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Abstract—We describe a rational approach to reduce the
computational and communication complexities of lossless point-
to-point compression for computation with side information.
The traditional method relies on building a characteristic graph
with vertices representing the source symbols and with edges
that assign a source symbol to a collection of independent
sets to be distinguished for the exact recovery of the function.
Our approach uses fractional coloring for a b-fold coloring of
characteristic graphs to provide a linear programming relaxation
to the traditional coloring method and achieves coding at a fine-
grained granularity. We derive the fundamental lower bound for
compression, given by the fractional characteristic graph entropy,
through generalizing the notion of Körner’s graph entropy. We
demonstrate the coding gains of fractional coloring over tradi-
tional coloring via a computation example. We conjecture that
the integrality gap between fractional coloring and traditional
coloring approaches the smallest b that attains the fractional
chromatic number to losslessly represent the independent sets
for a given characteristic graph, up to a linear scaling which is
a function of the fractional chromatic number.

I. INTRODUCTION

We consider the problem of point-to-point compression

for computing a function with decoder side information.

Traditionally, this problem is referred to as Körner’s graph

coloring problem [1]. This problem stems from source coding

(compression), which has been the subject of extensive study

in information theory dating back to the seminal work of

Shannon [2], and its many extensions.

A. Coding for Compression

In the traditional compression approach, for a point to point

compression of a source variable X1 drawn from distribution

PX1
, the source coding theorem, as demonstrated by Shannon

[2], states that in the limit, as the length of a stream of

independent and identically-distributed (i.i.d.) random variable

data tends to infinity, the best rate of compression of X1

(quantified in the average number of bits per symbol) is the

Shannon entropy of the source, H(X1) = E[− logPX1
(X1)].

A natural extension of the source coding theorem for

networked settings is the problem of distributed compression.

The problem of distributed lossless compression dates back

to the seminal work of Slepian and Wolf [3], instantiated

by random binning of the typical source sequences [4]. For

concreteness, consider two random variables X1 and X2,

jointly distributed according to PX1,X2
. Given two sequences

Xn
1 = (X11, X12, . . . , X1n) and Xn

2 = (X21, X22, . . . , X2n)
drawn i.i.d. from PX1,X2

, Slepian-Wolf Theorem gives a

theoretical bound for the lossless coding rate of distributed

coding [3]: To recover a joint source (Xn
1 ,X

n
2 ) drawn from

PX1,X2 at a receiver that has access to side information Xn
2 ,

it is both necessary and sufficient to encode the source Xn
1 up

to the rate H(X1|X2) [3]. Slepian-Wolf problem is a special

case of the general distributed function compression problem.

Practical schemes for Slepian-Wolf compression have been

proposed by several authors, including [5]–[8]. The general-

ization of the distributed compression scheme of Slepian-Wolf

to trees and to networks beyond depth one uses random linear

coding, as shown by Ho et al. in [8]. Distributed communica-

tion has also been considered in [8], and by Ahlswede et al.

[9] and Yeung in [10] for multicasting under general network

settings via random linear network coding.

B. Coding for Functional Compression

Distributed compression of source variables for the purpose

of computing a deterministic function across a network, is

referred to as distributed functional compression. To that

end, since the pioneering work of Slepian-Wolf [3], different

techniques have been explored, e.g., computation with decoder

side information and functional distortion criterion in Wyner-

Ziv settings [11], compression for multiple descriptions of

functions [12], special functions such as addition [13], and

multiplication with side information [14]. Function-oriented

recovery, or compression of f(X1, X2) is better understood

through the lens of characteristic graph-entropy HGX1
(X1)

[1], which quantifies the minimum number of bits required

to represent a function of random variables. This notion was

initially devised by Körner [1] for point-to-point compression.

The zero-error side information problem and the rate regions

for the functional compression problem have been investigated

by Witsenhausen [15], along with the formal introduction of

the characteristic graph of X1, X2 and f , by Orlitsky-Roche

[16] when one source is fully available at the receiver via

conditional graph entropy HGX1
(X1|X2), and for restricted

and unrestricted inputs by Alon-Orlitsky [17]. The problem of

distributed lossless compression has been studied by Doshi et

al. [18], and also extended to tree networks (Feizi-Médard [19]

and Doshi et al. [20]) via generalizing distributed compression

(Slepian-Wolf [3]) to distributed functional compression.

