝑖 ), 𝑠𝐺 , 𝑠𝐺 ) =
1

(2𝑠𝐺 − 1)

(
𝑠𝐺

𝐷𝐼 (𝐺𝑖 )
+ 𝑠𝐺 − 1

)
(3)

where 𝑠𝐺 is the sensitivity of the inserted bias, 𝑠𝐺 is the sensi-

tivity of the overall bias detected in G \𝐺 and D𝑖
𝐺
is the disparate

impact measure for 𝐺𝑖
. The link between the measure for bias

detection (the disparate impact) and the measure for watermark

detection (the accuracy) constitutes the verification process for

BlindSpot for a single modified subgroup. We obtain the accuracy

of the watermark from the disparate impact for all modified sub-

group:

𝑎𝑐𝑐𝑆 (G) =
1

𝑚
×

𝑚∑
𝑖=1

𝑎𝑐𝑐𝑆 (D𝑖
𝐺 ) (4)

5.7 Extension to multi-class classification
The proposed method has been introduced with binary classifica-

tion, but could also be extended to 𝑘-class classification. Several

modifications need to be considered:

• In the Embedding phase, in order to compute the disparate

impact of a subgroup𝐺 denotedD𝐺 , we consider the average

of the disparate impact 𝐷𝐼 𝑖 for each class label 𝑖 ∈ {1, 𝑘}:

D𝐺 =
1

𝑘

𝑘∑
𝑖=1

𝐷𝐼 𝑖 (𝐺𝑌 ,G𝑌 \𝐺𝑌 )

• To insert the bias, instead of choosing a bias target between

0 and 1, a class label in 𝑖 ∈ {1, 𝑘} is chosen.

• In the Verification phase, the disparate impact is considered

for the class label 𝑖 chosen in the Embedding phase.

The situation becomes similar to binary classification, where the

goal of the Embedding phase is to bias a given subgroup towards a

chosen bias target 𝑖 .

6 SECURITY ANALYSIS AGAINST POSSIBLE
ATTACKS

To evaluate our approach and offer a comparison with backdoor-

basedwatermarking, we propose a study of potential attacks against

BlindSpot.

In this paper, we consider three main attacks on watermark-

ing: outlier detection attacks, forging attacks and model extraction

attacks.

6.0.1 Outlier detection. First, we consider the outlier detection

attack, where an adversary A after stealing the original model,

intends to identify inputs belonging to modified subgroups. Indeed,

by detecting which inputs have been modified during the training,

the adversary would be able to prevent the model owner to verify

the watermark.

As opposed to the backdoor-based watermarking, the inputs

sent to a suspect model do not contain any ownership information,

which is the reason why BlindSpot is more robust to the outlier

detection attacks. However, if the adversary is powerful and possess

ground truth data (𝑋𝑡𝑟𝑢𝑡ℎ, 𝑌𝑡𝑟𝑢𝑡ℎ), we propose an optimal strategy

for the adversary.

Given the stolen model𝑀 and ground truth data, the goal of A
is to identify wrongly classified data and to make assumptions on

the distribution of modified subgroups. Let’s consider the following

attacks:

• Step 1: Compute 𝑌𝑡𝑟𝑢𝑡ℎ = 𝑀 (𝑋𝑡𝑟𝑢𝑡ℎ).
• Step 2: Separate wrongly classified data into two groups: the

false positives 𝐹𝑃 and the false negatives 𝐹𝑁 .

• Step 3: Elements in 𝐹𝑃 or 𝐹𝑁 are either natural (because the
model is not 100% accurate, some data are naturally wrongly

classified) or artificial (due to the watermark). The challenge

for A is to distinguish natural from artificial elements.

However, the adversary does not have several key parameters,

such as the sensitivity of the inserted bias 𝑠 and the natural false
positive or negative rate for non-watermarked models. Thus, the

best chance of success is to randomly guess a potential distribution

between natural and artificial elements, which results in a low

success rate for detecting outliers and a failure of the adversary to

prevent watermark verification.

