
Learned Data Structures for Per-Flow Measurements
Andrea Monterubbiano

University of Rome - Sapienza, Italy
Raphael Azorin

Huawei Technologies, France
EURECOM, France

Gabriele Castellano
Huawei Technologies, France

Massimo Gallo
Huawei Technologies, France

Salvatore Pontarelli
University of Rome - Sapienza, Italy

ABSTRACT
This work presents a generic framework that exploits learning to
improve the quality of network measurements. The main idea of
this work is to reuse measures collected by the network monitoring
tasks to train an MLmodel that learns some per-flow characteristics
and improves the measurement quality re-configuring the memory
according to the learned information. We applied this idea to two
different monitoring tasks, we identify the main issues related to
this approach and we present some preliminary results.

ACM Reference Format:
Andrea Monterubbiano, Raphael Azorin, Gabriele Castellano, Massimo
Gallo, and Salvatore Pontarelli. 2022. Learned Data Structures for Per-Flow
Measurements. In CoNEXT Student Workshop 2022 (CoNEXT-SW ’22), De-
cember 9, 2022, Roma, Italy. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3565477.3569147

1 INTRODUCTION
Measurements are fundamental for network operations and man-
agement. However, due to the high load and limited device re-
sources, accurate per-flow monitoring is not a viable solution. To
overcome this problem, network monitoring systems employ ap-
proximated data structures, sketches, to estimate relevant traffic
metrics. Sketches can be used to estimate a variety of traffic metrics
such as frequency e.g., Count-Min Sketch (CMS) [1], to identify
Heavy Hitters, or inter-arrival time (IAT) distribution e.g., Dis-
tributed Distribution Sketch (DDSketch) [4], to identify perfor-
mance degradation. These data structures trade measurement ac-
curacy for memory efficiency making traffic monitoring viable for
memory and computational resource-constrained programmable
switches. Optimal sketches configuration is tightly related to traffic
characteristics. However, sketches are designed (and configured)
for the general case, leading to possible performance degradation
in the case of adversarial flow patterns. Machine Learning (ML)
models have been recently used in the networking community to
capture complex traffic behaviors in the context of traffic classifi-
cation [5], security [2], etc. We claim that simple ML models can
successfully predict traffic characteristics at a reasonable cost to
hint towards optimal (and dynamic) sketches configuration.

CoNEXT-SW ’22, December 9, 2022, Roma, Italy
© 2022 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in CoNEXT Student
Workshop 2022 (CoNEXT-SW ’22), December 9, 2022, Roma, Italy, https://doi.org/10.
1145/3565477.3569147.

In this work, we explore the design and potential benefits of
learned sketches: ML-enhanced probabilistic data structures. In Sec-
tion 2, we first present the generic concept of the proposed frame-
work and its preliminary evaluation for two sketches: CMS and
DDSketch. Finally, we conclude the paper with the next steps that
we identified as future work.

2 LEARNED DATA STRUCTURES
The design of the proposed framework is depicted in Figure 1. Col-
lected measures are used to estimate traffic metrics and train an ML
model that learns relevant per-flow characteristics, or hints. Such
hints are used to configure the data structure(s) for the next mea-
surement epoch, with the objective of reducing the approximation
error. In the following, we describe the key points of the proposed
framework.
Feature selection. ML input features can be of 2 types: 𝑖) ubiqui-
tous packet headers fields, e.g., full or partial 5-tuple, or 𝑖𝑖) complex
per-flow features such as IAT, packet size, etc. of the first 𝑁 packets.
The first approach has the advantage of providing hints to any
packet. However, such hints are inherently related to the network
layout rather than to the actual traffic behavior. The second ap-
proach requires additional memory to store the features relative
to the first 𝑁 packets, but also reduces the number of inferences
needed since short flows are naturally neglected.
Model hints. Hints are used to configure data structure(s) to im-
prove the monitoring task quality. While the ML output is task-
dependent, two orthogonal characteristics can be identified: 𝑖)
coarse 𝑣𝑠 fine grain, and 𝑖𝑖) generic 𝑣𝑠 specific. Coarse grain hints
are expressed with very few possible values e.g., long/short flow.
These hints can be used to allocate the flow to the most appropriate
data structure based on its class. Fine grain hints, instead, can be
used as input parameters for the data structure e.g., a hint could
select the sampling rate for each flow to monitor. Hints can than
be generic e.g., the flow size used, or specific and directly related
to the measure of interest e.g., the max IAT value to correctly size
DDSketchs.
Misprediction cost. The proposed framework relies on the hints’
correctness. However, ML models are hardly 100% accurate and a
robust measurement system must be able to tolerate mispredictions.
We address this issue by allocating additional memory and prevent-
ing unbounded errors in case of incorrect hints. In the following,
we describe such mechanism both for CMS and DDSketch.

We evaluated our approach on a 1-hour traffic trace from the
CAIDA dataset and, for each data structure, we compared its stan-
dard implementation with its “learned” counterpart in terms of
cost-performance trade-off.

https://doi.org/10.1145/3565477.3569147
https://doi.org/10.1145/3565477.3569147
https://doi.org/10.1145/3565477.3569147
https://doi.org/10.1145/3565477.3569147


CoNEXT-SW ’22, December 9, 2022, Roma, Italy

Figure 1: Schematic view of a learned
data structure

Figure 2: (left) Comparison of flow size estimation. (right)
Comparison of three RF-based learned CMS

Figure 3: Comparison
of a standard DDSketch
against two learned
DDSketch.