The requirement for structured coding for computing. For

distributed compression of a general function, trimming of

(independently encoded) Slepian–Wolf partitions may not be

feasible. In other instances, good computation codes may only

achieve marginal gains in computing capacity over separation-

based codes (see e.g., [21] and [19]) at the expense of a

significant computation burden on the encoders and decoders.

There also exist approaches to compression of graphical data



in sparse scenarios, e.g., [22]–[24], which may not capture

computations of general functions. Hence, designing efficient

function-oriented codebooks requires a different vision to

alleviate the redundancy of data-oriented encoding.

The need for constructive techniques to compression. For

existing graph entropy-based approaches, we refer the reader

to [1], [16]–[18], [25]–[27] and the references therein. The

proofs of functional compression are by means of coloring

characteristics graphs of functions but provide no natural

constructive approach to instantiate functional compression.

Our contributions in this paper are summarized as follows:

• In Sect. II, we provide a relaxation to the traditional graph

coloring approach (NP-hard) for functional compression.

This is possible through fractional coloring, by gener-

alizing traditional graph coloring that assigns one color

per vertex. An a : b fractional graph coloring assigns b
colors out of a total of a available colors to each vertex of

a graph such that adjacent vertices have disjoint colors.

• We introduce the concept of the fractional chromatic

entropy and characterize it in Prop 1 exploiting Han’s

theorem [28], which states that the average entropy de-

creases monotonically in the size of the subset. In Prop.

2, we derive the analytical expression for the fractional

graph entropy, Hf
GX1

(X1|X2), that gives the achievable

rate for functional compression with side information.

• Sect. III presents our main results providing a rate

bound on functional compression using fractional col-

oring. Exploiting several properties of fractional chro-

matic number, we state that Hf
GX1

(X1|X2) lower bounds

HGX1
(X1|X2) (Lemma 1). This new notion provides a

refinement in coloring such that on average less colors

are spent and the communication complexity is reduced.

• Sect. IV provides several bounds on the integrality gap

between fractional and traditional colorings. To contrast

the potential rate savings of our approach over traditional

coloring, we show that the integrality gap is a monoton-

ically increasing function of the source sequence length

n (Lemma 2), and approximate the integrality gap, and

observe that (Prop. 3) it scales linearly with b, given

a valid b-fold coloring. Hence, our approach yields a

reduced communication complexity by a factor of b (up

to a linear scaling), in the number of communication or

exchanged bits [29], [30], versus the traditional approach.

II. PROBLEM SETUP

We consider the problem of lossless distributed functional

compression with side information introduced in [16] (via

generalizing [11] using a characteristic graph approach). The

encoder has source X1. The decoder has source X2, which

is not accessible at the encoder side. Given two statistically

dependent i.i.d. finite-alphabet random sequences Xn
1 and Xn

2 ,

our goal is to give a theoretical bound for the lossless coding

rate to encode X1 for computing a function f(X1, X2) to

achieve arbitrarily small error probability for long sequences.

Both the encoder and the decoder knows the function. In [16]

and its extensions, this problem, for the zero-error setting,
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Fig. 1. (Left) GX1
for Example 1 with |X1| = 5, where different colors

on connected vertices indicate that those should be distinguished. (Right) A
fractional 5 : 2 coloring, which achieves χf [31].

has been tackled using a traditional coloring approach and

it has been proven that a zero-error compression up to a rate

HGX1
(X1|X2) is possible when X2 is available at the receiver.

A. Traditional Coloring of Characteristic Graphs

Let GX1 be the characteristic graph the encoder builds for

computing the function f(X1, X2), determined as function of

X1, X2, and f . The characteristic graph is denoted by GX1
=

(VGX1
, EGX1

), where VGX1
= X1 and an edge (x1

1, x
2
1) ∈

EGX1
if and only if there exists a x1

2 ∈ X2 such that p(x1
1, x

1
2)·

p(x2
1, x

1
2) > 0 and f(x1

1, x
1
2) ̸= f(x2

1, x
1
2). We assign different

codes (colors) to connected vertices, which corresponds to a

graph coloring. Vertices that are not connected to each other

can be assigned to the same or different colors. In this paper,

we only consider vertex colorings. A valid coloring of a graph

GX1
is such that each vertex of GX1

is assigned a color such

that adjacent vertices receive disjoint colors.

