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Abstract—A new variation of the classical point-to-point joint
source-channel coding (JSCC) is studied here, which is relevant
for identifying goal-oriented semantic aspects of a transmitted
source message over a noisy channel. For this new formula-
tion, coined goal-oriented JSCC, we first introduce optimality
criteria followed by necessary and sufficient conditions for
global optimality. The focus of our main theoretical results
is on investigating the implications of a special subclass of
block codes, namely, the single-letter codes, via a theorem in
which we provide necessary and sufficient conditions for the
probabilistic matching of a goal-oriented source message with a
noisy channel. We corroborate our theoretical results with two
examples, in which goal-oriented single-letter codes and uncoded
transmission perform optimally. Our results further highlight the
important role of multiple fidelity constraints in goal-oriented
communications.

I. INTRODUCTION

Goal-oriented semantic communication has recently re-
ceived a growing interest from various research communities
spanning from information and communication theory [1],
[2], game theory [3], control theory [4] to networking [5].
The main motivation behind this in the vast majority of the
literature, at least in the area of information and commu-
nication theory, can be found in Shannon’s seminal work
[6]. A key claim therein is that the fundamental problem of
communication ought to deliberately disregard the semantic
aspects of a message and its impact. Although this argument
is valid and relevant in general, a goal-oriented semantic
theory of information transmission with tangible applications
to communication systems is still an open quest.

In this work, we consider a variant of the classical point-
to-point JSCC model in which a remote semantic source
is indirectly observed by a transmitter via an observable
message and conveyed across a noisy channel whereas at the
destination, the goal is for both the remote and observable
messages to be received as accurate as possible depending on
some fidelity constraints. Here we furnish the semantic and
observations sources with single-letter distortion constraints
responsible to penalize their transmission rates. Our setup
possess goal-oriented attributes and intrinsic representation of
information (e.g., features, structural and qualitative proper-
ties, embedding) because the presence of fidelity constraints,
dictates whether it makes sense to recover the remote or
observable messages or both.

The fundamental study of JSCC dates back to [6]. Although
a general definite solution to this problem appears to be

elusive, the convenient result of source-channel separation
principle for point-to-point stationary and ergodic systems
enables for modularity between the source and channel coding
schemes without any loss of optimality [6]–[8]. Unfortu-
nately, this result does not scale to networks without loss
of optimality. In practice, a tandem source-channel coding
necessitates non-causal knowledge of all the message signals
hence entailing large coding delays and very complex coders.
Surprisingly, the tandem scheme of Shannon is not unique
for the fundamental communication problem. In fact, as
two counterexamples suggest in [9], [10], single-letter codes
and uncoded transmission, may provide significant gains to
the end-to-end communication system in terms of coding
delays, complexity and robustness. For a detailed analysis on
necessary and sufficient conditions that need to be satisfied for
any discrete-time memoryless point-to-point communication
system to be optimal we refer to [11] (and the references
therein).
Contributions. The goal-oriented lossy JSCC setup proposed
herein is new and can be seen as a non-trivial generalization
of the goal-oriented lossy source coding setup proposed in
[12], [13]. Compared to that setup, communication takes
place here over noisy instead of noiseless channels. We also
define a variant of source-channel codes, which we refer to
as goal-oriented codes. Additionally, we derive necessary and
sufficient conditions for global optimality of the specific goal-
oriented JSCC scheme (Lemma 2). More importantly, we
study the criteria needed for the optimality of goal-oriented
single-letter codes using a known lower bound on the so
called semantic rate distortion function (SRDF) (Lemma 1).
Provided that SRDF is a tight bound, we derive necessary
and sufficient conditions for optimality of our JSCC scheme
(Theorem 1, Corollary 1). Our theoretical findings are corrob-
orated with two application examples, in which single-letter
codes and uncoded transmission perform optimally (Section
V). These examples are extensions to the celebrated ones
introduced for binary sources and binary symmetric channels
(BSC) [10] and Gaussian i.i.d sources and additive white
Gaussian noise (AWGN) channels [9]. The key takeaway
is that in goal-oriented communications, selecting the type
of individual distortion measures according to the applica-
tion/task requirements can significantly affect the choice of
the recovered message over noisy channels.