6.0.2 Forging. A second attack is to forge a false ownership proof

in order to create ambiguity when it comes to claim the ownership

to a verifying entity such as a machine learning as a service plat-

form. Basically, to claim a model watermarked with BlindSpot, the

adversary needs the information of ownership:

O =


𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝

𝑠𝑟𝑒 𝑓 𝑠

𝑙𝑟𝑒 𝑓 𝑠
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Figure 3: Accuracy with respect to the sensitivity and the number of modified subgroups

However the adversary can craft a forged information of own-

ership called OA which also pass the verification step described

in Section 5.5. The goal is to create ambiguity when it comes for a

verifying entity to decide which information of ownership (O or

OA ) is the correct one. We propose the following forging attack

accordingly:

We consider that the adversary has the watermarked model𝑀

and ground truth data (𝑋𝑡𝑟𝑢𝑡ℎ, 𝑌𝑡𝑟𝑢𝑡ℎ). We propose the following

function 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝 which takes as input an element 𝑥 ∈
𝑋𝑡𝑟𝑢𝑡ℎ :

𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝 =


0 𝑀 (𝑥) = 𝑦

1 𝑀 (𝑥) ≠ 𝑦 and 𝑦 = 0

2 𝑀 (𝑥) ≠ 𝑦 and 𝑦 = 1

The adversary A can then propose the following proof of own-

ership:

OA =


𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝

𝑠𝑟𝑒 𝑓 𝑠 = [1, 0]
𝑙𝑟𝑒 𝑓 𝑠 = [1, 2]

The goal of the verifying entity is to resolve the ownership

ambiguity between O and OA . By construction, both information

are valid and pass the verification step in Section 5.5. However, the

core of the attack lies in the ability for the adversary to compute

𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝 .

• IfA is able to perfectly compute𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝 , thenA is

able to train a classifier with perfect accuracy (better than the

original stolen since A is able to predict when the original

model is wrong), requiring an important volume of labeled

data and computational power, which is impractical since

the adversary has limited computational power and incom-

patible with his motivation to steal the original model.

• If A computes an approximate version of𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝 ,

then the watermark accuracy through OA is lower than the

accuracy through O and the verifying entity is able to solve

the ambiguity.

Consequently, given the impossibility for the adversary to per-

fectly compute 𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠𝐺𝑟𝑜𝑢𝑝 , a rational adversary cannot im-

plement forging attacks.

6.0.3 Model extraction. Finally, we consider a third attack called

model extraction. In this case, the main motivation for A to steal a

model is the lack of labeled data rather than a limitation in compu-

tational power.A could use the stolen model𝑀 to train a surrogate

model𝑀𝑆 , without extracting the watermark.

The study of model extraction attacks and their efficiency against

the robustness of backdoor-based watermarking has already been

studied [10, 23]; in the experiments section, we evaluate a common

extraction attack called KnockOff Nets [18] against fairness-based

watermarking.
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7 EXPERIMENTS
7.1 Setup
In the experiments, we evaluate the impact of the parameters of

BlindSpot on the watermark properties, namely the sensitivity of

the inserted bias 𝑠 , the number of the modified subgroups 𝑛 and the

technique to insert bias (FULL or ANCHOR). Thus, we first decide to
watermark binary classifiers while investigating the impact of the

parameters on the accuracy on themain task as well on the accuracy

of the watermark. To demonstrate that BlindSpot is compatible with

multi-class classifiers, we evaluate BlindSpot on common computer

vision datasets. Additionally, using non watermarked models as

baseline, we implement the backdoor-based technique by Adi et

al. [1] as a comparison on the Fashion-MNIST and CIFAR10 dataset,

to measure the accuracy loss for watermarked models between

BlindSpot and the approach developed by Adi et al. [1].

All the simulations were carried out using a Google Colab
3

GPU VMs instance which has Nvidia K80/T4 GPU instance with

12GB memory, 0.82GHz memory clock and the performance of 4.1

TFLOPS. Moreover, the instance has 2 CPU cores, 12 GB RAM and

358GB disk space.

