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Abstract. Image registration is a key task in medical imaging applica-
tions, allowing to represent medical images in a common spatial reference
frame. Current literature on image registration is generally based on the
assumption that images are usually accessible to the researcher, from
which the spatial transformation is subsequently estimated. This com-
mon assumption may not be met in current practical applications, since
the sensitive nature of medical images may ultimately require their anal-
ysis under privacy constraints, preventing to share the image content in
clear form. In this work, we formulate the problem of image registra-
tion under a privacy preserving regime, where images are assumed to be
confidential and cannot be disclosed in clear. We derive our privacy pre-
serving image registration framework by extending classical registration
paradigms to account for advanced cryptographic tools, such as secure
multi-party computation and homomorphic encryption, that enable the
execution of operations without leaking the underlying data. To over-
come the problem of performance and scalability of cryptographic tools
in high dimensions, we first propose to optimize the underlying image
registration operations using gradient approximations. We further revisit
the use of homomorphic encryption and use a packing method to al-
low the encryption and multiplication of large matrices more efficiently.
We demonstrate our privacy preserving framework in linear and non-
linear registration problems, evaluating its accuracy and scalability with
respect to standard image registration. Our results show that privacy
preserving image registration is feasible and can be adopted in sensitive
medical imaging applications.

Keywords: Image Registration · Privacy enhancing technologies · Trust-
worthiness

1 Introduction

Image Registration is a crucial task in medical imaging applications, allowing
to spatially align imaging features between two or multiple scans. Image regis-
tration is a key component of state-of-the-art methods for atlas-based segmen-
tation [9, 31], morphological and functional analysis [3, 11], multi-modal data
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integration [17], and longitudinal analysis [4, 26]. Overall, typical registration
paradigms are based on a given transformation model (e.g. affine or non-linear),
a cost function and an associated optimization routine. A large number of im-
age registration approaches have been proposed in the literature over the last
decades, covering a variety of assumptions underlying the spatial transforma-
tions, similarity metric, image dimensionality and optimization strategy [30].
Image registration is the workhorse of many real-life medical imaging software
and applications, including public web-based services for automated segmen-
tation and labeling of medical images. Using these services generally requires
uploading and exchanging medical images over the Internet, to subsequently
perform image registration with respect to one or multiple (potentially propri-
etary) atlases. There are also emerging data analysis paradigms, such as Fed-
erated Learning (FL) [22], where medical images can be jointly analysed in
multi-centric scenarios to perform group analysis [14]. In these setting, the cre-
ation of registration-based image templates [3] is currently not possible without
disclosing the image information. Due to the evolving juridical landscape on
data protection, these applications of image registration are no longer compli-
ant with regulations currently existing in many countries, such as the European
General Data Protection Regulation (GDPR) [2], or the US Health Insurance
Portability and Accountability Act (HIPAA) [1]. Medical imaging information
falls within the realm of personal health data [20] and its sensitive nature should
ultimately require the analysis under privacy preserving constraints, for instance
by preventing to share the image content in clear form. Advanced cryptographic
tools enabling data processing without disclosing it in clear hold great poten-
tial in sensitive data analysis problems (e.g., [19]). Examples of such approaches
are Secure-Multi-Party-Computation (MPC) [33] and Homomorphic Encryption
(HE) [27]. While MPC allows multiple parties to jointly compute a common
function over their private inputs and discover no more than the output of this
function, HE enables computation on encrypted data without disclosing nei-
ther the input data nor the result of the computation. This work presents a
new methodological framework allowing image registration under privacy con-
straints. To this end, we reformulate the typical image registration problem to
integrate cryptographic tools, namely MPC or FHE, thus preserving the privacy
of the image data. Due to the well known scalability issues of privacy preserving
techniques, we investigate strategies for the practical use of privacy preserving
image registration (PPIR) through gradient approximations, array packing and
matrix partitioning. In our experiments we evaluate the effectiveness of PPIR
in linear and non-linear registration problems. Our results demonstrate the fea-
sibility of PPIR, and pave the way to the application of image registration in
sensitive medical imaging applications.