II. PROBLEM STATEMENT

We consider a memoryless source described by the tuple
(x, z) with probability distribution p(x, z) in the product
space X × Z . The semantic or intrinsic information of
the source is in x, which can only be indirectly observed,
whereas z is the noisy observation of the source at the
encoder side. We also consider a memoryless noisy channel
described by the conditional probability distribution p(b|a)
where (a,b) ∈ A× B.

Formally, the generic source-channel communication model
is illustrated in Fig. 1. According to this setup, we can
model the information source as a sequence of n-length i.i.d
random variables (xn, zn) and we assume that we know p(x)
and the transition probability distribution p(z|x). The noisy
channel is assumed to be given, with known capacity and
capacity achieving distribution p(am). Since the source and
channel have different cardinality to their respective alphabets,
this means that the sequence of m-length random variables
(am,bm) and the reproduction sequence of n-length random
variables (x̂n, ẑn) need not be i.i.d, in general.

Definition 1. (Goal-oriented block source-channel codes) The
source-channel encoder (E) and decoder (D), are modeled by
the mappings

fE : Zn → Am

gDo : Bm → Ẑn, gDs : Bm → X̂n
(1)

where (gDo , gDs ) denote the observations and the semantic
information decoder, respectively. The coding rate κ is the
number of source symbols that have to be transmitted per
channel use and is given by κ = n

m .
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Fig. 1. The proposed goal-oriented source-channel communication model.

We consider two per-letter distortion measures responsible
to penalize the semantic and observation information source
given by ds : X × X̂ 7→ [0,∞) and do : Z × Ẑ 7→ [0,∞),
respectively, a cost to possibly penalize the channel given by
c : A 7→ [0,∞), and their corresponding average per-letter
distortions and cost by

dns (x
n, x̂n) =

1

n

n∑
t=1

ds(xi, x̂i) (2)

dno (z
n, ẑn) =

1

n

n∑
t=1

do(zi, ẑi) (3)

cm(am) =
1

m

m∑
t=1

c(ai). (4)

The average distortion for the semantic information and the
observations is defined as

∆s ≜ E {dns (xn, x̂n)} , ∆o ≜ E {dno (zn, ẑn)} (5)

while the average cost for the noisy channel is defined as

Γ ≜ E {cm(am)} . (6)

The main objecive of this work is to study necessary and
sufficient conditions for the optimality of the goal-oriented
JSCC setup of Fig. 1.

III. OPTIMALITY CONDITIONS OF THE SETUP IN FIG. 1

To provide the main result of this section, we need to recall
some results from [13] on goal-oriented compression, and on
constrained/unconstrained channel capacity [7].

We start with the definition of the SRDF.

Definition 2. (SRDF) [13, Lemma 1] For a given se-
mantic/observation source (p(x), p(z|x), ds, do), the ergodic
SRDF is characterized as follows1

R(Do, Ds) = min
q(ẑ,x̂|z)

E[d̂s(z,x̂)]≤Ds

E[do(z,ẑ)]≤Do

I(z; ẑ, x̂) (7)

where d̂s(z, x̂) =
∑

x∈X p(x|z)ds(x, x̂), Ds ∈
[Dmin

s , Dmax
s ] ⊂ [0,∞), Do ∈ [Dmin

o , Dmax
o ] ⊂ [0,∞).

We note that (7) has similar functional and topological
properties as in classical rate distortion theory [14], e.g.,
monotonicity, continuity, convexity etc.

One interesting result that stems from (7) is the following
lower bound.

Lemma 1. (Lower Bound) [13, Lemma 2] The characteriza-
tion in (7) admits the following lower bound:

RL(Do, Ds) = max {R(Ds), R(Do)} ≤ R(Do, Ds), (8)

where (R(Ds), R(Do)) represents the standard direct [14]
and indirect RDFs [14], [15] subject to their individual
distortion criteria, i.e.,

R(Do) = min
q(ẑ|z)

E[do(z,ẑ)]≤Do

I(z; ẑ), (9)

R(Ds) = min
q(x̂|z)

E[d̂s(z,x̂)]≤Ds

I(z; x̂). (10)

Moreover, RL(Do, Ds) is tight if and only if (iff)

z− ẑ− x̂ and z− x̂− ẑ, (11)

are concurrently satisfied.