7.2 Datasets & Models
Binary classification: We choose a pre-trained VGG16 [21] model,

pre-trained on the Imagenet [20] dataset, to build a binary clas-

sifier performing malaria parasite detection in thin blood smear

images[19]. We follow the process in Rajaraman et. al [19], adding

a global spatial average pooling layer and a fully-connected layer.

Only the top layers are trained; all the convolutional layers are

freezed to avoid destroying the pre-trained weights. The data set is

composed of 27 558 instances with equal instances of parasitized

and uninfected cells from the thin blood smear slide images of seg-

mented cells. We split the data set into train, test and validation

data set respectively containing 25 158, 1200 and 1200 instances.

We resize the input data to 224x224 to fit the input dimension of the

pre-trained VGG-16 model. The model is trained during 1 epoch,

with a batch size of 32, with an Adam optimizer and a learning

rate of 0.001. We evaluate a Random Forest model on the German

Credit Dataset [6], containing credit profile about individuals with

20 attributes associated to each person.

Multi-class classification:We evaluate BlindSpot on twomulti-

class classification datasets: Fashion-MNIST [29], a dataset con-

taining 70,000 Zalando’s article 28x28 grayscale images and CI-

FAR10 [13] a collection of 60,000 32x32 color images. We use a

Resnet18 [8] architecture, trained during 50 epochs with a Stochas-

tic Gradient Descent optimizer with a learning rate of 0.1.

7.3 Choice of SubGroup
We proposed two strategies for choosing the 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 function.

First we propose 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 as a neural networks with arbitrary

number of layers and arbitrary number of neurons by layer. The

only constraint on the design of 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 is (i) choosing the in-

put layers compatible with the input data and (ii) the last layer

composed of 𝑘 outputs (𝑘 representing the number of groups). The

3
https://colab.research.google.com/

values of the weights are chosen by the model owner and are sup-

posed to be secret. For better secrecy of 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 , the model owner

could increase the number of parameters of the neural network. The

advantage of this technique is that 𝑆𝑢𝑏𝐺𝑟𝑜𝑢𝑝 is unique because it is

a combination of the chosen weights and the neural network could

be easily generated. However, increasing the number of parameters

is also increasing the inference time; since BlindSpot is relying

heavily on subgroups classification, it could become a bottleneck

for efficient verification.

Thus, we propose a more time efficient technique, to choose

𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 as a simpler algorithm, based on specificity of the inputs

(for instance, luminosity of images, distribution of the colors on spe-

cific areas on the images, etc.). Although this technique improves

the inference time per image, the unicity of the algorithm is no

longer guarantee (i.e a different model owner could chose the same

algorithm). In our experiments, we notice no difference in terms

of accuracy between those two techniques: the choice of 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝

depends on the constraints of the model owner in the verification

time and the trade-off between efficiency of the verification and se-

crecy of 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 . In the remaining of the experiments, we present

the results obtained with the second technique.

7.4 Results
To begin with, we evaluate BlindSpot on two binary classification

tasks, namely the German Credit Dataset (using a Random Forest)

and on the Malaria Dataset (using a VGG16 model). We study the

impact of the sensitivity, the number of modified subgroups and

the insertion technique (FULL or ANCHOR) on the accuracy of the

watermarked model on non-modified subgroups, the accuracy of

the watermarked model on modified subgroups and the accuracy

of non-watermarked model on modified subgroups. The results are

displayed on Figure 3.

7.4.1 Overall comments. For both of the tasks and for roughly all

setups, the accuracy of the non-watermarked model on modified

subgroup is below 50 %, whereas the accuracy of the watermarked

model on watermarked model on these modified subgroup is close

to 100 %. These results demonstrate that BlindSpot ensures cor-
rectness (i.e the accuracy of the watermarked model on modified

subgroups is close to 100 %) and non-trivial ownership (i.e the

ownership of non-watermarked models cannot be claimed). Ac-

cording to the results displayed in Table 1, the watermarked model

maintains a reasonable accuracy on non-modified subgroups for

both tasks, corresponding to an average accuracy loss of respec-

tively 0.5% and 1.3% for ANCHOR and FULL, respectively, compared

to the baseline models. Furthermore, when BlindSpot is compared

to backdoor-based techniques such as the approach developed by

Adi et al. [1], we observe similar results in terms of accuracy loss

for the main task and also for the watermark accuracy. Therefore,

we proceed with a deeper analysis on the parameters of BlindSpot

to see the impact of the parameters on the overall results in the

following subsections.

