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Abstract—Several applications, such as text-to-SQL and compu-
tational fact checking, exploit the relationship between relational
data and natural language text. However, state of the art solutions
simply fail in managing “data-ambiguity”, i.e., the case when
there are multiple interpretations of the relationship between text
and data. Given the ambiguity in language, text can be mapped to
different subsets of data, but existing training corpora only have
examples in which every sentence/question is annotated precisely
w.r.t. the relation. This unrealistic assumption leaves the target
applications unable to handle ambiguous cases. To tackle this
problem, we present an end-to-end solution that, given a table
D, generates examples that consist of text, annotated with its
data evidence, with factual ambiguities w.r.t. D. We formulate the
problem of profiling relational tables to identify row and attribute
data ambiguity. For the latter, we propose a deep learning method
that identifies every pair of data ambiguous attributes and a
label that describes both columns. Such metadata is then used
to generate examples with data ambiguities for any input table.
To enable scalability, we finally introduce a SQL approach that
can generate millions of examples in seconds. We show the high
accuracy of our solution in profiling relational tables and report
on how our automatically generated examples lead to drastic
quality improvements in two fact-checking applications, including
a website with thousands of users, and in a text-to-SQL system.

I. INTRODUCTION

Ambiguity is common in natural language in many forms [1].
We focus on the ambiguity of a factual sentence or question
w.r.t. the data available in a table. A simple example is the
question “Is Curry the best shooter in NBA history?”. Based
on the NBA official data, the answer changes depending on
the interpretation of shooting in terms of table attributes [2].
Indeed, in the context of querying relational databases using
natural language (text-to-SQL), “ambiguity of natural language
queries is one of the most difficult challenges” [3]. The problem
of data ambiguities in text is also relevant for many natural
language processing (NLP) applications that use relational data.
These span from computational fact checking, i.e., verify if a
given claim holds w.r.t. a table [4], [5], [6], [7], to question
answering in general [8], [9]. Existing solutions are trained
on corpora of short text examples (sentences or questions)
annotated w.r.t. the data. However, such corpora do not contain
examples with data ambiguities and the methods simply fail
when they are tested on such cases. This problem is important
in practice. In the log of an online application for fact checking
(https://coronacheck.eurecom.fr), 88% of the claims verified by
the users are ambiguous sentences w.r.t. the available data.

Consider a fact checking application that verifies a textual
claim, such as “Carter LA has higher shooting than Smith SF”,

Player Team FG% 3FG% fouls apps
t1 Carter LA 56 47 4 5
t2 Smith SF 55 50 4 7
t3 Carter SF 60 51 3 3

TABLE I. A DATA-AMBIGUOUS EXAMPLE CONTAINS THE SENTENCE
“CARTER LA HAS HIGHER SHOOTING THAN SMITH SF” AND THE EVIDENCE
UNDERLINED. ANOTHER EXAMPLE CONTAINS THE QUESTION “DID CARTER

COMMIT 3 FOULS?” AND THE EVIDENCE IN ITALIC.

against a relational table D as in Table I. Even as humans, it is
hard to state if the sentence is true or false w.r.t. the data in D.
The challenge is due to the two different meanings that can be
matched to shooting: the claim can refer to attribute Field Goal
(FG%) or to 3-point Field Goal (3FG%). The same challenge
applies with a SQL query expressed in natural language such
as “Did Carter commit 3 fouls?”. We refer to this issue as data
ambiguity, i.e., the existence of more than one interpretation
of a text w.r.t. the data for a human reader.

While existing corpora of examples come from extensive
and expensive manual efforts, they do not contain examples with
ambiguous text. Existing applications fail in these scenarios:
the two examples above would lead to a single interpretation,
which is incorrect in 50% of the cases. Since manually crafting
examples is not feasible at scale, we propose to generate
examples with data ambiguities from the data itself.

Consider again the first example about the higher shooting
percentage. If we know what the ambiguous attributes are,
the data relevant for such example is one of the result tuples
obtained from a SQL query q1 executed over D comparing
the FG% and 3FG% attributes for pairs of players.

q1: SELECT b1.Player, b1.Team, b2.Player,
b2.Team, b1.FG%, b2.FG%,
b1.3FG%, b2.3FG%

FROM D b1, D b2
WHERE b1.Player <> b2.Player AND

b1.Team <> b2.Team AND
b1.FG% > b2.FG% AND
b1.3FG% < b2.3FG%

Once we have identified these cells from D, we can
create the corresponding text by using a data-to-text generation
method [10], [11]. These methods, given a table and a set
of table cells, produce their textual description. A generated
example therefore consists of the SQL query, the text, and the
cells, or evidence, that address the text in the test.

In this paper, we describe PYTHIA1, an end-to-end system

1PYTHIA was the name of the Oracle of Delphi, a priestess famous for her
enigmatic prophecies that needed interpretation.



Fig. 1. PYTHIA takes as input a table and computes traditional and new
metadata for it. The ambiguity discovery identifies pairs of attributes and a
label that generalizes them. The metadata is used to produce the query that
identifies the evidence cell values that lead to an ambiguity. Such cells are
then processed to generate a short text. Examples (query, table cells, sentence)
are finally used in target applications, e.g., as training data.

to generate examples that are data ambiguous w.r.t. a given
table [12]. Given a relation, the key idea is to identify the
set of cells involved in ambiguous attributes with a query
over the data. These cells are then used to generate the text.
However, coming up with the query automatically from a
given relational table depends on the ability of identifying
and characterizing the ambiguities. Consider again query q1
above. First, the ambiguous attribute pair is not given as input,
e.g., FG% and 3FG% in q1 must be identified. Second, the
data-to-text generators are not designed to create sentences
with ambiguity, but these are the examples that we aim at
creating. In order to extend such solutions, they need some
extra information in their prompt. We extend the prompt using
a label that plausibly refers to the two attributes, e.g., “shooting”
in q1 is a label for FG% and 3FG%. To handle these challenges,
we introduce deep learning models that predict this new kind
of ambiguity metadata from the table, as depicted in Figure 1.

In this work, we show that relational data can play an
important role in the data-centric AI movement [13], which
argues that more attention should be put on the role of data,
rather than focusing only on the creation of more complex ML
models. We tackle the problem of generating examples with
data ambiguity from relational data and build PYTHIA around
the following contributions:

1) We formalize the problem of generating text that is
ambiguous w.r.t. a dataset and characterize its properties.
We model the problem as the generation of data evidence
(with SQL queries) and generation of text (Section II).

2) Evidence and text generation require metadata about
ambiguity over the attributes, i.e., pairs of ambiguous
attributes and their corresponding label, such as attributes
FG% and 3FG% with ‘shooting’. We introduce a solution
based on transfer learning and a transformer architecture
for the inference of such metadata from the given table.
As the problem is new, we use weak supervision on 500k
tables to create training data for such task (Section III).

3) We design a generic solution that enables the generation
of examples with data ambiguity. The algorithm is instan-
tiated with the metadata for the dataset at hand to produce

the (query, data evidence, text) triples (Section IV).
4) We focus on genuine attribute ambiguity, in contrast

to other ambiguity cases where the meaning is entirely
clear to a human but an algorithm detects more than one
alternative2. We therefore conduct a user study with 10
human annotators to create the first test dataset of 252
ambiguous attribute pairs and corresponding labels for a
set of 13 relational tables (Section V).

5) PYTHIA creates thousands of examples, with an f-measure
of 87% and 82% in the prediction of pairs and labels,
respectively. Examples are correctly recognized as data am-
biguous by human judges. Generated, unverified examples
are used for training the first fact checking and text-to-SQL
applications that handle data ambiguity (Section VI).

Related work is discussed in Section VII and possible future
research directions are presented in Section VIII. Code and
datasets are available online [14].

II. OVERVIEW AND PROBLEM FORMULATION

An example is a triple composed of a text that is data
ambiguous w.r.t. a table D, the subset of D’s cells that
are needed to verify or answer such text, and the query
that identifies such subset. Examples can be used in training
applications to make them aware of the ambiguity problem.
Figure 1 shows the high-level architecture of PYTHIA. Our
approach starts by deriving the ambiguity metadata for a given
table. With such metadata, it then creates SQL queries that
identify all the subsets of cells involving ambiguity. The results
of these queries over the table are then used to complete the
example by creating the corresponding natural language text.

