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Abstract
With the development of Open Data, a large number of data sources are made available

to communities (including data scientists and data analysts). This data is the treasure of

digital services as long as data is cleaned, unbiased, as well as combined with explicit and

machine-processable semantics in order to foster exploitation. In particular, structured data

sources (CSV, JSON, XML, etc.) are the raw material for many data science processes. However,

this data derives from different domains for which consumers are not always familiar with

(knowledge gap), which complicates their appropriation, while this is a critical step in creating

machine learning models.

Semantic models (in particular, ontologies) make it possible to explicitly represent the im-

plicit meaning of data by specifying the concepts and relationships present in the data. The

provision of semantic labels on datasets facilitates the understanding and reuse of data by

providing documentation on the data that can be easily used by a non-expert. Moreover,

semantic annotation opens the way to search modes that go beyond simple keywords and

allow the use of queries of a high conceptual level on the content of the datasets but also their

structure while overcoming the problems of syntactic heterogeneity encountered in tabular

data.

This thesis introduces a complete pipeline for the extraction, interpretation, and applications

of tables in the wild with the help of knowledge graphs. We first revisit the exiting definition

of tables from the perspective of table interpretation and develop systems for collecting and

extracting tables on the Web and local files. Next, we design, implement and evaluate three

table interpretation systems, combining heuristic rules and graph embeddings models that

tackle the challenges observed from the literature. Finally, we introduce and evaluate two

table augmentation applications based on semantic annotations, namely data imputation

and schema augmentation.
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Abrégé
Avec le développement de l’Open Data, un grand nombre de sources de données sont mises à

disposition des communautés (notamment les data scientists et les data analysts). Ces don-

nées constituent des sources importantes pour les services numériques sous réserve que les

données soient nettoyées, non biaisées, et combinées à une sémantique explicite et compré-

hensible par les algorithmes afin de favoriser leur exploitation. En particulier, les sources de

données structurées (CSV, JSON, XML, etc.) constituent la matière première de nombreux pro-

cessus de science des données. Cependant, ces données proviennent de différents domaines

pour lesquels l’expertise des consommateurs des données peut être limitée (knowledge gap).

Ainsi, l’appropriation des données, étape critique pour la création de modèles d’apprentissage

automatique de qualité, peut être complexe.

Les modèles sémantiques (en particulier, les ontologies) permettent de représenter explicite-

ment le sens des données en spécifiant les concepts et les relations présents dans les données.

L’association d’étiquettes sémantiques aux ensembles de données facilite la compréhension

et la réutilisation des données en fournissant une documentation sur les données qui peut

être facilement utilisée par un non-expert. De plus, l’annotation sémantique ouvre la voie

à des modes de recherche qui vont au-delà de simples mots-clés et permettent l’expression

de requêtes d’un haut niveau conceptuel sur le contenu des jeux de données mais aussi leur

structure tout en surmontant les problèmes d’hétérogénéité syntaxique rencontrés dans les

données tabulaires.

Cette thèse introduit un pipeline complet pour l’extraction, l’interprétation et les applications

de données tabulaires à l’aide de graphes de connaissances. Nous revisitons tout d’abord la

définition des données tabulaires du point de vue de leur interprétation et nous développons

des systèmes de collecte et d’extraction de tables sur le Web et dans des fichiers locaux. Nous

proposons ensuite trois systèmes d’interprétation de données tabulaires basés sur des règles

heuristiques ou sur des modèles de représentation de graphes, afin de relever les défis observés

dans la littérature. Enfin, nous présentons et évaluons deux applications d’augmentation

des tables tirant parti des annotations sémantiques produites : l’imputation des données et

l’augmentation des schémas.

v





Contents

Acknowledgements i

Abstract iii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Collect and Prepare Tables at Scale 7

2.1 Defining Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Structure Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 Inner-relationship Dimension . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Orientation Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Table Types Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Table Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Collecting Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Harvesting Tables in the Wild (HTW) . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 CorpusWalker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Pre-Processing Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



Contents

3 Semantic Table Interpretation Tasks and Methods 29

3.1 Knowledge Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Semantic Table Interpretation Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Generic Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Datasets and Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5 Semantic Table Interpretation Approaches . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Heuristic-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.2 Feature Engineering Based Approaches . . . . . . . . . . . . . . . . . . . . 49

3.5.3 Deep Learning Based Approaches . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Heuristic-Based Semantic Table Interpretation 63

4.1 DAGOBAH Lookup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 Lookup Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.2 Lookup Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 DAGOBAH-SL Scoring System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.1 Pre-scoring Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Columns-Property Annotation (CPA) . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Cell-Entity Annotation (CEA) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.4 Column-Type Annotation (CTA) . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Multi-Hop Relations and Soft Context Scoring . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Exploiting the Knowledge Graph Context with Multi-Hop Relations . . . 75

4.3.2 Soft Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Industrialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 DAGOBAH-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.2 DAGOBAH-UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Embeddings-Based Semantic Table Interpretation 87

5.1 Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Using Clustering for Semantic Table Interpretation . . . . . . . . . . . . . . . . . 89

5.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.2 Determining the Number of Clusters and Choosing Clustering Algorithm 91

5.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Radar Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

viii



Contents

5.3.2 System Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3.4 Evaluation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Applications of Semantic Table Interpretation 111

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Data Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Schema Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.2 Result and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusion and Future Work 121

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Table Extraction from the Wild . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.2 Semantic Table Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.3 Table Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.1 Beyond Simple Table Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.2 KG Incompleteness and Incorrectness . . . . . . . . . . . . . . . . . . . . 124

7.2.3 Table Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.2.4 Applications of Semantic Table Interpretation . . . . . . . . . . . . . . . . 126

Publications list 127

A Clustering Sample Evaluation on 15 Selected T2D Tables 129

Bibliography 148

ix





List of Figures

1.1 An example of a Web table about lines of the railway system in California. . . . 3

2.1 Classification of table types with a finer-grained analysis of genuine tables along

three dimensions: structure, inner-relationship, and orientation. . . . . . . . . . 9

2.2 Illustration of genuine tables and layout tables on the Amazon Website . . . . . 9

2.3 Examples of different structures of tables . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Examples of different inner-relationships of tables . . . . . . . . . . . . . . . . . 12

2.5 Examples of different relational tables . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Metadata of the Web table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Architecture of the project HTW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Visualisation of provenance topology of the document . . . . . . . . . . . . . . . 21

2.9 Architecture of CorpusWalker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Word cloud of the data sources of CorpusWalker . . . . . . . . . . . . . . . . . . . 22

2.11 An example of the administration page of CorpusWalker . . . . . . . . . . . . . . 23

2.12 Interface of the document management in CorpusWalker . . . . . . . . . . . . . 24

2.13 Illustration of the pre-processing pipeline . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Illustration of an Semantic Table Interpretation (STI) task with a given Knowledge

Graph (KG) (Wikidata). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Illustration of five STI tasks for a table describing the UEFA Euro 2008 group A

results 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Overview of the DAGOBAH annotation workflow. . . . . . . . . . . . . . . . . . . 67

4.2 CTA annotation structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Graph context of entity Q171545 (Belfort) in Wikidata. (a) One-hop graph context

of Q171545. (b) Graph context is expanded by sub-graph intersection. . . . . . 75

4.4 Neighboring nodes of Belfort (Q171545) contribute differently to its information

content. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 The evaluation of DAGOBAH API on Limaye with different K numbers: a) preci-

sion; b) running time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

1https://fr.wikipedia.org/wiki/Championnat_d%27Europe_de_football_2008#1er_tour_-_phase_de_groupes

xi

https://fr.wikipedia.org/wiki/Championnat_d%27Europe_de_football_2008#1er_tour_-_phase_de_groupes


List of Figures

4.6 DAGOBAH UI depicting the preprocessing on the T2D tables with the associated

confidence scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 DAGOBAH UI depicting the semantic annotations on the SemTab and Movie

tables with the associated confidence scores. . . . . . . . . . . . . . . . . . . . . . 84

5.1 Illustration of DAGOBAH-Embeddings. . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Results of the clustering evaluation for table 34041816_1_4749054164534706977.

Red: K-means; Blue: BIRCH; Green: Spectral Clustering; Dotted line: scale = p. 92

5.3 Results of the clustering evaluation for table 54719588_0_8417197176086756912.

Red: K-means; Blue: BIRCH; Green: Spectral Clustering; Dotted line: scale = p . 93

5.4 Result of K-means clustering applied to Wikidata embedding . . . . . . . . . . . 94

5.5 Illustration of Radar Station with DAGOBAH-SL results. The plot is generated

with RotatE embeddings after dimension reduction by T-SNE. . . . . . . . . . . 99

5.6 Overview of the Radar Station pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Illustration of the Kappa test between different outputs on all datasets, t = 0.95. 107

5.8 The GP evaluation on Limaye with t from 0.7 to 1 based on DAGOBAH-SL. . . . 108

5.9 The GP evaluation on T2D with t from 0.7 to 1 based on DAGOBAH-SL. . . . . . 108

6.1 Illustration of data imputation tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Example of data imputation with DAGOBAH UI. . . . . . . . . . . . . . . . . . . 115

6.3 The evaluation of data imputation in 100 selected T2D tables in all columns,

attribute columns, and subject columns: a) precision indicator; b) quality indicator116

6.4 The list length distribution of data imputation in 100 selected T2D tables in all

columns, attribute columns, and subject columns . . . . . . . . . . . . . . . . . 116

6.5 Schema augmentation with DAGOBAH UI. . . . . . . . . . . . . . . . . . . . . . . 118

6.6 The list length distribution of data imputation in 100 selected T2D tables in all

columns, attribute columns, and subject columns . . . . . . . . . . . . . . . . . 119

A.1 Results of the clustering evaluation for table 1-2 . . . . . . . . . . . . . . . . . . . 130

A.2 Results of the clustering evaluation for table 3-8 . . . . . . . . . . . . . . . . . . . 131

A.3 Results of the clustering evaluation for table 9-16 . . . . . . . . . . . . . . . . . . 132

A.4 Results of the clustering evaluation for table 17 . . . . . . . . . . . . . . . . . . . 133

xii



List of Tables
2.1 Selected domain names in the whitelist for the crawler. . . . . . . . . . . . . . . 20

2.2 Precision of pre-processing tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Gold standard datasets for evaluating STI approaches . . . . . . . . . . . . . . . 38

3.2 STI systems are classified into three families. . . . . . . . . . . . . . . . . . . . . . 42

3.3 Top-3 systems for each dataset and their corresponding F1 score unless other-

wise stated in the footnote. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Overview of the Wikidata KG used in the challenge SemTab 2020 . . . . . . . . . 66

4.2 Overview of the SemTab 2020 table corpus in each round. . . . . . . . . . . . . . 66

4.3 Spark Lookup Time (in hours) for Round 1, 2, and 3 using 150 machines and for

Round 4 using 5 clusters, each of 100 machines. . . . . . . . . . . . . . . . . . . . 66

4.4 Results of the DAGOBAH system in Rounds 1, 2, 3, and 4 of the challenge SemTab

2020. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Comparison of experimental settings and performance of the DAGOBAH system

in Rounds 1, 2, and 3 of the SemTab 2021 challenge . . . . . . . . . . . . . . . . . 79

5.1 The pattern modeling and inference abilities of presented models . . . . . . . . 89

5.2 Results of the baseline and DAGOBAH embedding approaches for the first

rounds of the challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Results of the Embeddings system in Rounds 1 of the SemTab 2020 challenge. . 95

5.4 Summary of the notation used to define Radar Station . . . . . . . . . . . . . . . 100

5.5 Gold standard datasets for evaluating STI approaches. The ambiguities are based

on DAGOBAH-SL scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Radar Station evaluation based on DAGOBAH-SL scores. . . . . . . . . . . . . . 105

5.7 Gold standard datasets for evaluating STI approaches with RotatE embeddings. 106

xiii





List of Abbreviations
AQ Ambiguity Quality.

CEA Cell-Entity Annotation.

CPA Columns-Property Annotation.

CSV Comma-Separated Values.

CTA Column-Type Annotation.

GBDT Gradient Boosted Decision Tree.

GP Global Precision.

HTML HyperText Markup Language.

JSON JavaScript Object Notation.

KD tree K-Dimensional tree.

KG Knowledge Graph.

LOD Linked Open Data.

LSTM Long Short-Term Memory.

MLP Multi-Layer Preceptron.

NER Named-entity recognition.

PA Precision inside Ambiguities.

RDF Resource Description Framework.

RF Random Forest.

xv



List of Abbreviations

STI Semantic Table Interpretation.

SVM Support Vector Machine.

TF-IDF Term Frequency–Inverse Document Frequency.

UI User Interface.

URL Uniform Resource Locator.

xvi



Chapter 1

Introduction

Structured data sources such as CSV, TSV, or spreadsheet files, are one of the main assets being

used to train AI algorithms. On the Web, one can find a large number of Web tables and the

number is continually growing. For example, in 2018, [22] extracted 14.1B HTML tables from

Google’s general-purpose web crawl. This data is the treasure of digital services, as long as

data is cleaned, unbiased, and combined with explicit and machine-processable semantics in

order to foster exploitation.

The tabular data format is relatively easy to access for humans and machines because there is

a structure behind it. For example, in relational databases, attributes from the same concept

are organized in the same column, allowing users to extract the desired attributes by querying

the column index. However, it is not like textual data which is arguably self-explicit: all

the necessary information to understand the content is in the sentence or its surrounding

paragraphs, with a structure built from known rules. Structured data like tables have latent

meanings that humans can only understand through implicit mechanism (inference) in light

of their own knowledge, as there is often no explicit context. Hence, interpreting tabular data

is a difficult task, and it has attracted a lot of attention in recent years, with, in particular, the

crystallization of research efforts around challenges such as the SemTab series [36, 63, 64].

This thesis manuscript mostly focuses on tables with meaningful content (some tables are

only designed for layout usage but do not contain meaningful information), researching how

to understand and exploit information from tables. The main goal is to investigate strategies

for table extraction, interpretation with Knowledge Graph (KG), and possible downstream

tasks following the interpretation of tables.
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Chapter 1. Introduction

1.1 Motivation

One of the levers for creating innovative services is the correlation and analysis of heteroge-

neous data from internal or external sources. With the advent of Open Data, a large number of

data sources are made available to communities (including data scientists and data analysts).

In particular, structured data sources (CSV, JSON, XML, ...) are the ubiquitous raw material

for many data science processes. Moreover, the large number of available datasets makes it

difficult for the user to identify the most relevant datasets for particular use cases. Thus, we

have recently seen the emergence of specialised search engines for datasets, Google Dataset

Search [13, 93] being a prominent example.

Large parts of the knowledge of companies are encoded in tabular data. This work has

been done in the context of the Orange1, one of the leading companies in the domain of

telecommunication. Being able to interpret such data is the key to increase business efficiency

and to propose innovative services, and Orange is no exception. With more than 140,000

employees worldwide and a heterogeneous client portfolio, Orange produces a phenomenal

amount of tabular data every day. These tables are viscerally embedded in internal services

and products (e.g., network logs, multimedia catalogs). Hence, they are a source to discover

new knowledge. Although this encourages the development of efficient tools to process them,

several issues are negatively impacting their use. First, the volume curse makes it difficult

to identify the right dataset for a given use case. Then, the knowledge gap between data

producers/consumers is exacerbated by our language footprint (seven main languages), the

heterogeneous tools producing various table formats, and the experience/jobs of employees

leading to similar concepts being expressed by different terms across tables.

Semantic models (in particular, ontologies) allow the implicit meaning of data to be rep-

resented explicitly by specifying the concepts and relationships present in the data. The

provision of semantic labels on datasets facilitates the understanding and reuse of data by

providing documentation on the data that can be easily used by a non-expert. Moreover, se-

mantic annotation opens the way to search modes that go beyond simple keywords and allow

the expression of queries of a high conceptual level concerning the content of the datasets but

also their structure while overcoming the problems of syntactic heterogeneity encountered in

tabular datasets.

However, the practice of annotating data using semantic models remains very marginal

because it is a tedious and time-consuming task requiring expertise in the business domain

and in Semantic Web tools. Semantic annotation is a process consisting of matching attributes,

headers or values on the one hand, with classes or instances from ontologies on the other

hand. The annotation work also makes it possible to determine the relationships between

1https://www.orange.com/en
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attributes.

From a human perspective, tables are intuitively easy to understand (just by looking at them),

but for a machine, they are difficult to interpret because of their graphical nature: all the little

visual details (such as delimiters and orientation) matter a lot. At the same time, the tables

themselves usually just contain the data (e.g. statistics), while the surrounding text (headers,

captions and description) gives this data meaning. Hence, tabular data is challenging to

interpret by machines because of the limited context available to resolve semantic ambiguities,

the layout of tables that can be difficult to handle, and the incompleteness of KGs in general.

Figure 1.1: An example of a Web table about lines of the railway system in California.

The main idea to make tabular data intelligently processable by machines is to find corre-

spondences between the elements composing the table with entities, concepts, or relations

described in KG which can be of general purposes such as DBpedia [19] and Wikidata [128], or

enterprise-specific. This problem is known as Semantic Table Interpretation (STI) or Semantic

Table Annotation. Classical Natural Language Processing (NLP) tasks for unstructured text

handle poorly such tables since they do not leverage the table structure and the underly-

ing semantics [153]. For example, in the table depicted in Figure 1.1, the mention “Rohr”

is ambiguous as it can refer to a surname (Q16882196), a manufacturer (Q2391081), or a

municipality in Germany (Q583512). However, this ambiguity can be resolved when taking

into account the table structure and, in particular, the fact that the “Manufacturer” column

only contains companies. KGs can be used to drive the semantic interpretation of tabular

data while being themselves the artifacts that can be further enriched from the result of the

interpretation process. In this latter case, tabular data becomes a means to either populate a

nascent KG or improve the quality of an established one.

Adding a semantic layer on top of tabular data, in order to make the latent meaning explicit

and exploitable through a structured and shared format, is an invaluable step towards effi-
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cient and intelligent use of data. It opens up opportunities for new semantic-based services:

leverage semantic annotation to better index datasets in search engines [15, 23], improve

question/answering systems [95, 116, 141], enrich knowledge bases [104, 139, 150] or enhance

dataset recommendation [148].

1.2 Research Questions

As seen before, tabular data provide information following a large variety of representation

forms. To enable the interpretation and the usage of the rich knowledge contained in these

tables at the end, we propose the following research questions starting from the definition of

tables to the downstream tasks of semantic table interpretation:

• Wild tables are diverse in their structure and heterogeneous in their contents. What are

the different table types that one can encounter on the Web? Can these table types be

automatically recognized? How can we extract and represent some basic table features

such as the presence of a header or the table orientation to ease the interpretation of

tables?

• Given a target knowledge graph and tabular data sources, what possible correspon-

dences can we establish between the elements from tables and knowledge graphs?

– Can the overlapped information from tables and knowledge graphs support the

matching between the two sides?

– Elements within a table are related to each other and these relationships are some-

times captured in other resources such as language models or encyclopedic knowl-

edge graphs. Are graph embeddings and language models capable of revealing the

relatedness between the neighboring cells? Can these latent relationships between

the table elements also reveal the shared topics from these tables to improve the

disambiguation?

• Finally, what downstream tasks (e.g. cell filling, schema augmentation) could be re-

alized following a semantic table interpretation process, and how can semantic table

interpretation can be leveraged in these downstream tasks?

1.3 Summary of Contributions

The work during this thesis has led to contributions related to the extraction, the interpretation,

and the augmentation of tabular data as follows:

• First, based on existing categorization, we propose a new categorization that reflects
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the heterogeneity of table types that one can encounter, revealing different challenges

that need to be addressed. Our work further refreshes the definition of tables from

the perspective of table interpretation. Facing the numerous tables in the wild, we

developed two systems for collecting, managing, and visualizing tables from Web and

local files.

• We proposed a pre-processing system for extracting some basic features (e.g., the orien-

tation and the position of the header) of a given relational table.

• We review five major sub-tasks that STI deals with even if the literature has mostly

focused on three sub-tasks so far. We review and group the many approaches that

have been proposed into three macro families and we discuss their performance and

limitations on various datasets and benchmarks proposed by the community.

• We have proposed three Semantic Table Interpretation (STI) systems based on different

techniques, which include a continually updating heuristic system namely DAGOBAH

SL, and two embeddings systems that aim to leverage KG embeddings for capturing the

common theme of the table with the help of unsupervised clustering algorithm and a

hybridizing between embeddings and heuristic scores.

• The semantic annotations generated by the STI approaches are as many mapping

with the knowledge graph which are beneficial to table augmentation. To study table

augmentation, we developed an approach for filling missing cells and adding additional

columns to the table.

1.4 Thesis Outline

The remainder of this thesis is organized into five chapters:

• Wild tables are diverse in their structure and heterogeneous in their contents. In Chap-

ter 2, we first define what a table is and what are the types of tables. We also introduce

in this chapter our efforts in collecting tables from the Web and our contributions to

automatically extracting basic features from relational tables, such as the orientation of

the table, the position of the subject column, and the position of the headers.

• In Chapter 3, we aim to cover the up-to-date STI tasks and methods. The table interpre-

tation tasks are divided into five types. We also provide a generic pipeline for the table

interpretation, and we survey the existing datasets and benchmarks. Finally, this chapter

reviews and groups the approaches into three families and discusses their performance

and limitations.

5



Chapter 1. Introduction

• Chapter 4 introduces DAGOBAH SL, a heuristic table annotation system that aims to

map table components (e.g., table cell) with KG elements (e.g., entity). We report the

evaluation of this system in SemTab challenge series. Also, the industrialisation of

DAGOBAH SL with DAGOBAH API and DAGOBAH UI is introduced.

• Facing numerous limitations with heuristic systems, in Chapter 5, we propose two

systems that use KG embeddings, namely DAGOBAH Embeddings and Radar Station, to

drill down further into the hidden table topics to improve disambiguation performance.

• Finally, we devote Chapter 6 to the applications after STI. In this chapter, we introduce

two tasks: data imputation for filling missing values in the empty cell of the table, and

schema augmentation for adding additional columns to the table.

6



Chapter 2

Collect and Prepare Tables at Scale

Tables often constitute a major source of information since large parts of both companies

internal repositories and web pages are represented in tabular formats. Over the last years,

with the growing number of tabular data that are being used in the Web and local documents,

collecting and extracting these tables gained increasing attention from researchers. Unlike

unstructured data (e.g., the plan text), tabular data uses the table structure to manage the

information. Hence, understanding the layout and construction rules of a table is crucial.

However, as there is an important heterogeneity of tables considering their layout, provenance,

and usage, the collection and extraction of tables become a complex task.

In this chapter, we first propose a new fine-grained classification based on existing classifi-

cations with a deeper analysis of relational tables in Section 2.1. Later, Section 2.2 provides

a list of metadata elements attached to the table carrying semantic information useful for

interpretation. In Section 2.3, we introduce two systems, Harvesting Tables in the Wild (HTW)

and CorpusWalker, for collecting and managing tables from Web and local files. Finally, we

introduce the pre-processing module from DAGOBAH system in Section 2.4, where three fea-

tures are extracted by the pre-processing module targeting relational tables: i) the orientation

of a given table, ii) the existence of headers, and iii) the position of the subject column.

2.1 Defining Tables

A table is a two-dimensional arrangement of data with n lines and m columns. This enables

a compact visualization for reading. A cell is the basic element of a table where Ti j (0 ≤ i ≤
n −1,0 ≤ j ≤ m −1) indicates the cell from row i and column j of table T . Tables are highly

heterogeneous in terms of structure, content, and purpose. Therefore, in need to interpret a

table, it is important to identify its type so that potential specificities can be taken into account

in the STI process.

7
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We introduce a multi-level classification of tables based on several aspects where our contri-

bution includes the categorisation of the existing works into three sub-dimensions (Structure,

inner-relationship, and orientation) and a deeper fin-gained classification of relational tables.

This classification of tables is intended to make it easier to define the scope of STI approaches

proposed in the literature and to help identify the challenges related to STI tasks. The first clas-

sification effort splits tables into two high-level categories: genuine and non-genuine [96, 133].

Genuine tables are firstly defined as two-dimensional structures with simple cells (i.e. short

and without any complex structures) and a high level of relativity (syntactically and seman-

tically) within rows and columns in [96]. Non-genuine tables are structures used to group

contents for easy viewing [133]. One limitation of this dichotomy is that it does not consider

tables with long and complex cell contents which are still semantically coherent. For example,

we can observe cells containing a list of comma-separated entities (row “Celebration”) or mix-

ing text and entities (row “Significance”) in the infobox depicted in Figure 2.4(b). According to

the definition provided in [96] and used in [102], this table will not be considered a genuine

table while, arguably, this table carries semantic information worth being processed.

In more recent works, [34,67] proposed two similar classes associated with a set of sub-classes:

relational knowledge tables including vertical and horizontal listings, attribute/value table,

matrix, etc. and layout tables including tables used for navigation and formatting purposes.

This classification focuses mostly on relational knowledge and is therefore not comprehensive

enough to cover all possibilities. For example, some tables do not have inter-relation between

table elements and are not for layout purposes either. This is the case of the table depicted in

Figure 2.4(d) where there is no information about the common relationship between each cell.

To cope with these shortcomings, we propose a new classification of table types, shown

in Figure 2.1, that rely on the existing work presented in [39, 67, 68, 96, 102, 135, 149] and

consider overlapping dimensions. This classification also contributes to better identification

of relational tables in embracing their diversity.

We first consider that tables can be separated into two broad categories:

• Layout tables are used to format web pages. Elements of these structures are not

semantically consistent and are not linked by semantic relationships. They are used to

visually organize the content of a page to maximise user comfort and site usability. A

layout table used on Amazon to provide the order interface is given in Figure 2.2.

• Genuine tables represent in rows or columns human-understandable knowledge. In the

literature, genuine tables are said to be short and without complex structure [96]. We

relax this concept by considering that tables with a high level of relativity (syntactically

and semantically) within rows and columns are genuine tables, without considering the

table complexity. For example, in Figure 2.2, the semantic of the two genuine tables is

8
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Figure 2.1: Classification of table types with a finer-grained analysis of genuine tables along
three dimensions: structure, inner-relationship, and orientation.

Figure 2.2: Illustration of genuine tables and layout tables on the Amazon Website.a

ahttps://www.amazon.com/Furinno-14035EX-Study-Table-Espresso/dp/B00NIYX9LC
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the description attributes (e.g. price, color) of the product.

Genuine tables contain relational knowledge that should be machine-interpretable, and thus,

they constitute valid inputs for the STI process. On the contrary, layout tables are convenient

for improved visual presentation but the semantic association between their cells is relatively

sparse. Hence, they are not eligible for knowledge extraction and interpretation.

Previous works have also proposed to classify tables starting from different entry points and

further segment genuine tables along different dimensions [39, 67, 102, 149]. However, the

state of the art considers that these table types are mutually-exclusive which does not cover

the heterogeneity and complexity of genuine tables. Consequently, we propose to categorize

genuine tables using three non-mutually exclusive dimensions: structure, inner relationship,

and orientation. Table types are then formed by a composition of these dimensions. For

example, the table depicted in Figure 2.3(c) about railway lines is a concise table (structure

dimension), a horizontal table (orientation dimension), and a composed-subject relational

table (inner-relationship dimension). In the following sections, we further define each of these

three dimensions.

2.1.1 Structure Dimension

[67] focuses on the layout structure of a table, which is mainly reflected in the table elements’

composition. Accordingly, the subclass “Structure Dimension” of our classification is divided

into the following four types of tables illustrated in Figure 2.3:

• Nested tables contain one or more tables in one or more of their cells. Figure 2.3(a)

depicts a nested table as the main table contains a table about risk levels of hazardous

materials in one of its cells.

• Split tables contain sub-tables with cells that are independent of those in the other

sub-tables. [67] defines split tables as a sequential repetition of rows or columns. We

enforce this definition by defining split tables as tables that can be split into sub-tables.

To illustrate, in the table in Figure 2.3(b), the infobox of the city of Chicago is composed

of several sub-tables. Each sub-table describes one concept of the subject of the original

table, e.g. location, area, and population of the main Chicago entity.

• Concise tables contain merged cells to avoid repetitions of cells referring to the same

content in rows and/or columns. In the table presented in Figure 2.3(c), the first cell of

the column “lines” merges six individual cells with the same value “BART main lines”.

• Multivalued tables contain multiple values in a single cell. For example, in Figure 2.3(d),

the cells of the column “lines used” contain a list of route lines.

10
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Figure 2.3: Examples of different structures of tables: (a) a nested tablea, (b) a split tableb, (c) a
concise table (column “lines”)c, (d) a multivalued table (column “lines used”)d.

ahttps://en.wikipedia.org/wiki/Table_(information)
bhttps://en.wikipedia.org/wiki/Chicago
chttps://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit#Rollingstock
dhttps://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit#Infrastructure

2.1.2 Inner-relationship Dimension

The inner-relationship dimension considers the topology of the semantic connection between

the cells. [34] first gave a detailed classification of relational knowledge tables into listings,

attribute or value tables, matrices, enumerations, and forms. [39] has extracted Web tables

that are classified into listings, matrices and other tables to capture enumerations, calendars,

etc. [68, 102] have extended this categorization with a fourth kind named “entity tables” while

listings are considered as relational tables.

Accordingly, we propose the following types:

• Relational tables are structures in which each row (resp. column) provides information

about a specific entity, and the corresponding columns (resp. rows) represent attributes

that describe the entity. Hence, relational tables are oriented, either horizontally or

vertically, depending on the arrangement of the entities and their attributes in the table.

If the rows of a relational table contain the entities and the columns the attributes,

then the table is horizontal. Otherwise, it is vertical. Relational tables may have a
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Figure 2.4: Examples of different inner-relationships of tables: (a) a horizontal relational tablea,
(b) an entity tableb, (c) a matrix tablec, (d) an enumeration tabled which belongs to “other
genuine tables”.

ahttps://en.wikipedia.org/wiki/Eiffel_Tower
bhttps://en.wikipedia.org/wiki/Bastille_Day
chttps://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
dhttps://en.wikipedia.org/wiki/Pronoun#English_pronouns

header, usually in the first row or the first few rows for horizontal tables. As an example,

Figure 2.4(a) depicts a horizontal relational table where each row describes a tower with

its attributes (e.g. height, year, country, and town).

• Entity tables, also known as attribute-value tables, are used to describe a unique entity.

An entity table enumerates the attributes of the entity. Infoboxes from Wikipedia are

examples of entity tables. For example, the distinct attributes and their values for the

entity “Bastille Day” are shown in the table in Figure 2.4(b). It should be noted that

entity tables could also be seen as two-column vertical or two-row horizontal relational

tables.

• Matrix tables present a two-dimensional arrangement of data that should be read simul-

taneously horizontally and vertically. A matrix associates pairs (row,column) with cell

values through one unique property for the whole table. Generally, cells contain numeric

or boolean values. Figure 2.4(c) shows a vowel confusion matrix that quantifies the un-

derstanding of vowels between people. It associates pairs (vowel produced,vowel perceived)

with the number of persons having this perception of the produced vowel. For example,

one person perceived an “a” when an “i” was produced. Bold numbers correspond to
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Figure 2.5: Examples of different relational tables: (a) a single-cell-subject relational tablea, (b)
a composed-subject relational tableb, (c) a multi-subject relational tablec, (d) a hidden-subject
relational tabled.

ahttps://en.wikipedia.org/wiki/France#Major%20cities
bhttps://en.wikipedia.org/wiki/Bay_Area_Rapid_Transit
chttps://en.wikipedia.org/wiki/List_of_best-selling_albums_of_the_21st_century
dhttps://fr.wikipedia.org/wiki/Coupe_du_monde_de_football_1998

correct identifications.

• Other genuine tables contain semantic information but do not fit within the aforemen-

tioned types. Tables in this class include enumerations and calendars. To illustrate,

Figure 2.4(d) is an enumeration table where each column is an independent enumera-

tion of pronouns according to a pronoun type.