7.4.2 Impact of sensitivity (FULL vs. ANCHOR ). To begin with, we

study the impact of the sensitivity bias inserted, particularly com-

paring the sensitivity insertion algorithms FULL and ANCHOR. We

notice that the accuracy appears to be more constant for ANCHOR
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Dataset Mode Baseline Ours (%)
Accuracy L Accuracy WM Accuracy L Accuracy WM

Credit

ANCHOR
88.2

46.7 87.7 (- 0.5) 99.1

FULL 49.7 86.9 ( - 1.3) 99.1

Malaria

ANCHOR
94.5

51.65 92.2 (- 2.3) 100

FULL 47.65 92.3 ( - 2.2 ) 100

Dataset Mode Baseline Ours (%) Backdoor (Adi et al. [1])
Accuracy L Accuracy WM Accuracy L Accuracy WM Accuracy L Accuracy WM

Fashion-MNIST FULL 92.6 10.0 90.3 ( - 2.2 ) 97.7 92.6 100

CIFAR10 FULL 88.6 10.0 87.1 ( - 1.5 ) 100 88.6 100

Table 1: Experiment results, comparing accuracy on non-modified (L) and modified (WM) subgroups.

than for FULL. Indeed, FULL completely overwrites labels of modi-

fied subgroups as opposed to ANCHOR that generates additional data
to the original data in the modified subgroups, meaning that the

resulting training dataset is more subject to randomness for FULL
than for ANCHOR. Furthermore, we notice that for high sensitivity

bias (close to 1) FULL is less subject to the randomness.

7.4.3 Impact of the number of modified subgroups. We study the

impact of the number of modified subgroup of accuracy metrics for

modified and non-modified subgroups. Except for a slight decrease

in the accuracy of the watermarked model on non-modified sub-

group, the number of subgroups have no impact of the accuracy of

the models. Intuitively, we assume that increasing the number of

modified subgroups 𝑛 > 20, the decrease of accuracy will continue

since BlindSpot will modify more the training data. For 𝑛 < 20,

the number of modified subgroups has a negligible impact of the

accuracy.

7.4.4 Model Extraction. To assess the robustness of BlindSpot

against model extraction attacks, we introduce a model extraction

attack called KnockOff nets [18] to attempt to steal watermarked

models trained on Fashion-MNIST and CIFAR10. We consider two

situations: (i) the adversary has limited access to the training data

or (ii) the adversary has access to the complete training data with

respect to the results displayed in Table 2. We compare the original

watermarked model with BlindSpot and the extracted model with

KnockOff nets, particularly on the accuracy on the watermarked

data.

As expected, the accuracy on the watermark is highly depen-

dent on the training dataset that the adversary has access. If the

adversary has access to a training dataset that does not contain any

inputs from the modified subgroups, then the adversary will suc-

cessfully manage to extract the model without the watermark. We

can observe this for the extraction against Fashion-MNIST models

with a limited access to the training data in Table 2: the adver-

sary extracts the watermarked model with an accuracy loss of 0.2

% on non-modified subgroup but with a 45.5 % loss on modified

subgroups (i.e the model is successfully extracted without water-

mark), mainly because modified data is not in the trainnig dataset

of the adversary (in the results, when the adversary has a complete

access to the training data, the watermark cannot be removed).

However, we can explain this due to the simplicity of the task of

Fashion-MNIST (a small dataset is enough for high performance).

The extraction for CIFAR10 shows a stronger accuracy loss (9.6 %)

for non-modified subgroups. Thus, even if the adversary might be

successful for simple tasks, the attacks would not be successful for

larger sized datasets.