We now introduce the definition of data ambiguous text, the
queries that use ambiguity metadata to identify the subset of
data that lead to the examples, and how text can be generated
from data. We then conclude with the problem formulation.

A. Text with Data Ambiguity

Consider a short natural language text, either sentence
or question, s and a relational table t. A text s is factual
if it contains only information (entities, values) that are
verifiable/answerable with the relevant cells in t, namely
evidence. We define a factual text s as data ambiguous if
a human judges that it has more than one possible meaning
w.r.t. schema and content in table t. We refer to the triple (query,
data evidence, text) as an example for the target applications3.

Ambiguity Structure. Text can be data ambiguous in different
ways. For example, s1: “Carter LA has better shooting than
Smith SF” is ambiguous w.r.t. relation D in Table I because
even as humans we cannot state for sure if it refers to regular
Field Point statistics or performance for the 3 point range. This
is an example of attribute ambiguity over two attributes, but a
text could be ambiguous up to a number of attributes equal to
the arity of the table.

Factual question s2: “Did Carter commit 3 fouls?” shows a
different kind of data ambiguity w.r.t. D. As rows are identified

2For example, for a human “Carter SF has played 3 times” clearly refers to
player Appearances (apps), but an algorithm could match both fouls and apps.

3Not all target applications necessarily use the three elements, e.g., in
text-to-SQL the evidence is not used by most systems.



Attribute, Contradictory:
“Carter LA has better shooting than Smith SF”
Structure: {t1 − t2} rows, {FG%, 3FG%} attributes
Match: true, false

Row, Uniform: “Carter has more appearances than Smith”
Structure: {t1 − t2, t3 − t2} rows, {apps} attribute
Match: false, false

Full, Contradictory: “Carter has better shooting than Smith”
Structure: {t1 − t2, t3 − t2} rows, {FG%, 3FG%} attributes
Match: true, false, true, true

Fig. 2. Example of different ambiguous text w.r.t. D.

by two attributes in this table, a reference to part of its key
(Player) makes it impossible to identify the right player. This
is a case of row ambiguity over two records, but a text could
be ambiguous to a number of rows up to the size of the table.

A text can be ambiguous in the two dimensions, both
over the attributes and the rows, and the number of possible
interpretations increases accordingly. We therefore classify the
structure of the ambiguity in attribute, row, and full. Depending
on the structure, a factual text can span multiple attributes and
multiple rows, e.g., s1 involves two rows and three attributes
(two ambiguous), while s2 involves one row and two attributes.

Ambiguity Match Type. We further distinguish between contra-
dictory and uniform texts. The first type has interpretations with
opposite factual match w.r.t. the table. Text s1 and s2 are both
contradictory: one interpretation is confirmed from the table and
one is refuted. For uniform text, all interpretations have equal
factual matching w.r.t. the table, i.e., alternative interpretations
are either all true or all false. For example, “Carter has more
appearances than Smith” is false for both Carter players in D.
We found the distinction between contradictory and uniform
text crucial in target applications as they give control over the
generation of the example corpora.

We summarize the different kinds of text in Figure 2. As
shown in its last example, text can be ambiguous in more than
one structure at the same time (full), but it cannot be at the
same time uniform and contradictory. The full ambiguity leads
to four interpretations for the last text. We list them pivoting
on attribute ambiguity first, i.e., considering FG% and t1 − t2,
FG% and t3 − t2, 3FG% and t1 − t2, 3FG% and t3 − t2.

In the following, we focus on examples in the form of
factual sentences, such as s1, but the generation of ambiguous
text equally applies to factual questions, such as s2.

B. Generating Evidence

An ambiguity query (or a-query) executed over table D
returns the evidence for the example, i.e., the set of cells that
define an ambiguity w.r.t. D. Every result tuple corresponds to
the evidence for one example. For instance, consider again q1
from Section I. It returns all the pairs of distinct players that,
depending on the attribute interpretation, lead to contradictory
sentences. In every a-query, we collect the evidence by listing
in the SELECT clause the distinct attributes in the query.

Attribute Ambiguity. A set of cells forms evidence for attribute
ambiguity if at least one value comparison involve two or more
ambiguous attributes. Consider again a-query q1 for attribute

ambiguity. The a-query is a self-join on the composite key (no
row ambiguity) and the selection conditions are defined on the
ambiguous attributes (e.g., the different FGs%). Assuming we
can obtain with profiling the name of the relation and the names
of the attributes in the keys, the main challenge is to identify
the ambiguous attributes (FG% and 3FG% in the example).

Row Ambiguity. A set of cells forms evidence for row
ambiguity if the selection conditions do not include any
complete set of key attributes. One a-query to produce row
ambiguity evidence exploits the key metadata, specifically the
presence of composite keys in the table. In this case, the query
selects evidence using only one of the attributes in its set.
A-query q2 produces evidence for ambiguous text such as s2.

q2: SELECT b1.Player, b1.Fouls
FROM D b1, D b2
WHERE b1.Player = b2.Player AND
b1.Fouls <> b2.Fouls

Query Properties. A-queries also set the match type of the
generated examples. In a-query q1, the last two clauses enforce
that the examples are contradictory, but it can be modified to
obtain uniform examples by changing one of their operators,
e.g., change ‘<’ to ‘>’ in the last clause over attribute
3FG%. By removing the last two clauses in q1, it returns
both contradictory and uniform sentences. The same reasoning
applies for row ambiguity. A-query q2 identifies contradictory
examples, but it returns uniform examples by changing the last
atom from ‘<>’ to ‘=’. As for q1, uniform and contradicting
examples are obtained by removing the last predicate.

As datasets can evolve over time, a-queries can be efficiently
re-run to create updated examples.

C. Generating Text From Data

Data-to-text is the task of generating natural language text
from structured data, specifically relational data in our case [11],
[15], [10]. Given a table and a set of table cells, the goal is
to produce a one-sentence description. These methods rely on
pre-trained language models, such as T5, which are fine tuned
on corpora of pairs of examples (text, evidence) for the data
to text generation. The examples consist of manually crafted
sentences that involve reasoning and comparisons among rows,
columns, or cells. For example, given the evidence for a table
about sports events, with the name of an athlete (“Becker”) in
the title, and four cells with year (“1995”), competition (“World
Championships”) and events (“100m”, “4x100 m relay”), the
corpus contains the sentence “Becker competed at the 1995
World Championships both individually and in the relay”.

The existing corpora for this task are large and manually
curated, but ambiguity examples are not provided in the existing
resources. However, we show that it is possible to extend
the original prompt to generate data ambiguous text from
the given evidence. For attribute ambiguity, it is crucial to
inform the prompt with a label that abstracts the two ambiguous
attributes. Using the ambiguity metadata in the existing data-
to-text models, we generate high-quality text for our examples.

D. Problem Definition

Given a triple (t, st, mt) with a relational table t, the
structure type st, and the match type mt, we want to obtain all



Fig. 3. Overview of the solution for ambiguity metadata discovery. In the
training phase, a model is fine-tuned for the prediction task. Given a table t,
the model generates the metadata that is then used to generate examples.

the example triples (query, evidence, text) that satisfy st and mt.
As our solution relies on the a-queries, to generate evidence,
and the data-to-text model, to obtain sentences/questions, the
challenge is how to obtain the metadata to support such tasks.
Specifically, given the table t, we must obtain the pairs of
attributes that raise ambiguity, for the evidence generation, and
their label, for the text generation.

III. PREDICTING AMBIGUITY METADATA

From our analysis of an online fact checking application’s
log, we estimate that 40% of the user submitted sentences
present attribute ambiguity. Information about keys, for queries
such as q2, is automatically obtained with any of the existing
data profiling methods [16]. We therefore focus our effort on the
discovery of ambiguity metadata, which is needed for evidence
and text generation for queries such as q1.

