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ABSTRACT
Xiaomi is the market leader in the electric scooter (e-scooter) seg-
ment, with millions of active users. It provides several e-scooter
models and Mi Home, a mobile application for Android and iOS
to manage and control an e-scooter. Mi Home and the e-scooter
interact via Bluetooth Low Energy (BLE). No prior research eval-
uated the security of this communication channel, as it employs
security protocols proprietary to Xiaomi. Exploiting these protocols
results in severe security, privacy, and safety issues, e.g., an attacker
could steal an e-scooter or prevent the owner from controlling it. In
this work, we fill this research gap by performing the first security
evaluation on all proprietary wireless protocols deployed to Xiaomi
e-scooters from 2016 to 2021. We identify and reverse-engineer
four of them, each having ad-hoc Pairing and Session phases. We
develop four attacks exploiting these protocols at the architectural
level, and we call them Malicious Pairing (MP) and Session Down-
grade (SD). Both attacks can be performed from proximity, if the
attacker’s machine is within BLE range of the target e-scooter, or
remotely, via a malicious application co-located with Mi Home. An
adversary can utilize MP and SD to steal a password-protected and
software-locked e-scooter, or to prevent a victim from accessing it
via Mi Home. We isolate six attack root causes, including the lack of
authentication while pairing, and the improper enforcement of the
e-scooter password. We open-source the E-Spoofer toolkit. Our
toolkit automates the MP and SD attacks, and includes a reverse-
engineering module for future research. We empirically confirm
the effectiveness of our attacks by exploiting three e-scooters (i.e.,
M365, Essential, and Mi 3), embedding five BLE subsystem boards
and eight BLE firmware versions that support all four Xiaomi pro-
tocols. We design and evaluate two practical countermeasures that
address our impactful attacks and their root causes, and we release
them as part of E-Spoofer. We responsibly disclosed our findings
to Xiaomi.
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1 INTRODUCTION
Xiaomi is leading the electric scooter (e-scooter) market [20]. Its
ecosystem includes seven e-scooters released in the last seven years
(i.e., M365, Pro 1, Pro 2, 1S, Essential, Mi 3, and Mi 4) and the Mi
Home mobile application for Android [3] and iOS [4]. Mi Home
enables a user to manage his e-scooter, e.g., wirelessly locking and
unlocking it or setting a password. Mi Home and the e-scooter
communicate via proprietary application-layer protocols developed
by Xiaomi. These protocols are undocumented, not peer-reviewed,
and built on top of a Bluetooth Low Energy (BLE) link-layer.

Despite their associated security, privacy, and safety risks, no
research work evaluated the security protocols used by Xiaomi to
secure the interaction between its e-scooters and Mi Home. Instead,
recent work focused on the privacy implications of e-scooter rental
apps (including Xiaomi) [46] and on the security of Xiaomi’s fitness
tracking ecosystem [10]. In our work, we find that Xiaomi protocols
can be exploited to (remotely) unlock and steal an e-scooter or
permanently prevent its owner to manage it from Mi Home.

This work presents the first security evaluation of the commu-
nication channel between Xiaomi’s e-scooters and Mi Home. In
particular, we uncover and reverse-engineer all four e-scooter pro-
tocols used from 2016 to 2021. We label them as P1, P2, P3, and P4,
and we dissect their custom Pairing (i.e., key agreement) and Ses-
sion phases. We find that P1, P2, and P3 offer no security guarantees
but security through obscurity. Instead, P4 provides some security
properties (e.g., ECDH key agreement and AES-CCM authenticated
encryption) but is vulnerable to downgrade attacks. Moreover, we
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find that Xiaomi decided not to use standard BLE link-layer security
mechanisms (e.g., BLE pairing), despite their devices support them.

We present four novel attacks targeting the Xiaomi protocols’
specifications. Two attacks enable a proximity-based or remote
attacker to pair maliciously with an e-scooter and get authorized
access to it without spoofing the victim’s identity (i.e., MP). The
other two attacks allow a proximity-based or remote attacker to
downgrade the connection with an e-scooter to an insecure ver-
sion and send arbitrary commands (i.e., SD). The proximity-based
adversary must be in BLE range of the target e-scooter. Instead,
the remote adversary must have installed a malicious app on the
victim’s smartphone. Our attacks achieve impactful goals, such as
unlocking and stealing an e-scooter, or preventing a victim from
regaining control of the e-scooter via Mi Home. We isolate the
six attacks’ root causes, including the improper authentication
and authorization mechanisms, and the unprotected but privileged
vendor-specific features of Xiaomi protocols.