The literature considers relational tables as a leaf in the proposed table type taxonomies [68,

102, 135]. However, relational tables exhibit an important diversity, especially in the repre-

sentations of entities. We propose to further classify them depending on the characteristics

of their subjects. The subject of a row of a horizontal relational table (resp. column of a

vertical relational table) is an entity that is described by the collections of cells in this row

(resp. column). For example, in the table depicted in Figure 2.4(a), the entity “Tokyo Skytree”

(Q57965) is the subject of the first row as it is described by the other entities of this row: “2011”

(Q1994), “Japan” (Q17), and “Tokyo” (Q1490).

We introduce four subtypes of relational tables (Figure 2.5):

• Single-cell-subject tables associate each row of a horizontal table (resp. column for a

vertical table) to a single subject. Labels of subjects are given in a single column (resp.
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row). To illustrate, in Figure 2.5(a), the column “department” contains the subjects. The

other columns describe the subjects.

• Composed-subject tables require the combination of multiple cells to form the subject

of each row (resp. column). For instance, in a table that describes persons with first and

last names in different columns, it is necessary to merge these two columns to get the

complete identifiers of entities. Similarly, in the table shown in Figure 2.5(b), one can

identify subjects (particular train classes) by merging columns “Lines”, “Manufacturer”

and “Class”.

• Multi-subject tables contain cells that refer to different subjects while being in the same

row. In Figure 2.5(c), a row is composed of two subjects: “Artist/s” is the subject of the

column “Nationality” while “Album” is the subject of columns “Release year”, “Artist/s”,

“Worldwide sales”, and “Ref(s)”.

• Hidden-subject tables do not explicitly mention the subject of each row (resp. column).

For example, in Figure 2.5(d), each row describes the result of a football match, but the

mention of the match itself is not made explicit in the table.

2.1.3 Orientation Dimension

The orientation dimension considers the direction of the relationships inside a table [39, 67].

Indeed, knowing the direction of relationships within a table simplifies its interpretation, e.g.

to read the attributes describing a subject.

• In Horizontal tables, subjects are described horizontally, which means that each row

describes a different subject. For example, in Figure 2.4(a), the subject “Dragon Tower”

and its attribute “Harbin” are in the same row.

• In Vertical tables, subjects are described vertically, which means that each column

describes a different subject. An example of a vertical table is depicted in Figure 2.4(b),

where the attributes of the entity “Bastille Day” are in the same column.

• Matrix tables are defined as for the inner-relationship dimension. They cannot be

interpreted row by row or column by column but rather cell by cell while simultaneously

considering both horizontal and vertical headers. For example, the matrix in Figure 2.4(c)

should be interpreted cell by cell while taking into account both horizontal and vertical

headers to read the number of persons that have a specific perception of a produced

vowel.
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2.1.4 Table Types Statistics

We introduced in Figure 2.1 a multi-dimensional and fine-grained classification of table types.

In this section, we aim to survey how frequent these types of tables can be encounter in the

wild. DWTC [39] has randomly selected 26,645 tables from the WDC Web Table Corpus [68]

and has concluded that the resulting corpus was made of 96% layout tables and 4% genuine

tables. Regarding the structure dimension, [67] has extracted 342,795 Web tables (from various

Websites starting from Wikipedia, e-commerce, news and university Web sites) and has identi-

fied that 75.5% of the tables are for layout while the remaining tables are relational knowledge

tables. [67] has also provided the distribution of nested tables, split tables, concise tables,

and multivalued tables among the relational knowledge tables, which are respectively 3.7%,

2.6%, 12.9%, and 74.9%. Regarding the inner-relationship dimension, [68] applied the DWTC

framework on the 233 million Web tables of the WDC Web Table Corpus to detect the type of

each table w.r.t the inner-relationship dimension. Results show that relational tables, entity

tables, and matrices respectively constitute 39%, 60%, and 1% of the corpus.

Regarding the orientation, the distribution of horizontal tables and vertical tables is 54.9% and

45.1% for entity tables, and 94% and 6% for relational tables in the WDC Web Table Corpus.

In [67], the authors show that 70% of the relational knowledge tables are horizontal.

Our proposed classification goes further into the details. However, identifying some table

type such as hidden-subject tables remains an open scientific challenge. To date, we have not

identified an approach to automatically classify tables with a level of granularity close to the

classification proposed in this paper.

2.2 Table Metadata

Tables do not always appear alone in real-life scenarios. Alongside the data contained in a

table, metadata and the context in which a table appears are also valuable information for

STI. For example, if a table has been published on a Web page describing the Bundesliga, it is

probably more relevant to football than any other sport. Hence when extracting the table, it

would be useful to collect both the table itself and its metadata.

Several STI works stress that one of the challenges to be addressed is the loss of context when

annotating a table [149]. Indeed, tables do not constitute the unique source of information

that can be used by STI processes since the context in which they appear may provide com-

plementary or novel information. Such non-table information constitutes the metadata of

tables and is defined as additional data that can be extracted from information sources to

provide additional context for the interpretation. For example, metadata can describe the

characteristics and content of the original data, and thus can be used to organize, retrieve,
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Figure 2.6: Metadata of the Web table “Lattice towers taller than the Eiffel Tower”a: (a) de-
scriptive metadata: its surrounding text, (b) structural metadata: <td>, <tr> and <th> tags
indicate table cells, row ordering, and the presence of headers, (c) administrative metadata:
the page history of the tableb.

ahttps://en.wikipedia.org/wiki/Eiffel_Tower
bhttps://en.wikipedia.org/w/index.php?title=Special:Contributions/Andre_Engels

preserve, and manage extracted knowledge units. Depending on its structure, purpose, and

provenance, metadata is split into descriptive, structural, and administrative metadata [99].

Such a definition was originally used in digital collection [143] and is applicable to table meta-

data as well. Each type of metadata in a table context can provide a deeper understanding of

the table.

Descriptive metadata is used to describe the target data by providing, e.g. its source, explana-

tory notes, or other contextual information. For example, the descriptive metadata of the

table “Lattice towers taller than the Eiffel Tower” depicted in Figure 2.6(a) can include its

provenance (i.e. the Uniform Resource Locator (URL) of the page) and its surrounding text.

Indeed, texts surrounding tables are potential sources of contextual information, and thus

valuable metadata, since they often explain a nomenclature or verbalize salient information.

The different relationships between texts and tables, including titles and captions or even

simple co-occurrences between a table and the surrounding texts, are useful indicators to

guide and improve the annotation and knowledge extraction processes. However, this table-

text complementarity is little used in the STI domain so far. Descriptive metadata provides

additional information that enhances the process of approaches such as [17, 38].

Structural metadata describes the structural schema of composite objects or relationships

between objects. For example, the <td>, <tr>, and <th> tags in the Web table in Figure 2.6(b)
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allow to detect table cells, row ordering and the presence of headers. Such structural patterns

could benefit STI approaches such as [121, 130].

Administrative metadata often captures information such as the process of creation or data

acquisition for a table. For example, in Figure 2.6(c), the page history details how, when,

by whom, and for which purpose data has been produced or altered, allowing to assess the

quality and validity of the table. Additionally, the creation or modification date of a table

can indicate the freshness of its information, and thus allows to assess the risk of extracting

outdated information.

It should be noted that table metadata can appear in different forms since tables have different

formats and structures. For example, in some approaches, table headers are available as

metadata [25]. Furthermore, if a table element consists of a hyperlink (e.g. hyperlinks in

infoboxes of Wikipedia), this mapping relationship also constitutes metadata.

2.3 Collecting Tables

There is an immense number of high-quality tables that can be found on the Web, to name a

few, [23] extracted 154 million high-quality relational tables from the Web and [16] extracted

1.6 million relational tables from Wikipedia. With the help of additional operations, such as

sorting, filtering, and joins, the rich information from wild tables can be turned into knowledge

to support decision-making. However, regarding the different creator’s purposes, formats, and

structure complexities, it becomes increasingly difficult for a machine to access this data in

a meaningful way. In this section, we present our efforts in collecting tables from the Web

and the local files. We first introduce related work for collecting tables in Section 2.3.1. Then,

we present the student project that we have guided for Web table extraction in Section 2.3.2.

Finally, we provide an overview of the project CorpusWalker from Orange in Section 2.3.3.

2.3.1 Related Work

The process of extracting tables from webpages includes filtering irrelevant tables, proper

formatting and consistent storage of tables to create a corpus. This includes the classification

of tables into one or more semantic (such as subject header, and table header) and/or syntactic

(such as row and columns) features. [10] used a collection of simple rules and machine learning

classifiers to extract tables with an overall accuracy of 96%. [23] extracted approximately 14.1

billion raw HTML tables from the English documents in Google’s main index, where 154

million tables are identified as high-quality relational tables. The authors also proposed a new

object derived from the database corpus: the attribute correlation statistics database (AcsDB)

that records corpus-wide statistics on co-occurrences of schema elements. [68] leverages
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DWTC framework [40] to further extract 1.78 web pages from Common Crawl1, where 233

million genuine tables are further been identified.

2.3.2 Harvesting Tables in the Wild (HTW)

One of the projects that we worked on with students from EURECOM aims to collect HyperText

Markup Language (HTML) tables from the wild as the upper stream application for our

semantic annotation system (this system aims to build a semantic layer on top of the input

tables to make them interpretable. It will be detailed in Chapter 4 and Chapter 5). We

managed to build a Web scraping and table processing pipeline from the ground up. This

system provides services for crawling, storing, and posting Web tables. In this section, we

present the system created in the framework of the project HTW and report our results.

System

Figure 2.7 provides an overview of this system. The table collection pipeline contains four

major components. They are i) a Scrapy2 Spider module for downloading web pages and

extracting tables, which also normalizes table format, ii) a Kafka message queue for buffering

the extracted tables, iii) an ArangoDB3 database for managing the storage, iv) an ingestion

service for linking the collected tables with downstream annotation systems and the storage

database. In this section, we introduce our efforts in the first three modules, and the table

annotation service is described in Chapter 4.

We use Scrapy4 for crawling Web tables due to its high performance in treating the data stream.

Starting from an input Web page, it extracts all hyperlinks (inside HTML <a> tags) from this

page and generates new requests for these links. We define a list of whitelisted domains. web

pages on these domains will always be crawled. Furthermore, the crawler will follow all links

on these web pages. Once the crawler arrives on a Web page that is not in the whitelist, it still

crawls that particular Web page but does not follow any links on it. Websites in the whitelist

are manually selected from Alexa Top 500 ranking5, Moz Top 5006 and CommonCrawl Top

1,000 domains ranked by harmonic centrality 7 where the non-English domains are filtered.

We provide the full domain names of the whitelist in Table 2.1. We parse the table with the tool

introduced by [82] according to the HTML labels. Layout tables, complex structured tables

(such as concise tables or nested tables), and small tables (tables with less than two rows) are

1https://commoncrawl.org/
2https://scrapy.org/
3https://cloud.arangodb.com/
4https://scrapy.org/
5https://www.alexa.com/topsites
6https://moz.com/top500
7https://commoncrawl.org/2020/10/host-and-domain-level-Web-graphs-julaugsep-2020/
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Figure 2.7: Architecture of the project HTW

ignored during the extraction.

Message queues are extensively used for asynchronous communication. A message queue

serves as a buffer, meaning that the crawler is never slowed down by a slow ingestion rate

(e.g. due to a high load on the database). Moreover, as the ingestion service (consumer) is not

interacting directly with the crawler (producer), it does not become a bottleneck and allows

the ingestion service to process items out of the message queue at any speed. This gives the

ingestion service more headroom to perform time-consuming tasks, such as augmenting

the tables with data obtained from external API. Kafka8 is chosen as the queue engine since

it follows a log-committed approach for a message bus and hence can also be used as a

temporary store of messages for a desirable unit of time.

Finally, we select ArangoDB database as our storage backend, since it supports more data

models (e.g., document, graph, table, full-text) compared to other NoSQL databases such as

MongoDB or Neo4j. The stored data format is based on the JavaScript Object Notation (JSON)

format merging from data used in approaches [40, 46]. This new format covers the following

information from the provenance of the table:

• Page title

• Table title

8https://kafka.apache.org/
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android.com apache.org
bbc.co.uk blogspot.com

creativecommons.org doi.org
en.wikipedia.org europe.eu
gamepedia.com github.com

github.io iana.org
imdb.com medium.com

merriam-Webster.com microsoft.com
mozilla.org nasa.gov

nih.gov noaa.gov
schema.org statista.com

w.org wikibooks.org
wikimedia.org wikiquote.org
wordpress.com wordpress.org

Table 2.1: Selected domain names in the whitelist for the crawler.

• Paragraph before/after the table

• Most frequent terms

• Language of the page

Result

We performed a table collection process with our pipeline during three days. With a very

limited amount of time, we collected 3,469 tables from 2,002 Websites on 135 unique domains.

With these results, we also explore the graph visualization capabilities.

In Figure 2.8, the purple circles represent page vertices (a Web page that has been accessed),

while the black circles represent table vertices (a table that has been extracted). The virtual

start node is “HTW Start” (where the crawl started), but the start node can be adjusted through

the User Interface (UI) to start traversing the graph. Alongside the edges, the edge type is

displayed, in this example either “hyperlink” (one Web page links to another Web page) or

“page-contains” (a table is embedded on a Web page). The search depth and the maximum

number of nodes displayed in the graph can be dynamically adjusted in the UI to facilitate the

exploration, though loading large graphs all at once makes the visualization unclear and has

performance issues.

2.3.3 CorpusWalker

At Orange, following the same proposal of the project HTW, we have built a data collection

tool named CorpusWalker. As illustrated in Figure 2.9, CorpusWalker integrates a series of
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Figure 2.8: Visualisation of provenance topology of the document

functionalities for data collection, data management, search engine, data visualization, etc.

It is also compatible with our table annotation tools (detailed in Chapter 4) to provide a

data repository for the annotation results. In this section, we explain the system design of

CorpusWalker and report the result.

Figure 2.9: Architecture of CorpusWalker
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System

CorpusWalker does not only focus on collecting Web tables, but also on ingesting textual

data. The scheduler module from Figure 2.9 manages the collection of the documents. Scrapy

crawler and MediaWiki REST API9 are leveraged by CorpusWalker for collecting data from

HTML Websites and Wikipedia. In the system, we transform the original data into HTML

or JSON files, where each data source is seen as a corpus, and each page is a document.

Figure 2.10 shows the data source that has been collected with CorpusWalker.

Figure 2.10: Word cloud of the data sources of CorpusWalker

In the Preprocess module (which differs from the table pre-processing introduced in Sec-

tion 2.4), we aim to extract features from the corpus and add additional information about

the dataset. In this module, we first parse each HTML page with BeautifulSoup10 and each

MediaWiki document with Wikitextparser11, where tables and textual documents are identi-

fied and labeled. We further add the content analysis information in the documents which

describes the number of rows, columns, and cells for tables, also the word occurrence count

in both texts and tables. Finally, we aggregate these documents with semantic annotation

where mentions from the document are linked with a given KG, e.g., Wikidata. For tables, we

leverage DAGOBAH-API (detailed in Chapter 4) to extract basic features of the table with table

pre-processing end-point introduced in Section 2.4, and we annotate the table elements (e.g.,

cells, columns) with Wikidata by DAGOBAH-SL system (detailed in Chapter 4). For textual

documents, we leverage KEFT [111] system for entity linking with Wikidata (KEFT system is

not presented since it is not in the scope of the thesis.).

After having generated annotations and computed the statistic analysis about the dataset,

9https://www.mediawiki.org/wiki/API:REST_API
10https://www.crummy.com/software/BeautifulSoup/bs4/doc/
11https://wikitextparser.readthedocs.io/en/latest/
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Figure 2.11: An example of the administration page of CorpusWalker

we store this additional information with the original documents in a platform powered by

Elasticsearch12. Elasticsearch is a distributed, free open-source search and analytics engine

for all types of data including text, numeric, geospatial, structured, and unstructured data. It

is currently widely used in various IT companies. In CorpusWalker, Elasticsearch searches the

document according to the input of string characters or Wikidata entities. CorpusWalker will

list all associated documents with their statistic with a given input.

All the modules could be supervised by the monitoring module, which provides dashboards

for data visualization and execution supervision, also configuration management pages for ad-

ministration (as the example shown in Figure 2.11). The visualization is powered by Kibana13,

Grafana14 and StatsD15 for dashboards. In Figure 2.12, we illustrate interface of document

management in CorpusWalker. It provides statistics and information about the documents

extracted from the Wikipedia corpus. These information include the number of tables, number

of texts, time of the generation, and the collection criteria (in column "Category"). This page

also allows users to search the document according to both String text and Wikidata Entities.

Result

Until November 2022, CorpusWalker has collected 9.64 million documents from 19 corpora,

where 3.84 million tables have been identified by the system. The total file size after processing

is 34.34G. CorpusWalker is capable of handling multiple languages, including English (69.29%),

12https://www.elastic.co/elasticsearch/
13https://www.elastic.co/fr/kibana/
14https://grafana.com/
15https://www.datadoghq.com/
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Figure 2.12: Interface of the document management in CorpusWalker

French (26.16%), Romanian (4.51%), and Polish (0.05%). This rich data source allows us to

test our system in greater depth and provides a rich source of data for our knowledge base.

CorpusWalker is a useful system for data collection, extraction, and management. In the future,

we aim to improve the coverage of CorpusWalker by considering more data sources with

heterogeneous data formats. Also, optimizing our current table identification and extraction

algorithm is another direction that we aim to enhance in future work.

2.4 Pre-Processing Tables

Tables vary in their form and structure as described in Section 2.1. Starting from 0, it is

hard to apply a common rule to all tables. For example, one could say one row describes an

entity in a horizontal relation table, but the same argument can not be used in vertical tables

since a row in a vertical relational table describes an attribute, but not an entity. In order to

correctly process the information contained in the tables, it is first necessary to infer several

characteristics of the shape of the table. In a context of real exploitation in which there is

sometimes little or no knowledge about the tables, the information produced by this chain is

decisive for the quality of the annotations. Hence, it is necessary to know some features of the

table, such as the orientation, the table type, and the header position, of a given table before

any operation in this table.

In this section, we focus on relational tables, and we introduce our first prototype of pre-

processing module aiming to extract the orientation, the headers, the key column position,
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and each column’s primitive type of input table. In Section 2.4.1, we review the current state of

the art of similar tasks from the literature. We then describe our system in Section 2.4.2. Finally

we analyze our first prototype based on an evaluation of the SemTab dataset and describe our

future work in Section 2.4.3

2.4.1 Related Work

Orientation Detection

The orientation detection task aims to assign a given genuine table an orientation, following

the table types defined by Section 2.1.3. In most table interpretation approaches, the systems

assume that the input table’s orientation is always known and horizontal [1, 26, 90, 110, 122].

[97] assumes that the cells in the columns are similar for horizontal tables, and vice versa

for vertical tables. A token type is assigned to each cell token, and each cell is transformed

into a vector composed of token types from the given cell. Average row/column similarity

is calculated by summing up the distance between the last row/column and each preceding

row/cols for determining the table orientation. [34] adopts supervised machine learning on

top of 21 features extracted from the tables, including the maximum number of rows for

each column and the presence of certain HTML tags. The approach labels each table into

one of the ten table types, including vertical relation tables, so-called "vertical listing" and

"horizontal listing". Gradient Boosted Decision Tree (GBDT) and Support Vector Machine

(SVM) are chosen as the classification model and the evaluation shows GBDT achieves a better

result. DWTC [39] further refines the feature number to 10 and applies SVM to this approach.

DeepTable [50] decomposed the system into two representation models for column-wised

and row-wised features, where column-wised (resp. row-wised) features are generated based

on an item set from cells in the same column (resp. row). Each cell is transformed into

embeddings with the help of Long Short-Term Memory (LSTM) and Multi-Layer Preceptron

(MLP) layers. Finally, the representations are concatenated and fed to a softmax classifier for

table orientation classification. Although one representation is enough to predict the input

table’s orientation, adding another representation from another direction allows the model to

identify matrices more effectively.

Header Detection

A table header row for a horizontal relational table is the top row or rows that acts as a title

for the type of information one can find in each column. It is common to manually bold the

top row to signal this information visually. Knowing the presence and the position of table

headers separate the schema of the class described by table columns and the data rows. [45]

proposes heuristic approaches for calculating a relevance score between the first row and
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the rest of the rows for evaluating the difference in font size or data types to predict the

presence of the header. It also proposes a machine learning pipeline that extracts row-wised

features like a number of characters and sends these features into a classifier, such as SVM and

Random Forest (RF). [130] proposes to consider applying a threshold over a score generated

by hybridizing the Probase’s type and the syntax features (e.g., color, HTML tags, etc.).

Key Column Detection

The key column of a table contains the identifiers of the subjects described by the other

columns. Hence, the key column is also known as the subject column while others columns

could be seen as the attributes of the given subject. DWTC [39] framework supposes that the

key column of a given relational table is the column with the highest unique value number

among all literal columns (number and date are not included). MantisTable [32] further

considers aggregating features of i) the fraction of empty cells, ii) the fraction of cells with

unique content, iii) the distance from the first literal column, and iv) the average number of

words in each cell to compute a relevant score for detecting the position of the key column.

TableMiner+ [153] introduces a similar approach where the authors also add the Web search

score to evaluate the Web frequency of words used in the column header and a given cell from

the column.

2.4.2 System Description

The pre-processing toolbox of DAGOBAH, partly based on the DWTC-Extractor, generates

four different types of information. The precision of the toolbox was evaluated on the round 1

of SemTab 2019 (Table 2.2) and compared to a modified version of the DWTC (which does not

use HTML tags and thus supports more formats).

Figure 2.13: Illustration of the pre-processing pipeline

Table Orientation Detection. The initial algorithm proposed in the DWTC-Extractor is based
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Table 2.2: Precision of pre-processing tasks

Task/Tool DWTC DAGOBAH
Orientation Detection 0.9 0.957

Header Extraction Not evaluated 1.0
Key Column Detection 0.857 0.986

on the length of the strings and the assumption that the cells in the same column have a similar

size. However, the robustness of the DWTC algorithm can be improved. Indeed, for example,

two strings representing very different elements may have the same length (for example "Paris”

and "10cm2”). DAGOBAH introduces a new algorithm based on a primitive cell typing system

with eleven types (string, floating numbers, date, etc.). Based on these types ti , a homogeneity

score is computed on each row and each column x (Equation 2.1). The mean of all rows and

all columns is then compared, and depending on the ratio, the table is said “HORIZONTAL” or

“VERTICAL”.

Hom(x) = [
1

len(x)

∑
ti∈x

(1− (1−2∗ count (ti )

len(x)
)2)]2 (2.1)

Header Extraction. The algorithm used in DAGOBAH is based on the primitive types defined

above. The header extractor assumes that the header of a column contains mainly strings and,

in most cases, does not share the type of column cells. The use of these two heuristics allows

for identifying if a table contains or not a header with good accuracy (see Table 2.2). It should

be noted that the DWTC framework also offers a header detection tool, but it contains several

bugs that make its evaluation impossible.

Key Column Detection. In our implementation, the first step aims to identify a first low-level

type for each cell among five given types (Object (mentions that are potentially lookup-able

in a knowledge base), Number, Date, Unit (e.g. “12 km”), and Unknown (containing all the

unclassified columns)) with regular expressions. Then we annotated each column with a type

based on majority voting. The key column is an Object column containing a large number of

unique values and is located on the left side of the table.

2.4.3 Result

The precision of the toolbox was evaluated on the round 1 of SemTab 2019 [63], and compared

to a modified version of the DWTC (which does not use HTML tags and thus supports more

formats). The result shows that we have optimized the result from the baseline system DWTC in

Orientation Detection and Key Column Detection. This pre-processing toolbox was especially

useful during the first round to automatically identify the information contained in the header

as well as the column to be annotated in each table. In addition, when the goal is to enrich a

knowledge graph with the information contained in tables, key column detection is a critical
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element in determining the subject of the generated RDF triples. The availability of targets

during the second round made the use of this pre-processing chain obsolete. However, this

does not affect the usefulness of such tools in real-world applications.

2.5 Discussion

In this chapter, we first introduce a classification of tables. We propose that table could be

seen as a combination of classes from three dimensions (structure, inter-relationship, and

orientation). We have also proposed a deeper classification of a relational table using the

subjects of the table as the criteria. It highlights some current limitations of understanding

relational tables. For example, to the best of our knowledge, the hidden subject is not discussed

in the literature. Later, we introduce the metadata that we could collect to better describe a

given table.

We then emphasize our efforts in collecting Web tables with the student project HTW and

CorpusWalker. We have built a collection, extraction and management pipeline that continu-

ously enriches our data lake and provides fruitful information. In these two systems, we built

Web scraping and table processing pipelines from the ground up, using basic components

such as Scrapy, Kafka message queue, and ArangoDB document store. This pipeline can ingest

data not only from the World Wide Web directly but also through the Common Crawl index

and local files. We implemented advanced table parsing and specified a JSON data format for

storing the tables, taking into account work that has previously been done in the field. While

implementing our pipeline, we tried to keep the system modular and extensible, so that it

could readily be reused by others, by adhering to modern software development practices.

Last but not least, we introduce our pre-processing module for extracting three basic features

(table orientation, header position, and key column position) of a given relational table.

However many works are still not been handled yet. In the future, we first aim to propose a sys-

tem that can automatically classify tables according to our definition illustrated in Section 2.1

(e.g., entity tables, relational tables, etc.). Also, we would like to drive a deeper evaluation of

the tables collected with CorpusWalker, digging more into the topic distribution of wild tables.

Also, proposing a suitable and complex table benchmark based on the extracted tables is in

our planning. Finally, we aim to evaluate our pre-processing system with other datasets and

study if it exists other useful features that we could extract from our pre-processing pipeline.
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Semantic Table Interpretation Tasks

and Methods

The tabular data format is compact, readable and simple to process, but it does not self-explain

the meaning of the information. However, it potentially contains rich semantic information

that still needs to be interpreted. Hence, interpreting tabular data becomes a crucial task

and it has attracted a lot of attention in recent years, with, in particular, the crystallization of

research efforts around challenges such as the SemTab series [36, 63, 64]. The main idea to

make tabular data intelligently processable by machines is to find correspondences between

the elements composing the table with entities, concepts, or relations described in KG which

can be of general purposes such as DBpedia [19] and Wikidata [128], or enterprise specific.

This problem is known as STI or Semantic Table Annotation. KGs can be used to drive the

semantic interpretation of tabular data while being themselves the artefacts that can be further

enriched from the result of the interpretation process. In this latter case, tabular data becomes

a means to either populate a nascent KG or improve the quality of an established one. Adding

a semantic layer on top of tabular data, in order to make the latent meaning explicit and

exploitable through a structured and shared format, is an invaluable step towards efficient

and intelligent use of data.

Tabular data is challenging to interpret by machines because of the limited context available

to resolve semantic ambiguities, the layout of tables that can be difficult to handle, and the

incompleteness of KGs in general. Classical Natural Language Processing (NLP) tasks for

unstructured text handle poorly such tables since they do not leverage the table structure

and the underlying semantics [153]. For example, in the table depicted in Figure 2.5(b), the

mention “Rohr” is ambiguous as it can refer to a surname (Q16882196), a manufacturer

(Q2391081), or a municipality in Germany (Q583512). However, this ambiguity can be resolved

when taking into account the table structure and, in particular, the fact that the “Manufacturer”

column only contains companies.

This section aims to provide a general introduction to the STI domain, where we first introduce

the notion of KG in Section 3.1. In Section 3.2, we define five sub-tasks that are relevant to STI,
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Figure 3.1: Illustration of an STI task with a given KG (Wikidata).

namely: cell-entity annotation, column-type annotation, columns-property annotation [63,

64], topic annotation, and row-to-instance annotation [104]. Section 3.3 proposes a macro-

common pipeline that fulfills the tasks of STI from pre-processing of the input table to the

final annotation results. In Section 3.4, we make an inventory of the gold-standard datasets

commonly used to evaluate STI approaches and we analyse their strengths and weaknesses.

In Section 3.5, we review the many approaches that have been proposed grouping them into

three families (not mutually exclusive) respectively based on heuristics, feature engineering,

and deep learning. We then describe the current performances of STI systems on selected

datasets. Finally, we discuss the current approaches in Section 3.6.

3.1 Knowledge Graph

Knowledge graphs are often associated with linked data technologies and projects since they

focus on interrelations between concepts and entities [42]. In essence, KGs are semantic

networks that formally describe things or entities of the real world and their relationships [53].

Each entity is identified by a globally unique URI [14]. Atomic elements of KGs are triples

〈subject,predicate,object〉. For example, as the KG illustrated in Figure 3.1, the country of

the city Belfort can be represented by the triple 〈Belfort,country,France〉 where the predicate

country qualifies the relationship holding between the entity Belfort and the value France.

KGs can be categorized into domain-specific (or vertical) KGs, encyclopedic KGs or common-

sense KGs depending on their content. A domain-specific KG focuses on describing a partic-
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ular field of interest. Such a KG is expected to present advantages in terms of accuracy and

in-depth domain knowledge coverage. It can effectively support knowledge reasoning and

knowledge retrieval for specific domain applications [138]. To illustrate, in the “Crop, Pest, and

Diseases” field, domain-specific KGs play a substantial role in agriculture [123], greenhouse

environment [142], and economic benefit analysis [125]. The Bio2RDF project which focuses

on Life Sciences [12] is an example of a domain-specific KG that is largely used.

An encyclopedic KG is generally large, spanning multiple domains, and is often openly and

collaboratively edited. This openness is reflected by the Linked Open Data cloud [18] which

includes the following largest encyclopedic KGs:

• DBpedia [19] is one of the main hubs of the Linked Open Data (LOD) cloud because of

its numerous interlinks with other KGs. It was created by researchers from the University

of Leipzig and the University of Mannheim in Germany by extracting multilingual

structured data from Wikipedia (e.g. infoboxes). It is maintained up-to-date thanks to

frequent extracts from Wikipedia. As of early 2016, DBpedia contained more than six

million instances and 200 million facts. Moreover, the DBpedia project provides tools

such as DBpedia Spotlight [77] that are convenient for mapping mentions contained in

unstructured data with KG entities.

• Wikidata [128] is a project hosted by the Wikimedia Foundation which aims to fuel the

infoboxes displayed on each Wikipedia page. Similarly to Wikipedia, it is collaboratively

edited by thousands of volunteers. As of early 2021, Wikidata had facts about 90 million

entities with labels expressed in more than 350 languages. Wikidata provides a separate

page for each entity, has a unique digital identification mechanism, and a lineage system

that allows to trace facts to their sources.

• Freebase [20] was developed by MetaWeb since 2007 until Google acquires it in 2010.

Its content comes also from collaborative editing and structural data automatically

imported from Wikipedia and other Websites. At the beginning of 2014, Freebase had 68

million entities and nearly one billion facts. Freebase ceased operations in May 2015,

and most of its data was transferred to Wikidata.

• YAGO (Yet Another Great Ontology) [120] is a comprehensive knowledge base con-

structed by researchers from the Max Planck Institute (MPI). While the first versions

of YAGO were made out of information extracted from the Wikipedia infoboxes and

attached to a schema made of the WordNet synsets, the latest version of YAGO now

contains entities extracted from Wikidata anchored to the Schema.org schema. In 2020,

YAGO released its fourth version containing 67 million entities and 340 million facts.

KGs constitute essential assets to support the STI process. Indeed, understanding the content
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of a table comes down to identifying the entities mentioned in the table cells and the relation-

ships between them. Therefore, mapping table content to KG entities can help identify latent

relationships, and thus understand the table semantics. The key to map tables and target KGs

is to examine the overlap of information between them. The wider the overlap is, the less

difficult it is to find the mappings.

It should be noted that each KG may present its own (dis)advantages to support the STI process.

For example, Wikidata provides rich content and numerous aliases for each entity to cover

a wide set of real-world synonyms. However, annotating a cell with such an encyclopedic

KG based on a string-similarity mapping may lead to a significant number of candidates due

to the presence of numerous homonyms. This would, in turn, make disambiguation more

challenging. For example, over a hundred entities have labels or aliases that contain the word

“France”. The Wikidata data model is also complex as it provides qualifiers that may need

to be specifically taken into account during the STI process. On the other hand, DBpedia

provides a reduced number of types curated in the DBpedia Ontology, which makes the typing

of table elements easier but potentially reduces the specificity of the annotations. Regarding

vertical KGs, the lack of knowledge from other domains may decrease the robustness of the

KG applications. Additionally, string matching may not be able to handle the specificities of

sophisticated domain-specific relations, schema, or entities, increasing the interpretation

complexity. For example, in the biology domain, genes and proteins often share the same

labels. To guide the choice of the supporting KG, it is noteworthy that selecting KGs with the

highest overlap with the dataset’s content will maximize the system’s performance. Besides,

combining several KGs will maximize the coverage and granularity.