A. Ambiguity Metadata Discovery

We describe the overview of the solution (Figure 3) to
obtain the ambiguity metadata for a given relational table.

1 In the training phase, a transformer pre-trained model
is fine-tuned with examples of pairs of ambiguous attributes4.
As training data does not exist for this task, we use six
unsupervised, noisy annotator functions. Given a pair of
attributes for a table, the annotators produce a label for them if
they are ambiguous. For example, given the attributes ‘length’
and ‘width’, an annotator function should produce labels such
as ‘dimension’ or ‘magnitude’ that yield some ambiguity w.r.t.
the input attributes. We run these noisy annotators on a large
collection of tables, such as the WebTables corpus [17]. The
unsupervised functions are detailed in Section III-B.

2 The noisy output of the annotator functions is used as
training examples for a fine-tuning task on an encoder-decoder
language model [18]. This text-to-text architecture achieves
state-of-the-art results on several NLP tasks. We introduce the
novel task of predicting (1) if two attributes are ambiguous and
(2) the label for such ambiguity. We design two variants that
take into consideration different levels of access to the tables.
One considers as input the schema only, while the second
assumes that a sample of the data can be fed to the model. We
discuss this component in Section III-C.

4We focus on pair of attributes as we found it effective for example generation
in our target application. The method can be extended with a post-processing
step that analyzes pairs to compute larger sets, e.g., 1pt%, 2pt%, 3pt%.

TABLE II. EXAMPLES OF THE ALIASES FOR TWO INPUT ATTRIBUTES
FROM FIVE ANNOTATORS: SYNONYMS (SYN), RELATED TO (RELTO),
DERIVED (DER), SUBTYPES (ISA), AND WIKIPEDIA RESULTS (WIKI).

Input syn relTo der isA Wiki
silver medal silver runner up medal trophy medal

earnings wage profit earn giving income

3 Once the model has been trained, we use it at test time
with any unseen input table t. We test all the possible pairs of
non-key attributes in t and, if a label is predicted, we consider
the input attribute pair in question as ambiguous. We model
the output attribute pair and their label as metadata for t.

4 For every attribute pair, we instantiate the evidence
generation module and execute it over t. Every set of cells
from the evidence generation is passed to the text generation,
together with the label for the current attribute pair and the
table name.

5 Once the data evidence and the text are generated, they
form the examples that are data ambiguous w.r.t. table t.

B. Annotator Functions

Our goal is to create training data for a model that, given
two attributes alongside table schema (or table schema with
a data sample), either produces a label if both attributes are
ambiguous or abstains otherwise. Unfortunately, we cannot
count on a large amount of manually annotated examples. To
obtain such data in an unsupervised fashion, we start the process
with a set of basic annotator functions that exploit external
resources and heuristics to find candidates for ambiguity.

The first set of our weak supervision annotators [19] are
designed in a two step approach. First, an alias function auto-
matically finds possible aliases for a given word. For example,
a set of possible aliases for the word length are {measurement,
measure, range}. Then the alias for two candidate attributes are
compared and eventually selected. We design alias functions
that use different external datasets. Four alias functions use the
ConceptNet graph [20]. Given the input word (attribute label),
we look for its relationships in the graph that are alternative
representations of the input: a) syn synonyms; b) relTo related
words; c) der words it derived from; and d) isA subtypes. For
a second external resource, we use the Wikipedia API to search
top page titles as other possible aliases with the wiki function.
Table II shows examples of the generated aliases.

Once the aliases have been collected, given a pair of
attributes represented by their names, we say that two attributes
are ambiguous if the intersection of their aliases values is
non-empty. The ambiguous labels are the intersection. If the
intersection is empty, then the two pairs of attributes are
not ambiguous. An annotation function makes use of the
intersection for every external resource. If the attribute names
are not meaningful, the annotator functions output empty results,
e.g., attribute with name “A12” has empty results for all
annotator functions.

As a sixth function, we find the Longest Common Substring
(LCS) between two attribute names. Since the result may contain
sequences of characters without meaning, we filter the generated
word with a dictionary.



C. Fine-Tuning the Language Model

Pre-trained transformer based language models (LMs) such
as BERT [21], RoBERTa [22], XLNet [23] and T5 [18] have
shown to perform well in different NLP tasks such as question
answering and text classification. Typically, these models are
pre-trained on large text corpora such as articles from Wikipedia,
news articles, or Common Crawl. The model is pre-trained in
an unsupervised manner, for example by predicting a missing
token or the next-sentence in a paragraph. Unlike conventional
word embedding techniques such as Word2vec [24], GloVe [25],
or FastText [26], pre-trained transformer-based LMs learn better
the semantics of words and provide different representations
for the same word when utilized in different contexts. LMs can
then be further fine-tuned for supervised, specific tasks. Tuning
with task specific data is one of the advantages of pre-trained
LMs, thanks to the advances in transfer learning. Fine-tuning
is performed in a supervised manner by providing the LM
the labeled input. Fine-tuning allows to generate tasks with
new prompts while effectively exploiting transfer-learning for
natural language understanding.

We define two variants of the same fine-tuning task with
the objective of identifying a pair of ambiguous attributes and
their common label, in case such label exists. We consider a
sequence generation task where the goal is to learn a function
f : x → y, where x is a sequence of text containing the pair of
attributes and y is a sequence of text corresponding to the label
(where none means no ambiguity). The training data comes
from the annotator functions discussed above. The difference
between the two tasks lies in the prompt provided to the LM.

In the schema-task, function f takes a table schema Ts and
a pair of its attribute with labels Pa as input, the goal is to
predict a text label l in case a similarity exists between the
two attributes or None. Hence x = (Ts, Pa); y ∈ (l, None).

In the data-task, the table header and randomly selected
rows are concatenated with the attributes along with the
corresponding label. In this case, f ′ assumes as input a
sample of the table data cells Td, in addition to Ts and Pa.
We denote the schema and the data together as Tsd. Hence,
x′ = (Tsd, Pa); y ∈ (l, None). For this task, we discuss
alternative representations of the table cells, namely a row
serialization and a column serialization. Our decision of the two
alternatives is based on the typical serialization in the literature
to create neural representations for database tables [27], [28],
[29], [30], [31]. While other contextual features are sometimes
encoded, we keep our model simple and generic.

Figure 4 shows a sample of the prompt for the fine tuning
of the model based on the basket data in Table I. The special
tokens are used to help the model distinguish the start and the
end of a cell, of a row, and of a column depending on the
configuration.

IV. EXAMPLE GENERATION

We now describe how to go from a given table t, with its
key and ambiguity metadata, to the examples for the target
applications. Our default approach starts with the generation of
the data evidence, which is then used to create the corresponding
text. We also present an alternative approach, which enables
scalability but requires human defined prompts.

Schema-task prompt: concatenate Ts, Pa, l
Player | Team | FG% | 3FG% | fouls | apps, attr1: FG%
attr2: 3FG%, [y: shooting]
Data-task prompt (Row): concatenate Tsd, Pa, l
Player | Team | FG% | 3FG% | fouls | apps || Carter | LA |
56 |47 | 4 | 5 || Smith | SF | ... | 7 || Carter| ..., attr1: FG%
attr2: 3FG%, [y: shooting]
Data-task prompt (Column): concatenate Tsd, Pa, l
Player | Carter | Smith | Carter || Team | LA | SF | SF ||
FG%| 56 | 55 | 60 || 3FG% | ... || fouls | 4| ..., attr1: FG%
attr2: 3FG%, [y: field goal]

Fig. 4. Examples of input prompts for fine-tuning T5 model for the two
tasks. “|” represents a cell separator token and “||” represents row and column
separators tokens.