We release E-Spoofer, a toolkit capable of performing our four
attacks by reimplementing and abusing the four reversed Xiaomi
protocols. The toolkit includes three extensible modules. Two dedi-
cated modules implement the Malicious Pairing and Session Down-
grade attacks. The reverse-engineering (RE) module offers protocol
dissectors to decode and build custom Xiaomi packets (e.g., P1, P2,
P3, and P4). and useful Frida hooks for Mi Home to dynamically
intercept and modify the proprietary Xiaomi payloads.

We successfully evaluate the attacks in eight different attack
scenarios covering P1, P2, P3, and P4. Our setup allows testing
multiple e-scooter configurations by using three modded e-scooters
(e.g., M365, Essential, and Mi 3) with five BLE subsystems and eight
BLE firmware. Our results are alarming. In all attack scenarios, we
managed to unlock an e-scooter and steal it, or to lock it and to
change its password, preventing its legitimate owner from accessing
it via Mi Home. These results lead to millions [17] of exploitable
devices.

To fix the four attacks and their six root causes, we developed and
tested two usable and low-cost countermeasures and include them
in our toolkit. First, we propose a backward-compatible pairing pro-
tocol with proper authentication and authorization mechanisms.
Second, we provide a script to patch the session downgrade com-
mand from an e-scooter BLE firmware. We successfully test our
patch on the M65 and Pro 1 e-scooters, whose BLE firmware is no
longer updated by Xiaomi.

We summarize our contributions as follows:

• We present the first security evaluation of the proprietary
security mechanisms employed by Xiaomi’s e-scooters and
Mi Home application. We isolate four custom application-
layer security protocols on top of an insecure BLE link-layer.
After reversing their Pairing and Session phases, we uncover
six severe vulnerabilities in their design, including vendor-
specific and unauthenticated protocol commands.

• We develop four attacks that steal an e-scooter or prevent its
owner from accessing it from the Mi Home app previously
paired with that e-scooter. The attacks are effective on P1,
P2, P3, and P4, and can be deployed by an attacker in BLE
range of a target e-scooter (i.e., proximity-based attacker) or

via a malicious application on the victim’s smartphone (i.e.,
remote attacker).

• We open-source E-Spoofer, an automated and low-cost
toolkit that implements our attacks and tampers with the
four Xiaomi protocols. Our toolkit includes the MP and SD
attack modules, and a reverse-engineering module with pro-
tocol dissectors, firmware analysis tools, and Mi Home Frida
hooks.

• We confirm that our four attacks are effective in eight attack
scenarios covering five e-scooter BLE subsystems and eight
BLE firmware. Our evaluation samples include P1, P2, P3, and
P4. Our experimental setup allows to reproduce multiple at-
tack scenarios using three partially disassembled e-scooters
and different BLE subsystems. We also release two effective
countermeasures that fix our attacks. The first addresses the
MP attacks by implementing a more secure pairing protocol.
The second prevents the SD attacks by patching the BLE
firmware of an e-scooter.

Responsible disclosure and ethics. We responsibly disclosed our
findings multiple times with Xiaomi via their bug bounty pro-
gram [50]. In October 2022, we reported a UI password bypass
issue with Mi Home, Xiaomi acknowledged it and provided a bug
bounty. In November 2022, we shared a technical report and the
code to reproduce our findings. In December 2022, we provided
them with a video of the attacks on actual devices. Xiaomi did
not follow up. We conducted our experiments in a controlled en-
vironment without involving third-party users and services. We
anonymously provide our E-Spoofer toolkit at https://anonymous.
4open.science/r/Espoofer-7B21 via a private repository that should
stay confidential within the TPC. We will submit our toolkit for ar-
tifact evaluation. After responsible disclosure, we will open-source
the toolkit.

2 XIAOMI E-SCOOTER ECOSYSTEM
Xiaomi is the electric scooter (e-scooter) market leader, sporting
the highest number of active users and shipped devices [20]. Cur-
rently, it features seven e-scooters, i.e., M365 (2016), Pro 1 (2019),
Pro 2 (2020), 1S (2020), Essential (2020), Mi 3 (2021), and Mi 4 (2022).
Xiaomi also maintains Mi Home, a smartphone application for An-
droid [3] and iOS [4] that manages Xiaomi’s smart home devices,
including any e-scooter. Xiaom’s cloud-based backend service man-
ages the e-scooters and their active Mi Home users.