2 Problem statement

Given images I, J ∶ Rd ↦ R, image registration aims at estimating the parameters
p of a spatial transformation Wp ∈ Rd ↦ Rd, either linear or non-linear, max-
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imizing the spatial overlap between J and the transformed image I(Wp). For
example, a typical cost function to optimize the registration problem is the sum
of squared intensity differences (SSD) evaluated on the set of image coordinates:

SSD(I, J,p) = argminp∑
x

[I(Wp(x)) − J(x)]
2

(1)

Equation (1) can be typically optimized through gradient-based methods, where
the parameters p are iteratively updated until convergence. In particular, un-
der a Gauss-Newton optimization scheme, the parameters update of the spatial
transformation can be computed through Equation (2):

∆p =H−1 ⋅∑
x

S(x) ⋅ (I(Wp(x)) − J(x)), (2)

where S(x) = ∇I(x)∂Wp(x)

∂p
quantifies image and transformation gradients, and

H = ∑x (∇I(x)∂Wp(x)

∂p
)
T
(∇I(x)∂Wp(x)

∂p
) is the second order term obtained

from Equation (1) through linearization [5, 24].
The solution of this problem requires the joint availability of both images I

and J , as well as of the gradients of I and of Wp. In a privacy preserving setting,
this information may not be available, and the computation of Equation (2) is
therefore impossible. We thus consider a scenario with two parties, party1, and
party2, whereby party1 owns image I and party2 owns image J . The parties wish
to collaboratively optimize the image registration problem without disclosing
their respective images to each other. We assume that only party1 has access
to the transformation parameters p, and that is also in charge of computing
the update at each optimization step. In particular, to compute the registration
update ∆p of Equation (2), the only operation requiring the joint availability
of information from both parties is the term R = ∑x S(x) ⋅ J(x), which can be
computed as a matrix-vector multiplication on vectorized quantities, R = ST ⋅J .

3 Methods

Before presenting PPIR in Section 3.2, we introduce in Section 3.1 the crypto-
graphic tools underlying the proposed framework.

3.1 Secure Computation

Secure Multi-Party Computation. Introduced by Yao in [33], MPC is a
cryptographic tool that allows multiple parties to jointly compute a common
function over their private inputs (secrets) and discover no more than the output
of this function. Among existing MPC protocols, additive secret sharing consists
of first splitting every secret s into additive shares ⟨s⟩i, such that ∑n

i=1⟨s⟩i =
s, where n is the number of collaborating parties . Each party i receives one
share ⟨s⟩i, and executes an arithmetic circuit in order to obtain the final output
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of the function. In this paper, we adopt the two-party computation protocol
defined in SPDZ [12], whereby the actual function is mapped into an arithmetic
circuit and all computations are performed within a finite ring with modulus
Q. Additions consist of locally adding shares of secrets, while multiplications
require interaction between parties. Following [12], SPDZ defines a dedicated
MPCMul operation to compute matrix-vector multiplication within a secure
two-party protocol. Homomorphic Encryption. Initially introduced by Rivest
et al. in [27], HE enables the execution of operations over encrypted data without
disclosing neither the input data, nor the result of the computation. Hence, party
1 encrypts the input with her public key and sends this encryption to party 2.
Party 2, in turn, evaluates a circuit over this encrypted input and sends the
result, which still remains encrypted, back to party 1 which can finally decrypt
the result. Among various HE schemes, CKKS [10] supports the execution of all
operations over encrypted real values and is considered as a fully homomorphic
encryption (FHE). With CKKS, an input vector is mapped to a polynomial and
further encrypted with a public key in order to obtain a pair of polynomials
c = (c0, c1). The original function is further mapped into a set of operations
that are supported by CKKS, which are executed over c. The performance and
security of CKKS depends on multiple parameters including the degree of the
polynomial N , which is usually sufficiently large (e.g. N = 4096, or N = 8192).

3.2 PPIR: Privacy preserving image registration

In order to ensure the privacy of images I and J against party2 and party1
respectively, we propose to investigate the use of MPC and FHE to develop
PPIR. Figure 1 illustrates how these two cryptographic tools are employed to
ensure the privacy of the images during registration. As previously mentioned,
the only operation that needs to be jointly executed by the parties in a privacy
preserving manner is the matrix-vector multiplication: R = ST ⋅ J , where ST is
only known to party1, and J to party2.