A. Evidence and Text Generation

Given a table t and its ambiguity metadata, we present
an algorithm to generate a-queries, obtain the evidence, and
finally generate the text for every example. The algorithm
assumes the availability of the auxiliary functions presented
in Section III. Moreover, for a table t, it gets its composite
keys with t.CK and the primary key with t.PK; we employ
profiling methods to obtain metadata about the keys [16], if
such information is not available in the input table. We assume
that the attributes in a CK are ordered by the number of
unique values for each attribute in an increasing order. Auxiliary
functions sub(ck) and last(ck), with ck ∈ t.CK, exploit this
assumption and return all the attributes except the last, and
the last attribute, respectively. If no primary key is present, we
add a synthetic one. Function t.AmbAttributes returns a triple
⟨amb1, amb2, label⟩, where amb1 and amb2 are the names
of the ambiguous attributes and label is the ambiguous word.
Finally, function genText generates sentences or questions in
natural language through a generator that takes as input the
evidence. Depending on the ambiguity type, it makes use of
the ambiguous label.

Algorithm 1 generates examples given a table t, the desired
match type mt, the operators to use ops, and a text generator
module gen. The match types are contradictory and uniform.
Possible comparison operators for numerical attributes are ‘<’,
‘>’, ‘=’ and ‘<>’, while only ‘=’ and ‘<>’ are for attributes
with categorical values. We model the text generator as an
input to stress that the solution can benefit of the improvements
coming from new data-to-text modules in the ML community.
Our default text generator is a T5 pre-trained model fine-tuned
on the ToTTo data-to-text dataset [10]. The algorithm can be
easily modified to take the ambiguity structure as input as well.

The process starts by iterating, for each operator and each
match type, over the three possible types of ambiguity (lines
2-9). We get the negation of op as nop, if the match type is
“uniform” then nop and op should be equal (lines 5-6). It then
calls the functions that return the examples (lines 7-9) and the
union of those are returned (line 10).

For every type of ambiguity, a function gets as input the
table, the match type and the operator (lines 11, 18, 26).
Depending on the ambiguity type, different auxiliary functions
are used. For attribute ambiguity (lines 11-17), the pairs of
ambiguous attributes and the label are obtained (line 13). The



Algorithm 1: Generate Examples
Input: table t; match type mts; operators ops; text

generator gen;
Output: Set of (query, evidence, text) examples exs

1 exs = {}
2 foreach operator op ∈ ops do
3 foreach match type mt ∈ mts do
4 nop = neg(op)
5 if mt == ’uniform’ then
6 nop = op
7 exs += attrAmb(t, op, nop)
8 exs += rowAmb(t, op, nop)
9 exs += fullAmb(t, op, nop)

10 return exs //return examples
11 Function attrAmb(t, op, nop):
12 exs = {}; pk = t.pk
13 attrAmb = t.ambAttributes //return pairs with label
14 foreach attr1, attr2, label ∈ attrAmb do
15 q, evi = attrData(t, pk, attr1, attr2, op, nop)
16 exs += (q, evi, genText(evi, label, gen))

17 return exs

18 Function rowAmb(t, op, nop):
19 exs = {}; cks = t.ck; pk = t.pk
20 foreach ck ∈ cks do
21 attrNoCKs = t.attr - ck
22 foreach attr ∈ attrNoCKs do
23 q, evi = rowData(t, ck, attr, op, nop)
24 exs += (q, evi, genText(evi, null, gen))

25 return exs

26 Function fullAmb(t, op, nop):
27 exs = {}; cks = t.ck; pk = t.pk
28 attrAmb = t.ambAttributes
29 foreach attr1, attr2, label ∈ attrAmb do
30 foreach ck ∈ cks do
31 if attr1, attr2 ̸∈ ck then
32 q, evi = fullData(t, ck, attr1, attr2, op, nop)
33 exs += (q, evi, genText(evi, label, gen))

34 return exs

35 Function attrData(t, pk, a1, a2, op, nop):
36 q = “SELECT t1.pk, t2.pk, t1.a1, t2.a2 FROM t t1, t t2

WHERE t1.a1 op t2.a1 ∧ t1.a2 nop t2.a2”
37 return q, q(t)

38 Function rowData(t, ck, attr, op, nop):
39 sub = sub(ck); last = last(ck)
40 q = “SELECT t1.attr, t2.attr, t3.attr, t1.ckAtts, t2.ckAtts,

t3.ckAtts FROM t t1, t t2, t t3 WHERE t1.sub = t2.sub ∧
t1.last ̸= t2.last ∧ t1.attr op t3.attr ∧ t2.attr nop t3.attr”

41 return q, q(t)

42 Function fullData(t, ck, a1, a2, op, nop, mt):
43 sub = sub(ck); last = last(ck); bt=t2
44 if mt == ‘contradicting’ then
45 bt = t1
46 q = “SELECT t1.a1, t2.a1, t3.a1, t1.a2, t2.a2, t3.a2,

t1.ckAtts, t2.ckAtts, t3.ckAtts FROM t t1, t t2, t t3
WHERE t1.sub=t2.sub ∧ t1.last̸=t2.last ∧ t1.a1 op t2.a1
∧ t1.a2 nop t2.a2 ∧ bt.a1 op b3.a1 ∧ bt.a2 nop b2.a2”

47 return q, q(t)

former is used in the evidence generation (line 15) and the
latter in the text generation (line 16). Similarly, for the row and
the full ambiguity, the required metadata is collected and the

Data evidence and label:
t1.pk = (Player:Carter; Team:LA), t2.pk = (Player:Smith,
Team:SF), t1.a1 = FG%:56, t2.a1 = FG%:55, t1.a2 =
3FG%:47, t2.a2 = 3FG%:50, label = “shooting”
Text generator input: (linearized data)
(1) Player:Carter — Team:LA — shooting:56
. . .
(4) Player:Smith — Team:SF — shooting:50

Output text:
(1) “Carter from LA has a shooting of 56”
. . .
(4) “Smith in SF team had 50 as shooting accuracy”

Fig. 5. Examples of the input prompt for the text generation task. “—” is a
cell separator token. “:” is the separator between cell value and attribute name.

respective functions to collect the evidence are executed (lines
23 and 32, respectively). We only consider pairs of ambiguous
attributes with the same type (numerical or categorical).

The evidence generation is handled with one function for
ambiguity type (lines 35, 38, 42). For this task, we rely on
queries that only need to be instantiated for the schema at
hand, following the sketch-based slot-filling approach [3]. Every
variable is filled by a parameter passed to the function, e.g.,
for the attribute ambiguity, the pair of ambiguous attributes
are passed as a1 and a2 from the previous function (lines
35-36). For the sake of the space, we use ckAtts and sub as
placeholders in queries for all the attributes in a composite
key ck or the attributes returned by sub(ck). (lines 40 and 46).
Once generated, the query is executed over t and passed as
results (lines 37, 41 and 47).

After the data evidence has been collected, this is processed
for the text generation to produce the complete examples.
Evidence is processed together with the label for the cases
involving attribute ambiguity (lines 16 and 33). In practice,
we fine-tune a T5 model using a simple text linearization of
the cells [32], but instead of using the attribute names of the
ambiguous cells, we use their respective labels. An example of
text generation for attribute ambiguity is shown in Figure 5.

Examples. To show the role of the operators, consider query
q2 and ‘>’ instead of ‘<>’. The algorithm generates a new
a-query q2′ that creates evidence for text such as ‘Carter has
more than 3 fouls’, we report in violet the schema-specific
parts of the query (lines 22 and 40).

q2’: SELECT b1.Player, b1.Fouls, b2.Fouls
FROM D b1, D b2
WHERE b1.Player=b2.Player AND

b1.Fouls > b2.Fouls

To show the generality of the approach, consider a different
table about COVID-19 data with schema Covid (country, date,
vaccinated, positive) and again row ambiguity with operator ‘=’.
An ambiguous sentence for this table is “Italy has 45’900’000
persons vaccinated.”, as country and date form a composite
key. The resulting a-query is

q2’’: SELECT b1.Country, b1.Vaccinated,
b2.Vaccinated

FROM Covid b1, Covid b2
WHERE b1.Country = b2.Country AND

b1.Vaccinated <> b2.Vaccinated



B. Ambiguity Templates For Fast Generation

As the data-to-text operation is not very scalable, we also
present an alternative approach to the example generation. The
overall pipeline is the same with the important difference that
the query, obtained in the evidence generation, creates also the
text directly in the Select clause. To generate the example with
data and text, we now show how to consume all ambiguity
metadata in the evidence generation step, thus relying only
on query execution without external text generator modules.
For this goal, we use query templates, where the intuition
is to simplify the general task of full-fledged generation by
predicting only certain parts of the a-query.