To better motivate our approach and demonstrate the achiev-

able description lengths, we illustrate the relevance of charac-

teristic graph in compression via the following example.

Example 1. A characteristic graph and its entropy. Ran-

dom variables X1 and X2 are over the alphabet X =
{−2, −1, 0, 1, 2}. The joint distribution has ordered entries:

PX1, X2
=













0.1 0.1 0 0 0
0.1 0 0 0 0.1
0 0.1 0.1 0 0
0 0 0.1 0.1 0
0 0 0 0.1 0.1













, (1)

where X1 is uniformly distributed, and f(X1, X2) =
X1 + X2 such that GX1 denotes the characteristic graph

the encoder builds, where VGX1
= X , and EGX1

=
{(−2,−1), (−2, 0), (0, 1), (1, 2), (2,−1)}. A valid coloring of

GX1
, denoted by cGX1

(X1) and shown in Fig. 1 (Left), has

a distribution P (c1) = P (c2) = 0.4 and P (c3) = 0.2 over

{c1, c2, c3}. This yields an entropy H(cGX1
(X1)) ≈ 1.52.

Next, we encode a source sequence with length

two, X2
1 = (X11, X12), which can take 25 values

{(−2,−2), (−2,−1), (−2, 0), . . . , (2, 2)}. To construct

the characteristic graph for X2
1, i.e., the second power

graph G2
X1

, we connect two vertices if at least one of

coordinates are connected in GX1 . It is possible to color

G2
X1

using 8 colors. The entropy of this coloring satisfies
1
2H(cG2

X1

) ≈ 1.48 < H(cGX1
) ≈ 1.52 < H(X1) ≈ 2.32.

The chromatic number χ(GX1
) of a graph GX1

is the

minimum number of colors needed to color the vertices in

such a way that no two adjacent vertices have the same color.
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Fig. 2. The second power graph G2

X1
for Example 1, where a = 8 is the

minimum number of colors for which an a : 1 coloring is possible.

Definition 1. (Chromatic entropy [17].) The chromatic entropy

of a graph GX1
is defined as

Hχ
GX1

(X1|X2) = min
cGX1

Hχ(cGX1
(X1)) , (2)

where Hχ(cGX1
(X1)) = {H(cGX1

(X1)) :
cGX1

(X1) is a valid coloring of GX1
|X2} is the set of

chromatic entropies over the set of valid colorings of GX1 .

Let Gn
X1

= (V n
X1

, En
X1

) be the n-th power of a graph

GX1
such that V n

X1
= Xn

1 and (x1
1,x

2
1) ∈ En

X1
, where

x1
1 = (x1

11, x
1
12, . . . , x

1
1n) and similarly for x2

1, when there

exists at least one coordinate i ∈ {1, 2, . . . , n} such that

(x1
1i, x

2
1i) ∈ EX1 . We denote a coloring of Gn

X1
by cGn

X1

(X1).
Körner showed in [1] that, in the limit of large n, the chromatic

entropy and the graph entropy are related as

HGX1
(X1|X2) = lim

n→∞

1

n
min
cGn

X1

H(cGn
X1

(X1)|X2) . (3)

The entropy of cGn
X1

(X1) characterizes the minimal descrip-

tion length needed to reconstruct with fidelity f(X1, X2) [1].

The case of the identity function yields a complete graph.

B. Fractional Coloring of Characteristic Graphs

Fractional graph coloring is a natural extension of traditional

coloring, where each vertex is assigned a set of colors and the

adjacent vertices have disjoint sets. Traditional graph coloring

problems may not be amenable to a linear programming

approach. Solving (3) is equivalent to determining a color-

ing random variable which minimizes the entropy. However,

finding the minimum entropy coloring of GX1 is an NP-hard

problem [32]. To solve the coloring problem losslessly in

polynomial time, we exploit the fractional coloring relaxation.