Figure 1 shows a high-level representation of the Xiaomi e-
scooter ecosystem. This work focuses on the BLE communication
channel between the e-scooter and Mi Home. The e-scooter acts as a
BLE peripheral (connection responder), while Mi Home is the BLE
central (connection initiator). The e-scooter periodically broadcasts
BLE advertisement packets to be discovered. These packets contain
the e-scooter name, model, security level, and pairing mode acti-
vation. Mi Home scans the BLE spectrum and lists all connectable
Xiaomi e-scooters nearby. Once connected, the devices exchange
data using BLE’s Generic Attribute Profile (GATT). The e-scooter
exposes a GATT server, which includes the Nordic UART Service
and a custom Xiaomi service. On the other hand, Mi Home acts
as a GATT client, sending read, write, and subscribe requests to
the e-scooter’s GATT server. To communicate, Mi Home and the
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Xiaomi Protocols
Over BLE

Xiaomi E-scooter User Phone
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Over Wi-Fi

Xiaomi Backend

Figure 1: Xiaomi e-scooter ecosystem. Xiaomi e-scooter (left),
the user smartphone running the Mi Home app (middle),
and the Xiaomi backend (right). The e-scooter and the app
are paired and connected over BLE. The app associates the
e-scooter with the Xiaomi backend over Wi-Fi. We focus on
the BLE traffic between the app and the e-scooter.

e-scooter establish a BLE link-layer connection. Then, they use pro-
prietary application-layer protocols and mechanisms that cannot be
scrutinized with multi-purpose static and dynamic analysis tools.

Mi Home requires the user to register a Xiaomi account to pair,
connect, and manage one or more Xiaomi e-scooters. The pairing
process is a one-time procedure that requires user interaction and
an Internet connection. The user starts pairing via the app UI,
scans for nearby Xiaomi e-scooters, selects the correct e-scooter
from a list, presses the headlight button to activate pairing mode,
and waits. Once the pairing is complete, Xiaomi backend links the
user account to the paired e-scooter, and Mi Home remembers
the device for future connections. Optionally, the user can set a 6-
digit alphanumeric PIN to protect the e-scooter from unauthorized
access to Mi Home (e.g., from attackers that have stolen the user’s
smartphone and want to unlock the e-scooter via Mi Home).

A Xiaomi e-scooter is a high-end embedded device composed of
several proprietary and undocumented subsystems: radio (BLE), bat-
tery management (BMS), and electric motor (DRV). Each subsystem
has a dedicated system-on-chip (SoC) and firmware. The connec-
tion between the subsystems is not standardized and might involve
a proprietary bus. The radio subsystem provides BLE connectivity,
enabling communication between the e-scooter and Mi Home. It
also acts as a gateway to distribute firmware updates to the DRV
and BMS. The BMS monitors and manages the e-scooter’s battery.
The DRV takes care of the electric motor that, when the DRV is not
up-to-date, can be patched to change the motor’s maximum speed.
At the time of writing, all Xiaomi e-scooters are manufactured
by Ninebot, a Chinese company financed by Xiaomi that acquired
Segway (its main competitor in the US) in 2015 [30].

3 THREAT MODEL
Now we present our system model and our proximity-based and
remote attacker models. Please refer to Section 2 for their related
background material.

3.1 System Model
We consider a victim who owns a Xiaomi e-scooter and a smart-
phone equipped with the Mi Home app for Android or iOS, as
shown in Figure 1. We assume that the Mi Home version number is
the latest available at the time of submission (e.g., Android v7.11.704
and iOS v7.12.204). We do not set a target Android or iOS version as

Xiaomi Protocols
Over BLE

Xiaomi Protocols
Over BLE

Xiaomi 
E-scooter

Victim 
Phone

Proximity
Attacker

Remote Attacker

Figure 2: Proximity-based (left) and remote (right) attacker
models investigated in this work. In the proximity-based
threat model, the attacker is within BLE range of a target
e-scooter. In the remote threat model, the adversary first
installs a malicious Android app on the victim’s smartphone.
Then, she uses the malicious app (in red) to remotely target
an e-scooter within BLE range of the victim’s smartphone.

we want to explore Xiaomi-compliant attacks that work regardless
of the smartphone OS version.