Definition. Let Q : (P ) denote a parameterized query template,
where P are the parameters, with dimensionality equal to
the number of parameters in Q, and R is the set of possible
queries instantiated from Q over the given database D. A data
ambiguous text is the non-empty query result of query r ∈ R
when executed over D.

Parameters. The parameters identify the elements of the query
and can be assigned to (i) relation and attribute names, (ii) a
set of textual labels, and (iii) comparison operators.

Query Properties. Parameters (i) and keys are required in
all templates, while the requirements of labels and operations
depends on the template and on the input match type. Indeed,
templates can be instantiated in different ways to satisfy the
different properties (attribute/row/full, contradicting/uniform)
in the generated examples.

Templates Types. The three kinds of ambiguity have been
identified from the analysis of an online fact checking appli-
cation with a log of 20K sentences submitted by users. The
three templates cover the vast majority of ambiguity claims that
have been submitted by users and have proven to be effective
in other target applications. More templates can be crafted
to model complex sentences and the limit is SQL expressive
power, as we discuss at the end of this section.

Attribute Ambiguity. Consider the following example of a
template for contradictory attribute ambiguity; parameters are
highlighted in italic.

Q1: SELECT CONCAT(b1.PK, print(Op,label1),
b2.PK)

FROM relation b1, relation b2
WHERE b1.PK <> b2.PK AND

b1.A1 Op b2.A1 AND
b1.A2 neg(Op) b2.A2

To instantiate Q1, we need the name of the relation, attribute
labels for the primary key PK, the names of the ambiguous
attributes A1 and A2 (e.g., the different FGs%), the word(s)
that describe the two attributes label1 (e.g., “shooting”), and
the numerical operator Op (e.g., ‘>’).

Function neg(operator) returns the opposite operator and
function print(operator,label) returns a string that combines
the two according to the operator value, e.g., “has higher
shooting than”. Different print functions can be defined, for
different sentences. Ambiguity template Q1 leads to sentences
in the form subject-verb-object: some subject followed by verb
(eventually with label), followed by some object or value. This
form changes according to the template’s Select clause.

Template Q1 has 6 parameters, which are obtained from
the analysis of the input relation. We obtain with standard
profiling the name of the relation, the names of the attributes
in the primary key, and the type information for all attributes
(to infer the allowed operators). The remaining 3 parameters
are obtained by our metadata discovery: “shooting” is assigned
to label1, while FG% and 3FG% to A1 and A2, respectively.
Once all the parameters are identified, we obtain a-query q1.

q1: SELECT CONCAT(b1.Player, b1.Team,
‘has higher shooting than’,
b2.Player, b2.Team)

FROM D b1, D b2
WHERE b1.Player <> b2.Player AND

b1.Team <> b2.Team AND
b1.FG%>b2.FG% AND b1.3FG%<b2.3FG%

In Q1, the records are precisely identified by the primary
key (no row ambiguity), while the label spans two attributes
(attribute ambiguity). The last two conditions in the template
enforce that output sentences are contradictory and are modified
according to the problem input as detailed in Algorithm 1.

Row Ambiguity. The row ambiguity template exploits the
presence of composite keys. The template selects rows using
only one of the attributes in the set composing the key.

Q2:SELECT CONCAT(b1.sub(CK), print(Op),
b1.A, A)

FROM relation b1, relation b2
WHERE b1.sub(CK) = b2.sub(CK) AND

b1.A neg(Op) b2.A

Template Q2 leads to a-query q2 that produces data ambiguous
sentences such as ‘Carter has 3 fouls’. In terms of parameters,
Q2 does not need a label. The print function automatically
derives the text from Op alone, e.g., “has” is assigned to ‘=’
and “has more than” to ‘>’. As the relation name is given, the
template works for any non key numerical attribute (e.g., Fouls)
and any operator. As for Q1, a modification to its WHERE clause
changes its output from contradictory to uniform.

Full Ambiguity. The third kind of templates returns examples
that are both attribute and row ambiguous.

Q3: SELECT CONCAT(b1.sub(CK),
print(O1,label1), b2.sub(CK))

FROM relation b1, relation b2
WHERE b1.sub(CK) = b2.sub(CK)

Template Q3 returns both uniform and contradicting examples.

Templates vs Text Generation. The two approaches have
different strengths and limitations. The text generation approach
is our default choice as it is fully automatic, i.e., it does not
require users to write templates. Moreover, the text generation
approach leads to variety in the generated text, while the text
generated by the templates is uniform, unless multiple Select
clauses are manually crafted.

On the other hand, templates are much more scalable,
with millions of examples generated in seconds. While this
is rarely needed in target applications, it immediately enables
the generation of large corpora. Another important aspect is
that templates are readily extensible. Templates Q2 and Q3 are



instantiated in the presence of composite keys. However, we can
generate row ambiguity sentences by using a forth template that
uses the attributes involved in functional dependencies (FDs).
There are also attribute ambiguous sentences, such as “SF has
the worst scorer”, that require an a-query using an aggregate
function. The intrinsic limit of the template approach is the
expressive power of SQL. For the sake of space, we report
FD and aggregate templates in the extended version of this
paper, however those are just variants of the three templates
above [33]. The extended version also reports the algorithm to
generate a-queries given a template and a table.

V. ATTRIBUTE AMBIGUITY DATASET

To evaluate the performance of the fine-tuned models on
unseen tables, we designed two annotation tasks whose goal is
to manually identify whether a given label is similar to one of
the table attributes. For example, given the word “shooting”,
we want to know what are the attributes in D (Figure I) that
are similar in meaning. Two attributes that share a word are
marked as ambiguous and that word is a label for such pair.

Tables. We selected 13 tables from different sources. Four
datasets from the popular UCI repository [34] (Abalone, Adults,
Iris and Mushroom), two versions of a Basket dataset, used in
NLP text generation challenges, similar to D (one version with
full name attributes and another with acronyms) [35], and 7
relational tables with headers from the WebTables corpus [17].

We provided the initial labels by filtering those from the
automatic annotators (Section III-B) and by hand crafting more
options. We also allowed participants to suggest other possible
ambiguous labels for the schema.

Tasks: Given a table, our goal was to annotate all the
ambiguities in the columns when looking at different parts
of the data. We therefore asked the participants to annotate
ambiguities for two tasks where (i) the schema or (ii) the
schema and the data were provided.

Schema only. Given a table schema, we asked to annotate
ambiguous candidate labels w.r.t. the attribute by looking
only at the schema of the table. Participants wrote 1 if they
were confident that the label has the same meaning of the
corresponding attribute (e.g., a clear synonym or hypernym),
0.5 for uncertain cases, and 0 for not related.

Schema and Data. Given the schema and a sample of the
data, we asked to match the labels and the attributes with
the same logic of the previous task. Given that participants
also have access to data in this task, it is expected that some
of the attributes that are ambiguous in task 1 are no longer
ambiguous when both schema and data are available, or vice
versa. For example, it is clear that attribute “workclass” can
be matched to label “situation” after being able to see values
such as “Self-emp-inc” (incorporated self employment).

Example. Consider the UCI Adult dataset and a subset of
its schema with the following attributes: age, workclass, sex,
capital-gain, capital-loss, hours-per-week, native-country, and
salary. The label “gender” will have a score of 1 with the
“sex” attribute. The label “income” will have a score of 1 with
“capital-gain” and “salary”, but one may mark “capital-loss” as
an uncertain match.

Annotation Process. Ten participants were selected among
graduate students in a CS department. All participants have
at least C2 English language proficiency (Common European
Framework of Reference). Each combination table, task was
assigned to three participants.

From Annotations to Ground Truth. For each attribute, we
obtain a list of labels with non-zero score from the annotators.
We add a label to the ground truth if it appears at least 2 times
with score 1 in the list for an attribute. In case of unclear
decisions, such as scores ⟨0, 0.5, 1⟩ for a label, we used an
additional participant to solve the uncertainty.