Next, we define the ergodic constrained and unconstrained
channel capacity.

Definition 3. (Constrained/unconstrained capacity) [7]

1The constrained set in (7) is compact (for both finite or abstract alphabets)
and the mutual information in (7) is lower semi-continuous on q(ẑ, x̂|z). As
a result, from Weierstrass’ extreme value theorem, the infimum is attained
by some q∗(ẑ, x̂|z) and we can formally replace it with minimum.



(i) For a given channel (p(b|a), c), the ergodic constrained
capacity is characterized as follows

C(P ) = max
p(b|a)

E[c(a)]≤P

I(a;b) (12)

where P ∈ [Pmin, Pmax] = [0,∞).
(ii) The special case of (12) at which the channel p(b|a)
disregards the input cost c(·) is characterized by the ergodic
unconstrained capacity as follows

C = max
p(b|a)

I(a;b). (13)

We note that (13) is also obtained by (12) if for c(a) < ∞,
a ∈ A, C = limP−→∞ C(P ).

In the sequel, we give two definitions, one for the achiev-
able average distortion(s)-cost triplet (∆s,∆o,Γ) and one for
the optimality of the setup in Fig. 1.

Definition 4. (Average distortion(s)-cost triplet) For a
given (p(x), p(z|x), do, ds) and a fixed channel (p(b|a), c),
we write (∆s,∆o,Γ) given by (5)-(6) to denote the av-
erage distortion(s)-cost triplet achieved by a fixed code
(fE , gDo , gDs ).

In view of Definition 4, we will denote by (Ds, Do, P ) a
general distortion(s)-cost triplet not necessarily achievable.

Definition 5. (Optimality criterion) The transmission of a
semantic/observations source (p(x), p(z|x), ds, do), across a
noisy channel (p(b|a), c) results into a source-channel code
(fE , gDo , gDs ) that is optimal if the following two conditions
are concurrently satisfied:
(i) the distortion(s) (∆o,∆s) caused by the choice of
(fE , gDo , gDs ), correspond to the minimum achievable distor-
tions (hereinafter denoted by Dmin

o , Dmin
s ) operating at an

input cost Γ with the best possible source-channel code of
rate κ;
(ii) the cost Γ obtained by (fE , gDo , gDs ), corresponds to the
minimum cost required to achieve the distortion(s) (∆o,∆s)
with the best possible source-channel code of rate κ.

Clearly, Definitions 4, 5 are generalizations to those con-
sidered in [11, Definitions 4, 5].

Next, we state a lemma that identifies optimality conditions
for the goal-oriented JSCC model in Fig. 1.

Lemma 2. (Optimality conditions) For a semantic-
observations information source (p(x), p(z|x), do, ds) and a
channel (p(b|a), c), the transmission using a goal-oriented
source-channel code (fE , gDo , gDs ) of rate κ is optimal iff the
following conditions are concurrently satisfied:
(i) κR(∆o,∆s) = C(Γ);
(ii) the pair (∆o,∆s) cannot be decreased without increasing
R(∆o,∆s) and Γ cannot be decreased without decreasing
C(Γ).

Proof: We sketch the proof because it is a modified
version of the separation theorem [6, Theorem 21]. From the

convexity and concavity of SRDF and the channel capacity,
respectively, and the data processing inequality of the setup in
Fig. 1, i.e., xn−zn−am−bm−(x̂n, ẑn), we obtain a converse
part of the separation theorem, i.e., κR(∆o,∆s) ≤ C(Γ). For
the direct part, suppose that there exists a triplet (fE , gDo , gDs )
such that κR(∆o,∆s) = C(Γ) − ϵ, for some ϵ > 0. Then,
an immediate application of the direct part of the separation
principle implies that there exists a better source-channel
code (f̃E , g̃Do , g̃Ds ) such that κR(∆o,∆s) = C(Γ) − ϵ̃ for
some 0 < ϵ̃ < ϵ. Hence, the optimal distortion(s)-cost triplet
(∆0,∆s,Γ) implies (i). This result is only necessary as there
may be cases where each or both (∆o,∆s) (resp. Γ) can
be reduced without increasing R(∆o,∆s) (resp. decreasing
(CΓ)). Such cases can be prohibited by condition (ii).