The victim securely paired the app, and the e-scooter accepted
the required permissions and completed the default firmware up-
date. The update process involves the BLE, battery management,
and electric motor subsystems (e.g., DRV017, BLE157, BMS141),
and the BLE component acts as a gateway. To consider the most
secure scenario, we assume that the password-protection is enabled
to prevent unauthorized access to the e-scooter. Hence, according
to common sense, the victim locks and unlocks the e-scooter from
the app. Moreover, the victim uses the e-scooter features, such as
pressing the power button to activate or deactivate the headlight.

The e-scooter and Mi Home communicate using Xiaomi propri-
etary application-layer protocols. These protocols run on top of a
link-layer connection established using BLE. Only Xiaomi knows
the application-layer protocols’ details and their security guaran-
tees (e.g., confidentiality, integrity, and authenticity).

3.2 Attacker Models
Password protection and secure communication at the application-
layer and link-layer should protect victims against impactful attacks,
including threats effective from BLE proximity or remotely via a
malicious app on the victim’s smartphone. For example, it should
not be possible to (remotely) unlock and steal an e-scooter or (re-
motely) reset a password to deny the victim access to the e-scooter.
Based on this reasoning, and as shown in Figure 2, we focus on two
relevant threat actors:

Proximity-based attacker. The proximity-based attacker targets
the e-scooter with BLE signals. Hence, she requires being within
BLE range of the target device. The proximity attacker has the fol-
lowing goals: (i) unlock and steal a (password-protected) e-scooter,
and (ii) prevent the legitimate owner from accessing and controlling
the e-scooter via Mi Home.

The proximity adversary has the capabilities of a real-world and
low-cost BLE attacker. She can craft custom BLE packets, sniff the
traffic over-the-air to get public information (e.g., BLE addresses
and advertisements), and replicate the Android and iOS Mi Home
apps with her attack equipment. The attacker does not observe the
e-scooter while it pairs with Mi Home and does not install malicious
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software on the victim’s devices. Moreover, she does not physically
tamper with the e-scooter and the smartphone (e.g., no physical
fault injection and side-channel attack).

Remote attacker. The remote adversary attacks the e-scooter
using a malicious application installed on the victim’s smartphone.
Thus, she requires the victim’s smartphone to be within BLE range
of the e-scooter, but she can remotely activate the app. For example,
the adversary can attack the e-scooter while the victim is parking
the e-scooter and walking away from the parking lot. This model
differs from a proximity-based attack as the latter involves a BLE
attacking machine (e.g., a laptop) in the BLE range of the victim,
while the former involves a malicious smartphone app. The remote
attacker has the same goals as the proximity-based attacker.

Capability-wise, we consider a low-cost and real-world remote
threat actor targeting the Android ecosystem (as opposed to iOS,
which is more closed). We assume a malicious Android app that
was installed using known (yet practical) social engineering and
phishing techniques. The app does not require root privileges but
needs basic permissions to interact with the e-scooter, such as
Bluetooth and Internet permissions. The attacker develops the app
using standard Android tools (e.g., Android Studio) and APIs (e.g.,
BLE advertisement, scanning, and GATTAPIs). The remote attacker
has the same limitations as the proximity one, except for installing
an app on the victim’s smartphone.

Physical access requirements. Regardless of the attacker model,
we assume that the adversary needs minimal (but mandatory) phys-
ical access to steal and carry away an e-scooter. For example, in a
proximity-based scenario, the attacker can approach the e-scooter
when the victim is not present and perform some short interactions
with its dashboard (e.g., pressing the headlight and the power but-
tons). Alternatively, in a remote threat scenario, two adversaries
can collude. For example, an adversary unlocks the e-scooter by
launching a remote attack via the malicious app. At the same time,
the other adversary can press any button (if necessary) and steal
the e-scooter.

4 REVERSED XIAOMI SECURITY PROTOCOLS
We describe the four proprietary Xiaomi protocols that we reverse-
engineered (RE). Please see the Appendix for an explanation of
our RE methodology. We discover that Mi Home and the e-scooter
establish an insecure link-layer BLE connection, despite both devices
supporting BLE security mechanisms (e.g., BLE Pairing). Instead,
Xiaomi uses proprietary application-layer protocols to secure their
whole e-scooter ecosystem.