We stated that two attributes are ambiguous if they share
the same label. We observe that the same pair of attributes
shares more than one label. For example, “occupation” and
“workclass” attributes are ambiguous with possible labels
{“profession”, “status”, “position”, “work”, “occupation”, “em-
ployment”, “job”}. In this process, we model the attribute
ambiguity as a binary test, i.e., pairs with a majority of 0.5
scores are considered as ambiguous. We leave the study of
different degrees of ambiguity to future work.

The final test set contains 1321 pairs of attributes. Among
them, 252 pairs are marked as ambiguous, with an average of
1.8 labels.

Quality Assurance. We measured the agreement across partic-
ipants with Krippendorff’s Alpha-Reliability coefficient [36]
and obtained 0.452 and 0.305 for the schema without and with
data, respectively. As a reference, 0.6 is a reasonable coefficient
for the task of labeling sentiments in English tweets [37]. We
explain the low scores for our tasks with two arguments. First,
our task of judging ambiguous labels has higher complexity
compared to the task of labeling sentiment in short texts.
Moreover, the low scores reflect the challenging nature of
the problem of setting ambiguity. Every participant assesses
ambiguity differently, and it may be debatable to have objective
decisions across groups. A low score represents the cases where
not all participants agree on a label, which is a realistic situation
in many real world settings.

VI. EXPERIMENTS

We organize our evaluation around three main questions.
First, can our system automatically generate ambiguity metadata
of good quality w.r.t. the manual annotation of the users?
Second, are a-queries an effective solution for the automatic
generation of large corpora? Third, can the generated sentences
with row and attribute ambiguity significantly increase the
quality of target applications?

Settings. For our experiment, we use as a pre-trained model
the Text-to-Text Transfer Transformer (or T5) [18] pre-trained
on the “Colossal Clean Crawled Corpus” [18]. T5 has state-of-
the-art results on multiple NLP tasks including text generation
which is the task we use to model the ambiguity metadata
prediction. Experiments have been executed on a MacBook
Pro with an Intel i9 CPU@2.9Ghz and 32 GB of memory. We
used PostgresSQL 14.1 as the underlying DBMS.

A. Quality of Ambiguity Metadata

We now analyze in detail the solution proposed to identify
attributes with ambiguities and their corresponding labels



TABLE III. RESULTS IN % FOR ALL METHODS ON THE TEST DATASET.
QUALITY OF PREDICTING AMBIGUITY AND A LABEL FOR A GIVEN PAIR OF

ATTRIBUTES. OUR METHODS REPORTED AT THE BOTTOM.

Ambiguity Labeling

P R F1 P R F1
ULABEL 89.7 10.3 18.5 84.2 6.4 6.35
SLABEL 85.6 86.1 85.9 74.1 41.5 53.3

SCHEMA 88.8 84.9 86.8 87.8 77.4 82.3
DATA 80.4 91.3 85.5 79.2 84.5 81.8

(Section III). In the following, we refer to our methods described
in Section III-C as SCHEMA and DATA.

Datasets. For the training, we take a sample of 500k tables
from the Web Tables corpus [17]. We use relational tables with
a header as first row and horizontal orientation. For the test, we
use the annotated corpus described in Section V. For queries
over ConceptNet and Wikipedia, we use their online APIs.

Metrics. We do not report accuracy, defined as the fraction
of correct predictions. As the number of pairs of attributes
defined as ambiguous is much smaller than the number of
attribute combinations, the label distribution is skewed (output
is dominated by true negative). We therefore report precision
(P), recall (R), and their combination in the f-measure (F1) for
the prediction of the models, where a prediction for a label is
a true positive if such label is in the ground truth.

Baselines. The annotator functions introduced in Section III-B
perform very poorly when naively applied to the test dataset.
We therefore introduce two baseline methods. The first, is an
unsupervised labeling heuristic function, ULABEL, that uses
both ConceptNet and Wikipedia to find possible common words
for the attributes with intersection. If the result is still empty,
then it returns the output of the LCS function. The second
is a supervised labeling solution (SLABEL), that also makes
use of the pre-trained LM. This fine tuning task takes a single
attribute as input and produces a list of possible labels. It starts
with the examples from the same annotators, i.e., synonyms of
the attribute, ConceptNet labels, Wikipedia page titles, and the
least common sub-string between the attribute and every other
attribute in the table. The resulting list of possible labels is then
used as training data. For testing, each attribute is submitted to
the model and the pairs of attribute with non-empty intersection
of their outputs are added to the results.

For the evaluation, we start by comparing the different
methods. We then show how different parameters have an
impact on our solution. All results are reported for the binary
task of stating if two attributes are ambiguous (Ambiguity)
and the task of predicting the correct label (Labeling).

Results w.r.t. the baselines. Table III shows the results for
the four methods on the test corpus. We observe that the
unsupervised baselines obtains good precision in both tasks, but
very low recall. The other methods perform all well in terms of
detecting ambiguous pairs (Ambiguity), with SLABEL close to
our methods in terms of f-measure thanks to very high precision
and recall. However, in the task of predicting the label, both our
models clearly outperform both baselines with an f-measure
of 82%, while SLABEL achieves only 53%. Interestingly, both
models not using data (SLABEL and SCHEMA) achieve high
precision, while the model that uses schema and data (DATA)

achieves much higher recall. This is because the comparison
of data values may lead to ambiguities that are not captured by
looking at attribute label only. However, this may be misleading
in some cases, such as those with numerical values with similar
domains but different value distributions. For example, for
attributes FG PCT and FG3M, the human annotators agree on
‘FG’ as ambiguous label, but DATA returns none as they have
different value distributions.

For DATA, we found experimentally that the best quality
results are achieved with the maximum number of rows to
consider in the Tsd equals to five and that the row representation
outperforms the column representation.
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Fig. 6. Impact of the number of training step on prediction quality.

Results w.r.t. the number of training steps. Figure 6 shows
that both methods improve the quality of the results with an
increasing number of training steps. Results nearly converge
after 3k steps. Training SCHEMA and DATA models requires
1.5 hours.
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Fig. 7. Impact of the number of T5 parameters on prediction quality.

Results w.r.t. the number of T5 parameters (model size).
Figure 7 reports the impact of the number of training parameter
on the quality of the results. Increasing the size of the model
parameters (sizes: Small < Base < Large < 3B) increases
the quality of the predictions in the final model. LMs with a
small number of parameters after 2000 training steps start to
converge to low-quality results. The number of parameters also
influences the inference time. The biggest model (3B) takes on
average two seconds per prediction on our machine. We leave
the exploration of recent methods for reducing time complexity
in transformers to future work [38]

Results w.r.t. number of tables in the training table corpus.
We experimented with a varying number of tables sampled
from the Web Tables corpus. We executed annotators on sample
of increasing size, from 5k to 500k tables. Experiments show
that the quality marginally increases with larger datasets, but,
even with a small sample, the annotators gather enough training
data to train the model, both for SCHEMA and for DATA.



TABLE IV. NUMBER OF GENERATED EXAMPLES, BY TEXT
GENERATION AND BY TEMPLATES, WITH ALL AMBIGUITY TYPES.

Dataset Text Gen. Templates
# # # time # # time
rows atts exs (h) qrys exs (sec)

Iris [34] 150 6 1.5k 1.3 18 46.8k 0.2
Abalone [34] 1k 10 42k 11.6 54 1.6M 22.3
Adult [34] 1k 15 36k 10.1 13 1.7M 30.3
Basket [35] 538 27 54k 45 188 1.8M 31.7
BasketAttribute 538 27 29k 24.3 65 1.7M 31.5
BasketRow 538 27 8.1k 6.8 59 27.2k 0.3
BasketFull 538 27 17k 14.2 63 7.3k 0.2
Mushroom [34] 100 24 9.4k 7.8 46 115k 0.5
Mushroom [34] 250 24 23k 19.5 46 726k 5.4
Mushroom [34] 500 24 45k 48.3 64 3.0M 30.2
Mushroom [34] 1k 24 83k 69.2 64 12.6M 175.3

B. Example Generation

We start by showing how both text generation and templates
create a large number of ambiguous examples with our solution
(Section IV). We report in Table IV the number of examples
and execution time for the two approaches (plus the number of
a-queries for templates). The table details the results for five
tables in our corpus with different settings. Attribute ambiguities
are obtained with SCHEMA in its default configuration (500k
web tables used for training). PYTHIA in this experiment is set
to produce only contradicting examples.