Definition 2 (Scheinerman and Ullman [31]). A valid b-fold

coloring is an assignment of sets of size b to vertices such that

adjacent vertices receive disjoint sets of colors. A valid a : b
coloring is a valid b-fold coloring out of a available colors.

The notation χb(G) represents the b-fold chromatic number of

graph G that is the least a such that an a : b coloring exists.

The chromatic number χ(G) is subadditive, i.e., χa+b(G) ≤
χa(G) + χb(G). If g : Z+ → R is subadditive and g(b) ≥ 0
for all b, then from the sub-additivity lemma [31], the limit

lim
b→∞

g(b)
b exists and is equal to the infimum of

g(b)
b (b ∈ Z

+).
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Fig. 3. A fractional coloring of G2

X1
for Example 1, where a = 13 is the

minimum number of colors for which an a : 2 coloring exists.

Definition 3. The fractional chromatic number is defined as

χf (G) := lim inf
b→∞

{

χb(G)

b

}

= inf
b

χb(G)

b
, (4)

where the existence of this limit follows from the sub-additivity

of b-fold colorings, and the sub-additivity lemma [31].

From a probabilistic perspective, χf (G) represents the

smallest k for which there is a distribution over the indepen-

dent sets (an independent set is a set of vertices in a graph,

no two of which are adjacent) of G such that for each vertex

v, given an independent set I drawn from the distribution,

P(v ∈ I) ≥ 1
k . Let I(G) be the set of all independent sets

of G, and I(G, x) be the set of all those independent sets

which include vertex x, and xI ∈ R
+ for each independent

set I . Then, the fractional chromatic number χf (G) can be

obtained as a solution of the following linear program [31]:

χf (G)=min
∀x

{

∑

I∈I(G)

xI :
∑

I∈I(G,x)

xI ≥ 1, xI ≥ 0
}

. (5)

This relaxation transforms traditional coloring, which is an

integer programming problem (NP-complete), into a fractional

coloring problem. We illustrate fractional coloring for Exam-

ple 1 in Fig. 1 (right). A 5:2 coloring achieves the optimal

solution of (5), where |I(G)| = 10, with 5 of those sets have

cardinality 2, and 5 sets have size 1, and |I(G, x)| = 3 such

that xI = 0.5 for sets of size 2 and xI = 0 for the sets with

size 1. Hence, χb(GX1) = 5 and from (4) χf (GX1) = 2.5.

Example 1 indicates that assigning colors to sufficiently

large power graphs, we can compress X1 more. A 5 : 2 color-

ing yields H
χf

GX1
(X1|X2) = 1.16, providing a saving of 0.36

bits over Hχ
GX1

(X1|X2) = 1.52. We sketch the traditional

coloring for G2
X1

in Fig. 2. The distribution of colors satisfies

P (ck) = 0.16, k ∈ {1, . . . , 5} and P (ck) = 0.08, k ∈ {6, 7}
and P (c8) = 0.04. Hence, Hχ

G2
X1

(X1|X2) = 1.44. For a

13 : 2 coloring (Fig. 3), the colors satisfy P (ck) = 0.08, k ∈
{1, . . . , 12} and P (c13) = 0.04. Hence, H

χf

G2
X1

(X1|X2) =

0.92, i.e., 0.52 bits of savings from Hχ
G2

X1

(X1|X2).

Due to space constraints, we next focus on the theoretical

notions and the achievable gains pertaining to fractional col-

oring. We explain an example code construction in [33] to

demonstrate the practical savings of the proposed model.



III. FRACTIONAL CHROMATIC ENTROPY

We next formalize the notion of fractional chromatic entropy

of a set of valid fractional colorings via extending Defn. 1.

Definition 4. (Fractional chromatic entropy.) cfGX1
(X1) is a

valid a : b fractional coloring of GX1 if it assigns b colors out

of a total of a available colors to each VX1 such that adjacent

vertices have disjoint colors. We define Hχf (cfGX1
(X1)) =

{H(cfGX1
(X1)) : cfGX1

(X1) is a valid a:b coloring of GX1}
to be the collection of fractional chromatic entropies over the

set of all valid a : b colorings of GX1
given X2.