Table 1 summarizes the details we reversed from the protocols.
We label the protocols as P1, P2, P3, and P4, and also assign a de-
scriptive name to each one. P1 is named "No security" because it
does not utilize any security mechanism. P2 is named "XOR obfusca-
tion" because it employs an obfuscation strategy exclusively based
on XOR. P3 is named "AES-ECB and XOR obfuscation" because it
XORs Xiaomi packets with the output of an AES-ECB cipher. P4 is
named "ECDH and AES-CCM" because it employs ECDH for Pair-
ing and AES-CCM during Session. Then, we isolate the protocols’
phases: Pairing (e.g., key agreement), and Session (e.g., authenti-
cated encryption). For instance, P2 Pairing is based on a public XOR

mask and is unauthenticated. Its Session reuses the XOR mask to
obfuscate payloads, is not authenticated, and provides no integrity
protection. Our experiments reveal that all Xiaomi e-scooters (more
specifically, their BLE subsystems) and all Mi Home versions (from
2016 to 2021) have employed these protocols. Now we describe each
protocol in detail.

4.1 No Security (P1)
P1 provides no security guarantees as it lacks Pairing and Ses-
sion capabilities. The devices establish a BLE connection and then
exchange the application-layer payloads in cleartext without in-
tegrity protection. The only roadblock for the attacker to eavesdrop
and inject packets into the connection is the knowledge of the
application-layer packet format. P1 is the prototypical example of
security through obscurity (STO).

4.2 XOR Obfuscation (P2)
P2 offers no security guarantees, but relies on a XOR-based obfus-
cation strategy. During Pairing, Mi Home reads a twelve-byte XOR
mask from the e-scooter Hardcopy Data Channel GATT characteris-
tic, different at every reboot of the device. Then, during Session, the
devices obfuscate the application-layer payloads by XORing them
with the XOR mask. If the payload is longer than the XOR mask,
the app asks the e-scooter for the extended version of the same
XOR mask and uses that one instead in the XOR operation. Since
the attacker can trivially recover the mask (e.g., eavesdropping or
reading it from the e-scooter), P2 is insecure and falls into the STO
category.

4.3 AES-ECB and XOR Obfuscation (P3)
P3 uses a weak key establishment protocol based on AES-ECB
and XOR obfuscation. Pairing generates a sixteen-byte pairing key
(pk) by computing pk=AES-ECB(key=constant,input=escooter
_name), where constant is hardcoded both in the Mi Home app
and in the e-scooter BLE firmware, and escooter_name is publicly
advertised by the device. Then, during Session, the devices obfuscate
the application-layer payloads by XORing them with pk. If the
payload is longer than the pairing key, the payload is XORed with
an extended pairing key, which is just pk repeated as many times
as necessary. P3 provides no security guarantees but only STO. An
attacker can compute pk by extracting constant from the reversed
code of any Mi Home APK and trivially acquire escooter_name.
Once pk is known, the attacker can de-obfuscate and inject valid
P3 packets.

4.4 ECDH and AES-CCM (P4)
During Pairing, P4 employs Elliptic Curve Diffie-Hellman (ECDH)
for key agreement and unilateral pairing key authentication. In
particular, the e-scooter sends chal, a sixteen-byte random chal-
lenge. The devices exchange their public keys, using the SECP256R1
curve, and derive ss, an ECDH shared secret. Then, they compute
a pairing key (pk) and a one-time key (otk) using HKDF as follows:
pk||otk=HKDF(key=ss,input="mible-setup-info",salt="").
The app responds to the e-scooter challenge with resp=AES-CCM(
key=otk,input=chal).
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Table 1: The four Xiaomi application-layer security protocols analyzed in this work. The first and second columns show the
protocol ID and name. Each protocol has a Pairing and Session phase. P4 has two Session versions, where v2 is equal to v1 but
adds downgrade protection. Unil means unilateral.

ID Name Pairing Session

P1 No security None None
P2 XOR obfuscation Public XOR mask, no auth XOR mask obfuscation, no auth, no integrity
P3 AES-ECB and XOR obfuscation Weak AES-ECB key agreement, no auth XOR obfuscation, implicit auth, no integrity

P4 ECDH and AES-CCM ECDH, AES-CCM unil auth
v1: HKDF, HMAC, AES-CCM, mutual auth
v2: v1 with downgrade protection

During Session, P4 uses HKDF, to derive the directional ses-
sion keys, and HMAC-based mutual authentication. The devices
exchange rand_esc and rand_app, two sixteen-byte random num-
bers. The devices derive two directional session keys (sk_esc and
sk_app) and AES-CCM nonces (n_esc and n_app) as follows: sk_
esc||sk_app||n_esc||n_app=HKDF(key=pk,input="mible-lo
gin-info",salt=rand_app||rand_esc).