Remark 1. (On Lemma 2) (i) In Lemma 2, the necessary
condition is κR(∆0,∆s) = C(Γ) as the second condition
that prohibits each or both (∆0,∆s) (resp. Γ) to reduce
their value(s) may only happen when R(∆o,∆s) = 0 (resp.
C(Γ) = C). (ii) It should be noted that Lemma 2 includes
the case at which the bound in Lemma 1 is tight.

IV. GOAL-ORIENTED SINGLE-LETTER CODES

In this section, we consider single-letter codes to study the
optimal performance of the goal-oriented JSCC system in Fig.
1. Our results apply once the bound in Lemma 1 is tight.

We start by introducing a special class to block source-
channel codes introduced in Definition 1.

Definition 6. (Goal-oriented single-letter source-channel
codes) For the system model in Fig. 1, a goal-oriented single-
letter source-channel code (fE , gDo , gDs ) is specified by an
encoding function fE : Z → A, the observable decoding
function gDo : B → Ẑ and the semantic decoding function
gDs : B → X̂ .

Clearly, from the definition of block source-channel codes,
we obtain κ = 1 if goal-oriented single-letter codes are
considered. Since in Lemma 2, the crucial condition is
κR(∆o,∆s) = C(Γ), we next state a theorem where we
derive necessary and sufficient conditions for that condition
to hold when κ = 1.

Theorem 1. (Conditions for RL(∆o,∆s) = C(Γ))
RL(∆o,∆s) = C(Γ) holds iff the following conditions are
concurrently satisfied:
(i) the distribution p(a) of a = fE(z) is capacity achieving
for the channel (p(b|a), c) at an average input cost Γ =
E[c(a)], that is, I∗(a;b) = C(Γ);
(ii) the conditional independence p(x̂|ẑ, z) = p(x̂|ẑ) holds
with ẑ = gDo (b) given z be the achieving distribution of SRDF
at R(∆o) for an average distortion ∆o = E[d(z, ẑ)], that is,
I∗(z; ẑ) = R(∆o);
(iii) the conditional independence p(ẑ|x̂, z) = p(ẑ|x̂) holds
with x̂ = gDo (b) given z be the achieving distribution of SRDF
at R(∆s) for an average distortion ∆s = E[d̂(z, x̂)], that is,
I∗(z; x̂) = R(∆s);



(iv) the pair (fE(·), gDo (·)) results into I(z; ẑ) = I(a;b);
(v) the pair (fE(·), gDs (·)) results into I(z; x̂) = I(a;b).

Proof: Suppose that for some values of (∆o,∆s),
RL(∆o,∆s) = R(∆o) holds. Then, the system model in Fig.
1 admits the following series of inequalities

RL(∆o,∆s)
(⋆)
= R(∆o) = min

p(ẑ|z)
E[d(z,ẑ)]≤∆o

I(z; ẑ)
(⋆⋆)

≤ I(z; ẑ)

(⋆⋆⋆)

≤ I(a;b)
(⋆⋆⋆⋆)

≤ max p(a)
E[c(a)]≤Γ

I(a;b) = C(Γ).

where (⋆) holds iff p(ẑ|x̂, z) = p(ẑ|z) (see condition (ii));
(⋆⋆) holds with equality iff p(ẑ|z) achieves R(∆o) (see con-
dition (ii)); (⋆ ⋆ ⋆) follows by data processing inequality that
corresponds to the system in Fig. 1 and holds with equality
iff condition (iv) holds; (⋆ ⋆ ⋆⋆) holds with equality iff p(a)
is capacity achieving distribution (see condition (i)). Simi-
larly, one can show that when for some value of (∆o,∆s),
RL(∆o,∆s) = R(∆s), RL(∆o,∆s) = R(∆s) = C(Γ) iff
conditions (i), (iii), (v), hold. Hence RL(∆o,∆s) = C(P )
holds iff conditions (i)-(v) hold.