Proposition 1. The fractional chromatic entropy of a charac-

teristic graph GX1
, denoted by H

χf

GX1
(X1|X2), is given as

H
χf

GX1
(X1|X2) = inf

b

1

b
min
cf
GX1

Hχf (cfGX1
(X1)) . (6)

Proof. Let (Z1, Z2, . . . , Zn) be a collection of random vari-

ables. For every S ⊆ {1, 2, . . . , n}, denote by Z(S) the subset

{Zi : i ∈ S}. From [34, Ch. 16.5] the average entropy in bits

per symbol of a randomly drawn b-element subset Z(S) is

1
(

n
b

)

∑

S:|S|=b

H(Z(S))

b
. (7)

Let GX1(S) = {GX1i
: i ∈ S} be an b = |S|-tuple of graphs

where each GX1i is a replica of GX1 . We jointly color GX1(S)

such that cGX1(S)
(X1(S)) = {cGX1i

(X1i) : i ∈ S}. Using a
colors in total and i.i.d. valid colorings across disjoint S, the

entropy of a randomly drawn b-element subset of colorings is

H(cGX1(S)
(X1(S))|X2) = H(cfGX1

(X1)|X2) , (8)

where cbGX1
(X1) is a valid coloring of GX1(S), and equiva-

lently cfGX1
(X1) is a valid a : b coloring of GX1

.

The average entropy decreases monotonically in the size of

the subset (Han [28]). As b increases the rate of functional

compression via fractional coloring decreases. The minimum

entropy of a fractional coloring can be found by minimizing

across all valid a : b colorings of GX1
. Observing from (4)

that χf (GX1
) = lim

b→∞
χb(GX1

)/b and (8), we obtain (6).

To visualize the rate given in Prop. 1, consider Example 1.

The 5 : 2 coloring distribution satisfies P (c1) = P (c2) = 2/5
and P (c3) = 1/5 and P (c4) = P (c5) = 2/5 (c3 is repeated in

GX11 and GX12 ). The distribution of cGX1(S)
(X1(S)) across

2 graphs yields H(cfGX1
)/2 = 1.16 < H(cGX1

) ≈ 1.52.

The following is an intuitive result due to a finer-grained

granularity that the fractional graph coloring provides. Its

proof follows from combining the definition in (6) and (2).

Corollary 1. The fractional chromatic entropy of a graph GX1

and chromatic entropy satisfy the following relation:

H
χf

GX1
(X1|X2) ≤ Hχ

GX1
(X1|X2) . (9)

Exploiting [1] the fractional graph entropy satisfies

Hf
GX1

(X1|X2) = lim
n→∞

1

n
H

χf

Gn
X1

(X1|X2) , (10)

where χf is the fractional chromatic number of Gn
X1

.

Using (6) and (10) we can derive the fractional graph

entropy, a natural generalization of (3). Prop. 2 is derived from

Prop. 1 and (10), and we skip its proof.

Proposition 2. The fractional graph entropy is given as

Hf
GX1

(X1|X2) = lim
n→∞

1

n
inf
b

1

b
mincf

Gn
X1

{H(cfGn
X1

(X1)) :

cfGn
X1

(X1) is a valid a:b coloring of Gn
X1

|Xn
2} , (11)

where cfGn
X1

(X1) is a fractional coloring variable that assigns

b colors to each vertex of Gn
X1

out of a ≥ b available colors.

Lemma 1. The following relation holds for the fractional

graph entropy and graph entropy:

Hf
GX1

(X1|X2) ≤ HGX1
(X1|X2) . (12)

Proof. We use an important result that ties the fractional

chromatic number to the n-th power of a graph.

The following relation between the n-th power of G and the

fractional chromatic number holds [31, Corollary 3.4.3]:

χf (G) = inf
n

n
√

χ(Gn) = lim
n→∞

n
√

χ(Gn) . (13)

The relation (13) implies that χ(Gn) ≈ χf (G)n as n → ∞.

It also holds from [31, Corollary 3.4.2] that

χf (G
n) = χf (G)n . (14)

As a result of (13) and (14), we infer for the m-th power

of G that χf (G
m)

(14)
= χf (G)m

(13)
= ( lim

n→∞

n
√

χ(Gn))m,

and χf (G
m)

(13)
= lim

n→∞

n
√

χ(Gn·m) ≤ lim
n→∞

χ(Gn)
m
n . The

fractional coloring requires logχf (G
n) bits which is less than

logχ(Gn) bits as required by the traditional coloring.