Then, the e-scooter sends resp_esc=HMAC(key=sk_esc,input
=rand_esc||rand_app) to authenticate its session key. Similarly,
the app authenticates its directional key by sending resp_app=
HMAC(key=sk_app,input=rand_esc||rand_app). After mutual
authentication of both session keys, each device employs AES-CCM
to encrypt and integrity protect the application-layer payloads. AES-
CCM is keyed with the directional session key and initialized with
the directional nonce concatenated with a packet counter.

P4 provides security guarantees (unlike P1, P2, and P3) but can
be downgraded. Replay attacks are ineffective against P4 Pairing
and Session because the former utilizes a random challenge during
pairing key authentication, and the latter utilizes random values
and nonces during the HMAC-based authentication. Moreover, the
mutual authentication during P4 Session prevents impersonation
attacks on Mi Home or the e-scooter. The usage of session keys
limits the impact of a compromised key to the current session only,
and the usage of a packet counter in the encryption of regular BLE
communication protects against nonce reuse attacks.

P4 protocol comes in two versions (i.e., P4v1 and P4v2), depend-
ing on the supported version of the Session phase.

5 ATTACKS
We present four novel attacks targeting the four Xiaomi custom
protocols discussed in Section 4 that enable stealing a (password-
protected) e-scooter or denying a victim from using it via Mi Home.
Our attacker can either be proximity-based or remote, as stated
in Section 3. The attacks achieve their goals by using one of two
spoofing strategies: (i) the attacker pairs with the target e-scooter
while impersonating any user, i.e., Malicious Pairing (MP) (ii) the
adversary connects to the target e-scooter and downgrades the
session to an insecure version, i.e., Session Downgrade (SD).

The attacks are critical to the Xiaomi ecosystem as they exploit
the four Xiaomi application-layer security protocols at the architec-
tural level. Hence, they are effective regardless of the e-scooter’s
hardware and software details, including its model, and only de-
pend on the BLE firmware being run. Moreover, they defeat the

most secure setup, i.e., a password-protected and software-locked
e-scooter already paired with a registered Xiaomi user. We even
completed the attacks while the e-scooter was in motion (in a con-
trolled environment). We now describe the MP and SD strategies,
and we isolate their root causes.

5.1 Malicious Pairing (MP)
Figure 3 shows the MP attack strategy that can be used to lock an e-
scooter away from its user, or to steal it. The attacker waits until the
victim presses the e-scooter headlight button to switch on or off the
front light (or presses the button if the e-scooter is unattended). As a
side effect, the button press activates pairing mode for the e-scooter
for seventeen seconds without notifying the user. The adversary

Attacker E-scooter

Light button press

Pairable for 17 sec

BLE: Advertisement

Detect Pairing phase

BLE: Connection request

BLE: Connection completed

Xiaomi: Pairing request

Xiaomi: Pairing completed

Attacker paired and authorized (P1, P2, P3, P4)

Figure 3: Malicious Pairing (MP) attack strategy. The user
presses the headlight button. The e-scooter goes into pairable
mode for seventeen seconds and advertises it via BLE. The
attacker detects the Pairing phase supported by the e-scooter.
Then, she establishes a BLE connection without imperson-
ating the victim’s smartphone and completes Xiaomi Pair-
ing. As a final result, she is authorized to send any Xiaomi-
compliant command to the e-scooter, including lock, unlock,
and set or change a password.
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Attacker E-scooter

BLE: Advertisement

Detect Session phase

BLE: Connection request

BLE: Connection completed

Xiaomi: Session downgrade

Downgraded Session (P4v1 to P3, P2 to P1)

Figure 4: Session Downgrade (SD) attack strategy. The app
detects a nearby e-scooter vulnerable to SD (i.e., running P4v1
or P2). The attacker skips Pairing and sends the session down-
grade command to the e-scooter. The Session is downgraded
from P4v1 to P3, or from P2 to P1.

detects that the e-scooter is pairable from its BLE advertisement
packets and detects which Xiaomi protocol it supports (i.e., P1,
P2, P3, or P4). Then, she establishes a BLE link-layer connection
without spoofing the victim’s smartphone BLE address. Hence, the
adversary can target an e-scooter without knowing any information
about its owner (e.g., any e-scooter in a parking lot).