Theorem 1 (except from (i)) is a generalization of [11,
Lemma 2]. One interesting question that stems from Theorem
1 is if one can always find, constructively, goal-oriented
single-letter source-channel codes that allow RL(∆o,∆s) to
be achieved despite the fact that this bound is not achievable,
in general, via the separation based schemes.

Next, we state a corollary to ensure that Lemma 2, (ii), is
always true when R(∆o,∆s) = RL(∆o,∆s) = C(Γ).

Corollary 1. Suppose that for the setup in Fig. 1,
the tuple (p(x), p(z|x), do, ds) is transmitted across a
channel (p(b|a), c) using goal-oriented single-letter codes
(fE , gDo , gDs ) such that RL(∆o,∆s) = C(Γ). Then, the
following statements hold.
(i) Γ cannot be decreased without decreasing C(Γ) iff one of
the following two conditions is satisfied:
(A) I(a;b) < C;
(B) I(a;b) = C and among the possible maximizers,

the capacity achieving distribution p(a) is the unique
maximer that achieves the lowest Γ.

(ii) Suppose that RL(∆o,∆s) = R(∆o). Then ∆o cannot be
decreased without increasing R(∆o) iff one of the following
two conditions is satisfied:
(A) I(z; ẑ) > 0;
(B) I(z; ẑ) = 0 and among the possible achieving minimiz-

ers, the rate-distortion achieving distribution p(ẑ|z) is
the unique minimizer that achieves the lowest ∆o.

(iii) Suppose that RL(∆o,∆s) = R(∆s). Then ∆s cannot be
decreased without decreasing R(∆s) iff one of the following
two conditions is satisfied:
(A) I(z; x̂) > 0;
(b) I(z; x̂) = 0 and among the possible achieving minimiz-

ers, the rate-distortion achieving distribution p(x̂|z) is
the unique minizer that achieves the lowest ∆s.

Proof: The proof of this corollary follows using similar
arguments to [11, Proposition 5] with some small changes.
For completeness, we give the missing part of the proof in
the Appendix A.

V. EXAMPLES

In this section, we construct two examples assuming
transmission using goal-oriented single-letter codes with one
channel use per source symbol, i.e., κ = 1.

A. Binary sources - BSC

First, we give an example for binary alphabet sources and
channels. This example is a generalization of the celebrated
result by Jelinek in [10, Section 11.8].

Example 1. Consider X = Z = A = B = X̂ = Ẑ = {0, 1}.
Moreover, the semantic source x is uniform and the transition
matrix z given x = x is doubly stochastic both modeled by

p(x) =

[
1
2
1
2

]
, p(z|x) =

[
1− w1 w1

w1 1− w1

]
(14)

where w1 ∈
[
0, 1

2

)
. Moreover, the distortion functions do(z, ẑ)

and ds(x, x̂) are given by

do(z, ẑ) =

{
0, if z = ẑ

1, otherwise
, ds(x, x̂) =

{
0, if x = x̂

1, otherwise
.

The channel is assumed to be the BSC with transition prob-
ability matrix p(b|a) given by

p(b|a) =
[
1− ϵ1 ϵ1
ϵ1 1− ϵ1

]
, ϵ1 ∈

[
0,

1

2

)
. (15)

Using (14) under Hamming distortions, the SRDF was
obtained in closed form in [13, Example 1] as follows

R(Do, Ds) = RL(Do, Ds) = max {R(Do), R(Ds)} (16)

where

R(Do) =

{
1−Hb(Do), if Do ∈ (0, 1

2 )

0, if Do ∈ [ 12 ,∞)
(17)

and

R(Ds) =

{
1−Hb(

Ds−w1

1−2w1
), if Ds ∈ (w1,

1
2 )

0, if Ds ∈ [ 12 ,∞)
(18)

where Hb(·) denotes the binary entropy function.
On the other hand, the channel capacity of the BSC is given

by C = 1−Hb(ϵ1) [16].
Now choose the triplet (fE , gDo , gDs ) in Definition 6 such

that fE(z) = z, gDo (b) = b, gDs (b) = b (i.e., identity maps),
which further implies that a = z, b = ẑ or b = x̂.