We observe that a large number of sentences are generated
even for very small datasets, such as 1.5k and 47k for only 150
rows in Iris with text generation and templates, respectively.
Similarly, we report 36k and1.7M for 1k rows sampled from
the Adult dataset. We show with the Mushroom dataset that,
by increasing the number of tuples in the sample from 100 to
1k, the number of output sentences increases at least by one
order of magnitude. For the Basket dataset, we also report a
breakdown of the impact of the different structure ambiguity
type (Attribute, Row, Full) by running the same experiment
over a fixed sample. The attribute ambiguity leads to more
sentences than the other ambiguities in orders of magnitude.
This supports our effort in predicting ambiguous attributes and
their label to support this ambiguity type. We also remark that
all output examples derived from templates are generated from
the predefined three templates (Q1, Q2, Q3) with no human
intervention or annotation.

The different execution times between the text generation
and templates strategies are due to the use of the text generator
in the first case. Templates rely only on standard SQL queries
to produce both evidence and text, while the text generation
approach requires the execution of a large language model for
inference, which takes significant time and leads to a smaller
number of generated examples. Despite this drawback, in the
following we report experiments with examples generated with
our default approach, the text generation, as it is fully automatic.
We show next that the target applications can start benefiting
even with a small number of ambiguity examples.

C. Impact on Target Applications

In this section, we show the benefits of automatically
generating training corpora with ambiguous annotated sentences
in two fact-checking systems, Feverous and CoronaCheck, and

in a Natural Language to SQL tool. We use the ambiguity
metadata and the examples automatically generated by PYTHIA
without any human intervention.

Feverous. Computational fact checking aims at verifying if a
given claim holds w.r.t. some reference information; we focus
on the check done over relational tables. Feverous [4] is a
dataset for this task containing 87k textual claims. Every claim
is annotated with three possible labels by human annotators.
A claim is labelled as Support or Refute, according to the
evidence in the data or NEI for not enough evidence from
the data. This experiment is designed to show that, by using
PYTHIA’s examples, we can improve the results for each class
without changing the proposed baseline models5.

TABLE V. RESULTS ON Ftest CORPUS WITH FEVEROUS SYSTEM.

CLASS P R F1

NEI 0.50 0.34 0.40
Feverous (baseline) Supports 0.68 0.78 0.72

Refutes 0.72 0.78 0.75

NEI 0.62 0.59 0.60
Feverous on Ft + Pt Supports 0.77 0.73 0.75

Refutes 0.80 0.85 0.82

Since there is no golden standard for the test set, we used
the provided evaluation dataset. We sampled the evaluation
dataset in two disjoint datasets. A training dataset Ft consists
of 1.1k examples (223 NEIs, 388 Supports, 489 Refutes), and
a test dataset Ftest consists of 276 examples (57 NEIs, 98
Supports, 121 Refutes). To have a fair comparison, we fine-
tune the Feverous baseline model with Ft for 5 epochs and
measure P, R and F1 for each class.

Results are reported in Table V. The NEI class is the one
with lowest accuracy in the original model. This is due to
the challenges of the class itself, since the evidence cells in
many cases do not contain any informative value or contain
partial data without enough evidence. Our goal is to show that
PYTHIA examples can help in increasing the quality of the
NEI classification. The intuition is that ambiguous examples
are indeed NEI examples, and the system should improve in
recognizing them with PYTHIA’s output. Using the datasets
from Table IV, we generate a set of new ambiguous examples
(sentences, evidence cells) Pt. We use the original Ft and the
new Pt to fine-tune the baseline with 5 epochs. We tested
different sizes of Pt but the best results are obtained with 1240
examples (around 50% of the training data is ambiguous), as
with more examples the model starts to overfit.

Table V shows that the PYTHIA’s examples increase the F1
for all classes, and up to 60% (from 40%) for the challenging
NEI class. In a previous experiment [12], we also show that
the Feverous model can be extended to learn how to classify
claims with data ambiguities. In that experiment, we fine-tune
the baseline with PYTHIA generated data to let the model
learn a new label. We remark the different test sets. In this
experiment, we show that we can improve the results of the
original Feverous data, while in the previous one we use only
PYTHIA generated data to “teach” a new label.

CoronaCheck. As a second fact checking application, we show

5https://github.com/Raldir/FEVEROUS/



the verification of statistical claims related to COVID-19 [6]. We
use PYTHIA’s examples to improve an existing system (https:
//coronacheck.eurecom.fr). The original system is not trained
to handle attribute ambiguity. Also, row ambiguity causes the
original system to hallucinate in some cases, with lower classifi-
cation accuracy for ambiguous claims. One of the tables used for
verifying the statistical claims includes the following attributes:
country, date, total confirmed, new confirmed, total recovered,
active cases total fatality rate, total mortality rate. From the
analysis of the log of the claims submitted by users, an
example of common attribute ambiguity is between attributes
total fatality rate and total mortality rate for sentences con-
taining “death rate”. Another example of attribute ambiguity is
between total confirmed and new confirmed when sentences
only mention “cases”. Examples of row ambiguity consist of
claims that refer to two records with same location but different
timestamps, such as “In France, 10k confirmed cases have been
reported” (today, yesterday or last week?), or when location
is not present in the claim, such as “35000 new covid cases
today” (US, China, or World?).

TABLE VI. IMPACT OF Pt DATA ON CORONACHECK.

Users’ Accuracy Accuracy
Ambiguity Claims original original+PYTHIA

Row 40 32/40 34/40
Attribute 8 0/8 7/8

Full 40 0/40 27/40
None 12 7/12 7/12

Total 100 39/100 75/100

PYTHIA enables us to improve CoronaCheck by automati-
cally generating ambiguity aware training data. We generate,
with the text generator module and with templates, a new corpus
of examples that include all ambiguity structure types. The
new corpus is then merged with the not ambiguous examples
in a 50/50 ratio and used to train new classifiers that allow
the extension of the original system to recognize ambiguity.
For this experiment, we collect a sample of 100 claims from
the log of CoronaCheck as they have been submitted by users.
As shown in Table VI, 88% include at least a row or an
attribute ambiguity. Over all claims: 40% have exclusively row
ambiguity, 8% have exclusively attribute ambiguity, and 40%
have both attribute and row ambiguities, i.e., full ambiguity. The
original CoronaCheck fails to classify claims with ambiguity.
However, training the system with the output of PYTHIA leads
to significant enhancements in accurately handling all cases
without a drop in quality in the claims without ambiguity.

We perform an error analysis by checking the examples
where both systems fail for the ambiguity types in Table VI. For
row ambiguity, it is either due to the unsupported nature of the
claim (“An exponential increase in coronavirus infections has
been recorded in France”, more complex aggregation required)
or to the misclassification in the system classifiers, such as
the attribute one (“in Northern Ireland, taking cumulative total
to 7,294.”, where it predicts recovered instead of confirmed).
This is also the case for the attribute ambiguity, for “Were
there 6000 cases in Switzerland today?” the system predicts to
consider exclusively total confirmed instead of new confirmed
and active cases, and for the full ambiguity, e.g., for “In
Lebanon with a population of <5M, 8300 #COVID19 cases.”,
it ignores verifying active cases. For the claims that are not

TABLE VII. TEXT-TO-SQL RESULTS ON TEST CORPUS

Train Size P R F1 ACC. BLEU

Baseline WikiSQL - - - 0.54 0.49

FTPythia +200 0.62 0.92 0.74 0.71 20.47
FTPythia +481 0.75 0.78 0.76 0.78 28.19
FTPythia +2207 0.82 0.88 0.85 0.86 38.70
FTPythia +6227 0.96 0.73 0.83 0.87 26.50
FTPythia +10219 0.88 0.94 0.91 0.92 32.13

ambiguous, there are also errors due to the presence of complex
operations, such as aggregation. Such cases represent 5% of
the annotated claims. As examples: “The maximum number
of daily new confirmed cases in Italy during July 2021 was
420,123.” and “January 17, 2022: After the issue of the pass
vaccinal law, a record of new vaccination was observed in
France since the beginning of 2022.”.