3.2 Semantic Table Interpretation Tasks

An annotation task can be defined by the table elements required to be annotated and by

the type of candidates (individuals, concepts, or properties of the KG). As the example from

Figure 3.1, one could map the cell Belfort with the entity Q171545 from the knowledge base

with the help of the table context (the narrative location of the movie Our Happy Lives). Based

on our study of literature, we propose to decompose STI into five main tasks: cell-entity

annotation, column-type annotation, columns-property annotation [63], topic annotation,

and row-to-instance [103] (illustrated in Figure 3.2).

• Cell-Entity Annotation (CEA) is also known as Entity Linking. It aims to annotate a cell

with a KG entity. For example, in Figure 3.2, a CEA task needs to match the cell mention

“Suisse” with the entity Q165141 if Wikidata is the target KG.

• Column-Type Annotation (CTA) aims to map a column with a KG entity type. The

difficulty of the CTA task lies in selecting an adequate type granularity in a potentially
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Figure 3.2: Illustration of five STI tasks for a table describing the UEFA Euro 2008 group A
results a.

ahttps://fr.wikipedia.org/wiki/Championnat_d%27Europe_de_football_2008#1er_tour_-_phase_de_groupes

complex type hierarchy structure. An entity may have multiple types and types repre-

sented in complex hierarchical trees or even cyclic graphs (e.g. Wikidata type topology).

The type selected for a given column must be representative of the individuals it contains

and carry a maximum of information. If the selected type is too broad (e.g. the second

column of the table in Figure 3.2 is annotated as a “geographic entity” (Q27096213)

in Wikidata rather than “city of Switzerland” (Q1545591)), the annotation will carry

little information. Conversely, a type that is too specific may not be representative for

all values in a column, leading to an accuracy degradation in downstream tasks. In

Figure 3.2, the label “city of Switzerland” (Q14770218) would no longer be compatible

with the second column if other groups and cities that hold UEFA Euro 2008 games such

as Vienna (Q1741) are included in the table.

• Columns-Property Annotation (CPA) aims to annotate a column pair of a relational

table with a property. For example, the relationship between the last column and the

numeric column circled in orange in Figure 3.2 should correspond to the predicate

“number of points/goals/set scored” (P1351) in Wikidata.

• Topic annotation aims to annotate the entire table with a concept or an entity from the

target KG. Figure 3.2 illustrates that the entire table is about the entity “UEFA Euro 2008”

(Q241864) in Wikidata.

• Row-to-Instance annotates an entire row of a relational table with a KG entity. In this

task, each row is treated as an entity, which is considered the subject of the row. Row-to-

instance differs from the CEA task as it may be able to discover more entities leveraging

the context of the row, especially in the case where the subject of the row is hidden (e.g.
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on hidden-subject tables). For example, in Figure 2.5, the fourth row is represented by

(“Switzerland - Turkey, 11 Jun 2008” (Q12012827)) which can not be extracted by the

CEA task.

3.3 Generic Pipeline

The study of STI approaches in the literature allows identifying a recurrent pipeline of modules

used by the vast majority of systems. This section introduces a macroscopic view of a four-

stage STI pipeline: pre-processing, candidate generation, table elements processing, and

iterative disambiguation. It should be noted that the order of these modules may vary from

one approach to another. In addition, some approaches iterate between the annotation tasks

and disambiguation stages to improve the accuracy of annotations [104, 153].

Pre-Processing

The quality of the STI output is greatly influenced by the quality of the input data. A pre-

analysis of the data is, therefore, necessary and is often the first step of an efficient STI system.

For example, knowing the orientation of a relational table can help to identify a column and

its header information to disambiguate the cells.

The goal of the pre-processing module is to quickly and concisely summarize and analyse an

input table to ease the annotation process by converting it into an interoperable format. The

pre-processing analysis can be decomposed into the following two tasks.

First, format normalization allows to transform the original data into a format acceptable

to an STI system. Indeed, table sources are diverse, so does their representation in terms of

formats (e.g. Comma-Separated Values (CSV), JSON, HTML), charsets being used (e.g. UTF-8,

Unicode), languages (e.g. English, French), or content expressions (e.g. missing value). This

task also aims to clean up invalid or erroneous data for better compatibility among different

data sources, e.g. with syntactic corrections by fuzzy matching in [26, 89].

Second, informational analysis consists of extracting the potential information contained

in the table as much as possible before the annotation. The information carried by a table

includes the table types (e.g. relational, matrix) [68, 149], its orientation [24, 50], primitive

types for its columns (resp. rows), its header positions, if any, and its key column position

which carries the row’s subject [24]. Such information helps the system to understand the

scenario and to perform different operations in different situations. For example, the CTA task

is only suitable for relational tables, and it is related to the table orientation: for horizontal

tables (resp. vertical tables), it will assign a type to columns (resp. rows).

34



3.3 Generic Pipeline

Candidate Generation

The annotation is usually selected within a candidate list that depends on the table elements

and the corresponding task. For example, the first step of the CEA task is to generate a list of

candidate entities while the first step of the CTA task is to generate a list of candidate types.

Thus, STI systems automatically generate, manually add, or filter this candidate list in advance

(e.g. an annotation system based on supervised learning should be trained with pre-set labels,

those labels being the candidates of the annotation process).

String similarity-based lookup is a standard method to generate candidate entity sets in CEA

and row-to-instance tasks. Specifically, the syntactic similarity is calculated between cell

mentions and entity labels to select the most relevant entities as candidates. The choice

of the matching algorithm depends on the application scenarios. For example, [59] uses

Levenshtein-based distances whereas some public knowledge bases expose a public index

allowing users to extract and generate candidates, e.g. DBpedia spotlight [77].

In other tasks like CTA (resp. CPA), candidates are the set of types (resp. predicates) available

in the target KG. The generation of type candidates is sometimes equivalent to the retrieval of

the CEA candidates’ types [59, 79]. However, in some learning-based methods [98, 144], type

candidates are manually selected for training.

Some mentions can correspond to a large number of entities, e.g. several thousands of entities

whose labels contain the mention “France” can be retrieved from Wikidata. The number of

candidates may affect the efficiency of the annotation system as calculating and evaluating all

possible candidates may require a large amount of time. Hence, some STI systems prune the

number of candidates [86, 122]. This filtering process can be applied to reduce the size of the

final candidate set by tuning an acceptable entity-mention similarity threshold. However, one

should be aware that an inadequate threshold risks to filter the correct entity out. Another

way is to sort the importance of candidates by studying the attributes of the target ontology.

For example, [26, 79] leverage the BM25 [106] weights from an Elasticsearch index, that can

help to select the candidates with the highest usage rate.

Table Elements Processing

Processing different table elements is the core of an STI system. Each table element follows a

particular rule according to the table type. Given an input table that is relational and horizontal,

each row describes an entity and its attributes, while column elements share the same entity

type. Given Ti j , the target cell to be annotated from a horizontal table T , we identify six table

elements that can be leveraged to produce annotations.

Ti j indicates the target cell itself. Some studies use the string similarity as one of the compo-
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nents of candidate confidence [59,79]. For example, in Figure 3.2, for searching CEA candidates

for the cell “Suisse” in the first row, we should consider the entities containing the mention

“Suisse” in their label. The correct annotation is Q165141 which has the English label “Swiss

national football team” and the French label “équipe de Suisse de football”.

Ti∗ indicates the row context of the target. Some studies leverage the matching degree

between the attribute values of the target entity and the information provided in the table

for the CEA task. Most of the annotation tasks consider a single-cell subject relational table

scenario. Based on this assumption, it is reasonable to make this comparison for calculating

the confidence of the candidate. For example, in Figure 3.2, knowing the date (“11 juin”) and

city (“Bâle”) can help to annotate the third row with the right football game (Q12012827) based

on its neighbouring nodes in the KG.

T∗ j indicates the column context of the target. For a horizontal relational table, the informa-

tion carried by cells in the same column of the table is somewhat similar (e.g. cells referring to

the same concept or the same unit). For example, in Figure 3.2, the cells in the second column

are cities. Having this information could help to choose the right candidate between the city

of “Bâle” (Q78) and the family name “Bâle”(Q107983752).

T∗∗ indicates intra-columns relationships from the target table. Intra-column relationships

provide a global representation of a table. For example, in Figure 2.5(c), knowing the relation

between the column “Album” and the column “Artist/s” could help to filter out people who

did not publish any music album.

T0∗ indicates the header of the target table. The table header often directly explains the

contents of the column. Making full use of the information from the table header can help to

find the column type or properties more efficiently. For example, in Figure 2.6(a), the headers

“Year”, “Country”, and “Town” directly denote the concepts of the columns.

Tout indicates contextual elements encompassing the table. High-quality metadata can

help the interpretation of the table. For example, the table’s title can potentially determine

the domain of the table content, or a hyperlink in a table cell can reveal the identity of the

entity. In addition, the text surrounding the table is usually correlated with the content of

the table. Leveraging this correlation is used by some STI approaches [38]. Another way to

enrich the information used for the disambiguation of the target table relies on inter-table

relationships [129].

From the elements mentioned above, the initial annotation step is based on row interpretation,

column interpretation, entire table interpretation, or metadata interpretation. In row interpre-

tation, each row in the table describes an entity’s attributes. Column interpretation uses the

entities in the same column of the relational table with high mutual similarity. This feature can

help to constrain the range of candidates for a table cell. Entire table interpretation considers
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all cells from the table as the context for the disambiguation and is usually performed using

deep learning models such as [38, 115].

Iterative Disambiguation

When an STI system jointly undertakes multiple tasks among the five tasks defined in Sec-

tion 3.2, one task can provide additional useful information for solving the other tasks. For

example, when knowing the type annotation of a column (CTA), candidate entities for its inner

cells (CEA) that do not belong to the CTA type are less likely to be correct candidates [26].

We call this process iterative disambiguation. This iterative technique is frequently used in

heuristic-based approaches (Section 3.5.1) in which a pipeline including specific ordered tasks

and being executed once or in a loop is explicitly defined in two ways: (1) predefinition of a

pipeline, e.g. [26] performing sequentially CEA, CPA, CTA, CEA disambiguation with CPA or (2)

repeat a set of tasks multiple times and stop when it converges to a stable result [104, 153].

3.4 Datasets and Benchmarks
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Table 3.1: Gold standard datasets for evaluating STI approaches. Table type refers to the classification introduced in Section 2.1
where R=relational table, SR=single-cell relational table, V=vertical, H=horizontal.

Gold standard Table Type #Tables Avg. #Rows Avg. #Col #Entities #Class #Relations Origin KG Year

Limayea Manual SR-H 437 37 2 10,930 747 90 Web Wikipedia, YAGO 2010
Wiki_link SR-H 6,085 20 2 131,807 - - Web Wikipedia 2010

T2Db T2Dc SR-V 762 157 5 25,119 7,983 - Web DBpedia 2015
T2Dv2d SR-V 779 84 5 26,106 755 - Web DBpedia 2017

WDCe All 233,000,000 12 4 - - - Web - 2015
TabELf R 1,652,771 11 5 3,000,000 - - Wikipedia YAGO 2015
QuTEg R 1,766,721 13 5 - - - Wikipedia - 2021

SemTab 2019h

R1 SR-H 64 142 5 8,418 120 116 Web DBpedia 2019
R2 SR-H 11,924 25 5 463,796 14,780 6,762 Web DBpedia 2019
R3 SR-H 2,161 71 5 406,827 14,780 7,575 Synthetic DBpedia 2019
R4 SR-H 713 63 4 107,352 1,732 2,747 Synthetic DBpedia 2019

SemTab 2020

R1 SR-H 34,295 7 5 985,110 34,294 135,774 Synthetic Wikidata 2020
R2 SR-H 12,173 7 5 283,447 26,727 43,753 Synthetic Wikidata 2020
R3 SR-H 62,614 6 4 768,325 97,586 166,633 Synthetic Wikidata 2020
R4 SR-H 22,207 21 4 1,662,164 32,462 56,476 Synthetic Wikidata 2020

ToughTables SR-H 180 1,080 5 663,830 539 - Synthetic Wikidata 2020

SemTab 2021

R1-DBP SR-H 180 1,081 4 663,656 540 - Synthetic DBpedia 2021
R1-WD SR-H 180 1,081 4 667,244 540 - Synthetic Wikidata 2021
R2-Bio SR-H 110 2,449 6 1,381,325 657 547 Synthetic Wikidata 2021

R2-Hard SR-H 1,750 17 3 47,440 2,191 3,836 Synthetic Wikidata 2021
R3-Hard SR-H 7,207 9 2 58,949 7,207 10,695 Synthetic Wikidata 2021

R3-Git SR-H 1,101 59 17 - 123 / 60 - Github DBpedia, Schema.org 2021
R3-BiodivTab SR-H 50 260 24 31,468 614 - Open data Wikidata 2021

SemTab 2022i

R1 SR-H 3,691 6 3 26,198 4,551 5,745 Synthetic Wikidata 2022
R2-Hard SR-H 4,648 6 3 22,006 4,534 3,954 Synthetic Wikidata 2022

R2-2T (DBp) SR-H 144 1,008 4 486,203 429 - Synthetic DBpedia 2022
R2-2T (WD) SR-H 144 1,180 4 586,118 443 - Synthetic Wikidata 2022

R3-Biodiv SR-H 45 24 276 31,942 526 - Open data Wikidata 2022
R3-Git SR-H 6,892 14 62 - 6,229/1,001 -/4,412 Web DBpedia/Schema.org 2022

ahttps://zenodo.org/record/3087000#.YbY5Lp7MJPY
bThe # class for the T2D dataset is the sum of the number of “table classes” and “column properties” in the original dataset.
chttp://Webdatacommons.org/Webtables/goldstandard.html
dhttp://Webdatacommons.org/Webtables/goldstandardV2.html
ehttp://www.Webdatacommons.org/Webtables/
fhttp://Websail-fe.cs.northwestern.edu/TabEL/
ghttps://www.mpi-inf.mpg.de/research/quantity-search/quantity-table-extraction
hThe SemTab series are indexed at https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
ihttps://github.com/sem-tab-challenge/2022/tree/main/datasets
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Several datasets have been proposed to evaluate STI approaches. Some datasets attempt to

establish gold standards in which table components (cells, rows, columns, or cell pairs) are

associated with KG components (entity, class, or property), while others collect high-quality

tables to support STI training. In this section, we detail the most popular datasets (Table 3.1)

that are used by STI approaches.

Limaye [72] is one of the earliest gold standards used in the community. Limaye aims to

annotate Web tables using the YAGO KG. The dataset is divided into four subsets according to

the data source, the labelling method, and application scenarios. Three subsets are manually

labelled while the fourth one is automatically labelled. The automatically labelled subset

contains annotation errors [80] which were corrected by [16]’s work in 2015. Later on, [41]

updated the disambiguation links to the DBpedia KG.

T2D [105] is taken from the Web Data Commons project.1 DBpedia is used as the target KG

and extensive metadata such as the context of the table and whether the table has a header or

not is provided. The addition of a small number of non-overlapping tables that do not have a

mapping relationship with DBpedia makes this gold standard closer to real-world datasets. A

second version of the gold standard adding negative examples has been published and named

T2Dv2 [68]. T2D and its supplementary version T2Dv2 [68] have been largely used to evaluate

approaches in [25, 56, 153], and together with Limaye, they became the de facto gold standard

datasets to use for evaluating STI approaches. However, [43] pointed out that T2D has partial

annotation errors and lacks fine-grained annotations since a large number of tables only point

to the root class owl:Thing. [43] has proposed a revised version of the dataset named T2D*.

WDC [68] leverages the DWTC framework [40] to crawl tables from the Web and to distinguish

between different types of Web tables according to the inner-relation dimension and the

orientation dimension that have been defined in Section 2.1. The crawler has extracted a total

of 10.24 billion tables from which 0.9% are relational tables, 1.4% entity tables, and 0.03% are

matrix tables, amounting to 233 million tables available in the corpus. The rest are labelled

as layout tables or other tables. WDC also provides a subset containing 90 million relational

tables and a subset containing 50 million English relational tables.

TabEL [16] (also named WikiTables) has collected 1.6 million Wikipedia tables which contain

the class attribute “wikitable” from the November 2019 XML English Wikipedia dump. During

the extraction, the system collects the hyperlinks in table cells and metadata of the table, such

as the table caption and the page title. Thus, the mappings between YAGO entities and table

cells are easily derived. The types of tables in this dataset are unknown. QuTE [52] further

enhanced the dataset by merging TabEL with 2.6 million tables from the TableL [60] dataset

that were extracted from 1.5M Common Crawl web pages using the DWTC framework [40].

The TableL dataset covers mostly five major topics: finance, environment, health, politics,

1http://www.Webdatacommons.org/Webtables/
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and sports. These datasets have generally been used to train machine learning based STI

approaches [16].

Zhang et al. [153] proposed datasets2 for evaluating entity linking in Web tables, as well as

table header classification and relation annotation. The datasets contain 16,000+ annotated

relational tables that can be used for many studies related to Web tables. In particular, it

proposes the IMDB (movie) and Musicbrainz (music) datasets with cell entities and column

headers annotated using Freebase topics.

The SemTab competition (Semantic Web Challenge on Tabular Data to Knowledge Graph

Matching3) colocated with the International Semantic Web Conference from 2019 to 2022

provides the biggest datasets. This competition has attracted nearly 50 participant teams over

the three years. The SemTab 2019 datasets [63] use DBpedia as the target KG, while SemTab

2020 [64] uses Wikidata and SemTab 2021 [36] uses both DBpedia and Wikidata in addition

to Schema.org for the last round. The competition consists of four rounds in 2019 and 2020

and three rounds in 2021 and 2022. The data sources vary depending on the rounds. SemTab

2019 Round 1 is a small number of high-quality tables extracted from T2Dv2. Tables from

SemTab 2019 Round 2 are extracted from Wikipedia. Except GitTables [55] and BiodivTab [4],

the rounds from SemTab contain a large number of artificially generated tables annotated for

a target KG using SPARQL queries with the introduction of some noise such as misspellings.

The synthetic tables datasets can be used to test the scalability of a system given their size

and the large number of lookup candidates that can be returned. Nevertheless, these datasets

are not extremely challenging for the semantic interpretation approaches as they contain

synthetically generated noise. This explains the very high accuracy of the top-performing

approaches (F1 score up to 0,99 for some tasks [64]). There is also room for improvement in

incorporating all real-world challenges in future editions of the challenge, for example, tables

with cells containing multiple entities. To increase the difficulty, SemTab 2020 introduces dur-

ing round 4 the so-called Tough Tables dataset [35]. Tough Tables is composed of tabular data

simulating various difficulties: a large number of rows to evaluate the systems performance,

non-Web tables and artificially added misspellings and ambiguities.

In SemTab 2021 and 2022, the organizers bring new challenges with, in particular, the Bio-

divTab [4] dataset which contains 50 manually annotated tables from real-world biological

datasets. BiodivTab also contains artificially generated noises, abbreviations and complex

data formats. A subset of the GitTables dataset [55] has also been used in the last round of

SemTab 2021. This dataset is a collection of CSV tables from GitHub which are annotated with

DBpedia and Schema.org.

2https://github.com/ziqizhang/data/tree/master/Webtable%20entity%20linking
3http://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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Table 3.2: STI systems are classified into three families. We only consider the annotation tasks declared by the authors and when they have
related evaluations.

Approches Annotation Tasks Table Elements
KG Data Source

Published
YearClass Algorithm CEA CTA CPA R2I TA Ti∗ T∗ j T0∗ T∗∗ Tout

Heuristic

Lookup
based

Venetis et al. [127]
p p p

Custom Custom Web Tables 2011
Wang et al. [130]

p p p p
Probase Custom Wikipedia Tables 2012

Deng et al. [37]
p p

FreeBase, YAGO Custom Wikipedia Tables 2013
Sekhavat et al. [109]

p p
DBpedia Custom Web Tables 2014

TabEL [16]
p p p

YAGO Limaye 2015
ADOG [94]

p p p p p
DBpedia SemTab 2019 2019

Tabularisi [122]
p p p p

DBpedia T2D, VizNet 2019

C 2 [66]
p p p p

DBpedia, Wikidata
Limaye, ISWC2017, SemTab 2019,

T2D, Semantification, Custom Data
2020

Magic [113]
p p p p p

DBpedia, Wikidata SemTab 2021 2021
Alobaid et al. [6]

p p
DBpedia SemTab 2021, T2D 2022

Iterative

Zwicklbauer et al. [156]
p p

DBpedia Custom Wikipedia Tables 2013
T2K [104]

p p p p p
DBpedia T2D 2015

TableMiner+ [153]
p p p p p p p

Freebase Limaye, IMDB, MusicBrainz 2017
LOD4ALL [79]

p p p p p
DBpedia SemTab 2019 2019

CSV2KG [114]
p p p p p p

DBpedia SemTab 2019 2019
MTab [86, 89, 90]

p p p p p p
DBpedia, Wikidata SemTab 2019-2021 2019

LinkingPark [26]
p p p p p

Wikidata SemTab 2020 2019
DAGOBAH-SL [57, 58, 59]

p p p p p
DBpedia,Wikidata SemTab 2020-2022 2019

MantisTable [29, 30, 31]
p p p p p p

DBpedia, Wikidata SemTab 2019-2021 2019
Kepler-aSI [8, 9]

p p p p p p
DBpedia, Wikidata SemTab 2021-2022 2020

JenTab [1, 2, 3]
p p p p p

DBpedia, Wikidata SemTab 2020-2022 2020
KGCODE-Tab [71]

p p p p p
DBpedia, Wikidata SemTab 2022 2022

Feature
engineering

based

Limaye et al. [72]
p p p p p p

YAGO Limaye 2010
Mulwad et al. [80, 81]

p p p p p p
Wikitology Limaye 2010

SemanticTyper [98]
p p

DBpedia Museum 2015

DSL [78]
p p

DBpedia
City, Museum,

Weather, Custom Soccer
2016

Neumaier et al. [84]
p p

DBpedia Government Data Portal 2016
NUMER [65]

p p p
DBpedia NumDB 2018

Deep
learning

based

KG
modelling

Vasilis et al. [41]
p p p

Wikidata Limaye, T2D, Wikipedia 2017
Biswas et al. [17]

p p
DBpedia Custom Wikipedia inforbox 2018

DAGOBAH-Em [24]
p p p p p

DBpedia, Wikidata SemTab 2019 2019

Table
modelling

Sherlock [56]
p p

DBpedia T2D, VizNet 2019
Sato [144]

p p p
DBpedia VizNet 2019

ColNet [25]
p p p

DBpedia Limaye, T2Dv2 2019
Guo et al. [49]

p p p
DBpedia T2Dv2 2020

Zhang et al. [150]
p p p p

DBpedia T2Dv2 2020
TURL [38]

p p p p p p p p
DBpedia WikiGS, WikiTable, T2D 2020

TCN [129]
p p p p p p

- Custom Web Tables, WikiTable [38] 2021
DUDUO [115]

p p p p p
- WikiTable, VizNet 2021

Singh et al. [112]
p p p p

DBpedia T2Dv2 2021
Zhou et al [154]

p p p
DBpedia Custom Wikipedia Tables 2021
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In this chapter, we review the notable approaches from the literature. Among the five tasks

introduced in the previous section, the literature mostly focuses on CTA, CEA, and CPA. We

propose to classify STI systems according to three representative paradigms of their intrinsic

methodology: (1) heuristic methods (Section 3.5.1) which mostly rely on heuristic techniques

such as entity matching, Term Frequency–Inverse Document Frequency (TF-IDF), majority

voting, or simple probabilistic frameworks to predict a target; (2) feature-engineering based

methods (Section 3.5.2) which require a feature engineering process to extract statistical

and lexical features from the table that are then used to train Machine Learning models ;

(3) Deep Learning based methods (Section 3.5.3) that leverage a large number of tables and

neural networks to learn deep and contextualised representations of elements of the table,

requiring little feature engineering. More details on this classification are shown in Table 3.2

including representative algorithms, target tasks, table elements used, reference KG, and year

of publication4.

Then, we discuss these methods from different perspectives: the pros/cons of heuristic-based

methods versus Machine Learning based methods, the importance of table elements and the

KG structure for improving the accuracy, and the trade-off between efficiency and accuracy

(Section 3.6). Finally, we describe the current performances of STI systems on selected datasets

in Section 3.5.4.

3.5.1 Heuristic-Based Approaches

The heuristic class gathers diverse approaches which are often considered as baseline STI

approaches. The core of each system is algorithmically straightforward and does not require

much effort in feature engineering or learning. Indeed, the STI tasks are carried out using

heuristic techniques such as string similarity measures [79, 94, 130], majority voting [156],

TF-IDF [94, 122] or probabilistic frameworks [86]. The context of the table, including the

header, the title, and the neighbouring cells [59, 130] is also taken into account but not thor-

oughly. We further identify two subclasses of heuristic approaches: lookup based approaches

(Section 3.5.1) and iterative approaches (Section 3.5.1).

4In Table 3.2, we use the following notions: “R2I” indicates the task “Row-to-instance”; ‘TA” indicates the task
“Topic annotation”; “Ti∗” indicates that, when labeling a cell, information from the same row is used; “T∗ j ”
indicates that the approach leverages information from the target column (CEA, CTA) or columns (CPA); “T0∗”
means that the approach has a special treatment on the headers of the table; “T∗∗” indicates that the approach
considers information from all tables elements, including inter-columns influence and training the model with
the whole table; “Tout ” indicates that the approach not only uses the target table itself for annotation but also
considers metadata, including other tables associated with the target table and the text near the original target
table.
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Lookup Based Approaches

Approaches from this paradigm work with an initial candidate entity set determined by a

lookup service. After generating candidates through lookup, these methods score the candi-

dates using different metrics on table elements (e.g. cells, type of columns, etc.).

Venetis et al. [127] introduce a model for extracting the column type and the relationships

between the key column and other columns. To increase knowledge coverage and avoid issues

related to KG incompleteness, the authors present an isA database to carry out the CTA and a re-

lation database to carry out the CPA. The isA database is built by using concept extraction tech-

niques on 100 million English documents that contain the pattern “C [such as|i ncl udi ng ]e[and |, |.].”.
They generate the relation database with the help of the TextRunner open extraction sys-

tem [11]. The authors demonstrated that a hybrid model leveraging a Bayes rule and majority

voting has the best performance. The Bayes rule measures the global relevance between cell

values and column type labels in tables. The authors conclude that using a target knowledge

base (YAGO) leads to higher precision. However, leveraging the isA database can significantly

improve the coverage and allow to obtain more meaningful labels for complex or non-explicit

table cells.

Wang et al. [130] focus on the table headers to better identify the concept associated with a

given column. The approach uses a header detection module that leverages Probase [137]

querying and rule-based filtering. In the absence of headers, a custom concept is employed

with Probase queries by measuring the type occurrence of the column cells. The table interpre-

tation is executed by studying the cells-header compatibility and entity-values compatibility.

Through experiments on a search engine, the approach demonstrates that headers can help

understand the columns of a table.

Deng et al. [37] focus on the production of top-k candidates for CTA. The authors first build

a Directed Acyclic Graph mapping the entity labels from YAGO and Freebase within a type

hierarchy tree. Then, they leverage a distributed system to make the process scalable and

efficient without losing precision and accuracy for annotations. Specifically, a two-stage

MapReduce system is built. (1) Multiple signatures for each cell mention and entity label are

generated to support the cell-label fuzzy matching. For example, “Shar” is one of the signatures

for the cell mention “Shark Night 3D”. All candidate types according to the Directed Acyclic

Graph are then aggregated with subordinative entities of each column. (2) The occurrence of

each type is counted in order to select the top candidate type. To accelerate the computation,

candidate types are aggregated into disjoint groups.

Sekhavat et al. [109] leverage NELL [118], a Web text corpus, and natural language patterns

(PATTY [83]) to extract relations (CPA). The target KG is YAGO, in which only 23 relations are

considered as possible annotation for a pair of columns. These are also relations extracted
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by PATTY from Wikipedia pages. Each relation r is represented by a set of textual patterns

p1, ..., pk provided by PATTY. Note that a pattern pi can be associated with more than one

relation. Semantic mentions in a pair of columns are linked to KG entities (YAGO) with exact

matching. Two columns are connected via a relation r if each pair of entities (e1, e2) in the

same row belongs to this relation. To determine whether (e1, r , e2) is a valid triple, textual

contexts related to both e1, e2 are extracted from NELL and are mapped to a list of patterns

p1, ..., pk in PATTY. The problem then comes down to computing the posterior probability of

r given evidences p1, ..., pk : Pr (r |p1, ..., pk ). A Bayesian framework is used to compute this

posterior.

TabEL [16] aims to provide an extensible framework. After a pre-processing, the approach

first generates candidates for each cell using YAGO and ranks them according to their string

similarity with the cell and their popularity. Every candidate participates in the calculation of

the annotation. In the joint inference module, an undirected probabilistic graphical model

is extracted to capture entity-context (elements from the same table) co-occurrence. These

co-occurrence factors are updated with the connectivity between candidates, resulting in the

final CEA annotations.

ADOG [94] considers scores combined with string similarities, frequencies of properties, and

the normalized Elasticsearch score for each match from DBpedia for the CEA task. The system

weights these scores with the IDF score of types. To be able to compute the Levenshtein

distance and TF-IDF, ADOG uses ArangoDB5 to load DBpedia and index its components. The

frequency of classes and properties is then used to obtain the CTA and CPA results.

Tabularisi [122] adapts TF-IDF statistics to rank the CEA candidates in a given column. A

candidate entity is represented by a binary feature vector in which each feature is an indicator

(1 if present, else 0) of a property used to describe the entity (e.g. i nst anceO f ). Different

features have different expressiveness. They are thus weighted using TF-IDF. Specifically,

the “Term Frequency” of a feature is the number of cells whose first candidate entity has that

feature, and the “Document Frequency” is the total number of occurrences of that feature in

all candidate entities in all cells. The score of a candidate entity is a weighted combination

of its TF-IDF score, Levenshtein similarity and word similarity. The weights are either set or

learned using a two-layer neural network. The CTA is performed by a top-down brute-force

search in the KG class hierarchy tree. The system also sends the most frequent relation among

columns with SPARQL queries of cell mention pairs.

C 2 [66] aims to handle the CTA task with the help of nine datasets. C 2 classifies columns

into string entity columns, number columns, and mix-type columns (e.g. emails, dates). The

system relies on decision trees, which leverage the pattern of the cell mentions or numerical

interval for splitting the branches, to annotate numeric columns and mix-type columns. For

5https://www.arangodb.com/
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entity columns, voting from the concepts extracted from DBpedia or Wikidata for each entity

cell is used. C 2 also considers the type co-occurrence within a table to adjust the annotation.

Magic [113] adopts the approach of generating comparison matrices (called INK embed-

dings) to speed up the computational efficiency. INK embeddings are representations of the

attributes and values of an entity or the table context of a cell mention. The complete compar-

ison matrix is generated by fusing multiple candidates. The system outputs CEA annotations

by measuring the compatibility between the INK embeddings of the KG and the table. The INK

embeddings of entities from the same column are collected to carry out CPA and CTA. For the

annotation, the system focuses on the key column: they do the lookup (via public endpoints)

for each cell in the key column, then use its neighbourhood to find the candidates for the

neighbouring cells in the same row (they do not perform the lookup on the whole table due to

limitations of public API usage). Misspellings might however be a challenge for Magic and

it cannot detect synonyms of attributes. However, INK embeddings improve computational

efficiency and provide a way to implement column wised similarity.

Alobaid et al. [6] handles CTA with a strong focus on the trade-off between type coverage and

type specificity after generating type candidates via entities-wised queries on cell mentions.