7.5 Discussion
BlindSpot leverages fairness bias to embed watermark into a model

and to facilitate the verification process. By working only with

legitimate data, several problems previously mentioned above are

theoretically solved: the number of possible verification queries

is higher because the ownership information is not contained in

the inputs themselves as opposed to backdoor-based watermark-

ing techniques. Since the labels of the original training data has

been altered in order to introduce fairness bias, a slight loss in the

accuracy has been observed in the experiments. Furthermore, we

showed that model extraction attacks could be implemented for

simple tasks. Therefore, we propose several potential improvements

for BlindSpot:

7.5.1 Inserting the bias. We propose two techniques to insert a

fairness bias in a model, namely FULL and ANCHOR. Given the devel-

opment of research in the field of fairness in machine learning [5],

we assume that new approaches will be developed to insert and

mitigate fairness bias in machine learning models with perhaps

more interesting trade-offs between the strength of the inserted

bias and the resulting accuracy loss.

7.5.2 Fairness measure. In this paper, we solely considered Dis-

parate Impact as a fairness measure, but various other metrics exist

such as Statistical Parity or Equalized odds. With different fairness

measures, the accuracy formula described in Equation 3 would be

modified. Depending on what is possible to measure from the data

(i.e precision, recall, etc.), some metrics might be easier to compute

than others.
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Dataset Mode Original (%) KnockOff Nets [18] (%)
Accuracy L Accuracy WM Accuracy L Accuracy WM

Fashion-MNIST

- 50%

FULL 90.3 97.7

90.1 52.2

- 100% 90.3 96.9

CIFAR10

- 50%

FULL 87.1 100

77.5 51.5

- 100% 83.4 94.7

Table 2: Model extraction results

7.5.3 Subgroup generation algorithm. As mentioned in the experi-

ments, different subgroup generation algorithms could be consid-

ered depends on the constraints of the model owner in the verifica-

tion time and the trade-off between efficiency of the verification

and secrecy of 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝 . A deeper study of the choice of 𝑆𝑢𝑏𝑔𝑟𝑜𝑢𝑝

could improve the performance of BlindSpot.

7.5.4 Watermark Removal Attacks. In the evaluation, we did not

study the impact of watermark removal attacks, i.e applying modi-

fications to the model through retraining, distillation, fine-tuning,

etc. in the hope of removing the watermark from the model. Al-

though the expected impact should be similar to backdoor-based

techniques, an additional study for removal attacks would be valu-

able.

7.5.5 Use-cases. Finally, we propose use-cases where BlindSpot
could be a better choice for watermarking than backdoor-based

techniques.

• Non-production delivery: When a software or an open-

source project is implementing machine learning algorithms,

model owners sometimes propose a trial version or models

targeted towards researchers. In order to verify if the models

are not used by commercial offers, it is important to conduct

regular checks. In the watermarking process, since the mod-

els are not developed for the production, model owners could

accept to sacrifice a percentage of accuracy if the verification

process is easier.

• Honeypot model: Similar to credential honeypots to un-

derstand system intruders, model owners could release a

honeypot model, knowing that the model will be stolen and

therefore to easily detect the model thieves. For such a case, a

significant number of verification queries would be required

to obtain a complete profile of model thieves.

8 CONCLUSION
The paper presents fairness-based watermarking technique called

BlindSpot, developed as an alternative to backdoor-based water-

marking techniques, compatible with a high number of verification

queries while robust to outlier detection attacks. We show that, for

an acceptable loss on accuracy (less than 2 %), BlindSpot is able

to protect machine learning models against thieves and robust to

watermark attacks such as forging or model extraction.

Futurework could focus on improving the robustness of BlindSpot

against additional attacks, as well as experimenting other bias in-

sertion attacks. Additionally, in this work, we mainly focus on the

black-box setting, where the model can only be accessible through

an API for verification purposes. Therefore, we leave the exten-

sion of BlindSpot for white-box setting as another future research

direction.
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