Finally, the attacker sends a Xiaomi-compliant pairing request
and completes Pairing, regardless of the supported Xiaomi protocol
of the e-scooter. Once paired, she can perform any action requiring
authentication. For example, she can lock it and set a new e-scooter
password to prevent the victim from accessing it from Mi Home.
The takeover is effective, as we discovered that Mi Home does not
allow resetting the e-scooter password, even with a factory reset.
Alternatively, the attacker can use the MP strategy to unlock and
steal the e-scooter.

TheMP attack strategy is effective for a proximity-based attacker
inside the BLE range of the e-scooter, and for a remote attacker
controlling a malicious app while the victim’s smartphone is within
BLE range of the e-scooter. Moreover, the strategy works regardless
of the Pairing phase version and the e-scooter password because,
while pairing, the attacker does not have to authenticate its identity
and provide the password.

5.2 Session Downgrade (SD)
Figure 4 shows the SD attack strategy that allows an adversary to
lock an e-scooter away from its user, or to steal it. The attacker
detects the Session protocol supported by the e-scooter. Then, she
looks at the BLE advertisement packets of the e-scooter, and she
detects if the target runs P4v1 or P2, being the two Session proto-
cols that expose a session downgrade command. She establishes
a BLE link-layer connection without spoofing anything from the
victim. Hence, the adversary can target an e-scooter running P4v1
or P2 without knowing any information about its owner. Then, the
attacker sends a Xiaomi-compliant session downgrade command,
downgrading the Session from P4v1 to P3 or from P2 to P1. The
attacker exploits the insecure P3 and P1 to perform dangerous ac-
tions on the e-scooter. Similarly to MP, she can lock the e-scooter
and prevent access to it from Mi Home by setting a new e-scooter

password. She can also use the SD strategy to unlock and steal the
e-scooter. The SD strategy can be applied to our proximity-based
and remote threat models. The strategy entirely skips Pairing and
starts an insecure downgraded Session, removing any authenti-
cation requirement from the attacker. Moreover, the strategy is
particularly effective on e-scooters running P4v1, as they offer se-
curity guarantees that are nullified by downgrading the Session
phase to the insecure P3.

5.3 Root Causes
The four attacks presented above are enabled by the following six
root causes (i.e., vulnerabilities) that we isolated in the Xiaomi
protocols’ specification:

V1: Unauthenticated Pairing. None of the Pairing phases require
device authentication (e.g., via a certificate signed by Xiaomi). Hence,
an attacker can pair with an e-scooter while spoofing an arbitrary
Mi Home app without authenticating, regardless of the application-
layer protocol used by the e-scooter (i.e., P1, P2, P3, or P4).

V2: Unintentional Pairing mode. Pressing the e-scooter’s head-
light button activates pairing mode for seventeen seconds without
notifying the user. Hence, whenever the victim presses the head-
light button, an attacker in the BLE range of the e-scooter can detect
that the e-scooter is pairable from its BLE advertisements and pair.
Alternatively, given physical access, the attacker can trigger pairing
mode while the victim is away, by simply pressing the headlight
button (even if the e-scooter is software-locked).

V3: Improper e-scooter password enforcement. The e-scooter does
not enforce the password set by the user via Mi Home. Only Mi
Home checks it to prevent unauthorized access to the e-scooter
from the victim’s smartphone. Therefore, an attacker can tamper
with a password-protected e-scooter without knowing the pass-
word. Moreover, Mi Home does not provide a way to deactivate the
password, and the password does not change across factory resets.
If the adversary changes the e-scooter password, she prevents the
victim from controlling the e-scooter via Mi Home.

V4: Unprotected sensitive memory. Xiaomi custom protocols in-
clude an unauthenticated command to read and write sensitive
memory regions. For example, the attacker can read and overwrite
the victim’s password from the e-scooter DRV subsystem memory.
Moreover, she can tamper with the BLE subsystem memory to lock,
unlock, reboot, and shut down the e-scooter.