The type coverage is built on a weighted type hierarchy index inside a column, and the type

specificity is associated with a distance to the root. The authors test different balance settings

between these two factors using the T2D and SemTab datasets.

Iterative Approaches

Iterative approaches are usually built on top of a lookup system, with an additional multi-

task disambiguation step for re-ranking candidate entities. The iterative disambiguation

techniques, as described in Section 3.3, play a significant role in the improvement of the

model performance.

Zwicklbauer et al. [156] pioneered iterative majority vote strategies. The idea is based on the

majority voting of annotation candidates of the cells for the CTA task. The system generates

these cell candidates using a search-based disambiguation method [157]. Since majority

voting plays an essential role in the system, this approach is sensitive to the number of table

rows. The extreme case is that the annotation precision can be less than 0.1 with single row

tables.

T2K [104] annotates Web tables by mapping their columns to DBpedia properties, and their

rows to DBpedia entities, associating the whole table with a DBpedia class. A key column’s

position for each table is firstly detected by a preprocessing step. T2K transforms row-to-

instance and table topic tasks into CEA and CTA on the key column. The initial entity mapping

is derived from a lexicographical comparison between the labels used in the table and those
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of the entities described in DBpedia with Jaccard, Levenshtein, and deviation similarities. An

aggregation of these similarities is then used to choose the initial CTA annotation. The system

adopts an iterative process between a CEA matching module and a CPA matching until the

output is stable. The system achieves promising results on CEA and topic annotation.

TableMiner [152] and the following work TableMiner+ [153], first use a lexical expression to

extract a primitive type for each column. Similarly to T2K, TableMiner sees row-to-instance

and table topic as CEA and CTA on the subject column. The system identifies a subject

column for each table considering evidence collected from the original webpages. During the

annotation phase, the authors iteratively label records corresponding to the subject column

and their attribute columns using information from the HTML context of the tables to create a

richer representation of cells and columns. TableMiner+ uses partial matching during the CTA

annotation. The authors claim that partial matching is efficient and that eight rows are enough

for supporting the annotation. A loop is used between CEA annotation and CTA annotation

until the results remain stable. This system leverages the Freebase KG and was evaluated on

the IMDB and MusicBrainz specific datasets, as well as on Limaye.

LOD4ALL [79] is initialized by building an RDF store database and a score DB database

containing candidate types with scores reflecting the level of specificity generated by Okapi

BM25 [106]. The system uses a similar approach as [156] for the candidate generation module,

which uses a combination of Elasticsearch’s score and the SimString’s score to select the top

100 candidates. The CTA leverages Okapi BM25 type scores and the type coverage on the table.

The CEA and CPA are calculated after CTA type filtering. The system is targeting DBpedia as

ontology and has participated in the SemTab 2019 challenge. A similar pipeline is used by

CSV2KG [114]. However, CSV2KG considers applying a threshold on the normalized entropy

of the two highest type counts from the annotated candidates parent types list to decide the

level of granularity of the CTA.

MTab [86] employs four different lookup services. This approach analyses signals from server’s

lookup ranking, header context analyses, SpaCy type prediction6, Duckling type prediction7

and value similarities. Each signal is transformed into a normalized probability score. The sys-

tem aggregates selected probabilities with learnable weights according to the associated task.

In addition, the authors also used EmbNum [88] to help to produce annotations on numerical

columns. Column types and column pair relations are computed based on entity scores. Enti-

ties, types and relations are iteratively calculated two times to disambiguate CEA, CTA, and

CPA annotations with inter-tasks relatedness. In a more recent work, MTab4Wikidata [89, 90]

adapts fuzzy matching and “two cells search” to enhance the support of misspelling and

ambiguities in table content. The system won the first prize in both SemTab 2019 and SemTab

6https://spacy.io/
7https://github.com/facebook/duckling
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2020 challenges.

LinkingPark [26] leverages the Wikidata MediaWiki API to generate cell candidate entity lists.

It also adapts a fine-grained Elasticsearch index to rank those candidates. This system firstly

adopts a cascaded pipeline to generate candidate entities. Then the system disambiguates

each cell through an iterative coarse-to-fine algorithm by considering the CPA annotation

results. The system finally generates the CTA annotations from the disambiguated cell annota-

tions. The authors also claim that Wikidata’s type ontology is noisy which makes it difficult to

assign types during CTA annotation.

DAGOBAH-SL [59] calculates a score for each cell entity. This score combines the Levenstein

similarity and the context similarity between the entity’s neighbouring nodes and the row

context of the target cell. The authors collect triples containing cell candidates between the

two columns and calculate the sum of the weights from the corresponding cell candidates

for each relation. The output of CPA is the relationship with the highest sum. The system

then leverages the CPA results to perform CEA disambiguation. As for CTA, in addition to the

majority vote based on CEA, DAGOBAH-SL also leverages the distance to the root concept

and the ranking of each Wikidata entity’s class to select the most accurate type. In more recent

works, DAGOBAH-SL [57, 58] enhances the system with CTA disambiguation and look-up

generation. The entity context made with multiple-hop neighbouring entities is also taken into

account in calculating the scores. The system won the first prize in accuracy in the SemTab

2021 and SemTab 2022 challenges.

MantisTable [30, 32] pipeline starts with classifying each column into three types: Named

Entity column, Literal column, and Subject column. The candidate generation of this approach

is based on SPARQL queries which extract all candidates containing the cell mentions. Then,

the system handles the CEA using row-wise compatibility analysis and CPA using majority

voting. For the CTA task, the authors list all candidate types in addition to their number of

occurrences in the table (row coverage). After filtering with a threshold, the rest of the type

candidates are transformed into a graph according to the ontology hierarchy. Type scores

are then updated with the distance to the root. In the end, the highest score represents the

most accurate and specific annotation. The recent version of MantisTable SE [29] optimizes

the system by updating the scoring function, accessing the LamAPI8 API (instead of using a

SPARQL endpoint) and adding a final disambiguation step. MantisTable also supports row-

to-instance by applying CEA on a subject column detected in preprocessing. The enhanced

version of MantisTable, named s-elBat [31], proposes a revision step after generating the CEA,

CTA, and CPA annotations. This system recheck the confidence of each annotation, only some

mentions are considered for an additional annotation attempt to optimise computational

efficiency. A similar pipeline has been adopted by Kepler-aSI [8,9] where they leverage Wikidata

8https://bitbucket.org/disco-unimib/lamapi
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or DBpedia end-point.

JenTab [1, 2, 3] starts from analysing the row context and column context of a table. This

system wraps each computational unit into independent modules so that they can be recalled

easily and repeatedly. Those modules include row information processing, disambiguation

using CTA output, etc. The system leverages different module combinations for supporting

CEA, CTA and CPA tasks. The evaluation shows that JenTab has an excellent performance on

synthetic datasets. The authors also investigate the implications of considering multi-hop

links in type hierarchy relations. The result shows that considering two hops has a small

probability of improvement, while multi hops lead to a significant decrease of the accuracy.

KGCODE-Tab [71] first distincts table columns into subject columns and attribute columns.

Later, for each cell value, the system uses Bing9 to search the cell mentions and obtains the

result page in HTML pages for checking and correcting the spelling of each word. The cell

candidates are extracted from MediaWiki Action API10 and DBpedia Lookup11. Later, the

authors design different functions for computing the Cell-Entity Annotation (CEA), Column-

Type Annotation (CTA), and Columns-Property Annotation (CPA) for subject columns and

attribute columns. The system won the first prize in accuracy in the SemTab 2022 challenge.

3.5.2 Feature Engineering Based Approaches

This family of methods extracts statistical and lexical features (such as distribution of nu-

merical values, occurrence of cell mentions, textual similarity, etc.) from the table rows and

columns and uses them with machine learning models. Typical algorithms used for STI in-

clude SVM [81], Random Forest [78] and K-Nearest Neighbor [84] for example. A labelled

dataset is required for the training. The amount and the quality of training data, and conse-

quently the quality of input features, have a significant impact on the model performance, as

discussed in [78]. In addition, we observe that ML methods target the CTA task more than

other tasks, as columns can provide more statistical features than other annotation targets.

Limaye et al. [72] introduce one of the first works on STI. The approach computes the TF-IDF

cosine similarity between a cell mention and an entity label and the compatibility between

the cell type and the column type to execute the CEA task. CTA task depends on TF-IDF cosine

similarity between column header and each entity’s type label. The CPA annotation depends

on the compatibility between the relation and column pairs. All these features are weighted

through a machine learning framework.

Mulwad et al. [81] leverage majority voting on the type of cells candidates for the CTA annota-

9https://www.bing.com/search
10https://www.wikidata.org/w/api.php
11https://lookup.dbpedia.org/
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tion. The PageRank algorithm weights each cell’s type from the ontology during the CTA. For

CEA annotation, the system collects entity features from entity PageRank, string similarities,

entity index score and entity page length to generate a vector representation of each entity.

An SVM classifier is then built upon these features to make predictions. This system supports

both DBpedia and Wikitology.

SemanticTyper [98] processes each column of the table independently for CTA. The system

first distinguishes between columns of numbers and columns of strings by voting on the types

of cells in each column given a predefined threshold. Strings columns are trained upon cosine

similarities on TF-IDF, considering a column as a document. To annotate numerical columns,

the authors use a variety of distribution representation methods. In both cases, they adapt the

training data that consist of a set of semantic labels associated with samples of data values.

The prediction aims to find the most similar candidate by comparing the distance between the

query column and each sample set in the training data corresponding to a distinct semantic

label. The chosen distance metric depends on the column type. The training dataset was

extracted from vertical domain datasets such as museums and cities, and the authors associate

columns from these datasets with DBpedia classes. The main limitation of this work resides in

not taking into account relationships between columns.

DSL [78] build their approach for CTA on datasets from four different domains: city, weather,

museum, and soccer. Labels are partially manually added to these datasets. DSL leverages

features including string similarity and number distribution between chosen labelled datasets

and the rest of the data during the prediction. The difference with SemanticTyper is that the

distribution is also available for string columns in this approach. The system learns the weights

between these features through two supervised learning algorithms: logistic regression and

random forest. The evaluation shows that logistic regression achieves better results. The

authors claim that the incorrect predictions come from the top decomposition point of the

decision tree.

Neumaier et al. [84] focus on CTA labelling for numerical columns. Their work is not limited

to predicting a unique label but rather expands the scope of labelling to its surrounding

information. For example, instead of labelling “height”, this system will label it as “the height

of an athlete playing basketball in the NBA”. To do so, the authors constructed a background KG

based on DBpedia. This background knowledge base is extracted as a hierarchical structure

divided into multiple multi-level groups to provide context. Each node in the hierarchy

represents a type or a predicate and provides statistical information (maximum, minimum,

or distribution) of the relative number set as features. The authors use these features and

KNN to make predictions. The authors also explore the system’s performance at different

hierarchy levels in the background KG built on DBpedia and Open Data. They pointed out that

DBpedia has still limitations in terms of coverage and freshness compared with other open
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datasets. For example, the Austrian Open Data Portal has tables generated by weather stations

every 15 minutes. However, DBpedia typically has numeric values only for “current” or “latest”.

Another limitation of this work is that the size of numerical columns and the popularity of

numerical KG properties may influence the accuracy. Hence, NUMER [65] proposes to link

subject cells with KG entities first, and then only extract the linked properties for enabling the

column-wise number distribution study.

3.5.3 Deep Learning Based Approaches

Deep Learning has achieved many successes in various domains thanks to the availability of

huge amounts of data and powerful computing resources. It has attracted more and more

attention from the STI community over the past few years. We identify two main directions for

the application of deep learning in the STI domain: KG modelling (Section 3.5.3) and table

modelling (Section 3.5.3).

KG Representation Learning

This direction focuses on the entity level in which models learn embedding representations

for entities of a table cell instead of the cell itself. Specifically, KG embedding techniques (e.g.

TransE [21], TransH [134]) are used to encode the entities and their relationships into a vector

space. STI models rely on the intuition that the entities in the same column should exhibit

semantic similarities. Hence, they should be close to each other in the embedding space w.r.t.

cosine similarity distance [41] or Euclidean distance [24].

Vasilis et al. [41] provide different methods. One of the proposed systems assumes that the

correct CEA candidates in a column should be semantically close. From this assumption, a

weighted correlation subgraph in which each node represents a CEA candidate is built. The

edges are weighted by the cosine similarity between two related nodes. The best candidates

are the ones whose accumulated weights over all incoming and outcoming edges are the

highest. In addition, a hybrid system that combines the correlation subgraph method and an

ontology matching system is also introduced and achieves a significant improvement in the

end.

Biswas et al. [17] focus on topic annotation for Wikipedia infoboxes by leveraging metadata

from the Wikipedia page. The annotation ignores the infobox content since the infobox in-

formation is often incomplete, incorrect and missing. Wikipedia page section headers and

abstract are extracted as the source of information and are featured by Word2Vec embeddings

for each word. Note that named entities present in the abstract are also transformed into

RDF2Vec [101] vectors with DBpedia pre-trained embeddings. The global representation

vector (called document embeddings) of an infobox is the concatenation of Word2vec and
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RDF2vec vectors. Two classifiers (Random Forest and CNN) are trained on top of the docu-

ment embeddings on 150,000 tables with 30 preset types. The evaluation shows that CNN

outperforms the Random Forest classifier.

DAGOBAH-Embedding [24] hypothesizes that all entities in the same column of the table

should be close to each other in the embedding vector space. Consequently, the correct

candidates are assumed to belong to a few clusters. The K-means clustering is performed

using TransE’s pre-trained embedding to cluster the candidate entities. The good clusters with

high coverage are retained by a weighted voting strategy. Both CEA and CTA are selected from

the chosen clusters. Experimental results prove that this approach has successfully improved

the accuracy of the CTA task. However, the system is also misled by incorrect candidates in the

selected clusters during the CEA task.

Table Representation Learning

This direction deals directly with the textual content of the table as well as intra-table and

inter-table interactions. The contextualized representation of basic elements of the table

(i.e. cell, column) is learned by using deep neural networks [25, 56] or language models like

BERT [38, 115, 154].

Sherlock [56] learns to perform the CTA task using 1,588 features extracted from a single

column of a given relational table. The features are divided into four categories: character-wise

statistics (e.g. frequency of the character “c”), column statistics (e.g. mean, std of numerical

values), word embedding, and paragraph embedding. Except for column statistics features,

other features are compressed into a fixed-size embedding using a subnetwork. A two-fully

connected layer network is trained on both the embedding features and column statistics

features to predict a column type annotation among 75 types inherited from the T2Dv2 dataset.

The evaluation shows good results on various column types, including Dates and Industry.

However, it is less sensitive to the purely numerical values or values appearing in multiple

classes. Facing the potential missing information in single-column annotation, Sato [144]

extends Sherlock by considering the whole table context. The table topic embeddings with

LDA features modelled by an additional subnetwork and the column-pairs-wise dependency

modelled by a CRF layer are also studied.

ColNet [25] predicts the column type (CTA) using only intra-column contextual information.

Specifically, all the cell mentions of a column are split and concatenated into a single word

sequence. This word sequence is converted into an embedding vector using word embeddings

models like word2vec. This embedding is later input into a CNN model. It is worth noting that

ColNet predicts the type of each column independently, and thus ignores the inter-column

contextual information. To generate a training dataset, ColNet makes use of a KG to collect
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candidate classes given the cells of the column. For each candidate class c , N different sets of h

entities belonging to c in KG are retrieved and the associated word embeddings are stacked into

a matrix M . This forms N training samples {M , c} for class c. To alleviate the computational

complexity, the candidate classes that appear rarely are not modelled and h rows of the column

are randomly selected to predict a type annotation. The type prediction of ColNet is then

refined by the matching entities of inner cells through majority voting. Similar work includes

Guo et al. [49] where the authors also introduce the use of BiGRU-Attention rather than CNN

and support multi-column annotation using linear-CRF (linear-chain conditional random

field) on the entire network table and an undirected graph model that directly models the

conditional probability.

Zhang et al. [150] address the table-to-KG matching including CEA and CPA tasks. Additionally,

in the pipeline, with the help of a table-to-KG matching step, their tool performs a novel entity

discovery task. A classification model is based on syntactic similarity (e.g. edit distance,

Jaccard distance) and semantic similarity (deep semantic matching method DRMM [47])

between a table mention and corresponding candidate entities to determine whether the

mention is linkable. If yes, at most one entity is predicted for this mention. Another classifier

is then built on the cell annotations (CEA), exploiting column-wised features such as naive

features (e.g. length of header), label similarity between header and properties of cell entities,

value similarity between literal values (e.g. numerical, time) in the table and literal values of

cell entities for the column property matching (CPA).

TURL [38] pioneers the application of pre-trained language models such as BERT in the STI

domain. It provides a universal contextualized representation for each table element (i.e.

caption, header, content cells) which can be fine-tuned and applied in various downstream

tasks such as CEA, CTA, CPA, or table augmentation. The table augmentation task mainly

involves enriching the semantics of the table by extending it with new columns (attributes).

The model employs a Transformer-based encoder [126] to capture the information from table

elements. To this goal, the input table is first serialized into a sequence of caption tokens,

title tokens, header tokens, and row-by-row cells. A cell consists of its content (mention) and

a candidate entity representing it in a KG. The sequence of tokens is then converted into

embeddings using word embeddings for textual tokens and KG embeddings for entity tokens.

To reduce the redundancy in the fully-connected attention learning and better draw the inter-

column and intra-column, inter-row and intra-row, column-row interaction, the conventional

attention layer is masked by a so-called visibility matrix which allows only a portion of table

elements to participate in the modelling of a specific element. For example, cells in the same

row or the same column can interact with each other. Apart from the BERT’s Masked Language

Model objective, TURL introduces an additional Masked Entity Recovery objective to reinforce

the learning of factual knowledge embedded in the table and represented by KG entities. The

model is trained on 570K relational Wikipedia tables.
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Singh et al. [112] introduces a method based on BERT for relation extraction from tables (CPA).

Only two-column tables are studied in this work. The table is tokenized and transformed

into linearized rows and linearized column headers that are passed through a pre-trained

BERT encoder to obtain two vector representations for table content and table header. A

fully-connected layer takes as input these two vector representations and predicts scores

over all candidate relations in the two-column table. The model is trained on synthetic

tables generated automatically from a KG. However, synthetic tables lack metadata such as

column headers and captions. According to the authors, such metadata is important for the

relation extraction task. Hence, they propose a novel method which generates synthetic tables

associated with metadata (context of table contents, meaningful column headers).

TCN [129] not only exploits intra-table contextual information but also inter-table contextual

information for the two tasks CTA and CPA. According to the authors, the global context of a

table can be complemented by discovering its implicit connections with other semantically

related tables. Such inter-table connections can come from overlapping cell contents, con-

sistent schemas or similar table topics between two tables. The embedding representations

of a specific table cell and the table topic are jointly learned leveraging intra-table contexts

(i.e. other cells in the same column or the same row, the table topic) as well as inter-table

contexts (i.e. the cells sharing the same value, the columns with a similar header and the

topic from other related tables). All of these contexts are fused into the embedding through

the attention mechanism. As in DODUO model [115], the CTA and CPA tasks are trained

in a supervised manner on two specific objective functions dedicated to column type pre-

diction and column pair relation prediction, respectively. In addition, in the case where a

large annotated training dataset is not available, TCN switches to transfer learning in which

the ultimate cell embedding is fined-tuned with a BERT-like unsupervised pre-training. The

evaluation shows that the inter-table contextual information contributes positively to the

model’s performance. However, the utilisation of inter-table context remains challenging

since it requires prior knowledge about tables’ schemas which are generally diverse.

DODUO [115] learns to jointly annotate the column type and column pair relation through

multi-task learning. Similarly to other Transformer-based models, the key idea of DODUO is

to incorporate table contexts (intra-column and inter-column contexts) into the prediction of

a single column type or a single column pair relation using a table-wise attention mechanism.

The model serializes the input table column by column into a sequence of tokens in which

each token represents either a column header or a column cell. A special [CLS] token is

appended at the beginning of each column to distinguish two different columns. This token is

also considered as the embedding representation of the column itself. During the inference

phase, two different output layers perform two different tasks: one takes a single column

representation (i.e. the hidden vector of the [CLS] token) as input and produces a semantic

type for this column accordingly, one takes a pair of column representations and predicts a
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relation between them.

Zhou et al. [154] focus on the column type detection (CTA) task. This work leverages the

Star-Transformer model [48] to learn a vector representation for each column taking the

inter-column interactions into account. The input embedding of a column is initialized as

a concatenation of semantic features which are word embeddings averaged over cell con-

tents and statistical features which are adopted from Sato’s [144] Sherlock model. In the

context of limited training tabular data and weak order-dependence of table columns, the

Star-Transformer is preferable to the Transformer as it reduces the computational complexity

by replacing the fully-connected attention with a sparser one.

3.5.4 Evaluation

Traditionally, STI systems are evaluated using the information retrieval metrics: accuracy,

recall, and F1 scores [24, 38, 63, 78, 153]. Among the various tasks, CTA is a special one since

a given type and its parents can be all correct when determining the category of an entity or

of a group of entities. For example, Paris can be equally typed as a capital or more generally

as a city, which are not in conflict with each other. Considering only one of these types, such

as capital, as the only correct answer would make it difficult to assess systems that can only

predict the parent class. The SemTab 2019 challenge has defined the AH (Equation (3.1))

and AP (Equation (3.2)) scores for this purpose, where PerfectA indicates that the predictions

made by an STI system exactly match the type declared in the ground truth and OkayA refers

to annotations corresponding to one of the parent types. This evaluation method is also

adopted by [25]. The SemTab Challenge evaluates systems using the AIcrowd evaluator12 and

STILTool [33].

AH = #PerfectA+0.5×#OkayA−#WrongA

#TargetColumns
(3.1)

AP = #PerfectA

#AnnotatedColumns
(3.2)

SemTab 2020 and 2021 further enhance the CTA evaluation metrics by introducing the correct-

ness score cscor e (Equation (3.3)) for correctly positioning the annotated type in the hierarchy

tree where d(α) indicates the distance between the annotation α and the ground truth.

12https://github.com/sem-tab-challenge/aicrowd-evaluator
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cscor e(α) =


0.8d(α), if α is an ancestor of the GT,

0.7d(α), if α is a descendant of the GT,

0, otherwise;

(3.3)

Given the cscor e, approximated Precision (AP), Recall (AR), and F1-score (AF1) for the CTA

evaluation are then defined as follows:

AP =
∑

cscor e(α)

#Annotations
, AR =

∑
cscor e(α)

#Targets
(3.4)

AF 1 = 2× AP × AR

AP + AR
(3.5)

56



3.5
Sem

an
tic

Tab
le

In
terp

retatio
n

A
p

p
ro

ach
es

Table 3.3: Top-3 systems for each dataset and their corresponding F1 score unless otherwise stated in the footnote.

Dataset CEA / Row-to-instance CTAa / Topic annotation CPA

Limayeb TabELc TabEAno (Mtab ) [87] T2K ++ T2K ++ Guo et al MantisTable Mulwad et al. T2K ++ TableMiner+
0.894 0.88 0.87 0.88 0.852 0.84 0.89 0.80 0.76

T2D
TabEAno Zhang et al. Kruit et al. ColNetd Alobaid et al. [6] MantisTable T2K ++ Singh et al. MantisTable

0.91 0.90 0.89 0.976 0.96 0.95 0.91 0.71 0.51

SemTab 2019

R2
MTab CSV2KG Tabularisi MTab CSV2KG Tabularisi CSV2KG IDLab Tabularisi
0.911 0.883 0.826 1.414 1.376 1.099 0.881 0.877 0.790

R3
MTab CSV2KG ADOG MTab CSV2KG Tabularisi MTab CSV2KG Tabularisi
0.970 0.962 0.912 1.956 1.864 1.702 0.844 0.841 0.827

R4
MTab MantisTable CSV2KG MTab CSV2KG Tabularisi MTab CSV2KG Tabularisi
0.983 0.973 0.907 2.012 1.846 1.716 0.832 0.830 0.823

SemTab 2020

R1
MTab LinkingPark MantisTable JenTab LinkingPark MTab MTab LinkingPark JenTab
0.987 0.987 0.982 0.962 0.926 0.885 0.971 0.967 0.963

R2
MTab DAGOBAH LinkingPark LinkingPark MTab DAGOBAH MTab LinkingPark DAGOBAH
0.995 0.993 0.993 0.984 0.984 0.983 0.997 0.993 0.992

R3
MTab LinkingPark DAGOBAH LinkingPark MTab DAGOBAH MTab DAGOBAH bbw [110]
0.991 0.986 0.985 0.978 0.976 0.974 0.995 0.993 0.989

R4
MTab LinkingPark DAGOBAH MTab bbw DAGOBAH MTab bbw DAGOBAH
0.993 0.985 0.984 0.981 0.98 0.972 0.997 0.995 0.995

2T
MTab bbw DAGOBAH DAGOBAH MTab LinkingPark - - -
0.907 0.863 0.830 0.743 0.728 0.686 - - -

SemTab 2021

R1 (DBpedia)
DAGOBAH GBMTab JenTab JenTab DAGOBAH Magic - - -

0.945 0.692 0.607 0.46 0.422 0.159 - - -

R1 (WikiData)
DAGOBAH MTab AMALGAM [7] DAGOBAH MTab JenTab - - -

0.923 0.907 0.658 0.832 0.728 0.697 - - -

R2-Hard
MTab DAGOBAH MantisTable MTab DAGOBAH MantisTable MTab JenTab DAGOBAH
0.985 0.975 0.968 0.977 0.976 0.955 0.997 0.996 0.996

R2-Bio
DAGOBAH MTab MantisTable MTab Magic DAGOBAH MTab DAGOBAH JenTab

0.970 0.964 0.93 0.956 0.916 0.916 0.947 0.899 0.899

R3-Biodiv
JenTab MTab DAGOBAH KEPLER-aSI [8] DAGOBAH MTab - - -
0.602 0.522 0.496 0.593 0.391 0.123 - - -

R3-Hard
DAGOBAH MTab MantisTable DAGOBAH MTab MantisTable MTab JenTab DAGOBAH

0.974 0.968 0.959 0.99 0.984 0.965 0.993 0.992 0.991

R3-Git (DBp)
- - - DAGOBAH KEPLER-aSI MantisTable - - -
- - - 0.07 0.041 0.037 - - -

R3-Git (Sch)
- - - MantisTable DAGOBAH - - - -
- - - 0.205 0.183 - - - -

SemTab 2022

R1
DAGOBAH s-elBat Kepler-aSI DAGOBAH JenTab s-elBat DAGOBAH s-elBat JenTab

0.975 0.957 0.944 0.954 0.945 0.945 0.984 0.983 0.975

R2-Hard (WD)
DAGOBAH KGCODE-Tab s-elBat KGCODE-Tab DAGOBAH Kepler-aSI DAGOBAH s-elBat KGCODE-Tab

0.904 0.856 0.925 0.968 0.960 0.881 0.931 0.931 0.916

R2-2T (WD)
DAGOBAH s-elBat KGCODE-Tab KGCODE-Tab DAGOBAH Kepler-aSI - - -

0.945 0.937 0.905 0.543 0.409 0.369 - - -

R2-2T (DBp)
DAGOBAH KGCODE-Tab s-elBat KGCODE-Tab s-elBat TSOTSA - - -

0.926 0.827 0.789 0.480 0.373 0.342 - - -

R3-BioDiv
KGCODE-Tab TSOTSA DAGOBAH KGCODE-Tab TSOTSA Kepler-aSI - - -

0.91 0.76 0.736 0.87 0.79 0.73 - - -

R3-Git(Sch)
- - - KGCODE-Tab s-elBat TSOTSA - - -
- - - 0.66 0.65 0.48 - - -

aFor SemTab 2019, we consider the AH score, while for SemTab 2020 and 2021, we consider the AF1 score
bWe consider only one of the Limaye subsets named Manual
cTabEL only reports about the accuracy of the system and not the F1 score
dColNet was evaluated on T2Dv2. Thus, we consider only the result from 237 PK columns, which is almost the 233 tables from T2D
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Table 3.3 gives the performance of the top three systems with the highest F1, AP, or AF1 scores

for the CEA, CTA and CPA tasks on the datasets commonly used by the community. We observe

a considerable diversity in the evaluation process across studies. This diversity is reflected

in: i) the original version of the Limaye dataset had some errors that were corrected by the

TabEL team. However, these corrections are not used by STI systems; ii) the TabEL and C 2

teams only report on accuracy scores, thus lacking an evaluation of the recall to compare with

other systems; iii) ColNet has further enhanced the T2D dataset while other approaches do

not consider these enhancements; iv) [66] provides aggregated results, and it is hard to get the

performance details per dataset, and v) the performance of a system with the same dataset in

different articles can largely vary. For example, the difference in accuracy between ColNet’s

T2D dataset between [25] and [66] is about 60%, probably because [66] has not used all of

ColNet’s settings. This diversity makes it difficult to compare the performance of different STI

systems and stresses the importance of challenges such as SemTab in the STI community.

We adopted the following strategy to produce Table 3.3: i) we only consider datasets that

have been used for evaluation more than three times. In addition, the datasets used solely

for training purposes (e.g. TabEL [16] and Viznet [54]) have not been considered; ii) if the

performance of a system on the same dataset has been reported multiple times, we only

consider the accuracy from the original paper; iii) we prioritize comparing F1 scores except

for CTAs in SemTab 2019, which take into account the AP score. If F1 scores are not provided,

we use precision for the comparison; iv) for the SemTab challenge, we used the final results

presented in the papers published by the participants rather than the results achieved during

the time frame of the competition.

Based on our classification of STI approaches along three paradigms, we observe that heuristic

systems appear in the top three systems for all datasets and all tasks. In particular, none of

the feature engineering systems or deep learning systems reached the top three in the entity

matching tasks (CEA and Row-to-instance). We believe that one of the main reason is that

unlike CTA or CPA, which can extract features from columns or column pairs (all column cells

can provide features such as entity embeddings, string length, or distribution), features that

can be used to annotate individual cells or single rows are relatively rare. As a result, it limits

the performance of such systems. Furthermore, the performance of a learning-based classifier

is related to the number of candidates used. Annotating an entity means that a classifier should

be trained to serve millions of candidates, which makes the task more difficult. From this

point of view, rare feature engineering systems or deep learning systems position themselves

for the tasks of CEA and row-to-instance. Ideal STI systems are therefore likely to be hybrid

systems combining the best of heuristic-based and deep learning based methods.

We further group the selected datasets according to their provenance. These datasets are

either synthetic tables automatically generated (e.g. SemTab datasets) or tables collected
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from the Web (e.g. Limaye and T2D). We observe that heuristic-based systems that follow an

iterative approach such as MTab, DAGOBAH, LinkingPark and JenTab, achieve very strong

performances on large synthetic datasets such as SemTab. These systems generally use the

entire target KG in order to get a very good coverage. Leveraging inter-tasks process for

iterative disambiguation further optimizes the performance of the system. As these datasets

are synthetically generated from a KG, string matching based approaches have also more

advantages since this matching step is generally very reliable and will not face challenges with

KG incompleteness issues. Systems that rely on statistical learning such as ColNet or Guo et

al. [49], on the other hand, perform well on smaller real-world datasets, like Limaye and T2D. It

may be because smaller datasets provide a limited set of candidate entities/types/relationships.

Short candidate lists make training more accessible, more efficient and more accurate. In

addition, heuristic approaches are highly based on the closed world assumption, where KG

incompleteness is always a big issue. Deep learning and feature engineering are more robust

on this point since they are not highly dependent on the completeness of the KG. That may be

one of the reasons explaining that learning-based methods such as ColNet or Guo et al. [49]

have been able to become one of the top three systems for real-world datasets like Limaye and

T2D.

3.6 Discussion

We have grouped the many STI approaches proposed so far into three families or paradigms.

In this section, we further analyse these methods alongside different dimensions: the pros

and cons of matching methods versus learning methods, the trend towards deep learning

methods, the importance of table elements, the trade-off between efficiency and accuracy,

and the influence of the target KG structure for improving the accuracy (but at the risk of

adding noise).