The current paper aims to improve the compression rate

by introducing fractional chromatic entropy. On the other

hand, this approach does not outperform the independent set-

based fundamental limit for graph entropy that establishes

the optimal rate for lossless function computation f(X1, X2)
given side information X2 [35, Theorem 21.2].

IV. CODING GAINS OF FRACTIONAL COLORING

We denote the integrality gap (IG), i.e., ratio of the solu-

tions of the traditional coloring versus the fractional coloring

problems for encoding Gn
X1

, by IGn. It is given as

IGn =
Hχ

Gn
X1

(X1|X2)

H
χf

Gn
X1

(X1|X2)
, n ≥ 1 .

From Lemma 1, it is immediate that IGn ≥ 1 for n ≥ 1.

Lemma 2. IGn is an increasing function of n.

Proof. We rewrite IGn as IGn = 1
n

∑n
k=1 ak /

1
n

∑n
k=1 bk,

where ak = Hχ

Gk
X1

(X1|X2) − Hχ

Gk−1
X1

(X1|X2) and bk =

H
χf

Gk
X1

(X1|X2) − H
χf

Gk−1
X1

(X1|X2) which both decrease in k

because the sequences Hχ

Gk
X1

(X1|X2) and H
χf

Gk
X1

(X1|X2)

are increasing and concave in the sense of decreasing slope,

which can be shown using Han’s theorem [28]. Furthermore,

ak ≥ bk for k ∈ {1, 2, . . . , n}. Due to fractional coloring



bk decreases with a higher rate versus ak. We infer that

1 ≤ a1/b1 ≤ a2/b2 ≤ . . . an/bn. Hence, we can show that

a1
b1

≤
a1 + a2
b1 + b2

≤ · · · ≤
a1 + a2 + · · ·+ an
b1 + b2 + · · ·+ bn

= IGn .

Hence, IGn is an increasing function of n.

In Example 1, IG1 = 1.52
1.16 = 1.31, IG2 = 1.44

0.92 = 1.57,

and IGn is higher for n > 2 (Lemma 2). The gain is due to

cross-coding across graphs (Prop. 1). For the identity function,

the GX1
is complete, b∗ = 1, and fractional coloring does not

have savings. Significant gains are possible for sparse graphs.

For a valid a:b coloring of GX1
, let b∗GX1

be the smallest

b = |S| that achieves (6) for GX1
, and cGX1

(X1) and

cfGX1
(X1) be the valid colorings with distributions q =

(q1, . . . , qχ(GX1
)) and r = (r1, . . . , rχb∗

GX1

(GX1(S))) that min-

imize the respective entropies of the colorings. Similarly, for

n > 1, let b∗Gn
X1

be the smallest b = |S| for Gn
X1

satisfying

(4), cGn
X1

(X1) and cfGn
X1

(X1) be the valid colorings with

qn = (q1, . . . , qχ(Gn
X1

)), r
n = (r1, . . . , rχb∗

Gn
X1

(Gn
X1(S)

)).

Proposition 3. The fractional coloring scheme attains

IGn ≥
b∗Gn

X1

H(qn)

H(qn) + ∆Gn

,

where

∆Gn =
∑

j∈JGn

qj

[

h
( 1

b∗Gn
X1

)

+
b∗Gn

X1

−1

b∗Gn
X1

log(mGn(j)(b∗Gn
X1

−1))
]

,

j ∈ JGn = {1, . . . , χb(G
n
X1(S))} represents the coloring

class, and mGn(j) is the count of class j vertices.

Proof. We first focus on n = 1. Then,

IG1 = b∗GX1

H(cGX1
(X1)|X2)

H(cfGX1
(X1)|X2)

= b∗GX1

H(q)

H(r)
.