Following, the optimality conditions of Lemma 2, we first
require RL(∆o,∆s) = C. For this criterion to be valid,
we need to check the following two cases. Suppose that
RL(∆o,∆s) = R(∆o), then, from (5), we obtain ∆o =
E[do(z, ẑ)] = ϵ1, which further means that R(∆o) = 1 −
Hb(∆o) = 1 − Hb(ϵ1), hence R(∆o) = C. Suppose that
RL(∆o,∆s) = R(∆s); then, again from (5), we obtain



∆s = E[ds(x, x̂)] = E[d̂s(z, x̂)] = ϵ1(1− 2w1) + w1, which
further means that R(∆s) = 1−Hb(

∆s−w1

1−2w1
) = 1−Hb(ϵ1),

hence R(∆s) = C. The previous analysis confirms Lemma 2,
(i). On top of that, one can easily see that the conditions
of Theorem 1 are also satisfied. Lemma 2, (ii), is clearly
satisfied as an immediate consequence of Corollary 1 because
the specific choices of w1 and ϵ1 guarantee that the maximizer
p(a) is unique and achieves C and similarly the minimizers
p(ẑ|z) and p(x̂|z) achieve R(∆o) and R(∆s), respectively.
Hence the specific realization of this goal-oriented source-
channel communication model in Fig. 1 using single-letter
codes is optimal.

B. i.i.d Gaussian sources-AWGN channel

In the next example, we consider a jointly Gaussian se-
mantic source and noisy observations conveyed across an
AWGN channel with the cost function being a power and
the distortions the standard squared error. This example is a
generalization of a result by Goblick in [9].

Example 2. Consider a joint Gaussian i.i.d process (xn, zn),
where the semantic source is such that x ∼ N (0;σ2

x),
σ2
x > 0, and the conditionally Gaussian distribution pG(z|x)

is modeled by z = x + n, where n ∼ N (0;σ2
n) is an

i.i.d sequence of random variables. Moreover, do(z, ẑ) and
ds(x, x̂) are given as follows

do(z, ẑ) = (z − ẑ)2, ds(x, x̂) = (x− x̂)2. (19)

The source is conveyed across a standard AWGN channel with
transition probability p(b|a) modeled as b = a + m, for
which m ∼ N (0;σ2

m), σ2
m > 0, with input power constraint

E[a2] ≤ P , P > 0.
For the specific class of Gaussian semantic sources and

noisy observations under squared-error distortions, the SRDF
is obtained in closed form in [12, Proposition 3] as follows

R(Do, Ds) = RL(Do, Ds) = max {R(Do), R(Ds)} (20)

where

R(Do) =

{
1
2 log

σ2
z

Do
, if Do ∈ (0, σ2

z)

0, otherwise
(21)

and

R(Ds) =

 1
2 log

σ4
x

σ2
z(Ds−σ2

x|z)
, if Ds ∈

(
σ2
x|z,

σ4
x

σ2
z

)
0, otherwise

(22)

where σ2
x|z =

σ2
xσ

2
n

σ2
x+σ2

n
is the conditional variance of the

conditionally Gaussian distribution pG(x|z).
The constrained channel capacity of AWGN is well known

and is given by C(P ) = 1
2 log

(
1 + P

σ2
m

)
[16].

Following Lemma 2, (i), we first require RL(∆o,∆s) =
C(Γ). Similarly to Example 1, we check if (A) R(∆o) =
C(Γ); (B) R(∆s) = C(Γ). Since we have now the presence
of the cost Γ > 0, the approach is slightly different. To
ensure case (A), we require (similar to [9]) ∆o =

σ2
zσ

2
m

Γ+σ2
m

,

which based on standard terminology we referred to as the
minimum observable achievable distortion (Dmin

o ). To achieve
this operational point, we need to find a specific encoder and
decoder operating at Dmin

o . Indeed, if we define the single-
letter source-channel encoder and decoder pair as

a =

√
Γ

σ2
z

z, ẑ =

√
σ2
z

Γ

Γ

Γ + σ2
m

b, (23)

then, the resulting ∆o = E[(z− ẑ)2] = Dmin
o and case (A) is

verified. To ensure case (B), we require ∆s =
σ4
xσ

2
m

σ2
z(σ

2
m+Γ) +

σ2
x|z, which is the minimum semantic achievable distortion

Dmin
s . To achieve Dmin

s , we choose the following pair of
single-letter encoder and decoder:

a =

√√√√ Γ
σ4
x

σ2
z

µx|z, x̂ =

√
σ4
x

σ2
z

Γ

Γ

Γ + σ2
m

b (24)

where µx|z ≡ E[x|z] = σxz

σ2
z
z = E[xz]