Matching vs Learning

We observe that STI approaches rely on matching (a KG entity with a cell mention) and

learning. Matching is key in heuristic-based approaches while feature engineering and deep

learning based methods rely on representation learning of the input table. These can also be

combined: the matching strategy is employed by learning-based models as a post-processing

step where the annotations learned from neural networks are refined using mention-matching

entities (DAGOBAH-Embedding [24] and ColNet [25] are two examples).

From our observation, matching highly relies on the compatibility between the target table and

the target KG. Consequently, it may be challenged by incompleteness in the table, knowledge

shifting of KG and incompatibility between the table and the KG. Matching methods are less
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robust to noise than the learning methods. On the other hand, learning methods need large

training datasets which are not always easy to collect or generate. Some learning approaches

limit the number of target candidates to alleviate the lack of training data. [38,56,78,98,115,129]

predict the CTA within a predefined set of around one hundred types. ColNet [25] deals with the

data shortfall using data augmentation. The model is trained on data generated automatically

from a KG. However, it takes hours to do a single annotation. Another challenge for learning

approaches is the size of target tables. To perform the CTA, [56, 78, 98] rely on the statistical

features computed from the table (e.g. distribution of number, length of string for each cell,

etc.). These features are not statistically stable if the number of samples (i.e. table cells) is

low. Finally, we also discovered that learning approaches do not consider thoroughly the

hierarchy of types possibly used in a KG impacting the type specificity returned by the CTA

task [78, 98, 115].

Rise of Deep Learning

After 2017, deep learning techniques emerged in the STI field and have attracted research focus.

Compared to feature engineering approaches, complex neuronal networks allow the system to

process tabular features more efficiently as the feature engineering step is sometimes difficult

and time-consuming to maintain. For example, Sherlock [56] is based on 1,588 column-wised

features. To mitigate this issue, an end-to-end learning framework is preferable and is more

and more employed, for example, KG modelling with KG embedding techniques (e.g. Vasilis et

al. [41]) and table modelling with BERT-like models (e.g. TCN [129]). However, we observe

that table modelling approaches using language models always target class annotation (CTA)

or relation annotation (CPA) tasks. The entity annotation task (CEA) still lacks dedicated

work and has a lot of room for improvement. At the time of conducting this survey, TURL

may be the only one that handles the CEA task. Moreover, many systems [115, 129, 154] try

to simplify the table representation to a collection of unordered lists for columns or rows,

ignoring their index and other structural information. TURL [38] proposes a visibility matrix,

as an attention matrix, to describe the connections between table elements (e.g. cells in the

same columns, cells in the same rows, etc.). We argue that this design is only applicable to

relational tables whereas the model is trained on a dataset containing all table types. This

limitation still requires more effort to cover more complex scenarios.

Coverage of Table Elements

Annotation models use different table elements that are analysed in depth in Section 3.3.

We observe that more and more table elements are considered in recent approaches. This

phenomenon is characteristic of learning-based models. [56, 78, 84, 98] primarily concentrate

on extracting features from a single column. With the rise of the deep learning and attention
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mechanism, [38, 115, 129, 144] start to pay more attention to other complex table elements.

A typical example is TURL [38], in which the authors consider all of the six table elements

discussed in Section 3.3. However, we can not compare the superiority of an approach only

by the number of elements it uses. The search for the right number of elements taken into

account to increase the accuracy without being subject to noise remains an open challenge.

Effectiveness vs Efficiency

Annotation systems usually deal with a trade-off between effectiveness and efficiency. TableM-

iner+ [153] introduces partial matching in which the CTA calculation relies on only eight table

rows in order to improve the performance. This strategy indeed makes the systems faster but

degrades the accuracy. For example, considering the annotation of a column containing [“Joe

Biden”, “Donald Trump”, “Barack Obama”, “Abe Shinzo”], applying partial matching on the

first three column cells will output “American presidents” as the type of this column, while

the correct answer is more likely to be “politicians” since “Abe Shinzo” is not an American

president but a Japanese prime minister. Systems whose annotation pipeline includes a

candidate generation step will heavily depend on the entity lookup service used. However,

public lookup endpoints impose several limitations on their usage and it may take more time

to obtain a candidate set with a desirable coverage of the target table. Furthermore, some

systems (e.g. [86]) are not suitable for real-time applications due to the heavy computational

requirements of their intrinsic algorithm. In addition, in scenarios where there is not enough

data for training, learning-based models take advantage of transfer learning. While it helps

to save time and resources, the system accuracy may be degraded if the fine-tuning is not

carefully performed.

Public KGs vs Custom KGs

Many approaches to annotate tables rely on encyclopedic KGs such as Wikidata and DBpedia.

Those KGs provide rich and high-quality information helping the annotation become more

effective. However, more information also leads to more ambiguity, and KGs are usually

incomplete. Knowledge base shifting is also a challenge for approaches based on public KGs.

We observe that some approaches [38,56,78,98,115,129] only treat the target KG as a dictionary

of concepts but not a knowledge network, which means the relationships and hierarchy of

concepts have not been used. The extreme case is that some attention-based models [115]

directly abandon KGs and use only concept names. Knowing how to properly inject a KG

structure into a statistical model is an open challenge. Some works build their custom KG to

increase the coverage. For example, [127] built an isA database using Web documents which

contains three times more types than Freebase.

61





Chapter 4

Heuristic-Based Semantic Table

Interpretation

The problem of semantic interpretation of tabular data is a growing topic in the scientific com-

munity spanning multiple research communities. This is also a primary concern in industry

since there is a growing desire to extract dormant knowledge from the internal repositories to

feed enterprise knowledge graphs. For interpreting the content of a table, the critical ingredi-

ent is to capture some form of context. The context can be immediate neighboring cells and

the table structure (rows, columns, headers) or some external sources such as encyclopedic or

common sense knowledge. The heuristics-based approach tends to rely solely on the context

that one can find in the table. The heuristic class gathers diverse approaches, often considered

baseline STI approaches. The core of each system is algorithmically straightforward and does

not require much effort in feature engineering or learning, as introduced in Section 3.5.1.

In this chapter, we introduce our efforts in developing a heuristic-based STI system, named

DAGOBAH SL. It is a mature system for performing STI that has participated in the yearly

SemTab challenge series since 2020. DAGOBAH SL produces fine-grained annotations for cells

(CEA), columns (CTA), and relationships between columns (CPA) given different reference

knowledge graphs. The system is available via an API for developers as well as via a user-

friendly Web interface that offers functionalities for visualizing annotations, and enriching

tabular data from the knowledge graph (e.g. adding columns and filling in missing values).

We first present our lookup mechanism for generating the candidate cell entities in Section 4.1.

In Section 4.2, we describe the first prototype of our heuristic annotation system, named

DAGOBAH SL, and evaluate it with the participation of SemTab 2020. We further introduce

our optimizations of DAGOBAH SL with the Multi-hop Relations scoring and Soft Context

Scoring mechanism in Section 4.3. Then, we introduce the industrialisation of DAGOBAH-SL

in Section 4.4 and conclude in Section 4.5.
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4.1 DAGOBAH Lookup

It is not reasonable to run the entire annotation algorithm for all entities from the target

knowledge graph. Supposing a system that annotates a cell with an entity from Wikidata, if this

system calculates the compatibility score with the table context for all the millions of entities

in Wikidata, the execution time will be very high. Hence, the annotation process should be

launched within a limited range of candidates. Selecting the candidates for annotation is

referred to as the "Candidate Selection" steps in Section 3.3.

In this section, we aim to introduce the cell entity lookup methods that have been adopted

by DAGOBAH systems. The DAGOBAH entity lookup service, named DAGOBAH Lookup,

provides a fuzzy search engine given a KG alias list for each entity. DAGOBAH Lookup aims to

generate a limited number of candidate entities taking a cell as input. We first introduce the

lookup method in Section 4.1.1, the deployment of the lookup system in Section 4.1.2, and

then report the performance in Section 4.1.3.

4.1.1 Lookup Mechanism

Given a target cell1 em contained in a table, we aim at retrieving a set of relevant candidates Ec

from a KG, i.e. entities whose labels or aliases are similar to the text of the cell. We assume that

for each target cell em , there is not more than one matching entity, w.r.t, we did not consider

the case of multi-value tables. We employ two strategies to evaluate the similarity between a

cell and the candidate entities: an exact match using a regex similarity, and a threshold-based

match using the Levenstein ratio. We take the maximum value between all comparisons made

across entity labels and aliases.

Regex similarity Candidate labels or aliases should include all the words of em in any order.

This is particularly useful to match the full name of a person since the first and last

names could appear in any order, e.g. “Elon Musk” versus “Musk Elon”. A full edit ratio

on these two multiple tokens strings would yield a relatively low score of 0.44.

Levenshtein ratio This ratio is computed between the candidate labels and aliases, and the

text of the cell. We empirically fix the threshold to 0.65 to ensure that a cell has at least

one candidate and we then retain the top 50 candidates for each cell.

1In the context of the SemTab challenge series, the target cells are provided. In general, DAGOBAH has a module
that enables inferring a primitive type for any arbitrary cell so that lookups are only triggered on cells that have
entities as values.
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4.1.2 Lookup Platform

We aim to handle the cases where the table corpora are significantly large with thousands

of tables and cells to annotate, such as tables used in the context of the SemTab series. The

pre-processing (introduced in Section 2.4) step helps to identify table columns eligible for

entity lookup based on their primitive types2. Given a cell em in such a column, the entity

lookup step retrieves a set of relevant candidate entities Ec (em) from a target KG. The lookup

service of DAGOBAH currently supports two KGs for which indexes have been built: Wikidata

and DBpedia.

Wikidata entities. The lookup service collects items and properties with their labels and

aliases in all languages. To increase lookup coverage, aliases of each entity are enriched

with the values of 11 additional properties such as P2561 (name), P1705 (native label), or

P742 (pseudonym).

DBpedia entities. The lookup service collects English resources with their labels in all lan-

guages. To increase lookup coverage, labels are enriched with the values of 25 alias

properties such as abbreviation, birthName, or originalTitle. In addition, labels and

aliases of all redirected entities are also included.

The public Wikidata/DBpedia API is not an ideal lookup service due to restrictions on the

number of concurrent connections, result set sizes, and query time. To avoid these limitations,

we built our own lookup service using the Wikidata Toolkit3, DBpedia dump4, and a Spark-

based big data platform. Specifically, from the initial raw Wikidata dump, we use the Wikidata

Toolkit to filter out the unnecessary triples or entities such as Form, Lexeme, MediaInfo, Sense

and Statement, so that we only retain entities that are items identified by QID and property

identified by PID, associated with their labels and aliases in all languages. For DBpedia, we

download the dump and index all triples from the documents. We then store the filtered

dump in a Hadoop Distributed File System (HDFS) and perform the entity lookup via the

Spark framework. We continuously update the dump for concluding the new entities and

facts. Table 4.1 presents the Wikidata dump used in this service during the experiment for the

evaluation with the participation of SemTab 2020.

4.1.3 Evaluation

In order to evaluate the performance of the system, we participated to the SemTab 2020

challenge. Table 4.2 provides the statistics of this dataset.

2Since target cells are given in the SemTab challenge, this feature is not used in our experiments.
3https://github.com/Wikidata/Wikidata-Toolkit
4https://downloads.dbpedia.org/2016-10/core/

65

https://github.com/Wikidata/Wikidata-Toolkit


Chapter 4. Heuristic-Based Semantic Table Interpretation

Wikidata version # triples # entities # predicates

July 2020 490M 86M 7,800
Circa 2017 100M 50M 8,200

Table 4.1: Overview of the Wikidata KG used in the challenge. A 2017 version was used in
Round 1. The July 2020 version was used in Round 2, 3 and 4.

Round 1 Round 2 Round 3 Round 4

# Tables 34K 12K 63K 22K
# Cells to annotate 985K 283K 768K 1.66M
# Unique cells to annotate 264K 138K 379K 531K
Average cell length 20 21 20 21

Table 4.2: Overview of the SemTab 2020 table corpus in each round. Several cells may contain
the same text. Such cells are only counted once in the line “# Unique cells to annotate”. The
length of cells counts the number of characters.

We provide in Table 4.3 the complete lookup time for the Round 1, 2, and 3 (line “Current

Time”). To construct our lookup service, we considered a pure Python Levenshtein module

which has very poor performance (generally, 50 to 100 times slower than the more efficient

Cython Levenshtein library5). As a result, this lookup service is not optimized, taking about

268h (≈ 11 days) for the lookups of Round 3. In a future system, the Cython Levenshtein

library can be used to significantly reduce the execution time. We roughly estimate the

potential lookup time of such a future system (line “Ideal Time”) by inducing the time of

Cython Levenshtein usage from the pure Python Levenshtein’s time.

Round 1 Round 2 Round 3 Round 4

Current time 44 64 268 102
Ideal time 44 36 96 -

Table 4.3: Spark Lookup Time (in hours) for Round 1, 2, and 3 using 150 machines and for
Round 4 using 5 clusters, each of 100 machines. “Current time” is measured using the pure
Python Levenshtein module. “Ideal time” is the expected lookup time in a future system using
the Cython Levenshtein library.

4.2 DAGOBAH-SL Scoring System

In this section, we introduce the DAGOBAH SL (Semantic Lookup) system for STI. DAGOBAH

SL provides an end-to-end process that annotates relational tables with constituents of a KG

such as Wikidata. Similar to DAGOBAH Lookup, we assume that for each target cell em , there is

5https://pypi.org/project/python-Levenshtein/
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not more than one matching entity. Its workflow consists of the four sequential steps depicted

in Figure 4.1. Given a relational table as input, the pre-processing determines table metadata

and annotation targets (introduced in Section 2.4). The entity lookup module then collects

candidates from the KG for each target cell of the table (introduced in Section 4.1). In this

section, we explain the following steps: i) the pre-scoring module evaluates each candidate

to determine a confidence score (Section 4.2.1). ii) next, we introduce the Columns-Property

Annotation (CPA) annotation (Section 4.2.2). iii) Cell-Entity Annotation (CEA) is performed

in order to compute the final entity scores taking CPA into account (Section 4.2.3). iv) Then,

Column-Type Annotation (CTA) (Section 4.2.4) is carried out with majority vote based on

CEA results. Finally, we report the result with the evaluation of the SemTab 2020 challenge

(Section 4.2.5).

Figure 4.1: Overview of the DAGOBAH annotation workflow.

4.2.1 Pre-scoring Mechanism

The pre-scoring step aims to assign a preliminary confidence score to each candidate ec ∈ Ec

generated after the lookup step. In the first version of DAGOBAH-SL, named DAGOBAH-

SL 2020, the confidence score function (Equation (4.1)) leverages the semantic contextual

relationships and literal similarity between the candidate ec and the cell em .

Sc(ec ,em) = Sccontext (Nt abl e (em),Ng r aph(ec ))∗Scsi m(em ,ec )x (4.1)

67



Chapter 4. Heuristic-Based Semantic Table Interpretation

Sc(em ,ec ) is the product of a context factor Sccontext (Nt able (em),Ng r aph(ec )) and a literal

factor Scsi m(em ,ec ). Scsi m(em ,ec ) provides the highest Levenshtein ratio between the cell and

the label set of the candidate. This label set is composed of the labels and aliases of the entity

(e.g. “France", “La France" for Q142). x ∈N+ allows defining the importance of the textual

similarity acting as an amplification factor. We empirically observed that 5 was an appropriate

amplification factor for x for this challenge.

The context score is calculated by Equation (4.2):

Sccontext (Nt able (em),Ng r aph(ec )) =
Ns if Ns ≥ 0.1

0.0001 otherwise
(4.2)

Nt able (em) is the set of neighboring cells in the same row as em . Ng r aph(ec ) is the set of

neighboring elements of ec in the KG6. Neighboring literals are directly added to Ng r aph(ec )

whereas, for neighboring entities, their labels and aliases are added. Ns is a set which contains

the best neighborhood matching score nsi for each neighboring cell ni ∈Nt abl e (em) and all

neighboring literals or nodes in Ng r aph(ec ). For each neighboring cell ni , the neighborhood

matching score nsi ∈Ns is generated as follow:

• If ni is a string, then nsi is the highest Levenshtein similarity value.

• If ni is a number, then nsi is given by Equation (4.3):

nsi = max
ng∈Ng r aph (ec )

1− |ni −ng |
|ni |+|ng |

(4.3)

• If ni is a date-time value, and if a matching exists between the cell and a neighboring

element, then we set nsi to 1, otherwise nsi = 0.

• If the previous steps gives a nsi value lower than 0.85, then the system resets nsi to

0.0001.

For example, the confidence score Sc(em ,ec ) of the candidate ec “Q1574185" with the cell em

“University College Cork" is equal to 1 since “Q1574185" has this exact label and all neighboring

cells share information with neighboring elements of “Q1574185".

4.2.2 Columns-Property Annotation (CPA)

The CPA task involves finding a semantic relation between a pair of ordered columns {head,tail}.

In other words, we try to figure out the most suitable relation among the ones connecting a

6Neighboring elements are object (resp. subject) of triples whose subject (resp. object) is ec .
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candidate entity in Ehead for the head column to a candidate entity in Et ai l for the tail column.

We employ a simple majority voting strategy which relies on the occurrence and accumulated

confidence score of the relation r that we define as:

• Occurrence(r ) = #(ehead ,et ai l ),

• AccumulatedConfidenceScore(r ) =∑
Sc(ehead )∗Sc(et ai l )

such that ehead ∈ Ehead , et ai l ∈ Et ai l , and 〈ehead ,r,et ai l 〉 ∈ KG .

In contrast to the relation’s head which is always an entity, its tail can be an entity, a textual

value, a numerical value, or a date-time value. Literal values may be noisy (e.g. “370.1069999997"

may represent the integer value “369", “1845-01-01" may correspond to “1845/01/01" or

“1845" in the KG). Due to the different natures of each tail type, we consider different matching

metrics to verify whether a triple 〈ehead ,r,et ai l 〉 exists in the KG:

• For entity IDs, score(i d1, i d2) = 1 if the two ids are exactly the same, otherwise 0.

• For numerical values, score(num1,num2) = 1−
|num1 −num2|
|num1|+ |num2|

• For string values, score(text1, text2) = Levenshtein(text1, text2)

• For date-time values, we compare many variants of date-time values (e.g. from the

initial value “2020", we could have “2020-01-01" or “2020/01/01"). Two date-time values

are matched, i.e., score(d ate1,d ate2) = 1 if one is a variant of the other.

From the criteria above, the relation with the highest occurrence is considered the target

relation. If there are several relations having this highest occurrence, we select the one with

the highest score. For example, consider the table provided in Fig. 4.1. The two relations

P131 (“located in the administrative territorial entity”) and P159 (“headquarters location”) can

relate the first (Col 0) and the third (Col 2) columns. Specifically, Q1574185-“University College

Cork" (resp. Q245247-“King’s College London") is located (P131) in Q36647-“Cork" (resp.

Q202059-“London Borough of Lambert"). Cork is also the headquarter (P159) of University

College Cork. Therefore, the occurrence count of P131 is 2, and 1 for P159. We conclude that

P131 is the CPA for the column pair {Col0, Col2}.

4.2.3 Cell-Entity Annotation (CEA)

The CEA task aims to annotate the table cells with entities from the KG. Taking the CPA into

account. In DAGOBAH-SL 2020, for each candidate entity in a given row, we update its score

computed in the pre-scoring step (Section 4.2.1) by adding a constant score 1 (resp. 0) if the
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CPA relation can (resp. cannot) connect this candidate to the counterpart in the remaining

column. The output entity is the one with the highest score.

For example, for the cell “Cork" in Fig. 4.1, two of the candidate entities are Q36647 (“Cork

city in Munster, Ireland”) and Q162475 (“Cork County, Ireland”). They both have the same

score output from the pre-scoring step (Section 4.2.1). Given we have determined the relation

between “Col 0" and “Col 2" to be P131 and that the candidate Q36647 is linked to the cell

“University College Cork" via this relation, we increase the score of Q36647 by 1. Q36647 then

becomes the candidate with the highest score, and is chosen as the CEA output for the “Cork"

cell.

In the edition 2021, we also consider the result from CTA (Section 4.2.4). Indeed, the pre-

scoring of a candidate entity ec only considers its local information, i.e., the row it belongs to.

Column type output by CTA and column pair relations output by CPA allow to consider table’s

global information. Hence, the final score Sc(ec ,em) of a candidate entity ec is computed as

follows:

Sc(ec ,em) = (PSc(ec ,em)+α× scor eC T A +β× scor eC PA)

1+α+β
(4.4)

If ec belongs to the type output by CTA for its column, then scor eC T A is equal to the score of

this type, otherwise it is set to 0. In scor eC PA , we average the scores of the relations output

by CPA for column pairs involving the column of ec . For each relation, if ec belongs to its

domain or its range (depending on the relation orientation), then we consider the score of this

relation, else it is set to 0. To strengthen (resp. weaken) a frequent (resp. unusual) CTA/CPA in

the update of Sc(ec ,em), a coefficient α (resp. β) is employed and defined as occur r ence(C T A)
2

(resp. occur r ence(C PA)
2 ). Note that the occurrence of CTA/CPA is divided by 2 to prioritize the

pre-scoring PSc(ec ,em).

4.2.4 Column-Type Annotation (CTA)

After getting the output of CEA, a majority voting strategy is adapted to identify the most

precise type for target columns. This process is illustrated in Fig. 4.2 for the first column (“Col

0”) of the example table depicted in Fig. 4.1.

The CTA annotation begins with a type enrichment step. Let T j be the set of candidate types

for the cell j from a target column. T j is represented by a hierarchical tree with 3 levels of

types. We consider the types related by the P31 predicate (“instance of ”) to the predicted

CEA entity as level 0. Their parent types linked through the P279 predicate (“subclass of ”)

are assigned to level 1 and their ancestors to level 2. The system gives priority to the direct

types. The rank of a candidate type is another useful factor for the CTA decision. According to
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Figure 4.2: CTA annotation structure

Wikidata’s mechanism for annotating multiple values for a statement, a type for an entity may

have three ranks7. We represent those ranks as priority numbers: PREFERRED-2, NORMAL-1

and DEPRECATED-0.

The second step consists in a preliminary selection of types. We compute the frequency,

accumulated level, and accumulated rank for all candidate types of a target column, i.e. all

types appearing in at least one T j of the column. We then select the types with the highest

occurrence, the lowest accumulated level, and the highest accumulated rank at the same time.

In case of ties, we give priority to the occurrence, then to the accumulated level, and finally to

the accumulated rank. In the example of Fig. 4.2, Q2385804 and Q38723 are chosen at this

step.

The final step consists in computing the distance between the chosen candidate types and the

entity Thing (Q35120) in order to select the most specific type. We first consider the mutual

inheritance relationship between the remaining candidate types. When such a relationship

exists, we select the most specific type. If no inheritance relationship can be found, we

compute the shortest distance to Thing. If there is still a tie among some candidate types, the

system randomly selects one of them as CTA output.

7https://www.wikidata.org/wiki/Help:Ranking
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CTA CEA CPA

F1 P C F1 P C F1 P C

Round 1 DAGOBAH SL 0.834 0.854 95.3% 0.922 0.944 95.3% 0.914 0.962 90.6%
(Synthetic Tables) MTab 0.926 0.926 - 0.987 0.988 - 0.971 0.971 -

Round 2 DAGOBAH SL 0.983 0.983 99.9% 0.993 0.993 99.9% 0.992 0.994 99.5%
(Synthetic Tables) MTab 0.984 0.984 - 0.995 0.995 - 0.997 0.997 -

Round 3 DAGOBAH SL 0.974 0.974 99.9% 0.985 0.985 99.9% 0.993 0.994 99.9%
(Synthetic Tables) MTab 0.976 0.976 - 0.991 0.992 - 0.995 0.995 -

Round 4 DAGOBAH SL 0.972 0.972 - 0.984 0.985 - 0.995 0.995 -
(Synthetic Tables) MTab 0.981 0.982 - 0.993 0.993 - 0.997 0.997 -

Round 4 DAGOBAH SL 0.743 0.745 - 0.830 0.819 - - - -
(Tough Tables) MTab 0.728 0.73 - 0.907 0.907 - - - -

Table 4.4: Results of the DAGOBAH system in Rounds 1, 2, 3, and 4 of the SemTab 2020
challenge. “F1” stands for F1-score, “P” stands for Precision, and “C” stands for Coverage. The
coverage is the ratio between the number of annotations proposed by the system and the
number of targets to annotate. We also report on the score of MTab as this is the challenge
winner.

4.2.5 Evaluation

We used DAGOBAH SL during the SemTab 2020 challenge. In this venue, DAGOBAH SL lever-

ages mutual influences between annotations allowing our team to obtain very competitive

results on all tasks of the SemTab 2020 challenge.

Table 4.4 provides the annotation scores (F1-score, precision, and coverage) of our system

for the three tasks in Rounds 1, 2, 3, and 4 of the challenge. It should be noted that during

the Round 1, we built the lookup service based on an old version of Wikidata (from 2017) that

contains fewer entities (50 millions vs. 86 millions in 2020 version), which has resulted in

incomplete lookups, and thereby hindered the annotation results as discussed in Section 4.5.

Note that the datasets used in Rounds 1, 2, and 3 are automatically generated in a synthetic

way by adding some artificial noise (Synthetic Tables). Interestingly, in Round 4, beside a

synthetic dataset, a novel corpus (Tough Tables [35]) is introduced and consists of a set of

high quality manually-curated tables with complex patterns of cells (e.g., ambiguous names,

typos). The results clearly show that a simple, yet optimised, model can achieve very good

performance on the SemTab 2020 synthetic corpus. This is partly explained by the fact that

a row in any tables from this corpus is fully represented in the Wikidata Knowledge Graph

(KG). As a consequence, a good lookup service with high coverage and a well-tuned matching

strategy are enough to produce very competitive results.

We observe that one difficulty concerns the dynamic and evolving nature of KGs such as

Wikidata. During Round 1, we used an outdated KG version. Hence, the lookup service was

not able to retrieve relevant candidates for ≈ 5% of the target cells, leading to a significant drop
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in performance, compared to the leader MTab. Challenge organizers should either consider

distributing the reference KG to use alongside the tables to annotate, or consider tables with

evolving annotations along the time, anticipating that new items or even properties may be

added in the KG.

Regarding the SemTab 2020 challenge itself, two levers can be used to increase its usefulness

to the scientific community. One of the issues to consider when addressing the problem of

annotating tabular datasets is the dynamic nature of the data. In SemTab Challenge, tabular

data sources are frozen and made available at the beginning of each round, thus addressing

the issue of the evolution of tabular data over time. However, the knowledge graphs used for

annotation (DBpedia for SemTab 2019 and Wikidata for SemTab 2020) also evolve, affecting

the result produced by the annotation algorithms. In order to allow an unbiased evaluation

of the approaches, it seems important that a dump of the knowledge graph to be used be

provided by the organizers at the beginning of the challenge to ensure the same evaluation

between systems.

The other main limitation of Rounds 1, 2, and 3 of SemTab 2020 resides in the nature of the

data to annotate. Indeed, tables are synthetically generated from the Wikidata knowledge

graph. Consequently, the proposed tables are relatively clean and lookup operations can easily

match cells in the tables to entities in Wikidata even if noising techniques are introduced. In

real-world applications, tabular data can contain complex values (e.g., cells containing lists

of entities using various separators, alternative entity names), artifacts (e.g., data encoding

problems, formatting errors, input errors, missing values), and more complex layouts (e.g.,

merged rows/columns, multi-line headers, horizontal/vertical/matrix tables) making table

manipulation and annotation much more complicated. In order to produce more robust,

generic, and intelligent annotation systems, it seems important that evaluation corpora take

these challenges into account in the future. An example can be found in the Tough Tables

corpus from Round 4 which contains tables manually scraped from the Web. We observe

a remarkable degradation in performance of CTA and CEA tasks given the complexity and

ambiguity of this corpus.

4.3 Multi-Hop Relations and Soft Context Scoring

In this section, we present the scoring improvements based on DAGOBAH SL system intro-

duced in Section 4.2. This enhancement provides a better representation and disambiguation

of entities in exploiting their contexts more efficiently in the KG and an improved and flex-

ible entity scoring that leverages both local information and global table information. The

improvement introduces a new global scoring function which includes two new compo-

nents: Multi-Hop Relation for exploiting the deeper context of knowledge graph entities

(Section 4.3.1) and a Soft Scoring Mechanism for taking the cell position in the table into
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account (Section 4.3.2). Finally, we report the result with the evaluation of the SemTab 2021

challenge (Section 4.3.3).

In the second edition of DAGOBAH SL, the new optimised confidence score function (Equa-

tion (4.5)) is set as following:

PSc(ec ,em) = Sccontext (Ng r aph(ec ),Nt able (em))×eγ(Scsi m (ec ,em )−1) (4.5)

This new pre-score function is the product of a context factor and a literal factor Scsi m(ec ,em).

The latter returns the highest Levenshtein-based matching ratio between the cell and the

label and aliases of the candidate. Aliases are penalized with a ratio weighted by 0.9 since

we consider labels to be more important. The amplification factor γ ∈ N+ determines the

importance of the textual similarity. We empirically observed that 2 was an appropriate

amplification factor for the SemTab challenge.

The improvements mainly concern the context factor defined as follows:

Sccontext (Ng r aph(ec ),Nt able (em)) =
∑

i wi × sni∑
i wi

(4.6)

where Nt able (em) is the set of neighboring cells in the same row as em and Ng r aph(ec ) is the

set of neighboring nodes of ec in the KG8. For each neighboring cell ni ∈Nt able (em), sni is its

neighborhood matching score w.r.t. Ng r aph(ec ).

The new function setting solves two issues related to the context score calculation with respect

to DAGOBAH SL introduced in Section 4.2:

Expensive evaluation. Each sni was evaluated by iterating over all context nodes in Ng r aph(ec )

to find the best matching node. Hence, a performance bottleneck arose when scoring

a generic entity with millions of edges in the KG. For example, let’s consider the cell

“Belfort” in Figure 4.1 and the Wikidata candidate entity Q171545. To check whether

the neighboring cell “Bourgogne Franche Comté” is in the context of Q171545, we per-

formed a comparison with each of the ∼ 1,000 nodes in Ng r aph(Q171545), including

Q142 (France), Q3371185 (Paul Faivre), etc. (Figure 4.3a).

One-hop graph contexts. Ng r aph(ec ) consisted of nodes only one hop away from ec . Conse-

quently, a neighboring cell ni ∈Nt able (em) matching with a node two hops away from

ec was not considered in the context of ec . For example, given the one-hop context of

Q171545 (Belfort) in Figure 4.3a, we wrongly considered that Bourgogne Franche Comté
had no relation with Belfort whereas it is the region of Territoire de Belfort (French

department) whose capital is Belfort.

8Neighboring nodes are connected to ec via predicate paths in the KG, regardless of the predicate direction.
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It improves both the efficiency and the expressiveness of the context score by avoiding the

exhaustive scoring and exploiting more expressive contexts for an entity via two-hop predicate

paths.

Figure 4.3: Graph context of entity Q171545 (Belfort) in Wikidata. (a) One-hop graph context
of Q171545. (b) Graph context is expanded by sub-graph intersection.

4.3.1 Exploiting the Knowledge Graph Context with Multi-Hop Relations

The neighborhood matching score sni in Equation (4.6) indicates whether a neighboring cell

ni of em matches with a neighboring node of ec . Loosely speaking, computing sni comes

down to searching a candidate entity for ni in Ng r aph(ec ) and to assessing its similarity. In our

running example, Q18578267 is a candidate for cell “Bourgogne Franche Comté” in the two-

hop context Ng r aph(Q171545) (Figure 4.3b). From this observation, we propose the following

way to efficiently compute sni . The entity lookup step (Section 4.1) outputs candidate entities

Ec (em) for a target cell em but also candidate entities Ec (ni ) for its neighboring cells ni . Hence,

we check if a candidate entity ei ∈ Ec (ni ) is in Ng r aph(ec ). In that case, sni is simply calculated

by comparing the labels of the neighboring cell ni and the matching node ei , which avoids

additional comparisons with other nodes in Ng r aph(ec ).