Using the grouping property of entropy [34, Ch.2 ],

H(r) = H(q) +
∑

j

qjH
(

(
rl
qj

:
∑

l∈j
rl = qj)

)

. (15)

We next analyze the RHS of (15) for a given j, assuming that

there exist mG(j) vertices in GX1 in color class j. It then

holds that in the b-fold coloring scheme qj accumulates the

probabilities of mG(j) × b vertices in GX1(S). The marginal

distribution of colors in each GX1i
: i ∈ S is identical. Hence,

H
(

(
rl
qj

:
∑

l∈j

rl = qj)
)

≤ H
( 1

mG(j)b
, . . . ,

1

mG(j)b
,
1

b

)

= h
(1

b

)

+
b− 1

b
log(mG(j)(b− 1)) ,

where the colors of GX11
and GX1

are the same, putting 1/b
of the mass of qi in GX1(S), and leaving (b−1)/b of the mass

to the remaining b − 1 graph replicas {GX1i : i ∈ S, i ̸= 1}
with mG(j)(b− 1) vertices. The RHS holds when the colors

are uniformly split among mG(j)(b− 1) vertices. Hence,

IG1≥
b∗GX1

H(q)

H(q) + ∆G
,

where ∆G =
∑

j∈JG

qj

[

h
(

1
b∗
GX1

)

+
b∗GX1

−1

b∗
GX1

log(mG(j)(b
∗
GX1

−1))
]

.

For n > 1, employing the grouping property we can obtain the

final result. We note that the count of class j vertices mGn(j)
is less than mG(j)

n for j ∈ JG = {1, . . . , χ(GX1
)}.

From Prop. 3, for any given GX1
, if not a complete graph,

fractional coloring for n > 1 offers compression savings.

The following corollary implies theoretically that the

achievable IGn is lower bounded by b∗Gn
X1

(up to a scaling),

for a valid b∗Gn
X1

-fold coloring that is determined by the

function to be computed and its n-th power graph Gn
X1

.

Corollary 2. Under the assumption that the colorings of Gn
X1

are uniform, the fractional coloring scheme attains

IGn ≥ b∗Gn
X1

· logχf (GX1)
/

logχb∗
GX1

(GX1) .

Proof. Let b∗GX1
and b∗Gn

X1

be the smallest b values such that

(4) holds for GX1
and Gn

X1
, respectively. Then, provided

that the colorings of Gn
X1

are uniform, we can simplify the

expressions for H(q) and H(r) and obtain

IGn ≥
1
n logχf (GX1)

n

1
n · 1

b∗
Gn

X1

· log(b∗Gn
X1

· χf (Gn
X1

))
(16)

= b∗Gn
X1

·
logχf (GX1

)

log (b∗Gn
X1

)1/n + logχf (GX1
)

(17)

≥ b∗Gn
X1

· logχf (GX1
)
/

logχb∗
GX1

(GX1
) , (18)

where the lower bound (16) follows from using (13), and (17)

is due to (14). Employing the relations χf (GX1) =
χb(GX1

)

b ,

(14), which yields χf (G
n
X1

) =
χn
b (GX1

)

bn , and χn
b (GX1

) ≥
χb(G

n
X1

), we obtain b∗Gn
X1

≤ (b∗GX1
)n, which yields (18).

Discussion and future directions. Fractional coloring ex-

ploits the possibility of cross-coding between graphs and

provides coding gains (at infinite and finite source sequence

lengths). This approach provides a reduced communication

complexity versus traditional coloring via decreasing the num-

ber of bits to send roughly from logχ to logχf . Lower

bounding IGn for different classes of functions and source

distributions is of primary importance. Quantifying and upper

bounding the IG in the limit of large n, i.e., the ratio of

the bits required by fractional compression, Hf
GX1

(X1|X2),

to HGX1
(X1|X2), is left as future work.

While fractional coloring is a less combinatorial problem

than traditional coloring and accepts a linear programming

solution (solvable in polynomial time), finding an independent

set is strongly NP-hard [36]. Hence, the relaxation is in

the class of NP-hard problems. This issue can be alleviated

via using fractional edge coloring (versus fractional vertex

coloring) for which a polynomial-time solution exists [31].

The characteristic graph approach is concerned with functional

compression of source sequences when the adjacency matrix

is a (0,1)-matrix. A possible generalization includes edge-

weighted graphs to capture the distortion in reconstruction.
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