σ2
z

z =
σ2
x

σ2
z
z is the

conditional mean of pG(x|z). The choice in (24) results into
an operational distortion

∆s = E[(x− x̂)2]

= E[(x− µx|z + µx|z − x̂)2]

(∗)
= E[(x− µx|z)

2] +E[(µx|z − x̂)2]

(∗∗)
= Dmin

s

where (∗) follows from the orthogonality principle; (∗∗)
follows from the choice of (24). One can observe that the
above methodology verifies the iff conditions of Theorem 1.
Finally, Lemma 2, (ii), is verified because of Corollary 1.
Hence, the specific realization of the goal-oriented communi-
cation system in Fig. 1, using single-letter codes and uncoded
transmission is optimal.

The two application examples described above, demon-
strate the vital role of the fidelity constraints in goal-oriented
communications over noisy channels using single-letter codes.

VI. CONCLUSIONS AND ONGOING STUDY

We studied a new variation of a JSCC problem that has
natural goal-oriented features from an inference perspective.
We defined a variation of block source-channel codes and
gave optimality conditions for the system model to operate
optimally. Our main focus was on single-letter codes for
which we derived a new theorem that provides necessary
and sufficient conditions for the probabilistic matching of the
semantic source message with the noisy channel. Two appli-
cation examples were presented to corroborate our theoretical
results.

The optimality conditions of our JSCC setup can be further
studied to take into account bandwidth constraints (i.e., κ < 1,
κ > 1) as Lemma 2 suggests. This study will follow in the
extended version of the paper. It would be interesting to use
tools from the machine learning community for more complex
analysis of our setup and its extensions.
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[3] B. Güler, A. Yener, and A. Swami, “The semantic communication
game,” IEEE Trans. Cogn. Commun. Netw., vol. 4, no. 4, 2018.

[4] S. Wang, Q. Liu, P. U. Abara, J. S. Baras, and S. Hirche, “Value of
information in networked control systems subject to delay,” in Proc.
IEEE Conf. Decision Control, 2021, pp. 1275–1280.

[5] P. Popovski, O. Simeone, F. Boccardi, D. Gündüz, and O. Sahin,
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APPENDIX A
PROOF OF COROLLARY 1

We only prove statement (iii) as statements (i), (ii) are
already known from [11, Proposition 5].
(iii) Sufficiency of (A): Define ∆max

s ≜ min{Ds : R(Ds) =
0} and ∆min

s ≜ {Ds : R(Ds) = {maximum positive value}}.
For ∆s ≥ ∆min

s > 0 and using the fact that RL(∆o,∆s) =
R(∆s) = C(Γ), we have that 0 < I(z; x̂) = R(∆s) which
further implies that R(∆s) > 0. But when R(∆s) > 0 we
know that its curve is convex and strictly decreasing with
respect to ∆s (see e.g., [8, Chapter 8]), hence there is a unique
∆s for each point on the curve R(∆s). This implies that ∆s

cannot be decreased without increasing R(∆s).
Necessity of (A): If ∆s ≥ ∆max

s , then, I(z; x̂) = 0, hence it
is possible to have multiple ∆s’s without changing the value
of R(∆s).
Sufficiency of (B): If I(z; x̂) = 0 and among the possible
minimizers, the rate-distortion achieving distribution p(x̂|z)
is the one that achieves the lowest ∆s this means that it is
impossible to alter ∆s without changing R(∆s) because we
will need to change p(x̂|z) (this argument is trivially obtained
if p(x̂|z) is unique).

Necessity of (B): If I(a;b) = 0, then, ∆s ≥ ∆max
s , hence

there are multiple minimizers p(x̂|z) that achieve different
values of ∆s’s but not necessarily its minimum value which
is ∆max

s . (again this argument is trivially obtained as long as
p(x̂|z) is unique).