To check if ei ∈ Ec (ni ) is in Ng r aph(ec ), we actually check if ei is connected to ec by a predicate

path in the KG. We chose to compute such predicate paths since they are useful in the soft

context scoring. To efficiently find predicate paths between ec and ei , we extract the one-hop

subgraphs Gec and Gei around ec and ei . If an intermediate node v is present in both Gec

and Gei , the paths pointing to v in the two sub-graphs are concatenated. In our running

example, we find the following predicate path: Belfort capitalOf−−−−−−→Territoire de Belfort locatedIn−−−−−−→
Bourgogne Franche Comté. Since we only consider one-hop subgraphs, paths can have a

maximum length of two hops. This approach allows to enrich the information about an

entity by including not only direct neighbors but also indirect neighbors two hops away. Such

75



Chapter 4. Heuristic-Based Semantic Table Interpretation

enhanced graph contexts increase the chance for a neighboring cell ni ∈Nt abl e (em) to match,

and thus make the context score more precise. We argue that, in the context of STI with

Wikidata, paths longer than 2 hops are often noisy and meaningless, and thus can have a

negative impact on the context score.

Figure 4.4: Neighboring nodes of Belfort (Q171545) contribute differently to its information
content.

Hence, neighboring nodes of the candidate entity ec in Ng r aph(ec ) may provide different

information content as some neighbors can be “semantically closer” to ec than others. To

illustrate, consider the 2-hop context of Q171545 (Belfort) depicted in Figure 4.4. Q18578267

(Bourgogne Franche Comté) is more relevant than Q30 (United States of America) since

the path Belfort capitalOf−−−−−−→Territoire de Belfort locatedIn−−−−−−→Bourgogne Franche Comté is more in-

formative than Belfort country−−−−−→ France diplomaticRelation←−−−−−−−−−−−−−United States of America. To quantify

this, we rely on the so-called truth value τ(ei ) [27] of a neighboring node ei , which can be

seen as the discriminative capacity of the associated path τ(ec
p1−→ v

p2−→ ei ), and is defined as

follows:

τ(ei ) = τ(ec
p1−→ v

p2−→ ei ) = 1

1+ log (g (v))
(4.7)

where g (v) is the generality of the intermediate node v , i.e., the number of its incoming and

outcoming edges in the KG. Note that direct neighbors (or 1-hop paths) always get the highest

truth value 1.0.

4.3.2 Soft Scoring

In Equation (4.6), neighborhood matching scores sni are weighted to compute the ultimate

score of an entity. Indeed, each neighboring cell ni ∈Nt able (em) contributes differently to the

annotation of the target cell em with a weight wi defined in Equation (4.8):

wi =
(4.8a)︷︸︸︷
sei√

d(coli )+1︸ ︷︷ ︸
(4.8b)

×
(4.8c)︷ ︸︸ ︷

cnt (coli )×
(4.8d)︷ ︸︸ ︷
τ(ei ) . (4.8)

(4.8a) Cells containing entities should be more important than cells containing literals (e.g.,
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date, measurement with/without unit, number) since there is a lack of literal disambigua-

tion methods (e.g., date-time normalization, unit detection/normalization/conversion).

That is why, we set sei to 1.0 if the neighboring cell ni contains an entity, and to 0.15 if

ni contains a literal.

(4.8b) A neighboring cell on the left side of the table has more chance to be a meaningful

context for the target cell. Hence, d(coli ) is the distance between column coli and the

first object column of the table.

(4.8c) Cells ni from a neighboring column highly connected to the target column should have

a greater weight in the context. Hence, we take into account the connectivity cnt (coli )

of the neighboring column w.r.t. the target column, defined as the highest occurrence of

a relation potentially found between the two columns.

(4.8d) The Multi-hops Relations depicted in Equation 4.7.

4.3.3 Evaluation

To evaluate one-hop and two-hop graph contexts as well as the soft context scoring described

in this section, we consider these four experimental settings:

Setting 1 The context score of an entity is computed using only its one-hop neighboring

graph. Weights wi do not follow Equation (4.8) but are set to 1.0 for entities and 0.15 for

literals.

Setting 2 The context score of an entity is computed using its two-hop neighboring graph.

Weights wi do not follow Equation (4.8) but are set to 1.0 for 1-hop neighbors, 0.25 for

2-hop neighbors, and 0.15 for literals.

Setting 3 The context score of an entity is computed using its two-hop neighboring graph.

Weights wi follow Equation (4.8). This setting allows to assess if richer contexts and

stricter scoring lead to better annotation.

Setting 4 This setting restricts Setting 3 to 1-hop and unidirectional 2-hop predicate paths in

graph contexts. This allows to evaluate the impact of bidirectional paths which are often

less informative or noisy but may be helpful in some cases.

We provide an experimental evaluation of the four aforementioned settings in Table 4.5. It

should be noted that DAGOBAH is continuously improved. Hence, results of this evaluation

are based on the current version of DAGOBAH but we also report results submitted to the

SemTab challenge in gray cells for comparison. To validate the modifications proposed in

Sections 4.1 and 4.2.1, we include the scores of the DAGOBAH 2020 system on tables annotated
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with Wikidata in Round 1. Submission Settings {1,2,3,4}* are similar to Settings {1,2,3,4} but

slightly differ in scores and weights initialization. This does not change CEA scores but impacts

CTA performances. Indeed, CTA is highly sensitive to entity scores and taxonomy weights

to select the most fine-grained type among the many possible (direct and ancestor) types of

entities.

That is why CTA scores are different between Evaluation and Submitted. Indeed, our strategy

for most fine-grained type selection is very sensitive to entity score and taxonomy weight. A

small change in score may not have large impact on CEA (confirmed by the similarity in CEA

evaluation and submitted scores), but can result a different fine-grained type knowing that an

entity has many possible types (directs, ancestors).

We report CEA, CTA, CPA (if applicable) results for Round 1 WDTable, DBPTale datasets and

Round 2 synthetic HardTable, BioTable datasets and Round 3 BioDivTable datasets. In our

opinion, WDTa and HardTable are, respectively, the most difficult and easiest datasets of

Rounds 1 and 2.

DAGOBAH achieves a high performance on synthetic datasets (Round 2) whereas high-

quality manually-curated datasets with complex table patterns are more difficult to annotate

(Rounds 1 and 3). In HardTable, no gain is brought by using a richer graph context or a more

flexible scoring. This can be explained since tables are almost fully represented in the target KG

and columns can be disambiguated from their contents. On the contrary, BioTable provides

remarkable ambiguities with content overlaps between columns that hinder their disambigua-

tion (e.g., column “Gene” can be mistaken with column “Protein”). Hence, annotation seems

to benefit from richer graph contexts. In BioDivTable, Setting 4 obtains the lowest scores

whereas Setting 1 is comparable to Setting 3. We suppose that unidirectional 2-hop predicate

paths may be noisy or not correctly considered, leading to the lowest score of Setting 4.

In general, Settings 2, 3, and 4 are more precise for CEA than Setting 1. Hence, 2-hop graph

contexts bring useful information. The better performance of Settings 3 and 4 compared with

Setting 2 shows the effectiveness of soft context scoring. We notice that Setting 3 achieves sim-

ilar performances to Setting 4 which can be interpreted as follows. First, unidirectional paths

(i.e.,
p1−→ p2−→ and

p1←− p2←−) bring enough information and allow to obtain equal results compared

with considering both unidirectional and bidirectional paths. Second, the influence of noisy

bidirectional paths (e.g., Belfort country−−−−−→ France diplomaticRelation←−−−−−−−−−−−−−United States of America) is

limited by the soft context scoring which prevents a degradation in the annotation quality.

This allows useful bidirectional paths to contribute positively in the entity score. It can be

observed that CTA and CPA performances are not as high as expected in most datasets despite

CEA good performances. The development of better strategies for type and relation selection

will be the subject of future works.
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Table 4.5: Comparison of experimental settings and performance of the DAGOBAH system in
Rounds 1, 2, and 3 of the SemTab 2021 challenge (in gray cells). “F1” stands for F1-score, “P”
stands for Precision. Best results between settings are in bold.

Dataset System Setting
CTA CEA CPA

F1 P F1 P F1 P

Round 1 – WDTable

Setting 1 0.793 0.793 0.913 0.913 - -
Setting 2 0.790 0.790 0.923 0.923 - -
Setting 3 0.783 0.783 0.926 0.926 - -
Setting 4 0.783 0.783 0.924 0.924 - -
DAGOBAH SL Basic 0.743 0.743 0.830 0.841 - -
Setting 2* 0.832 0.832 0.923 0.923 - -

Round 1 – DBPTable

Setting 1 0.25 0.25 0.935 0.935 - -
Setting 2 0.27 0.27 0.946 0.946 - -
Setting 3 0.274 0.274 0.947 0.947 - -
Setting 4 0.274 0.274 0.947 0.947 - -
Setting 2* 0.422 0.424 0.945 0.946 - -

Round 2 – BioTable

Setting 1 0.874 0.874 0.882 0.882 0.898 0.901
Setting 2 0.911 0.911 0.916 0.916 0.899 0.899
Setting 3 0.915 0.915 0.950 0.951 0.899 0.899
Setting 4 0.916 0.916 0.970 0.970 0.899 0.899
Setting 4* 0.916 0.916 0.970 0.970 0.899 0.899

Round 2 – HardTable

Setting 1 0.968 0.969 0.975 0.976 0.996 0.997
Setting 2 0.968 0.969 0.976 0.976 0.996 0.997
Setting 3 0.968 0.969 0.976 0.976 0.996 0.997
Setting 4 0.968 0.968 0.976 0.976 0.996 0.997
Setting 3* 0.976 0.976 0.975 0.976 0.996 0.996

Round 3 – BioDivTable

Setting 1 0.338 0.339 0.619 0.64 - -
Setting 2 0.335 0.335 0.60 0.62 - -
Setting 3 0.344 0.345 0.62 0.641 - -
Setting 4 0.343 0.343 0.475 0.491 - -
Setting 4* 0.381 0.382 0.496 0.497 - -

Round 3 – HardTable Setting 3* 0.99 0.99 0.974 0.974 0.991 0.995

Round 3 – GitTables DBP Pre-processing + Mapping 0.07 0.117 - - -

Round 3 – GitTables SCH Pre-processing + Mapping 0.183 0.185 - - - -
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Note that for BioDivTab and GitTables datasets, we adapted the DAGOBAH algorithms pre-

sented in this paper. Indeed, for BioDivTab, primitive types output by the pre-processing step

were used to discriminate object and literal columns. A column contains literal values if its

primitive type is numerical, date-time, unit, or miscellaneous. Otherwise, it is considered as an

object column containing entity mentions that are passed to the lookup module. For GitTables,

primitives types are manually mapped to Schema.org and DBpedia Ontology classes.

However, it is obvious that considering multi-hop relationships in the calculation of confidence

weights will greatly increase the computational cost, which is the problem we are currently

facing. In the future, we expect to use a blocking strategy to optimise the performance. One

possible solution is that when computing a neighbor with distance 2, we do not calculate its

soft scoring at first but its string distance instead. Only when its string similarity is higher

than a certain threshold, we consider this neighbor in our soft-scoring calculation. At the

same time, the scoring computation of each neighboring node is independent. Hence the use

of parallelized distributed computing systems is one of the future directions to increase the

speed of our operation.

4.4 Industrialisation

In this section, we briefly introduce our efforts on the industrialisation of the DAGOBAH

project in Orange. Two tools built with the Orange teams are presented, which include a

RESTful API of table annotation named DAGOBAH API (Section 4.4.1) and a Web based user

interface named DAGOBAH UI (Section 4.4.2).

4.4.1 DAGOBAH-API

In this Section, we introduce DAGOBAH API. This RESTful API is deployed on the Orange

Developer portal9. It provides pre-processing and annotation services for tables, as well as

lookup services to disambiguate mentions and retrieve corresponding Wikidata or DBpedia

entities. We also report the performance of current API service with stress tests in Section 4.4.1.

This API is accessible to all company’s R&D teams and business units upon request. We plan

on extending the API access to external users in the future.

In DAGOBAH API, we provide 3 services:

• Entity Lookup API: a lookup service aims to find relevant entity candidates of an input

label from a reference Knowledge Graph.

• Table Preprocessing API: a preprocessing system for tabular data. It involves reading

9https://developer.orange.com/apis/table-annotation
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tables from files and extracting metadata from tables (orientation, header, key column

detection, and column primitive typing recognition).

• Table Annotation API: a semantic annotation system/algorithm for tabular data. Its goal

is to automatically understand the table by matching its elements with concepts, and

relations of Knowledge Graphs, such as Wikidata, DBpedia or enterprise KG. The CEA

and CTA tasks are activated for the entity column identified by Preprocessing module.

In the back-end of the API server, we decompose the features of the API into different ser-

vices, including Spacy-based Named-entity recognition (NER), annotation, lookup, and pre-

processing, etc. Each service is made of docker images deployed in a 64-bit Linux machine

with 8 CPUs and 64Gb of RAM.

Stress test of DAGOBAH API

We drive a stress test for the current API service. We first evaluate the loading capacity of the

API server. One table describing housing prices10 with 20 million rows and an extended table11

from Tough Table [35] are selected for this test. We launch a grid search by increasing 1,000

rows per run by querying large tables to the API with different row numbers until it returns an

error. For the housing price table, we find that the limitation for Lookup is 34,000 rows and

the annotation limitation is 22,000 rows. For the Tough table dataset, the lookup limitation

is 30,000 rows and the annotation limitation is 23,000 rows. The returned errors are always

out-of-memory issues.

For simulating multiple users, we also launched the same query from different docker end-

points with one selected table ("Y85GTOSS.csv" from Tough Table) with 4,000 rows. We

observed a high probability of receiving a timeout stop once four users using the API at the

same time12.

In DAGOBAH API, we provide a hyper-parameter named K. This hyper-parameter affects the

number of candidate entities generated by the lookup services. For a better understanding

of the influence of K on the final precision and running time, we launched a grid search

on Limaye dataset with a value of K from 50 to 400. We report the running time and the

precision in Figure 4.5. We observe that, in general, increasing K brings a negative effect on

both precision of the annotation and the total running time. However, when K reaches 200, we

surprisingly see the precision and running time are un-normally and largely optimised. After

multiple double-checks. We suspect that this may be due to the Lookup system that we are

using switching from a method to another when K is around 200, or from a bug in the system.

10https://www.kaggle.com/datasets/hm-land-registry/uk-housing-prices-paid?resource=download
11Table 3C3INQLM.csv
12We have tested 4 times where 2 times ended with success and we receive the errors for the rest
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Figure 4.5: The evaluation of DAGOBAH API on Limaye with different K numbers: a) precision;
b) running time

4.4.2 DAGOBAH-UI

In this Section, we introduce DAGOBAH UI, a user-friendly Web interface that enables to

visualize, validate, or manipulate results of STI methods such as the DAGOBAH API. Through

an interactive demonstration on real world datasets, we illustrate how such a UI can ease

the adoption and mass usage of STI techniques by end-users. DAGOBAH UI is a Web user

interface that makes use of the RESTful API exposing the DAGOBAH SL system [58] and the

Wikidata KG [128]. The DAGOBAH-SL system annotates tabular data with elements of KGs

such as Wikidata or DBpedia. This system was empirically evaluated during the three editions

of the SemTab challenge [64] and has shown competitive performance with a 1st prize in the

Accuracy track of the 2021 edition. Tabular data can be uploaded from the local file system or

from the most commonly used benchmarks such as the SemTab datasets [64] and T2Dv2 [68].

Several tools can be related to DAGOBAH UI. For example, MantisTable is a Web application

allowing to import and manage tables as well as trigger a specific semantic interpretation

method [30]. MTab is a Web interface that allows to upload a table and display the resulting

semantic annotations provided by the MTab tool [90]. However, DAGOBAH-UI provides

additional features such as the ability to enrich a given table with information coming from

the KG. OpenRefine13 is a powerful tool for transforming and extending tabular data with

external data. Its reconciliation functionalities are close to the CEA task in the STI process.

However, while an end-user has to manually instruct OpenRefine how to annotate specific

columns via ad-hoc rules, the semantic interpretation process is fully automatic in DAGOBAH

UI.

The preprocessing toolbox of DAGOBAH UI allows table cleaning (encoding problems, cell

misalignment, etc.) as well as extracting information about the topology of the table (orien-

tation, header, etc.) which are crucial for the annotation process. The results of this process

13https://openrefine.org/
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Figure 4.6: DAGOBAH UI depicting the preprocessing on the T2D tables with the associated
confidence scores.

on Table 77694908_0_6083291340991074532.json (from T2D dataset [105]) are presented in

Figure 4.6.

The user can then launch the semantic annotation process. The results of this process on

Table 77694908_0_6083291340991074532.csv (from SemTab 2019 dataset [63]) are presented

in Figure 4.7.a. This consists of carrying out three tasks. CEA aims at associating a cell of the

table with an entity of the KG. In DAGOBAH UI, the CEA annotation results are presented

together with the original mentions. For example, “Star Wars” has been annotated with the

Wikidata entity Q177738 (Star Wars: Episode IV - A New Hope). CTA aims to map each column

with an entity type. In the user interface, these annotations are presented in the upper part

of the table (in the headers). In the example, the system has annotated the “Title” column

with the entity Q11424 (film). CPA seeks to associate pairs of table columns with a property

of the KG. The relationships found are symbolised by links at the top of the table. When

the user clicks on a link, the associated Wikidata property is displayed. In the example, the

relationship P577 (publication date) has been identified between the columns “Title” and

“Year”. Figure 4.7.b shows the annotation results for another Web table about Movies generated

partly from Wikidata. This example illustrates the power of the semantic elevation produced
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by the annotation process. The system found that “Star Wars” in the SemTab table and

“m/star_wars” in the Movie Table actually denote the same entity: Q177738 (Star Wars: Episode

IV - A New Hope). This data reconciliation capability is particularly interesting for use cases

involving heterogeneous datasets.

Figure 4.7: DAGOBAH UI depicting the semantic annotations on the SemTab and Movie tables
with the associated confidence scores.

DAGOBAH-UI also allows users to enable downstream tasks following an STI annotation, such

as filling missing cells and adding an additional column to the table, which is also known

as data imputation and schema augmentation tasks. We will further introduce our effort in

Chapter 6.

Our future work about DAGOBAH-UI includes the development of new features around KG

enrichment from tables. As discussed in this section, tables can benefit from KGs through cell

completion and table expansion with new columns. Conversely, tables are also a great source

of dormant knowledge that can be leveraged to enrich open KGs. To this aim, DAGOBAH UI

will enable to export of the annotations as RDF triples to complement KGs.
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4.5 Discussion

In this chapter, we introduce the system DAGOBAH SL. DAGOBAH SL is a heuristic table

annotation system that aims to handle CEA, CTA, and CPA tasks using Wikidata, DBpedia, and

Schemas.org as the background knowledge graph. We further explain recent score function

optimisations of DAGOBAH SL with new mechanism including the Multi-hop Relation scoring

and Soft Context scoring. DAGOBAH SL has been evaluated through SemTab challenge series,

and it has achieved state-of-the-art performance. The performance of the optimisations is

reported with the SemTab 2022 dataset comparing to DAGOBAH SL base system. We also

present the applied API for DAGOBAH SL with its performance, and a user interface named

DAGOBAH UI.

We argue that DAGOBAH SL focuses only on the overlapped information between the table

context and the given KG. Still, DAGOBAH SL somehow ignores the common themes of the

target table during the disambiguation. Specifically, if multiple book titles appear in the same

table, they are more likely to have something in common, such as coming from the same

series or having the same author. However, DAGOBAH SL can not reveal such a topic from

the table. This issue is related to the very nature of the data. Hence, the high performance

of DAGOBAH SL for tables that are artificially and synthetically generated may not reflect

what is actually found in the wild. More specially, tables often serve a specific purpose for

the creator, and the attributes are selected accordingly. For example, one might want to use a

table for presenting all books within the topic of Star Wars, but not all entities from the type of

literary work (Q7725634). At the same time, the creator of this table might also want to focus

on the publication dates without other attributes of books (e.g., the authors) in the table to

emphasize that the Star Wars series are continuously updating14. A heuristic approach that

leverages the information overlapping between the table and KG may not take advantage of

the limited context of tables. Also, tables can be grouped into the collection with a common

theme, but at the moment, DAGOBAH SL annotates tables very independently as if they were

no notion of a collection. This context may typically not be made explicit in corpora but could

be detected using topic modeling algorithms adapted to tables. This limitation of DAGOBAH

SL points out the direction of optimising STI disambiguation.

14This example is actually modeled in the file ’file405599 0 cols1 rows23.csv’ from the Limaye dataset
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Chapter 5

Embeddings-Based Semantic Table

Interpretation

For interpreting the content of a table, the key ingredient is to capture some form of context.

The context can be immediate neighboring cells and the table structure as what has been

discussed in Chapter 4, but also the relatedness from the components of the tables. The

heuristics-based approaches from the previous chapter tend to rely solely on the context

found in the table. In contrast, the embeddings-based approaches will leverage external

sources, such as language models, including graph embeddings techniques, on tables or

encyclopedic KGs that will provide additional information about components of the table (e.g.

cells, title, columns). Also, leveraging the graph embeddings could be beneficial for digging

more hidden themes of the target table or the semantic similarities between elements from

the chosen table.

In this chapter, we present our experiments about using graph embeddings techniques for

optimizing given STI tasks. We first introduce the concept of graph embeddings in Section 5.1.

We then illustrate how to use clustering methods for STI in Section 5.2. Next, a CEA disam-

biguation plug-in tool named Radar Station is presented in Section 5.3. We finally disuss the

results in Section 5.4.

5.1 Graph Embeddings

KG embeddings methods embed the elements (e.g., entities and relations) from a given KG into

a given definite vector space and trained for achieving specific tasks (e.g. link prediction). They

are algorithms often used as a pre-processing step of a graph with the goal of turning a graph

into a computationally digestible format. KG embeddings facilitated various downstream tasks

such as link prediction [131], recommendation [73], and clustering [119] as they transformed

the symbolic knowledge presentation into mathematical vector representations.

Given the complex structure and large scale of some particular KGs (e.g. Wikidata, DBpedia),

87



Chapter 5. Embeddings-Based Semantic Table Interpretation

effectively representing its structure and the underlying semantics is a crucial task [132]. This

research direction is also known as knowledge representation learning [62]. Seen the attention

that has been attracted by the KG embeddings, various methods have been proposed, in

following we list following representative models:

• TransE [21] is a popular model that considers both entities and relations from the same

vector space. The training intends to adjust the three vectors from a given triple (h,r, t )

to the synchronized state until h+r ≈ t . TransE provides an efficient method at scale and

has been implemented in various downstream tasks. However, it also faces challenges

from symmetry/one-to-many/many-to-one/many-to-many relations that TransE can

not handle.

• RotatE [117] considers the relation as a rotational degree between heads and tails in the

complex plane. It introduces a loss function based on h◦r ≈ t for simulating the relation

translation where ◦ denotes the elementwise Hadamard production. The knowledge

representation is shown in a complex space that allows the model to capture more

underlining semantics such as symmetry relations.

• RESCAL [91, 92] is based on a bilinear scoring function hT Mr t . RESCAL aims to lever-

age a so-called three-way rank-r factorization on top of KG relation slice tensor. The

shortcoming of RESCAL is that it requires many model parameters; hence, it is hard to

apply on large KGs and quickly overfits as the rank grows.

• DistMult [140] is based on a bilinear scoring function hT di ag (r )t , where it is similar

with RESCAL that Mr from RESCAL is restricted to diagonal matrices. However, because

hT di ag (r )t = t T di ag (r )h, this model considers all relations as symmetric relations.

• ComplEx [124] also can be seen as a constrained variant of RESCAL [61] and extension of

Dismult that leverages fewer relation dimensions inside a complex space. The ComplEx

score is defined as Re(hT di ag (r )t ) and this function is not asymmetric anymore.

Table 5.1 illustrates the inference abilities of our chosen models [117]. In this table, the header

"symmetry" indicates that the model could present the rule that if "(Bob, married, Mary)", then

"(Mary, married, Bob)". "Antisymmetry" relation presents the rule that if "(Bob, is_the_father,

Sam)", then the prediction "(Sam, is_the_father, Bob)" is false. "Inverse" depicts inverse

relations, e.g. hypernym and hyponym. Some relations decomposed into multiple relations,

and it is known as "composition", e.g. my mother’s husband is my father.

These representative models could be classified into translational distance models and se-

mantic matching models following the survey of [132]. Where translational distance models

study the geometric distance between entities inside the vector space such as TransE or RotatE.
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Table 5.1: The pattern modeling and inference abilities of presented models

Model Score Function Symmetry Anti-symmetry Inversion Composition

TransE h + r ≈ t % ✓ % %
RotatE h ◦ r ≈ t ✓ ✓ ✓ ✓

RESCAL hT Mr t ✓ % % %

Dismult hT di ag (r )t ✓ % % %

ComplEx Re(hT di ag (r )t ) ✓ ✓ ✓ %

Semantic matching models measure the similarity between entities and relations during the

training with help of a neuron network, RESCAL, DisyMult, ComplEx are Semantic matching

methods.

5.2 Using Clustering for Semantic Table Interpretation

This section presents DAGOBAH Embedding, a system that uses KG embeddings for disam-

biguating the annotations. It takes advantage of embeddings (sets of graph entities vectors)

pre-trained and open-sourced. For our first experiment presented in this section, we chose to

use the OpenKE [51] pre-trained TransE embeddings from the University of Tsingua since it is

one of the richest and easiest to use at the time. The intuition behind this approach is that

entities in the same column should be closed in the embedding space as they share semantic

characteristics, and thus could form coherent clusters. We build our system based on the

lookup introduced in Section 4.1.

5.2.1 System Description

The intuition of this approach is that the correct entities from the same table column should

be close to each other in the embedding space. Hence, they should be in the same cluster

after we use the clustering algorithm. Once we could successfully select the right clusters,

we could largely reduce the noise during the interpretation and optimize the running time

performance.

From this intuition, the first step consists in determining a group of candidates for each

column of the input table by performing look-up operations (as described in Section 4.1)

to extract the candidate entities and associated embeddings. The output of this phase is a

set of vectors in the vector space representing the candidates potentially associated with the

elements of our column (the columns are processed one after the other). The idea is then

to launch a clustering algorithm in order to extract the probable candidates by making the

hypothesis that the entities of the same column are semantically close.
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Figure 5.1: Illustration of DAGOBAH-Embeddings.

The challenge is to have most of the expected candidates for a given column in one of the

clusters. A grid search strategy measuring precision of correct candidates clustering with

different algorithms and K values was implemented to determine the best algorithm (K-

means with hyperparameter K equals to number of lookup candidates divided by number

of rows)(step 3 in Figure 5.1). In order to select the relevant cluster, a scoring algorithm has

been defined (step 4 in Figure 5.1). Considering that, ideally, all good results are in the same

cluster, this means that, conversely, one of the clusters contains a large number of rows of the

target column. The cluster selection rule reflects this fact by selecting the cluster with the best

coverage of the column under study. The clusters with the highest rows coverage (i.e. number

of rows having at least one candidate in the cluster) are selected. Then, a confidence score is

associated to each candidate within these clusters (Equation 5.1).

Sc (i ) = i temcon f (i )∗ i temsi m(i )x (5.1)

where i temcon f (i ) is the co-occurrence score given by Equation 5.2 and x ∈N+ allows to give

more importance to the textual similarity.

i temcon f = F E +0.5∗F H (5.2)
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where F E and F H are defined in Equation 5.3.

F E = e +1

NC
, F H = h +1

NC
(5.3)

where e = number of entities in other columns matching with Wikidata properties values of

the candidate; h = number of headers in other columns matching with Wikidata properties

labels of the candidate; NC = number of table columns. The normalized confidence score for a

given cluster n is then computed using:

Sk (n) =
∑

i∈n Sc (i )

l en(n)
(5.4)

where len(n) is the number of elements within cluster n.

From all candidates in the selected clusters, a counting for every existing type is computed,

each type inheriting the confidence score of its corresponding candidate (step 5 in Figure 5.1).

All types with a score higher than a threshold (M ax(scor e)∗0.75) is selected. Thus, the output

type is the one having the highest specificity within the DBpedia hierarchy (using subclasses

count and distance to owl : T hi ng ). Finally, the candidates of each cell resulting from the

lookup operations are examined according to the selected type (step 6 in Figure 5.1). The

following score is computed for each lookup entity i belonging to cluster n:

Se (i ) = Rt ∗ (0.2∗Sk (n)+0.5∗Sc (i )) (5.5)

where Rt = 1.5 if the entity belongs to the type T produced in CTA, 1.2 if it belongs to a parent

of T and else 1. From a given row candidate, the output entity is the one with the highest score.

This system is described in Figure 5.1.

5.2.2 Determining the Number of Clusters and Choosing Clustering Algorithm

Choosing a suitable clustering algorithm and a suitable cluster number is always a crucial task.

In our experiment, three algorithms are selected for further sample tests, which include :

• K-means [76] is a vector quantization method from signal processing commonly used

for cluster analysis in data mining. K-means classification partitions n observations

into k groups in which each observation belongs to the group with the smallest average

distance, serving as the prototype for the group.

• BIRCH [151] algorithm uses a tree structure to facilitate rapid clustering, a numerical

structure similar to the balanced B+ tree, generally referred to as the Clustering Feature

Tree. Each node of the tree is composed of several Clustering Features. The BIRCH

algorithm is more suitable for situations where the amount of data is large and the
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number of K categories is also large. This algorithm has the advantage of being very

efficient. Moreover, only one iteration of the data is needed to calculate the whole

hierarchy.

• Spectral Clustering [85] is a widely used clustering algorithm. Compared to the tra-

ditional K-Means algorithm, spectral clustering adapts more easily to different data

distributions, and the clustering accuracy is also excellent. It is a more efficient algo-

rithm than K-means because less computation is required and its implementation is

quite simple. Spectral clustering is an algorithm derived from graph theory. The main

idea is to treat all data as points in space, which can be connected by edges. The weights

of the edges depending on the distance between the points. Counterintuitively, the

closer the points are, the higher the weight, and vice versa. The algorithm then looks for

cuts in the graph in order to generate sub-graphs in which the weights between nodes

are as high as possible and the weights between sub-graphs are as low as possible. The

output clusters of the algorithm are the clusters thus generated.

Figure 5.2: Results of the clustering evaluation for table 34041816_1_4749054164534706977.
Red: K-means; Blue: BIRCH; Green: Spectral Clustering; Dotted line: scale = p.

It is difficult to choose the right algorithm and the right number of clusters (K value) since we

might have different K values for different tables and different columns. To better observe how

the K value affects our performance of the system regarding different clustering algorithms,

we launched a grid-search procedure on 15 sampled tables. The idea of this process is to run

the three clustering algorithms with a number of clusters fixed at a value between 0 and five

times p on the sampled table from T2D dataset, where p is an index equal to the number of

look-ups divided by twice the number of rows of the table to be annotated. We aim to discover

a suitable function to determine the K value.

The visualisation of results of the grid-search on two sampled tables of the corpus are given
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Figure 5.3: Results of the clustering evaluation for table 54719588_0_8417197176086756912.
Red: K-means; Blue: BIRCH; Green: Spectral Clustering; Dotted line: scale = p

Table 5.2: Results of the baseline and DAGOBAH embedding approaches for the first rounds of
the challenge

Task CTA CEA CPA
Criteria Prim. Score Sec. Score F1 Score Precision F1 Score Precision

Round 1
Baseline 0.479 0.242 0.883 0.892 0.415 0.347

DAGOBAH Embedding 1.212 0.336 0.841 0.853 - -

in Figure 5.2 and 5.3, and the 13 other tables are shown in the Appendix A. The ordinate

axis indicates the F1 score (modified by multiplying the recall by two in order to make the

clustering more permissive and to accept a maximum of candidates in the clusters, at the

expense of precision). The x-axis indicates the expected number of clusters (value of the hyper-

parameter). The three algorithms, K-Means, Birch, and spectral clustering, are respectively

represented in red, blue, and green. Also we proposed a K value function so-called p-index,

where it equals the number of the total candidates divided by the number of the row from

the target column. In the graph, we have represented the p-index (the number of lookup

candidates divided by the number of lines of the target table) with a blue vertical bar. Following

this sampled research, we empirically found that the K-Means algorithm obtained better

results since it is more stable, and its peak point is highly correlated with the p-index than the

two other algorithms in our chosen sampled tables. On the whole corpus of evaluation, we

noticed that this index gave, in the majority of the cases, the most adapted number of clusters.