When MPC is integrated (Figure 1a), party1 secretly shares the matrix
ST to obtain (⟨S1⟩, ⟨S2⟩), while party2 secretly shares the image J to obtain
(⟨J1⟩, ⟨J2⟩). Each party further receives its corresponding share, namely: party1
holds (⟨S1⟩, ⟨J1⟩) and party2 holds (⟨S2⟩, ⟨J2⟩). Parties further execute a circuit
with the MPCMul operations to compute the 2-party dot product between ST

and J . The parties further synchronize to let party1 to obtain the product, and
to finally calculate ∆p (see Equation (2)).

When using FHE (Figure 1b), party2 uses a FHE key k to encrypt J and ob-
tain: JJK← Enc(k, J). This encrypted image is sent to party1, who computes the
encrypted result JRK of the matrix-vector multiplication. In this framework, only
the vector J is encrypted, and therefore party1 executes scalar multiplications
and additions in the encrypted domain only (which are less costly than mul-
tiplications over two encrypted inputs). The encrypted result JRK is sent back
to party2, which can obtain the result through decryption: R = Dec(k, JRK).
Finally, party1 receives R in clear form and can therefore compute ∆p .
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(a) Multi Party Computation (b) Fully Homomorphic Encryption

Fig. 1: Proposed framework to compute the matrix-vector multiplication ST ⋅ J
relying on MPC and FHE.

Thanks to the privacy and security guarantees of these cryptographic tools,
during the entire registration procedure the content of the image data S and I is
never disclosed to the opposite party. Nevertheless, effectively optimizing Equa-
tion (1) with MPC or FHE is particularly challenging, due to the computational
bottleneck of these techniques when applied to large dimensional objects [7,16],
notably affecting computation time and communication bandwidth between par-
ties. To tackle this issue, in what follows we introduce in the schemes of Figure
1 computational strategies to effectively reduce the dimensionality of the image
information through sampling, and to improve the scalability of the algebraic
operations when using these cryptographic tools.

Gradient sampling. The update of Equation (2) is computed on the vec-
torized images, which are large-dimensional arrays representing all the image
pixels (or voxels). Since the registration gradient is in general mostly driven by
a fraction of the image content, e.g. image boundaries in case of the SSD met-
ric, a reasonable approximation of Equation (2) can be obtained by assessment
on relevant image locations only. This idea has been introduced in medical im-
age registration [21, 29, 32], and is here adopted to reduce the dimensionality of
the arrays on which encryption is performed. In our works we test two differ-
ent techniques: (i): Uniformly Random Selection (URS), proposed by [21,32], in
which a random subset of dimension l ≤ s of spatial coordinates is sampled at
every iteration with uniform probabilities, Pr(x) = 1

s
; and (ii): Gradient Magni-

tude Sampling (GMS) [29], consisting in sampling a subset of coordinates with
probability proportional to the norm of the image gradient, Pr(x) ∼ ∥∇I(x)∥.

Matrix partitioning in FHE. In addition to gradient sampling, we pro-
pose a specific optimization dedicated to PPIR with FHE, in particular when
the CKKS algorithm is adopted. CKKS allows packing multiple inputs into a
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single ciphertext to decrease the number of homomorphic operations. In order
to optimize the matrix-vector multiplication, we propose to partition the image
vector J into K sub-arrays of dimension D, and the matrix ST into K subma-
trices of dimension ∣p∣ ×D. Once all sub-arrays Ji are encrypted, we propose to
iteratively apply the (DotProduct) proposed by [7] between each sub-matrix
and corresponding sub-array; these intermediate results are then summed up to
obtain the final result, namely: JRK = ∑K

i=0DotProduct (JJT
i K, Si) = ST ⋅ JJK.

4 Experimental Results

We demonstrate and assess PPIR in two examples based on linear and non-linear
alignment of respectively positron emission tomography (PET) and anatomical
magnetic resonance (MR) images.

Dataset. PET data consists of 18-Fluoro-Deoxy-Glucose (18FDG) whole
body Positron Emission Tomography (PET). The images here considered are a
frontal view of the maximum intensity projection reconstruction, obtained by 2D
projection of the voxels with highest intensity across views (1260× 1090 pixels).

MR images are obtained from brain scans of the Alzheimer’s Disease Neu-
roimaging Initiative [23]. Images underwent a standard processing pipeline to
estimate grey matter density maps [3]. The subsequent registration experiments
are performed on the extracted mid-coronal slice, of dimension 121× 121 pixels.