2.1 Learned Count-Min Sketch
In a learned CMS [3], thanks to the hints provided by an ML model,
flows predicted to be elephants are counted in dedicated buckets
while mice are estimated using an 𝐿 by 𝐾 CMS. This improves the
overall accuracy by reducing hash collisions caused by elephants
and at the same time exactly counting them. Our approach differs
from [3] in two aspects:
1) Sketch sizing. Since elephant flows are counted separately, CMS
counters size can be reduced e.g., from 32 to 16 bits. However, in
case of mispredictions, this spoils the CMS by inserting elephant
flows, which can trigger counters overflow. To address this problem,
we use 32-bit buckets in the first CMS row and 16-bit ones for the
remaining 𝐿 − 1 rows. Our simulations confirm that this solution is
sufficient to deal with misprediction effects.
2) ML architecture. To predict the flow class, i.e., elephant or mice,
in [3] a Recurrent Neural Network (RNN) is trained with the flow
5-tuple as input. We use a Random Forest (RF), trained on the same
input features, which achieves comparable accuracy. RFs present
the double advantage of being extremely parallelizable and easier to
implement in switches. To assess the performance of our proposal,
we perform some experiments using 𝑖) a standard CMS, 𝑖𝑖) a learned
CMS fed by hints from a trained RF model (occupying ∼113KB of
memory) and 𝑖𝑖𝑖) a learned CMS fed by a 100% accurate model
i.e., oracle. Figure 2 (left) compares such data structures in terms
of average weighted absolute error against available memory on
the 20th minute of the network trace (training is performed on the
first 7 minutes). Results show that the learned CMS requires less
memory than the standard CMS with both RF and oracle models
and the RF model provides similar results to the RNN model from
[3]. However, due to the ever-evolving nature of network traffic,
our RF-based model struggles to generalize well as we count flows
from later minutes in the trace. Figure 2 (right) reports the evolution
of the RF-based learned CMS estimation error every 10 minutes
with 0.5, 1, and 1.5 MB memory.

2.2 Learned DDSketch
DDSketch [4] is a data structure used to estimate the distribution
of a set of real positive values relative to a flow, e.g., IAT in our case.
The range of possible IAT values is first divided into𝑁 buckets, each
counting the number of values falling within its boundaries. To the
best of our knowledge, a learned version of such sketch has never
been studied in the literature. A possible learned DDSketch aims
at restricting the range of possible IAT values by using hints from
an ML model. Also in this case, a range misprediction can lead to

completely wrong results. We mitigate the risk of model prediction
error using some additional safety bins. If the model overestimates
the lower bound of the flow IATs range, then at insertion-time,
all IATs values that fall below this threshold will be considered
as zeroes. To overcome this misprediction effect we allocate some
buckets to cover the values falling between 0 and the predicted
range’s lower bound. These safety bins allow the learned DDsketch
to guarantee a bounded relative error even in case of a wrong model
prediction. To assess learned DDSketch benefits, we compared
𝑖) a DDSketch with 64 buckets per flow, 𝑖𝑖) one with simulated
inaccurate hinted range (i.e., the predicted values have a maximum
relative error of 20%), and 𝑖𝑖𝑖) one with an oracle. The DDSketch fed
by an inaccurate model features safety bins by allocating 32 buckets
to the predicted range and 32 buckets for the values that fall outside
the ML hinted range. Figure 3 presents the average and maximum
relative error for the 95-quantile estimation with the three data
structures. Both the oracle and inaccurate learned DDSketches over-
perform the baseline on average. We also observe that the max error
increases when using the inaccurate learned DDsketch. However,
the safety bins ensure that such error is bounded.

3 FUTUREWORK
The work presented in this paper just scratches the surface of the
broader learned data structures topic. A lot of work remains to
be done toward a realistic implementation for programmable de-
vices. Several directions could be taken to optimize the ML model
memory footprint like in [6], where match-action rules are used
to implement decision trees in a switch. Additionally, model per-
formance could benefit from feature engineering to harness more
information from the flow 5-tuple like in [2]. Finally, and most
importantly, the online training of learned data structures remains
unexplored. Incrementally re-training models and adapting data
structures accordingly should unveil interesting challenges.

REFERENCES
[1] Graham Cormode et al. 2005. An improved data stream summary: the count-min

sketch and its applications. In Journal of Algorithms.
[2] Luca Gioacchini et al. 2021. DarkVec: Automatic Analysis of Darknet Traffic with

Word Embeddings. In ACM CoNEXT.
[3] Chen-Yu Hsu et al. 2019. Learning-Based Frequency Estimation Algorithms. In

International Conference on Learning Representations.
[4] Charles Masson et al. 2019. DDSketch: A fast and fully-mergeable quantile sketch

with relative-error guarantees. In VLDB.
[5] Zhanyi Wang. 2015. The applications of deep learning on traffic identification. In

BlackHat USA.
[6] Zhaoqi Xiong et al. 2019. Do switches dream of machine learning? Toward in-

network classification. In Proc. of the 18th ACM workshop on hot topics in networks.


	Abstract
	1 Introduction
	2 Learned data structures
	2.1 Learned Count-Min Sketch
	2.2 Learned DDSketch

	3 Future work
	References