5.2.3 Evaluation

We first compare the result of the clustering algorithm with a baseline which only depends on

majority voting after a lookup research without any further operations on the SemTab 2019

challenge Round 1, we show the result of this evaluation in Table 5.2.
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Figure 5.4: Result of K-means clustering applied to Wikidata embedding

The CEA’s results of the baseline are satisfactory, but the baseline has difficulty in producing the

CTA results expected by the evaluator. In this selected baseline, the predicted type was often

too generic or too specific. In addition, the baseline showed two important limitations: a high

dependency on lookup services (over which DAGOBAH has little control) and difficulties in

correctly setting up algorithms (in particular finding the right compromise between specificity

and representativeness of types in the case of CTA). Concerning the CPA, a simple lookup

technique on the header was used during round 1 explaining the low accuracy.

To show the contribution of the embedding approach, an evaluation was carried out on

the corpus. CEA performances are slightly poorer because of basic lookup strategies used

(compared to the fully-optimised lookups used in the baseline) and the absence of expected

candidates in the selected clusters. But the embedding approach proves to be highly proficient

to determine the type of a column which is the core of more reliable annotations. In addition,

the results are particularly interesting in cases where string mentions in the original table are

incomplete. In table 54719588_0_8417197176086756912 for instance, one column references

movie directors only by their family names (in that case, our baseline performance was poor).

Doing K-means clustering on a subset of this table (four rows) performs pretty well even with

very few data, as illustrated in Figure 5.4 (2 clusters shown among 12). Indeed, the green

cluster gives the expected candidates, even if disambiguation still has to be done for some

cells (using Se ).

We also compare this method with DAGOBAH-SL and MTab, two state-of-the-art heuristic

STI methods, during the first round of the SemTab 2020 as illustrated in Table 5.3. We notice

that DAGOBAH SL and MTab perform much better than DAGOBAH Embedding. The drop in

the scores is arguably derived from the fact that DAGOBAH Embedding retains only a limited
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Table 5.3: Results of the Embeddings system in Rounds 1 of the SemTab 2020 challenge. “F1”
stands for F1-score, “P” stands for Precision, and “C” stands for Coverage. The coverage is the
ratio between the number of annotations proposed by the system and the number of targets
to annotate. We also report on the score of MTab as this is the challenge winner.

CTA CEA CPA

F1 P C F1 P C F1 P C

Round 1
DAGOBAH Embedding 0.779 0.803 95.3% 0.776 0.843 91% 0.809 0.958 73%

DAGOBAH SL 0.834 0.854 95.3% 0.922 0.944 95.3% 0.914 0.962 90.6%
(Synthetic Tables) MTab 0.926 0.926 - 0.987 0.988 - 0.971 0.971 -

number of clusters for the entity disambiguation, which does not always involve all the good

candidates given the imperfection of the current clustering algorithm.

5.3 Radar Station

Cell-entity annotation [63] (CEA) is one of the fundamental tasks for STI. This task is often

performed by retrieving and scoring possible entity candidates (from a target KG) to disam-

biguate a cell value. Next, the result is used as input for performing Column-Type Annotation

(CTA) and Columns-Property Annotation (CPA) [1, 26, 58, 89]. However, associating a mention

contained in a cell with an entity in a KG is a complex task requiring the resolution of several

issues including handling properly the syntactic heterogeneity of mentions (e.g. the Wikidata

entity “France” (Q142) may be referenced in a table by mentions like “The Republic of France”

or “FRA”), the polysemy of terms (e.g. “Apple” can refer to a fruit or a company), and the

diversity and complexity of table formats and layouts (e.g. matrices, relational table with

hidden subjects, etc.).

Numerous approaches have been proposed for handling these issues. Among these methods,

heuristic-based iterative approaches [1, 26, 58, 89] aim to leverage the column types and the

inter-column relationships aggregated by voting strategies for disambiguating cell annotations.

They have demonstrated to be the methods reaching the best performance in the SemTab

challenge series [36, 63, 64]. However, one drawback of these strategies is related to error

propagation. Often, such systems propagate the entity annotation error in the target column.

Furthermore, they also often ignore other column-wised semantic similarities: for example,

books appearing in the same column may share the same topic.

To address these limitations, we propose a new hybrid disambiguation system called Radar

Station1 that takes advantage of both an iterative disambiguation pipeline and semantic disam-

biguation using graph embedding similarities. Radar Station takes as input CEA annotations

and associated confidence scores that quantify the level of certainty associated with each

1We made this system open-sourced in GitHub: https://github.com/Orange-OpenSource/radar-station
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result. Our approach uses an ambiguity detection module that detects cases where the cell

annotation is potentially wrong due to error propagation. In the following steps, the use of

graph embeddings allows Radar Station to potentially fix the wrong annotations by taking

into account semantic proximities (e.g. geometric proximity of entities representing books)

that are not directly encoded and captured in the sole content of table columns. We evaluate

Radar Station using several graph embedding models belonging to different families on Web

tables as well as on synthetic datasets, and we provide a thorough analysis of the performance

among the graph embeddings models and the datasets.

5.3.1 Motivation

STI covers five main tasks as introduced in Section 3.2. In these tasks, Radar Station aims

to improve the CEA disambiguation. Thus, this section reviews the current state-of-the-art

methods for the CEA task on relational tables. We classify them into three groups: heuristic-

based approaches, iterative disambiguation, and graph embeddings approaches, and we

discuss their strengths and limitations [74].

Heuristic-Based Approaches

Starting from a basic lookup service that generates target candidates for a given cell mention,

heuristic-based approaches leverage diverse methods interpreting the table context to filter

unreliable candidates and to produce a final annotation. Based on heuristic candidate gen-

eration and string similarities measures, [72] is one of the first works on STI. It constructs a

graph-based algorithm that exploits learnable features from column context, row context, and

relation context to construct a confidence function for each candidate for annotating a cell.

TabEL [16] introduces a hybrid system that leverages probabilities to build a graphical model

for representing the interactions between cells, columns, and headers. ADOG [94] generates

features from string similarities, frequencies of properties, and the normalized Elasticsearch

score. Then, these features are calibrated with the candidate’s TF-IDF score according to

entities’ types in the same column. Our approach takes as input a list of CEA candidate anno-

tations together with their scores (generated by such an existing CEA annotation tool), and

detects the presence of potential ambiguities in order to select the right candidate from this

closed set.

Candidate Disambiguation

Adding a disambiguation process on top of a heuristic-based approach can significantly

improve the performance of an annotation system. Iterative processing is one of the most

commonly-used methods for improving pre-annotated results. The iteration loop aims to
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collect the results of several annotation tasks, mutually improving the compatibility between

annotations (e.g. taking into account the type of a column produced by the CTA to choose

the right CEA candidates), and increasing the scores of candidates that would not have been

chosen in the first place. For example, [156] uses a loop that exploits the CTA annotation of a

given column to select candidate cells that feature that type and then redefines a new CTA

annotation for the column by exploiting the entities selected. Regarding the CEA disambigua-

tion, we identified two classes of iterative systems. First, T2K [104] and TableMiner+ [153]

introduce a loop in the pipeline that ends when the result becomes stable. The other iterative

systems [1, 26, 58, 89] provide a predefined pipeline with sequential modules (e.g. the pipeline

of LinkingPark [26] is composed of a CEA pre-scoring, then a CPA step, and finally the use of

the CPA annotations to generate the final CEA annotations).

Radar Station uses the output scores of an existing STI system. It currently supports the

DAGOBAH-SL [58, 59], MTab [89] and BBW [110] systems which have all competed during the

SemTab Challenge series [36, 64] and are selected as baseline systems during the evaluation

of Radar Station. These systems use string similarity in the scoring system and leverage the

table’s global information carried out by the CTA and CPA annotations to generate more

precise CEA annotations. For cell annotations, they evaluate whether a candidate entity

ec ∈ Ec (em) retrieved from the KG is a good representation of the corresponding table cell em

by incorporating the table context of em and KG context of ec in the score of ec . Although these

approaches show great performance for datasets like BioTable and HardTable from SemTab,

they still have limitations as described in Section 5.3.1. First, the use of a unique column type

or columns pairs relationship potentially propagates type (resp. relation) annotation error

through cell annotations. Second, leveraging only entities’ type (resp. relations) result does not

allow to take into account more attributes and properties in the disambiguation process. For

example, a column type may not bring necessary information such as a person’s nationality,

building localization, or object ownership for disambiguating entities. Facing these challenges,

Radar Station first activates an ambiguity detection module that detects cases where the cell

annotation is potentially wrong. Meanwhile, it considers entities’ embeddings to leverage

more similarity measures inside a given column.

Usage of Graph Embeddings

Methods applying graph embeddings for STI focus on entity-level in which the models learn

embedding representations for entities of a table cell instead of the cell itself. Specifically, KG

embedding techniques are used to encode the entities and their relationships into a vector

space. STI approaches using deep learning models are based on the intuition that the entities

in the same column should exhibit semantic similarities. Hence, they should be close to

each other in the embedding space w.r.t. a cosine similarity distance [41] or a Euclidean

distance [24].
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Vasilis et al. [41] provide different methods. One of them assumes that the correct CEA

candidates in a column should be semantically close. From this assumption, a weighted

correlation subgraph in which a node represents a CEA candidate is constructed. The edges

are weighted by the cosine similarity between two related nodes. The best candidates are

the ones whose accumulated weights over all incoming and outcoming edges are the highest.

In addition, a hybrid system combining a correlation subgraph method and an ontology

matching system, is also introduced, which considerably improves the final result. Yasamin

et al. [44] further enhance this approach by taking the header of the table into account for

ontology matching and giving more weights to unique cell candidates when calculating

embeddings Page-Rank. Our previous work, DAGOBAH-Embeddings [24] (Illustrated in

Section 5.2), follows the same assumption that all entities in the same column of the table

should be close to each other in the embeddings space. Consequently, the correct candidates

are assumed to belong to a few clusters. They apply a K-means clustering using TransE

pre-trained KG embeddings to cluster the entity candidates. The good clusters with high

coverage are selected by a weighted voting strategy. Experimental results prove that they have

successfully improved the accuracy of the CTA task. However, the system is also misled by

incorrect candidates during the CEA task when the correct candidates are not in selected

clusters. TURL [38] leverages the BERT model for STI and table augmentation with the help of

a visibility matrix for capturing table structure. Although TURL introduces entity embeddings

as one of the inputs to its model to assign information to entities, the entity embeddings do

not embed properties about the entities in the graph, such as the fact that neighbouring nodes

are missing in them.

The contributions of our approach are as follows. First, we use embeddings only during the

disambiguation step to benefit from both the iterative disambiguation and the embeddings

disambiguation. Second, we provide a new scoring mechanism that takes into account the

scores generated by CEA approaches and the distance between the entities in the embedding

space.

5.3.2 System Description

Radar Station is not a standalone annotation system. It is built on top of a given annota-

tion system and resolves ambiguities detected in the annotated results. We choose to use

DAGOBAH-SL [108] as the base annotation system to illustrate the process of Radar Station.

We motivate the need for Radar Station observing that pure string-based matching and iter-

ative scoring methods are limited in situations where: i) the target KG is incomplete; ii) the

matching mechanism failed; iii) the CTA or CPA disambiguation can not provide enough infor-

mation in very ambiguous cases (e.g. candidates belonging to the same type or no property

identified). These situations also cover cases with limited row numbers that can annotate a

unique column type (resp. unique columns relationship) by majority voting. For example,
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voting for a common type given only the two cell mentions “Apple” and “Blackberry” may lead

to randomly select the company or the fruit.

Figure 5.5: Illustration of Radar Station with DAGOBAH-SL results. The plot is generated with
RotatE embeddings after dimension reduction by T-SNE.

Figure 5.5 provides an example where DAGOBAH-SL is not able to handle properly an ambigu-

ous case: two potential candidates with the same score for the cell “Traitor”. The ambiguity

comes from an unsuccessful matching between the column “2002” with literal information

“30 July 2002” of candidate “Q7833036” for entity scoring and CPA disambiguation. CTA dis-

ambiguation does not work in this case since these two candidates are books with the type

“literary work” (“Q7725634”). “Q21161161” is a science fiction novel and “Q7833036”is an

anti-wars romance novel.

We do not aim at improving the performance of the system by relying on clever string-matching

methods. Instead, we expect to find more semantic similarities using the full column as context

with the help of the scores generated from the row context. In this example, one could identify

that the correct entity is “Q7833036” since the topic of this table is the science fiction series

“The New Jedi Order” from Star Wars. This relationship is missing in the table cells, but it

still could be beneficial for the disambiguation steps. Radar Station aims to leverage graph

embeddings to dig similarities alongside the entity types and common relationships inside

the tables. The architecture of Radar Station is illustrated in Figure 5.6 and the modules are

described in the following sections. Table 5.4 summarizes the notation used in the Radar

Station approach.

Input Data Structure

Before running Radar Station, the information required by the system includes the index of

the cell in the table (row number and column number), and information about all candidates
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Figure 5.6: Overview of the Radar Station pipeline.

Table 5.4: Summary of the notation used to define Radar Station

Notation Description
C The collection of cells from the target column
Ec The collection of the context entities representing the column C

A mci The collection of the ambiguous entities extracted from the cell ci

S c(e)
The initial score for the candidate e generated from the previous annotation system,
in our case, DAGOBAH-SL

E m(e) The embedding of a given entity e

Ek
The collection of K nearest context entities of an ambiguous candidate am ∈A mci

for the target column C , Ek ∈ Ec

for each cell without filtering the candidates. This information includes an identification of

each candidate and their confidence score. The confidence score evaluates how compatible

a candidate is with the context information given by the table (e.g. row values, column type,

columns-pair relations).

Context Entities Selection

The row context has already been interpreted by DAGOBAH-SL and is used to compute the

confidence score of each candidate. The first step of Radar Station is to build a column-wised

context to support the disambiguation process. We collect entities with the highest confidence

score from all cells of a given column C as the context entities set. In case of ambiguity, that is,

multiple candidates (n candidates) sharing the same highest score, we collect all of them, and

the score is divided by n. Other candidates are not taken into account to maximize the trust

for “sure” annotation from DAGOBAH-SL (e.g., only one candidate with the highest score) and

to avoid noise inside this column. For example, for the row 15 in Figure 5.5, both “Q7833036”

and “Q21161161” are collected into the context set with a score “0.008” (0.016/2), and for row

16, only “Q5265233” is collected with a score “0.016”. The collected context entities set for the

column C are noted as Ec .
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Ambiguity Detection

Radar Station detects ambiguous cells that are worthy to be disambiguated given a tolerance

t . Intuitively, t enables to relax the constraints one wants to have in looking up candidates

potentially matching a cell mention. Once a candidate’s score is larger than t ∗M ax(scor es),

it is selected as one of the “top candidates”. For example, if we set t = 1, “Q7833036” and

“Q21161161” for row 15 of Figure 5.5 will be among the top candidates. If we relax the tolerance

t to 0.7, “Q1536329” will also be considered as a top candidate. We denote “Ambiguities” as

Am for the case that the size of the top candidates is greater than or equal to two. Radar

Station is activated in this case and it will annotate the cell with one of the candidates from

the ambiguities. When there is no ambiguity inside a cell, we directly output the single top

candidate as the annotation.

Radar Station Disambiguation

Algorithm 1 Radar Station disambiguation algorithm

Require: Cell index C and ambiguities for each cell A mci , ci ∈C where the collected context
entities (or senders) of the target column is Ec .
Candidate scores from the annotation system {Sc(ei )}, ei ∈ Ec .
Candidate embeddings {Em(ei )}, ei ∈ Ec .

Ensure: Entity annotation selected by Radar Station.
1: build a KD-tree with all candidates’ embeddings {Em(ei )}
2: K ← mi n(|E f |,20)
3: for each cell ci from C do
4: if there is an ambiguity in A mci then
5: Ec ← filter entities from the same cell in Ec

6: for each ambiguous entity ami in A mci do
7: find the K nearest candidates of the ambiguous entity Ek in the KD-tree by ignoring

candidates from the same cell.
8: Rad ar Scor eami ← 0
9: for each neighboring entity e j ∈ Ek do

10: Rad ar Scor eami ← Rad ar Scor eami +
Sc(e j )

di st ance(ami ,e j )

11: end for
12: Rad ar Scor eami ←

Rad ar Scor eami
K

13: g (ami ) ←αRad ar Scor eami +Sc(e j )
14: end for
15: the annotation is the ambiguous entity with the highest g (ami )
16: end if
17: end for

In our approach, we leverage KG embeddings to uncover the entities’ co-relationship from

a table to improve the disambiguation step. The principle of the Radar Station approach

is inspired by radar station signal emissions. The receiving signal power of a signal station
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depends on both the initial power strength from the sending station and the distance between

the sender and the receiver. That is, the receiving signal will be stronger when the initial power

from the sender is stronger, and this receiving signal strength will decrease as the distance

increases. In our approach, we treat each context entity from the same column as a signal

sender, and receivers are the ambiguities to be resolved. One ambiguous candidate captures

signals from multiple neighbouring context entities (i.e. senders) and the sum of the receiving

signals is the confidence score of the candidate. The disambiguation pseudo-code is presented

in Algorithm 1.

We consider only the K nearest context entities to computer the final score of an annotation

in order to avoid noise and to optimize the performance. The system first constructs a K-

Dimensional tree (KD tree) of all context entities for each column, and then calls this KD

tree to drop the K nearest context entities during the prediction (lines 1-2). We set that the

maximum K value is 20 (line 2). We set the initial sender power strength with the confidence

score generated by DAGOBAH-SL. One ambiguous candidate ami detects K received signals

from the surrounding senders e j ∈ Ec (or context candidates) to generate the confidence score

f (ami ) with the Function 5.6 (line 3-12), where Sc(e j ) denotes DAGOBAH-SL scores of the

sender e j and di st ance(ami ,e j ) denotes the Euclidean distance between the sender e j and

the receiver ami .

In detail, for a target ami , we collect its top-K nearest neighbors from Ec , where each context

entity c j belongs to Ec . We have each context entity’s scores Sc(c j ) and the distance with

the target candidate di st ance(ami ,c j ). We then apply the Function 5.6. Like this, we could

generate a confidence score for each of those two target candidates. We divide each of their

context entities’ confidence score by the distance between those two candidates and then

calculate the sum to compare.

f (ami ) = 1

K

∑
j<K

(
Sc(e j )

di st ance(ami ,e j )
) (5.6)

The final result g (ami ) for an ambiguous entity is the combination of Radar Station score

f (ami ) and the initial DAGOBAH-SL confidence score Sc(ami ) introduced in Function 5.7

(line 13).

g (ami ) =α f (ami )+Sc(ami ) (5.7)

Our initial experiments showed that the average distance in the embedding space between

the target ambiguity and its top K nodes is approximately 1. According to the Function 5.6, we

know that f (ami ) and Sc (ami ) are roughly in the same order of magnitude. Since we expect

to disambiguate candidates with a tolerance between 0.7 and 1, we need the value of the

discrepancy caused by f (ami ) to be roughly within Sc (ami )∗0.3. We originally set α to 0.3
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and we tested the following α values (0,3, 0.2, 0.1, 0.05, and 0.01). We empirically observed

that 0.05 gives the best results.

5.3.3 Implementation

In our experiments, we consider Wikidata as the target KG. We first rely on the DAGOBAH-SL

system to lookup for candidates for each entity cell. We only consider the top 100 candidates

according to the string similarity on entity label and aliases. We evaluate the result on four

different gold standard datasets: T2D [104], Limaye [72], Tough Tables version 2 [35] and

ShortTables.

Knowledge Graph Embeddings

Pre-trained KG embeddings can provide additional information for table understanding

beyond the table context. Entities inside the same table column should be somehow co-

related, which means they may share the same entity type, similar topics, or even attributes.

In order to have the most suitable embeddings given the latest version of Wikidata, we use

the PyTorch-BigGraph framework [70] for training embeddings. The triples used for the

training are collected from a Wikidata dump published in May 20212. Before the training, the

triples with literal values and Wikimedia disambiguation page entities (e.g. “Q1151870”) are

filtered out. The selection of the final embeddings is made given our empirical evaluation

of Radar Station after fine-tuning the hyper-parameters. We consider two representative

translational distance models (TransE [21] and RotatE [117]) and two semantic matching

models (DistMult [140] and ComplEx [124]) following the classification of [132].

Translational distance models study the geometric distance between entities inside the vector

space. TransE [21] considers both entities and relations from the same vector space. The

training intends to adjust the three vectors from a given triple (h,r, t) to the synchronized

state until h + r ≈ t . In Pytorch-BigGraph, we use the translation operator for generating the

TransE model. Unlike TransE’s translation, RotatE [117] regards the relation as a rotational

degree between heads and tails. It introduces a loss function based on h ◦ r ≈ t for simulating

the relation translation. We use the GraphVite’s [155] pre-trained RotatE embeddings in our

experiments.

Semantic matching models measure the similarity between entities and relations during

the training. DistMult [140] is based on a bilinear scoring function hT Mr t , where Mr is the

relation matrix built on top of the entity. ComplEx [124] can be seen as a constrained variant

of RESCAL [61] that leverages fewer relation dimensions inside a complex space. The ComplEx

score is defined as Re(hT di ag (r )t ). In Pytorch-Biggraph training, we use the diagonal operator

2https://archive.org/details/wikibase-wikidatawiki-20210521
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Table 5.5: Gold standard datasets for evaluating STI approaches. The ambiguities are based on
DAGOBAH-SL scores

Gold standard #Tables Avg. #Rows Avg. #Col #Entities Ambiguities (t=1) Ambiguities (t=0.9)
Limaye 437 37 2 5,143 181 (3.52%) 685 (13.31%)

T2D 762 157 5 18,589 2,322 (12.49%) 8,852 (47.62%)
2T_v2 180 1,080 5 661,297 30,686(4.64%) 86,739(13.11%)

ShortTables 2,237 2 5 4,474 1,422 (31.78%) 1,822 (40.72%)

for generating DistMult embeddings and iterations between complex_diagonal and dot operators

for ComplEx embeddings.

Datasets

We evaluate Radar Station on three popular gold standards: T2D3, Limaye4, and Tough Tables

version 25. The original T2D and Limaye datasets contain some annotation errors that we

have corrected. As T2D and Limaye are gold standards based on DBpedia and Radar Station

is a Wikidata-based annotation system, we translate the DBPedia entities given in the gold

standards into Wikidata entities through the “Wikidata item” hyperlink from Wikipedia pages

of DBpedia entities. We manually corrected this translation when it was failing. Since the

number of entities in Wikidata is larger than the number of entities in DBpedia [100], the

annotation based on Wikidata is also harder with more candidates to disambiguate. We publish

the new resulting ground truth on Zenodo (see the supplementary material). ShortTables is

a new dataset we built from T2D, in such a manner that each table only contains two rows.

The aim of creating such a dataset is to simulate extreme cases where voting strategies lack

electors (i.e. row entities) for a correct CTA (resp. CPA) annotation. The provenance of T2D

and Limaye is Web tables. We also consider a synthetic dataset named Tough Tables version 2

(2T_2) to evaluate on more data types. We provide the statistics of these gold standard datasets

in Table 5.5.

Evaluation

We evaluate Radar Station with these four datasets varying the embeddings and the tolerance

threshold. A random selection of the highest scoring candidates is considered as our baseline

and noted as the original system name. We show the overall result for t equals to 1, 0.95, and

0.9 based on DAGOBAH-SL scores on four datasets with different embeddings in Table 5.6

and the fine-tuned result based on DAGOBAH-SL, MTab and BBW with Limaye and T2D in

Table 5.7.

3http://Webdatacommons.org/Webtables/goldstandardV2.html
4http://Websail-fe.cs.northwestern.edu/TabEL/
5https://zenodo.org/record/6211551
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5.3 Radar Station

Table 5.6: Radar Station evaluation based on DAGOBAH-SL scores. AP: Ambiguity quality, PA:
Precision inside ambiguities, GP, Global precision

t Methods
Limaye T2D 2T_v2 ShortTables

AQ PA GP AQ PA GP AQ PA GP AQ PA GP

1

DAGOBAH-SL

0.647

0.168 0.853

0.308

0.053 0.785

0.067

0.023 0.870

0.672

0.194 0.654
RS + TransE 0.630 0.870 0.294 0.813 0.041 0.871 0.355 0.673
RS + RotatE 0.636 0.870 0.289 0.812 0.044 0.871 0.363 0.673

RS + DistMult 0.391 0.861 0.163 0.798 0.034 0.870 0.229 0.658
RS + ComplEx 0.57 0.869 0.171 0.798 0.036 0.870 0.235 0.659

0.95

DAGOBAH-SL

0.614

0.296 0.853

0.332

0.180 0.785

0.327

0.208 0.870

0.671

0.302 0.654
RS + TransE 0.528 0.872 0.312 0.815 0.230 0.872 0.414 0.673
RS + RotatE 0.542 0.873 0.312 0.815 0.235 0.872 0.418 0.674

RS + DistMult 0.377 0.860 0.230 0.797 0.213 0.870 0.328 0.659
RS + ComplEx 0.435 0.864 0.233 0.798 0.219 0.870 0.334 0.660

0.9

DAGOBAH-SL

0.653

0.432 0.853

0.336

0.241 0.785

0.500

0.300 0.870

0.714

0.414 0.654
RS + TransE 0.570 0.872 0.323 0.815 0.313 0.872 0.532 0.684
RS + RotatE 0.578 0.873 0.322 0.814 0.318 0.872 0.536 0.684

RS + DistMult 0.475 0.860 0.274 0.797 0.303 0.870 0.466 0.668
RS + ComplEx 0.494 0.862 0.275 0.798 0.306 0.870 0.471 0.669

5.3.4 Evaluation Settings

We aim to evaluate the performance of Radar Station on the ambiguity lists and how it can

influence the global annotations. Thus, we use three indicators including Ambiguity Quality

(AQ), Precision inside Ambiguities (PA), and Global Precision (GP). AQ (Equation 5.8) shows

the quality of generated ambiguity list after the Ambiguity Detection step, that is, how many

ambiguous cells contain a ground truth in its top candidates. It indicates the extreme pre-

cision that we could achieve in all ambiguous annotations, which is PA in Equation 5.9. GP

(Equation 5.10) is the overall precision in all labelled cells considering annotations generated

with or without Radar Station.

AP = #Cor r ect candi d ates i n the candi d ate set o f ambi g ui t i es

# Ambi g ui t i es
(5.8)

PA = # Cor r ect ambi g ui t y di sambi g uati ons

# Ambi g ui t i es
(5.9)

GP = #Cor r ect annot ati ons

#Tot al l abel s
(5.10)

We also introduce the Cohen’s Kappa [28] coefficient to evaluate the independence of the an-

notation from different embeddings models. Cohen’s Kappa coefficient is used to analyze the

consistency of two reviewers’ ratings of the category items, commonly used in the comparison

between new discrete data and the gold standard to detect whether the new data has a certain
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Table 5.7: Gold standard datasets for evaluating STI approaches with RotatE embeddings. AP:
Ambiguity quality, PA: Precision inside ambiguities, GP, Global precision

Dataset System t AQ
Original output Radar Station
PA GP PA GP

Limaye
DAGOBAH-SL 0.9 0.653 0.432 0.853 0.578 (+0.146) 0.873 (+0.020)

MTab 0.83 0.820 0.705 0.857 0.787 (+0.082) 0.875 (+0.018)
BBW 0.65 0.587 0.359 0.563 0.507 (+0.148) 0.597 (+0.034)

T2D
DAGOBAH-SL 0.95 0.332 0.180 0.785 0.312 (+0.132) 0.815 (+0.030)

MTab 0.71 0.385 0.295 0.837 0.346 (+0.051) 0.857 (+0.020)
BBW 0.65 0.263 0.192 0.364 0.253 (+0.061) 0.382 (+0.018)

effect on accuracy. Cohen’s Kappa coefficient is formulated as follows:

kappa = Po −Pe

1−Pe
(5.11)

where Po is the proportion of two reviewers who are equal in this decision; Pe is the expected

value of making the same decision when two reviewers make independent choices. When

kappa equals to 1, it means that the two datasets are the same.

5.3.5 Analysis

Overall result

We first observe from Table 5.6 that all the chosen embeddings contribute to a significant

improvement for PA in the ambiguous cases with the chosen tolerance values and GP. We

also notice that Radar Station brings more improvements to GP for the Limaye (Max. 0.02),

T2D (Max. 0.03), and ShortTables (Max. 0.03) than for 2T_v2 (Max. 0.002). This drop for

2T_v2 is due to the distribution of the scores of the top candidates: i) as we can see, after

relaxing the tolerance from 1 to 0.9, AQ for 2T_v2 has dramatically increased in comparison

to the other datasets. Hence, there is no clear boundary between top candidates and bad

candidates for the 2T_v2 dataset. That leads to a relatively lousy context embedding for the

disambiguation. This scoring distribution is impacted by row number with DAGOBAH-SL

mechanism, that is, the more rows we have, the more balanced the scoring would be; ii) the

other reason is that 2T_v2 is a synthetic dataset generated with types from a KG. Thus, other

column-wised semantic similarities are not obvious in this dataset. Hence, we recommend

that future synthetic datasets should consider the inclusion of common themes from these

tables to simulate other real-world use cases.

We introduce ShortTables for simulating the extreme cases where the very limited number

of rows does not allow existing systems to generate correct CTA and CPA annotations. Bad

CTA or CPA may propagate the error to the cell annotations. Thus, we expected to have
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5.3 Radar Station

Figure 5.7: Illustration of the Kappa test between different outputs on all datasets, t = 0.95.

a more significant GP improvement for ShortTables compared to T2D. However, from our

evaluation, the contribution of Radar Station is close in these two datasets (Max 0.03). We

analyze that a small number of rows can decrease the quality of type annotation and more likely

propagate error with type disambiguation: therefore, it provides more chances for semantic

disambiguation. At the same time, the limited number of rows also limits the content of the

context entity set that has been used for semantic disambiguation. We argue that these two

effects cancel each other in this experiment. We have implemented Radar Station on two

other systems and evaluated its performance with two Web table datasets. The result shown

in Table 5.7 indicates that Radar Station benefits to all input annotation systems.

Analysis on embeddings

Regarding the two families of embeddings (TransE and RotatE are translational distance

models, DistMult and ComplEx are semantic matching models), the GP for embeddings from

the same family achieves similar results inside our trained embeddings. From the result of

Cohen’s kappa shown in Figure 5.7, we observe that the output is similar for embeddings from

the same family. For example, the kappa value for TransE and RotatE is much higher than

TransE with other outputs (same for DistMult and ComplEx). This similarity could also be

seen in the precision shown in Table 5.6. We also observe that translational distance models

are generally better than semantic matching models in our trained embeddings. That may be
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Figure 5.8: The GP evaluation on Limaye with t from 0.7 to 1 based on DAGOBAH-SL.

Figure 5.9: The GP evaluation on T2D with t from 0.7 to 1 based on DAGOBAH-SL.

because we leverage geometric distance inside Radar Station, which is compatible with the

training strategy of translational distance models. That is, the translational models directly

leverage the embedding distance in the latent space as the key of their loss function while the

semantic matching models do not. Globally, RotatE embeddings outperform all other models

for all datasets.

Tolerance

Relaxing the tolerance has for effect to include more candidate entities and thus has the poten-

tial to increase the probability that the correct candidate is in the candidate set. However, such

an operation also puts more noise into the candidate list. In Figure 5.8 and 5.9, we illustrate

how the tolerance t influences the performance of the system on Limaye and T2D. It shows

that relaxing the tolerance with TransE and RotatE improves the quality of the annotation

(performance peak at t=0.95 in Figure 5.8). In our observation, largely relaxing the tolerance

may decrease the accuracy since more noise is included during the disambiguation. This is

therefore a delicate tradeoff to generalize across datasets.
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5.4 Discussion

In the chapter, we present the work of the clustering method that performs optimisation on

CTA task but it also decrease the performance of CEA task. We also propose Radar Station, a

novel approach for addressing the difficult and ambiguous cases leveraging on KG embeddings

for uncovering the column wise-similarity. These approaches are evaluated on the SemTab

challenge as well as two other popular gold standards. The evaluation shows that we have

made a improvement in accuracy and performance based on three others top-tier systems,

including DAGOBAH-SL.