To see the benefit of using PYTHIA compared to the original
system, consider the example with “June 2021: France has
111,244 Covid-19 deaths.”. The claim is True for total deaths
and False for new deaths. However, the original system returns
a false decision by checking against new deaths only. With
PYTHIA’s training data, the predictions of the checking system
are True for total deaths and False otherwise.

Text-to-SQL. WikiSQL [39] is a crowd-sourced dataset contain-
ing natural language questions and their relative SQL queries
over Wikipedia tables. We use a T5 base pre-trained model on
WiKiSQL6 on PYTHIA’s generated dataset.

The generated dataset is split between queries with and
without ambiguities and we used both text generation and
template based approach (over our tables in Section V) to scale
up with the training size.

For the training set, we use tables Adults, Soccer, Laptop,
and Hearth Diseases (Kaggle). For the test set, we use tables
Abalone, Iris, Wine Quality (Kaggle) and the two versions of
Basket. Since a single query could generate a different number
of examples, and to keep the generated datasets with high
variance, we use only a single question for each query.

We test the ability of the model to generate a query, if there
is no ambiguity in the input NL question, or to return none
otherwise. To evaluate the results, we measure the accuracy
(ACC.) and the BLEU scores of the generated queries w.r.t.
the expected query in the ground truth. BLEU measures the
number of words in the generated SQL query that appears in
the labelled SQL query. Higher values of the metric indicate
better quality of the generated SQL query.

We compare two models: the pre-trained T5 as baseline and
a fine-tuned version of the same pre-trained model on PYTHIA
generated examples (FTPythia). For the fine-tuned models, we
also report the precision (P), recall (R), and f-measure (F1) in
detecting the ambiguity. To evaluate the impact of the number
of new examples, we report the performances when increasing
the size of random samples from the generated training set.

Results are reported in Table VII. The best results are
reported in bold. The base model fails on all the ambiguous
examples, with a very low BLEU score, and the best results

6https://huggingface.co/mrm8488/t5-base-finetuned-wikiSQL



are always obtained by the fine-tuned model. Fine-tuning the
model with more training data increases the accuracy and the
F1 metric. We obtain the best results fine-tuning the T5 with
10.2k examples. Also, the BLEU score benefits from more
training size with a peak at 2.2k examples.

TABLE VIII. QUALITY RESULTS OF THE END-TO-END EXPERIMENT

Dataset Ambiguity Attr. Ambiguity
P R F1 P R F1

Abalone 1.000 0.807 0.893 1.000 0.807 0.893
Adults 0.923 0.889 0,906 0.885 0.885 0.885
Basket Acronyms 0.750 0.813 0.780 0.731 0.809 0.768
Basket 1.000 0.619 0.765 1.000 0.619 0.765
Heart Diseases 0.875 0.656 0.750 0.833 0.645 0.727
Iris 1.000 0.963 0.981 0.981 0.962 0.971
Superstore 0.950 0.679 0.792 0.900 0.667 0.766
Wine Quality 0.950 0.792 0.864 0.950 0.792 0.864
Laptop 0.923 0.667 0.774 0.846 0.647 0.733
Mushroom 1.000 0.905 0.950 1.000 0.905 0.950
Soccer 0.762 0.800 0.780 0.714 0.789 0.750

AVG 0.921 0.781 0.840 0.895 0.775 0.825

D. End-To-End User Evaluation

We conduct a second user study to evaluate the text
generated by PYTHIA over 11 datasets. We generate at least
four ambiguous sentences (half with text generation and half
with templates) and two not ambiguous ones for each table.
We ask eleven participants to manually annotate the generated
text in two ways. First, ambiguity detection: state if the text is
ambiguous w.r.t. the associated schema and a sample of data.
Second, attribute ambiguity detection: if the text is ambiguous,
mark the ambiguous attributes. We instruct the participants
with data ambiguity definitions and examples. We give each
participant three datasets to annotate, so that every dataset has
three annotations. Then, for every annotator and dataset, we
measure P, R and F1 for both ambiguity and attribute ambiguity
detection. For ambiguity, we count a match if the annotation
agrees with the binary label for the text in the ground truth.
For the attribute ambiguity, we count a match if at least one
of the annotated attributes is in the ground truth of the text.
Results per dataset (averaged over three participants) are shown
in Table VIII. We observe an average F1 (over all datasets) of
84% and 82.5% for ambiguity and attribute ambiguity detection,
respectively. Such results show that (1) humans recognize text
with and without data ambiguity, (2) they also recognize the
right attributes when there is ambiguity. As expected, the second
action has lower F1 as it is an harder task.

VII. RELATED WORK

A popular solution to extend training text data is augmen-
tation [40], [41]. However, these methods create variations
of existing examples, e.g., replace a name in the text with a
synonym, and do not consider the problem of creating examples
with data ambiguity.

Controllable NL generation approaches steer neural models
to generate text with desired attributes by training the decoding
algorithm [42], training a conditioned language model [43], or
fine-tuning with reinforcement learning [44]. However, such
approaches assume the ability to quantitatively measure the

desired property (such as positive sentiment) or metric (such
as BLEU), which is not the case for ambiguity.

Text generation to get training data for fact checking is also
related [45], but does not cover ambiguities in claims. In the
context of fact checking, there are studies on how to modify a
given query, representing a textual claim [7]. Given a claim c
represented as a parameter template query q, they find the query
parameters that make the claim plausible. However, the query
is given in this setting. Beyond fact checking and text-to-SQL,
our proposal is useful for query answering applications that
need ambiguous textual questions for training [9].

There has been work on verbalizing tables to produces sen-
tences that can be logically entailed by the associated table [46].
However, their statements are based on the TabFact dataset that
has been annotated excluding any type of ambiguity [31]. Our
approach is also distinct from those that verbalize knowledge
graphs through the use of semantic web technologies, such
as RDF [47], [48], OWL [49], [47], [50] and SPARQL [51].
Those are rich in metadata, with clear semantic relationships,
and existing efforts on resolving ambiguities focus only on
lexicology [47], [51].

As we are interested in ambiguity w.r.t. the content of
the relation, we focus on texts that contain facts from the cell
values only, without introducing further uncertainty in the values
themselves, i.e., we are not focusing on challenges related to
matching tokens or entities [52], [53]. Finally, our work is
related to skyline queries and groups [54], [55], [56]. However,
such line of work assumes the attributes to be available and in
our case we must identify the ambiguous attributes.

VIII. CONCLUSION

We have proposed a solution that automatically constructs
high-quality datasets for machine learning. Experiments show
that given only a relational table as input, PYTHIA identifies
the ambiguity metadata with very high precision and recall.
With such metadata, the system automatically generates rich
examples, composed of text together with its relevant table
cells, that effectively train target applications to handle text
with data ambiguity.

While handling ambiguity is an important first step, there
are several other classes of under-represented examples in NLP
corpora that could benefit from their automatic generation from
relational data. Such examples include mathematical operations,
text that span multiple tables, and non-factual text, such as
“What is the player with highest shooting?”. For instance,
consider again two tables Covid (country, date, vaccinated,
positive) and Regions (region, country) with the sentence “The
total number of vaccinated in EU is higher than in Africa”.
While manually crafting a template to generate the queries for
this sentence is always possible (it would include a comparison
of two sums over two groups that are derived from the join of
the tables), it would be very valuable to have a method that
synthesizes the template given only the tables and the example.
Other directions include an (1) interactive version of the system,
(2) new algorithms to exploit correlation across ambiguous
attributes, (3) the design of new text augmentation techniques
that make use of ambiguity metadata, and (4) profiling methods
that use both attributes labels and value overlaps.
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