Implementation. PET image alignment was performed by optimizing the
transformation Wp of Equation (1) with respect to affine registration param-
eters. The registration of brain grey matter density images was performed by
non-linear registration based on a cubic spline model (one control point every
five pixels along both dimensions). For both affine and non-linear cases, the
registration was performed between two randomly selected patients’ images.

Concerning the PPIR framework with the affine transformation, tests are
carried for both MPC and FHE by considering the entire images, and by using
gradient approximation techniques (Section 3). The sampling seed for gradient
approximation is the same for each test. Due to the smaller dimension of the
brain grey matter images, non-linear PPIR with cubic-splines is applied directly
to the full data. For MPC we set as prime modulus Q = 232. For FHE, we define
the polynomial degree modulus as N = 4096, and set the resizing parameter D
to optimize the trade-off between runtime and bandwidth. Since D needs to be a
divider of the image size, for PET image data we set D = 128, while for the grey
matter images we set D = 121. The PPIR framework is implemented using two
state-of-the-art libraries: PySyft [28] supporting SPDZ’s two-party computation,
and TenSeal [7] for CKKS. All the experiments are executed on a machine with
an Intel(R) Core(TM) i7-7800X CPU @ (3.50GHz x 12) using 132GB of RAM.
For each registration configuration, the optimization is repeated 10 times, to
account for the random generation of the MPC shares and FHE encryption keys.
The code is released in a GitHub repository4. We used Weights & Biases [8] for

4 https://github.com/rtaiello/pp_image_registration
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experiment tracking, and the links of our tracked results are available in the
GitHub repository.

Fig. 2: Qualitative results for affine registration. The red frame is the transformed
moving image using Clear+URS registration. Green and Yellow frames are the
transformed images using respectively MPC+URS and FHE+URS PPIR. The
yellow image is the transformed moving using PPIR with CKKS.

The quality of PPIR is assessed by comparing the registration results with
respect to the ones obtained with standard registration on clear images (Clear).
The metrics considered are the image intensity difference at the optimum, the
overall number of iterations required to converge, and the displacement root
mean square difference (RMSE) between Clear and PPIR. We also evaluate
the performance of PPIR in terms of average computation (running time) and
communication (bandwidth) across iterations. Results. Table 1 (Registration
metrics) shows that affine PPIR through SPDZ leads to negligible differences
with respect to Clear in terms of number of iterations, intensity and displace-
ment. Registration with CKKS is instead not possible when considering the en-
tire images, due to computational complexity, and is also associated to generally
larger approximations when using URS and GMS. Nevertheless, Figure 2 shows
that neither MPC nor FHE do decrease the overall quality of the affine regis-
tered images. Additional registration results are available in Appendix. Table 1
(Efficiency metrics) shows that SPDZ performed on the full images has highest
computation time and communication bandwidth. These figures sensibly im-
prove when using URS or GMS, by factors 10x and 20x for respectively time
and bandwidth. Concerning CKKS, we note the uneven time and bandwidth
requirements between clients, due to the asymmetry of encryption operations
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Table 1: Affine registration test. Registration metrics are reported as mean
and standard deviation. Efficiency metrics in terms of average across iterations.
RMSE: root mean square error.

Affine registration metrics

Solution Intensity Error (SSD) Num. Interation Displacement RMSE Clear vs PPIR (mm)

Clear 4.34 ± 0.0 118 ± 0.0 -
SPDZ 4.34 ± 0.0 114.8 ± 4.0 1.81 ± 0.02
CKKS 7 7 7

Clear + URS 4.38 ± 0.0 61 ± 0.0 -
SPDZ + URS 4.34 ± 0.0 60.4 ± 6.85 16.49 ± 3.74
CKKS (D = 128) + URS 4.34 ± 0.10 61.80 ± 4.82 23.31 ± 2.72

Clear + GMS 4.34 ± 0.0 63 ± 0.0 -
SPDZ + GMS 4.34 ± 0.0 59.80 ± 6.20 6.21 ± 1.49
CKKS (D = 128) + GMS 4.34 ± 0.05 60.4 ± 5.12 5.17 ± 1.40

Affine efficiency metrics

Solution Time party1 (s) Time party2 (s) Comm. party1 (MB) Comm. party2 (MB)

Clear 0.0 0.0 - -
SPDZ 0.13 0.13 1.54 1.54
CKKS 7 7 7 7

Clear + URS 0.0 0.0 - -
SPDZ + URS 0.02 0.02 0.20 0.20
CKKS (D = 128) + URS 2.55 0.02 0.06 0.01

Clear + GMS 0.0 0.0 - -
SPDZ + GMS 0.02 0.02 0.20 0.20
CKKS (D = 128) + GMS 2.51 0.02 0.06 0.01

Table 2: Non-linear registration test. Registration metrics are reported as mean
and standard deviation. Efficiency metrics in terms of average across iterations.
RMSE: root mean square error.