However, we also found that they are still some limitations and areas for improvements:

• First, we only use information from the same column as disambiguation support data

for Radar Station. But at the same time, the information brought by other columns of

the table, headers, titles, and table metadata is not well interpreted for supporting the

annotation.

• For the words, sentences, and characters in the table, we treat them as a simple input

for mapping with table elements and KG by way of string matching. But the semantic

meaning they have in themselves is somewhat ignored despite the KG.

• Our work is still limited to relational tables. Other table types remain uninterpretable.

To address these limitation, in future work, we expect to use language models to better inte-

grate all the information in a table (including its structure and its textual content). We expect

first to test existing variants of BERT for tables to explore their feasibility and propose better

solutions. Making use of the automatically produced semantic annotations in applications

is also an objective of this thesis. We will also focus on the correlation between or inside

tables/KGs.
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Applications of Semantic Table

Interpretation

The interpretation of tables from the previous sections aims to uncover the meanings of the

data with respect to a semantic artifact, such as an ontology or a knowledge graph. One could

leverage the extracted knowledge following STI tasks for the benefit of different use cases.

Examples of these use cases include search engines [15, 23], question/answering systems [95,

116, 141], knowledge base enrichment [104, 139, 150] or dataset recommendation [148].

In this chapter, we focus on Table Augmentation tasks. The life cycle of tabular data and the

coverage of background knowledge represented in open or enterprise KGs can vary. This situa-

tion generates differences between tables published by organisations and open or enterprise

KGs that are continuously curated: information is missing, dimensions are eluded since they

are deemed useless by the data producer, etc. However, in many use cases (e.g., dataset search,

profiling and recommendation), the completeness and richness of the data have positive

effects and are desirable qualities. Once annotated, tables can be enriched with additional

elements from the supporting KG. The purpose of table augmentation is to extend an existing

table with additional data. It includes filling the table with new rows and columns or finding

missing cell values. These tasks are also known as data imputation and schema augmentation.

One of the examples is that structured tabular data is widely used in the field of Machine

Learning where the approaches leverage features from different columns to train a predictive

model. Those Machine Learning models are mostly data-driven where the performance of the

trained model always depends on whether the training datasets are clean or not. Augmenting

a given table with new columns or updated cell values provides additional features to improve

the quality of the input data.

Table augmentation aims to extend a given table using other sources as background knowledge.

The background knowledge could come from other tables, a knowledge graph, or textual

information from the training data of a given language model. Based on our observation from

the literature, three different subtasks of table augmentation have been introduced so far,

namely row population [107, 146], data imputation [139, 147], and schema augmentation [15,
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139]. We prioritised data imputation and schema augmentation tasks because they were more

important for our use cases in the industry.

Data imputation, also known as data completion and missing cell filling, refers to correcting

or filling an empty cell of a given table. Figure 6.1.a illustrates an example of data completion

where we fill the missing cell from the first row and second column with a specific year number

(2021). Schema augmentation, known as column extension, extends a table with additional

columns. [149] argues that this task roughly corresponds to the join operation in databases.

Figure 6.1.b depicts schema augmentation of a table about movies by extending a column of

movie directors.

Figure 6.1: Illustration of data imputation tasks: a) data imputation; b) schema augmentation.

Aiming at this target, in DAGOBAH UI [108], we introduce two semi-automatic system proto-

types for table augmentation. DAGOBAH UI provides a list of candidates with entities (resp.

relations) aiming at enriching an empty cell (resp. adding a column). Users can select their

target elements to add from this candidate list. In this chapter, we first introduce the related

work of table augmentation in Section 6.1. In Section 6.2, we illustrate the application of data

imputation and in Section 6.3, we introduce our efforts around schema augmentation. We

finally conclude and discuss in Section 6.4.

6.1 Related Work

DATA imputation fills an empty table cell. [5] proposed a hybrid model between a heuristic

lookup-based system and a machine learning system to predict a missing cell of a relational
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table. The system’s training dataset is collected from Web tables. [147] considers both KG and

used table corpora as the sourced data and proposes a heuristic system for combining the

evidence from a different source when predicting an empty cell. They also accept multi-value

output and enable the system to have a "None" output for the cases where the cell should be

empty. TURL [38] leverages language models. It follows the same encoding steps as presented

in Section 3.5.3. Where the authors argue that data imputation is similar to the NER task.

Hence the system directly uses "[MASK]" to generate the missing cell value.

Schema augmentation corresponds to extending a given table with new columns. One

possible way to achieve the goal leverages the given table corpus as the background. The

Mannheim Search Joins Engine [69] operates by searching for tabular data describing entities

in the local table, then picks relevant columns from the top-k candidate tables to merge.

[15] targets column-matched tables with the local table and performs correlation mining

to numeric columns of given Wikipedia tables. InfoGather [139] is a table augmentation

framework based on PageRank for matching the local table against web tables. The context

surrounding the tables is leveraged in a machine learning framework, where the similarity

between two tables is captured via a set of features. The optimized version InfoGather+ [145]

focuses on the number values. [146] proposes a Bayes-based system that outputs a ranked list

for column labels based on a given table corpus. Like what has been applied in data imputation,

TURL [38] uses "[MASK]" token over the headers to predict the label of the potential headers.

In DAGOBAH UI, we enrich the table with new columns and cell values relying on the pro-

cessed table annotations generated with DAGOBAH SL. KG annotations tell the system about

the entities, types, and relations of the input table. The system can understand the context

of the target table with these annotations and enrich the table according to the background

knowledge from the KG. DAGOBAH UI differs from the existing works by: 1) instead of automat-

ically providing values to an empty cell, we adopted a semi-automatic approach enabling the

user to validate suggestions according to his own needs; 2) we leverage KG as our background

knowledge source.

6.2 Data Imputation

In this section, we introduce data imputation module of DAGOBAH UI. Where the system is

described in Section 6.2.1, then we report and analyse the result in Section 6.2.2.

6.2.1 System

In DAGOBAH UI, we apply the data imputation task following the annotation steps of DAGOBAH

SL. When a cell is empty, the user could choose whether or not to fill this empty cell. For data

imputation, we observe that the majority of approaches propose a unique value for these
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empty cells. However, in some cases, one might have multiple correct candidates at the same

time. For example, in the table of Figure 6.1, supposing the missing value is the cell "The

French Dispatch" in the first column, the suitable movies for this cell could be many. For

example, the movie "Happening" ("Q107675028") directed by Audrey Diwan is also filmed in

Angouleme in 2021 and is suitable for this cell. Listing all suitable candidates is sometimes not

that adequate with the table format since all other cells only depict one movie. Hence, we do

not aim to provide a unique result for the imputation but generate a list for the user to choose

from.

DAGOBAH UI uses SPARQL queries to generate the candidate list as illustrated in Listing 6.1,

where "annotated-type" is the annotated type for the target column, "annotated-relation" is

the generated relation annotation for the target empty cell, and "annotated-neighbor" is the

neighboring annotated entity associated with the relation.

1

2 SELECT ? candidate ? candidateLabel

3 WHERE

4 {

5 ? candidate wdt : P31 annotated−type .

6 ? candidate annotated−relat ion1 annotated−neighbor1 .

7 . . . . . . . .

8 ? candidate annotated−relat ion2 annotated−neighbor2 .

9 SERVICE wikibase : l a be l { bd : serviceParam wikibase : language " [AUTO_LANGUAGE] " . }

10 }

Code Listing 6.1: Data imputation query

Figure 6.2 illustrates a data imputation example with DAGOBAH UI. The original table de-

scribes the companies and their industry domains, where we do not know the industry domain

of the company "Adobe Systems". DAGOBAH UI provides 3 candidates (all of them are correct)

for this cell and the user could select one of them or keep all of these candidates.

6.2.2 Result and Analysis

We have manually extracted 100 tables from the T2D corpus as the dataset for evaluation.

For each table, we mask one cell as the target empty cell for data imputation, where half of

the empty cells are located in subject columns (introduced in Section 2.1.2) and the rest are

located in attribute columns that describe the attributes of subjects. We let DAGOBAH UI

generate a candidate entity list for each empty cell and manually evaluate the generated list

according to the following metrics.

Let K equals the number of empty cells, we introduce the precision indicator and the quality

indicator for the evaluation with the following functions:
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Figure 6.2: Example of data imputation with DAGOBAH UI with table
52572391_0_8684896999787304275.csv from T2D dataset.

Pr eci si on = # Li st cont ai ns cor r ect enti t i es

K
(6.1)

Quali t y = 1

K

∑
j<K

(
# cor r ect enti t i es i n l i st j

l eng th(l i st j )
) (6.2)

Equation 6.1 reveals the percentage of the generated lists having the correct entities. Equa-

tion 6.1 indicates the quality of the generated lists.

We report the result based on the precision indicator and the quality indicator in Figure 6.3,

where "A_columns" depicts the attribute columns and "S_columns" depicts the subject

columns. We also show the distribution of the generated list length in Figure 6.4.

For the overall result, we have successfully generated a candidate list for 64% of the empty

cells, where 22 subject columns and 14 attribute columns failed due to the misleading pre-

processing negative results and annotation errors. We notice that in our sample set, once

the system generates a candidate list for attribute columns, it always contains at least one

correct candidate. However, we did not find the correct entities in the candidate list of four

subject columns. That gives 60% of the precision in all tables at the end, also 72% precision in

115



Chapter 6. Applications of Semantic Table Interpretation

Figure 6.3: The evaluation of data imputation in 100 selected T2D tables in all columns,
attribute columns, and subject columns: a) precision indicator; b) quality indicator

Figure 6.4: The list length distribution of data imputation in 100 selected T2D tables in all
columns, attribute columns, and subject columns

attribute columns and 48% precision in subject columns as shown in Figure 6.3.a.

This overall result shows that our system performs better in attribute columns rather than

in subject columns. Similar cases could be found in other evaluations such as the quality of

the list for attribute columns is much higher than subject columns (Figure 6.3.b), and the

candidate list’s length for attribute columns is much shorter than subject columns (Figure 6.4).

We argue that it is because we currently do not use the literal cells for the disambiguation and

the filtering of the candidate list. Literal values in a table are often used for describing the

subject. Lacking this information weakens the performance of the system on subject columns,

however, it does not affect a lot on attribute columns since it only needs the subject and the

relation to filter candidates.
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6.3 Schema Augmentation

In this section, we introduce the schema augmentation module of DAGOBAH UI. The system

is described in Section 6.3.1, then we report and analyse the results in Section 6.3.2.

6.3.1 System

In DAGOBAH UI, we add additional columns based on a fixed target entity column. The user

could select this target column from the interface. After the interpretation of the target table,

every cell from this column is associated with an entity from the target KG. Each annotated

cell entity has multiple relations in this background KG. For each cell entity relation, we count

the number (or occurrence) of this relation in the target column and rank these relations

according to their frequency in the column to generate a list of candidate relationships. We

show this list to the user in the interface and the user can select one of the relations that he/she

wants to add to the table. Once selected, the system extends the table. For each row, we know

the subject (which is the cell annotation from subject column) and the predicate (which is the

relation selected by the user), hence, the task is to find the missing object of the triple (which

is composed by < sub j ect , pr edi cate,ob j ect >).

One example is shown in Figure 6.5. We suppose that a user wants to add the platforms for

each game presented in the annotated table from Figure 6.5.a. The user will have a list of all

the potential elements as shown in Figure 6.5.b to add according to the first column. Once

he chooses the term "platform" from the list to achieve his goal, DAGOGAH UI automatically

adds the column as the second column from as illustrated in Figure 6.5.c.

6.3.2 Result and Analysis

Since DAGOBAH UI is a semi-automatic system, its performance depends on the quality

of table annotations. We argue that the schema augmentation performance of DAGOBAH

UI relies on the quality of the target KG. Hence one could switch their target KG to improve

the coverage of the relations and cell values. To the best of our knowledge, we are the first

system that allows human intervention during the selection of added columns, yet we still lack

suitable criteria for evaluating the performance of the system.

To give a minimal indication of the system’s capabilities, we manually count the possible

relation number with the 100 tables used in the evaluation of data imputation module. Where

we only focus on the subject columns since the additional columns in a table are always

used for describing the subjects. The annotation is based on DAGOBAH SL with the Wikidata

dumps extracted in 2022.
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Figure 6.5: Schema augmentation of a table of games with DAGOBAH UI: a) the initial table
with the annotation generated with DAGOBAH SL; b) the menu for users to choose one
candidate relation based the first column; c) the extended table with a new column about
"platform".

We report the number of the relations in the candidate set that we provide to the user in

Figure 6.6 with a box figure. The relation in our example is in an interval between 8 and 108

with an average of 37.8. Most of the relation numbers for subject columns are between 20

and 40. Evidently, it is not easy for a user to choose a relation within a large list like this.

Hence, in future work, we aim to study how to rank the candidate relations to optimise the

user experience.

Using the example of Figure 6.5, the following aspect could be used for ranking the candidate

columns.

• Row coverage: The entity coverage could be an important indicator for ranking the

columns. Choosing "platform" (P400) as the added column covers about 94% of the
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Figure 6.6: The list length distribution of data imputation in 100 selected T2D tables in all
columns, attribute columns, and subject columns

rows from the original table, while choosing "CERO rating"(P853) only covers 8% of the

rows. In such cases, the relation that covers more rows should be prioritised.

• Relation Popularity: A relation with many associated entities in a KG is more likely to be

used in a given case. For example, in Wikidata, we have more triples about the country

of origin (P495) than CERO rating (P853). The user is therefore more likely to choose the

country of origin.

• Relatedness of the context: In some cases, we can find additional information from the

metadata, such as the surrounding text or page title. If the table is located in a paragraph

that discusses the evolution of video games in recent decades, it might be helpful to

prioritise "publication date" (P577) as the recommendation of the additional column

since it is associated with the topic of the paragraph.

• Co-occurrence with other columns: If some columns appear in one different table, then

it is more likely to have a similar column combination for the target table. The column

wised co-occurrence has been used for STI [129] and schema augmentation [38]. While

TURL [38] trains the model based on the existing table dataset and adds the column

according to this dataset. We aim to provide a list for the user to choose from, hence,

we did not adopt this at first. However, the columns wised co-occurrence could be an

aspect to rank the relations that we aim to optimise in the future.
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6.4 Discussions

In this chapter, we introduce the functionalities of table augmentation in DAGOBAH UI.

DAGOBAH UI fills missing cell values and extends table columns relying on STI annotations

generated by DAGOBAH SL. Unlike other table augmentation tools that directly output the

result from the back-end without human intervention, DAGOBAH UI provides a very user-

friendly interface to manipulate the table, and the users can select their own proper way to

customise their own table.

Our future work includes the development of new features around KG enrichment from

tables. As discussed in this chapter, tables can benefit from KGs through data imputation

and schema augmentation with new columns. Conversely, tables are also a great source of

dormant knowledge that can be leveraged to enrich open or enterprise KGs. To this aim,

DAGOBAH UI will enable to export the annotations as Resource Description Framework (RDF)

triples to enrich KGs. At the same time, we aim to optimise the system by using the literal

values from the table. Currently, we only make use of the entity columns from the annotation

results, however, the numbers, units, and long sentences from the table also help to precise

the enrichment. Furthermore, our future work also includes the evaluation of DAGOBAH UI

usability with real users. To this aim, the availability of DAGOBAH UI within the company will

allow us to collect interesting feedbacks to progress on the adoption of STI tools.
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Conclusion and Future Work

Tabular data is a valuable data source that is available on the Web and in companies. Under-

standing and making use of the information from tabular data is an open-research question

that has been increasingly attracting attention from the scientific community over the last

decades. Such process includes the operations like collection, extraction, interpretation, and

augmentation of tables. However, tabular data is challenging to process by machines because

of the limited context available to resolve semantic ambiguities and the layout of tables that

can be difficult to handle.

In this thesis, we provide contributions from collecting tables in the wild to downstream tasks.

This dissertation covers various topics, with a special focus on the interpretation of tables with

the help of the intersection between tables and KGs. We interpret and enrich tables using the

overlapped information between these two data sources.

In the following, we summarise the main contributions of this thesis on extracting, interpret-

ing, and augmenting tables in Section 7.1. We also highlight the limitations of this work in

Section 7.2 and suggest some perspective about future works on this research topic.

7.1 Contributions

This thesis focuses on making use of tabular data with the help of the interpretation with a

given KG. To reach this target, we set a list of research questions in Section 1.2 for this thesis.

These research questions are recalled briefly below:

1. What are the different table types and features that one can encounter on the Web and

how can we extract them?

2. What possible correspondences can we establish between the elements from tables and

knowledge graphs?
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(a) Can the overlapped information from these two data sources support the matching

elements between the two sides?

(b) Can these latent relationships between the table elements also reveal the com-

mon topics from these tables to improve the disambiguation with the help graph

embeddings?

3. Finally, what downstream tasks could be realized following a semantic table interpreta-

tion process?

To answer these research questions, a set of concepts and tools are proposed. In the fol-

lowing, we recall the contributions of the thesis from three aspects: the extraction of tables

(Section 7.1.1), the interpretation of tables (Section 7.1.2), and the augmentation of tables

(Section 7.1.3).

7.1.1 Table Extraction from the Wild

Tabular data has different layout structures and different purposes of creation. Facing this het-

erogeneity, a classification of tables is necessary. Based on existing categorisation, we further

refresh the classification of tables from the perspective of table interpretation in which we

propose to classify a given table using three dimensions, including structure, interrelationship

and orientation dimension. This work has been published in a survey paper [74].

We also contribute with two systems (HTW and CorpusWalker) for collecting tables from the

Web and local documents. These systems provide features for ingesting, managing, storing

and visualising the collected tables and provide the data sources for table interpretation.

Table extraction is concerned with the problem of identifying and classifying tables, which

encompasses a range of more specific tasks, such as relational table classification, header

detection, and orientation classification [149]. Focusing on relational tables, we propose a

table pre-processing tool named DAGOBAH-Pre-processing [24]. DAGOBAH pre-processing

generates metadata about a table via four main tasks: orientation detection, header detection,

key column detection and column primitive typing.

7.1.2 Semantic Table Interpretation

The main idea for making tabular data intelligently processable by machines is to find corre-

spondences between the elements composing the table and entities, concepts, or relations

described in KG, known as STI. One of our contributions is to provide a complete, compre-

hensive and up-to-date state-of-the-art of the different tasks and methods that have been

proposed so far to perform STI [74]. We define five major sub-tasks that STI deals with even
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if the literature has mostly focused on three sub-tasks so far. We review and group the many

approaches that have been proposed into three macro families and we discuss their perfor-

mance and limitations with respect to the various datasets and benchmarks proposed by the

community. To the best of our knowledge, such a survey is still missing in the community

and we aim to highlight the potential problems that one can encounter and that yield new

challenges.

We propose a continually optimised, heuristic-based, STI annotation system, named DAGOBAH

SL [58, 59]. DAGOBAH SL automatically interprets relational tables with the support of Wiki-

data and DBpedia by associating each cell with an entity (CEA), each column with a class (CTA),

and each pair of columns with a property (CPA). DAGOBAH SL is one of the state-of-the-art

systems and it won the first prize on the accuracy track in both SemTab 2021 and SemTab 2022

challenges. The system is available via an API for developers as well as via a user-friendly web

interface [108].

However, heuristic-based approaches like DAGOBAH SL suffer from some shortcomings.

One of them is that heuristic-based systems often lack the knowledge of the common theme

for a given table. To handle this issue, we propose two graph embeddings based methods,

named DAGOBAH Embeddings [24] and Radar Station [75]. We rely on the intuition that

the entities in the same column should exhibit semantic similarities and we aim to use graph

embeddings to reveal these similarities. DAGOBAH Embeddings uses a clustering algorithm

to the candidate entities for filtering candidates by choosing the right clusters. Experimental

results prove that this approach has successfully improved the accuracy of the CTA task.

However, the system is also misled by incorrect candidates in the selected clusters during the

CEA task. Radar Station is a hybrid plugin system that aims to add a semantic disambiguation

step after a previously identified CEA. RadarStation has been evaluated on top of different

heuristics-based systems (DAGOBAH SL, BBW, MTab) and have consistently demonstrated an

accuracy improvement of around 3%. Furthermore, the system shows empirical evidences

that among the various graph embeddings families, the ones relying on fine-tuned translation

distance have superior performance compared to other models.

7.1.3 Table Augmentation

Table augmentation refers to the task of extending an existing table with additional data. In

DAGOBAH UI [108], we provide semi-automatic table augmentation features including data

imputation and schema augmentation, where we aim to find missing cell values and populate

a table with new columns. For each task, DAGOBAH UI provides a list of candidate values

(resp. types) for each missing-value cell (resp. potential columns) and lets the user choose

their appropriate data. The system is driven by the annotation generated by DAGOBAH SL

and enriches the table based on the information of the mapped KG.
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7.2 Future Work

While our efforts have made significant progress in the field of STI, existing approaches have

several limitations: (i) they mainly focus on single-cell subjects within relational or entity

tables, and make strong assumptions about the coherence and the simplicity of their layout;

(ii) they are highly confident in both the completeness and the correctness of the target KG;

(iii) they only partially leverage the information of the table, in both substance and form. iv)

they discuss rarely the use case of the annotation generated by STI systems. Based on these

observations, we formulate some possible guidelines to sketch the directions for our future

research.

7.2.1 Beyond Simple Table Type

From the literature, we observe that most of the works focus on single-cell subject tables, the

simplest type of relational tables. A few approaches focus on entity tables such as the infoboxes

from Wikipedia pages [17, 136] but the other types of tables defined in the classification we

proposed in Section 2.1 are still hardly handled. Moreover, current approaches do not dig

deeper into relational table complexities such as hidden subjects or composed subjects, to

name a few.

As a result, existing systems are far from being generalisable to any table type. To fill the gap

and stimulate the search for new solutions, we believe it is important to broaden the spectrum

of corpus complexities. To that end, we aim to create new datasets and more robust annotation

systems with multiple table structures and complex contents to tackle the whole diversity of

real-world data. Regarding the future datasets, we argue that content-level complexity should

not be restricted to noise added to mentions, whether synthetically or manually, as these

artefacts happened to be not so difficult to handle in the light of the SemTab experience, as

well as not so close to real data tables. Introducing numerical mentions with heterogeneous

units or lists within cells (multivalued tables), for instance, could be more challenging and

therefore beneficial for the community. Last but not least, a ground truth shall be associated

with these datasets to allow a fair comparison between the future approaches. This latter

requirement suggests prioritising quality over quantity for evaluation datasets to bootstrap

new challenges quickly.

7.2.2 KG Incompleteness and Incorrectness

Our existing approaches assume that the target KG is complete and error-free. As a conse-

quence, an annotation can always be generated even if the correct result is not in the KG,

whether it concerns an instance, a type or a relation. This situation can be harmful, especially

as it may spread the error from one annotation to the whole column or even the whole table.
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Suppose for instance a table where a column contains the last names of writers (which can be

very common), and another column related to books’ titles (for the sake of the example, we

assume the majority of these books have been adapted for the cinema). If the target KG covers

extensively movies but only a few literature works (or is less accurate on books than movies),

the annotation process might lead to type the second column as “film”, which could lead to

wrongly disambiguate the mentions in the first column (if some related actors have similar

last names for example). As a result, this table will be interpreted as an actors-movies item

instead of the correct writers-books target.

Some existing mechanisms, such as giving a confidence score for each candidate, can help

filtering the incorrect annotations further. The T2Dv2 benchmark, for instance, added negative

examples that can be leveraged to that end. However, rare studies focus on this challenge

which is far from being trivial as it implies to have the capability to identify the KG coverage

w.r.t. the tables to be processed, as well as to detect the possible errors. To improve both the

completeness and the correctness, we believe that leveraging multiple KGs is the first step

to make. Indeed, it could enhance the coverage and provide a basis for confidence scoring

through popularity computation. However, evaluation procedures should be discussed and

updated as judging from different sources might be challenging. Finally, we highlight that our

future approaches will also consider to tackle domains where only nascent KGs exist, with the

objective of using STI to augment these KGs in a virtuous iterative loop.

In Table 3.3, many annotation systems (e.g., MTab,DAGOBAH SL) achieve very high perfor-

mances on some synthetic datasets (e.g., SemTab 2020, SemTab 2021 R2-Hard). This can be

explained since synthetic tables are automatically and accurately generated using a reference

KG (see Section 3.4). Therefore, their content is almost fully represented in the KG and provides

rich discriminative information for the disambiguation. In contrast, manually curated tables

(R3-BiodivTable), complex tables (ToughTable), or tables coming from diverse and specific do-

mains (R3-GitTables) are still particularly challenging for annotation systems. In real situations,

KGs are often incomplete. As a consequence, an existing entity may not be fully described in a

KG (e.g., lack of literal attributes for a given entity), or an unpopular/heterogeneous domain

may provide little information (e.g., R3-GitTables is made of tables from GitHub). Hence, the

graph context provided by the KG can sometimes be insufficient for disambiguating tables

in R3-BiodivTable, ToughTable, and R3-GitTables, which are much more ambiguous than

synthetic tables. We aim to optimise the current systems that could enrich and better handle

both explicit and implicit contextual information by exploiting knowledge graph reasoning or

table representation learning (e.g., Transformer) to improve the performance on these kinds

of table datasets.
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7.2.3 Table Context

We observe that many approaches leverage only partially the elements of the table (see

Table 3.2), even if more recent ones tend to extend their view. As we discussed in Section 3.6, we

believe that leveraging as many elements as possible should increase the accuracy by adding

more contextual information. In that sense, language models generated from transformers

could be better used. Indeed, one could consider a table as a way of structuring the language:

in the simplest case, one table row can be seen as a sentence describing a subject with

some attributes. The same applies to the corresponding sub-graph in the target KG. Thus,

sentence representation could be used to compute similarities. Nonetheless, the specificity of

tabular data as well as KGs should be taken into account, which implies adapting attention

mechanisms to this very structure. The visibility matrix used in [38] is an attempt to do so in

relational tables, but it should be extended to other types of tabular data.

We also notice that most approaches treat tables independently. However, some tables are

related to each other since they can be generated with the same template, be part of a coherent

corpus of tables or be related to keys such as SQL database tables. Inter-table relations as

studied by [129] can constitute an interesting complementary approach with appropriate

target tables. We believe that STI systems could significantly take advantage of combining

table elements with inter-table connections (which can be considered as another context layer

added to capture richer prior information about the data to be processed) in our future work.

7.2.4 Applications of Semantic Table Interpretation

In the existing work, we leverage generated semantic annotations in data imputation and

schema augmentation in the DAGOBAH UI system. CorpusWalker also provides the possibility

for researching a document with a given id from the KG. However, we aim to study more

possible use cases of the semantic table annotations.

We will also focus on the correlation between or inside tables/KGs. We will explore whether we

can use this relatedness to support a downstream task such as indexing and recommendation

through our existing work. For example, a recommendation process or the generation of

summaries. In the context of data exchange, a recommendation engine provides advice to

users on which datasets are likely to be of interest to them and to serve their use cases. As a first

approach, content-based recommendations (distance measure between a vector representing

the user and vectors representing the datasets) and exploiting an enriched description of

the labelled datasets can be considered. Vector representation of items taking into account

heterogeneous information coming from a graph (textual descriptions, structural knowledge,

etc.) requires the use of appropriate techniques. The so-called "graph folding" techniques

seem particularly suitable to achieve this objective of constructing latent vectors from triples.
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The research carried out during this reporting period has lead to the publication of the follow-

ing scientific papers:
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Tasks and Methods. In Journal of Web Semantics, 2023.

International Conference and Workshop

• Jixiong Liu, Viet-Phi Huynh, Yoan Chabot, Raphaël Troncy. Radar Station: Using KG

Embeddings for Semantic Table Interpretation and Entity Disambiguation. In 21st

International Semantic Web Conference (ISWC), Research Track, 2022.

• Viet-Phi Huynh, Yoan Chabot, Thomas Labbé, Jixiong Liu, and Raphaël Troncy. From

Heuristics to Language Models: A Journey Through the Universe of Semantic Ta-
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• Viet-Phi Huynh*, Jixiong Liu*, Yoan Chabot, Frédéric Deuzé, Thomas Labbé, Pierre
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• Viet-Phi Huynh*, Jixiong Liu*, Yoan Chabot, Thomas Labbé, Pierre Monnin, and Raphaël

Troncy. DAGOBAH: Enhanced Scoring Algorithms for Scalable Annotations of Tabular
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Data. In Semantic Web Challenge on Tabular Data to Knowledge Graph Matching

(SemTab), 2020. Third prize.

• Yoan Chabot, Thomas Labbé, Jixiong Liu, Raphaël Troncy. DAGOBAH: an end-to-end

context-free tabular data semantic annotation system In Semantic Web Challenge on

Tabular Data to Knowledge Graph Matching (SemTab), 2019.

Poster and Demo

• Christophe Sarthou-Camy, Guillaume Jourdain, Yoan Chabot, Pierre Monni, Fréedéric

Deuzé, Viet-Phi Huynh, Jixiong Liu, Thomas Labbé, Raphaël Troncy. DAGOBAH UI: A

New Hope For Semantic Table Interpretation. In European Semantic Web Conference

(ESWC), Demo Track, 2022.

National Conference and Workshop

• Viet-Phi Huynh, Jixiong Liu, Yoan Chabot, Thomas Labbé, Pierre Monnin, and Raphaël
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• Yoan Chabot, Thomas Labbé, Jixiong Liu, Raphaël Troncy. DAGOBAH : Un système

d’annotation sémantique de données tabulaires indépendant du contexte. In French

Conference on Knowledge Engineering (IC), 2020.
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Chapter A

Clustering Sample Evaluation on 15

Selected T2D Tables

DAGOBAH Embeddings (Section 5.2) hypothesizes that all entities in the same column of the

table should be close to each other in the embedding vector space. Consequently, the correct

candidates are assumed to belong to a few clusters. During the development of DAGOBAH

Embeddings, the choose of a suitable clustering algorithm and a suitable cluster number is

always a crucial task. In this appendix, we introduce the empirical sample test results with

different clustering algorithms and different cluster numbers. To this end, we launched a grid-

search procedure on 15 sampled tables listed in this appendix. We have tested three clustering

algorithms that can configure the number of clusters from the hyper-parameters, including K-

means, BIRCH, and Spectral Clustering. We also introduce a new indicator p where p is equal

to the number of look-ups divided by twice the number of rows of the table to be annotated.

We had a grid-search on all integers between 2 and 5∗p as tested K values, evaluating with

the precision of the CEA annotation result generated with DAGOBAH-Embeddings system.

In Figure A.1, A.2, A.3, and A.4, we use the red color for the result of KMeans clustering, blue

color for the BIRCH, and green for Spectral Clustering. We also illustrate the p value with a

dotted line in each table.
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Appendix A. Clustering Sample Evaluation on 15 Selected T2D Tables

(a) Table 11833461_1_3811022039809817402 (b) Table 14067031_0_559833072073397908

Figure A.1: Results of the clustering evaluation for table 1-2
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(a) Table 1438042986423_95_20150728002306 (b) Table 1438042989043_35_20150728002309

(c) Table 14380604_4_3329235705746762392 (d) Table 26310680_0_5150772059999313798

(e) Table 29414811_12_251152470253168163 (f) Table 34041816_1_4749054164534706977

Figure A.2: Results of the clustering evaluation for table 3-8
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Appendix A. Clustering Sample Evaluation on 15 Selected T2D Tables

(a) Table 39650055_5_7135804139753401681 (b) Table 54719588_0_8417197176086756912

(c) Table 55004961_0_2904467548072189860 (d) Table 77694908_0_6083291340991074532

(e) Table 80588006_0_6965325215443683359 (f) Table 84575189_0_6365692015941409487

Figure A.3: Results of the clustering evaluation for table 9-16
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Figure A.4: Results of the clustering evaluation for table 17
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