Cubic splines registration metrics

Solution Intensity Error (SSD) Num. Interation Displacement RMSE Clear vs PPIR (mm)

Clear 0.65 ± 0.0 413 ± 0.0 -
SPDZ 0.65 ± 0.0 345.70 ± 91.22 7.31 ± 1.86
CKKS 0.64 ± 0.0 224.7 ± 79.15 9.50 ± 4.34

Cubic splines efficiency metrics

Solution Time party1 (s) Time party2 (s) Comm. party1 (MB) Comm. party2 (MB)

Clear 0.0 0.0 - -
SPDZ 0.63 0.63 21.47 28.98
CKKS 3.41 0.00 0.06 0.01

and communication protocol (Figure 1). Finally, Table 2 reports the metrics for
the non-linear registration test. Concerning registration accuracy, we draw sim-
ilar conclusions to the affine case, where SPDZ leads to minimum differences
with respect to Clear, while CKKS seems slightly inferior. SPDZ is associated
to lower execution time and higher computation bandwidth, due to the larger
number of parameters of the cubic splines, affecting the size of the matrix S.
While CKKS has higher execution time, the demanded bandwidth is inferior to
the one of SPDZ, since the encrypted template image is transmitted only once.

5 Conclusion

This work introduces privacy preserving image registration (PPIR), a novel
framework to allow image registration when images are confidential and cannot
be disclosed in clear. PPIR is developed with MPC and FHE and implements
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effective strategies to mitigate their known computational and communication
overhead. PPIR is demonstrated and evaluated through a series of quantita-
tive benchmarks in both linear and non-linear image registration problems. Our
results highlight the existing trade-off between registration performance and ef-
ficiency of the different PPIR schemes.

Future extensions of this work will be devoted to the benchmarking of our
framework in more general scenarios, involving 3D medical image data and mul-
timodal registration problem. The application to multimodal data will require
the extension of our framework to account for different similarity metrics, such as
Mutual Information or Normalized Cross-Correlation [25, 32]. Moreover, the ef-
fectiveness of sampling through URS and GMS motivates the adoption of sparse
image registration frameworks, especially for non-linear registration [13,15]. An-
other relevant research direction concerns the development of PPIR in deep-
learning based approaches [6, 18].

Overall, this study shows that PPIR is feasible and can therefore be adopted
in sensitive medical imaging applications.

References

1. Health Resources and Services Administration. Health insurance portability and
accountability act, 1 (1996), U.S. Dept. of Labor, Employee Benefits Security Ad-
ministration.

2. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
april 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46/ec (General Data Protection Regulation) (2016-05-04), European Union.

3. Ashburner, J., Friston, K.J.: Voxel-based morphometry—the methods. Neuroimage
11(6), 805–821 (2000)

4. Ashburner, J., Ridgway, G.R.: Symmetric diffeomorphic modeling of longitudinal
structural MRI. Frontiers in neuroscience 6, 197 (2013)

5. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: A unifying framework. Inter-
national journal of computer vision 56(3), 221–255 (2004)

6. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph:
a learning framework for deformable medical image registration. IEEE transactions
on medical imaging 38(8), 1788–1800 (2019)

7. Benaissa, A., Retiat, B., Cebere, B., Belfedhal, A.E.: Tenseal: A library for en-
crypted tensor operations using homomorphic encryption. CoRR abs/2104.03152
(2021), https://arxiv.org/abs/2104.03152

8. Biewald, L.: Experiment tracking with weights and biases (2020), https://www.
wandb.com/, software available from wandb.com

9. Cardoso, M.J., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., Fox,
N.C., Ourselin, S., Initiative, A.D.N., et al.: STEPs: Similarity and truth estimation
for propagated segmentations and its application to hippocampal segmentation and
brain parcelation. Medical image analysis 17(6), 671–684 (2013)

10. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. In: International Conference on the Theory and Appli-
cation of Cryptology and Information Security. pp. 409–437. Springer (2017)
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