V5: Downgradable and insecure Session. Xiaomi custom proto-
cols include unauthenticated commands to downgrade the Session
phase. For instance, the attacker can downgrade a P4v1 Session to
a P3 Session and a P2 Session to a P1 Session. At the same time,
P1, P2, and P3 Session phases are insecure and provide no confi-
dentiality, authenticity, or integrity guarantees. P1 uses no key, P2
employs XOR-based obfuscation with a constant XOR mask, and
P3 uses a slightly more complex, yet predictable, obfuscation based
on AES-ECB and XOR operations.

V6: No BLE security despite device support. Xiaomi does not em-
ploy BLE security at the link-layer despite device support but relies
solely on its custom security mechanisms at the application-layer.
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So, there is no defense in depth, and the application-layer is a single
point of failure.

Table 3 in the Appendix maps the six root causes of the four
attacks described earlier. MP attacks exploit V1, V2, V3, and V4. V1
and V3 lower the attack requirements. V2 allows attacks from prox-
imity without requiring physical access to activate pairing mode.
V4 enables dangerous operations on the e-scooter by unauthorized
attackers. SD attacks exploit V3, V4, V5, and V6. V3 and V6 lower
the attack requirements. V4 enables dangerous operations on the
e-scooter. V5 makes SD possible.

6 IMPLEMENTATION
Here, we present E-Spoofer, a new toolkit to carry out the four
attacks presented in Section 5, facilitate further reverse-engineering
of Xiaomi protocols and help in future security evaluations in the
Xiaomi e-scooter ecosystem.

6.1 Proximity Attack Module
The E-Spoofer proximity attack module performs proximity-based
MP and SD over-the-air, using BLE. We use Noble [23], a NodeJS
module, to create a BLE central that spoofs the Mi Home app and
speaks Xiaomi protocols. We replicate P4 Pairing and P4v1 Ses-
sion, as these protocols are available on all (up-to-date) Xiaomi
e-scooters.

Our module reimplements P4 Pairing, including ECDH and pair-
ing key authentication. We perform ECDH and obtain a shared
secret. We receive a challenge from the e-scooter. We derive a pair-
ing key and a one-time key from the shared secret by running
HKDF-SHA256. We utilize the one-time key and the challenge for
the sophisticated pairing key authentication by running AES-CCM-
128. Finally, we send the solution to the e-scooter and complete P4
Pairing.

Our module reimplements P4v1 Session, including the HMAC-
based mutual authentication and AES-CCM encryption. We send
a challenge to the e-scooter, and receive a challenge from him.
We retrieve the pairing key generated during Pairing. We derive
the directional session keys and IVs from the pairing key and the
two challenges by running HKDF-SHA256. Then, we use the direc-
tional session keys and IVs to calculate the solution of the e-scooter
challenge by running HMAC-SHA256. Finally, we encrypt with
AES-CCM-128 the BLE commands (e.g., session downgrade, lock or
unlock the e-scooter, setting or changing the password) using the
session keys and IVs, and the packet count. The above-mentioned
cryptographic operations also require other input values found in
the decompiled Mi Home code, identical for all e-scooter models.

6.2 Remote Attack Module
The E-Spoofer remote attack module performs the attacks using
a malicious Android app. The app acts as a BLE central, spoofing
Mi Home and speaking Xiaomi protocols. It detects a vulnerable
e-scooter via its BLE advertisement, by analyzing the info included
in the advertisement itself (i.e., e-scooter name, model, security
level, and pairing mode activation). When an e-scooter is found in
pairing mode, the app will pair and perform MP or SD. We develop
the app using the RxAndroidBle library [40], built on RxJava.

Our malicious app requires no root privileges but Bluetooth
and location-related permissions. On Android 9 or lower, these
permissions are BLUETOOTH, BLUETOOTH_ADMIN, and ACCE
SS_COARSE_LOCATION. Android 10 and 11 require ACCESS_FIN
E_LOCATION instead of coarse locatio. On Android 12 or higher,
the app requires the BLUETOOTH_CONNECT and BLUETOOTH_
SCAN permissions.

6.3 Reverse-Engineering Module
The E-Spoofer reverse-engineering module contains the protocol
dissectors, Ghidra utilities, and Frida hooks that we developed
while statically and dynamically RE the Xiaomi e-scooter ecosystem.
The research community can use these modules to perform other
experiments on the Xiaomi ecosystem or adapt them to test similar
ecosystems. We now describe each submodule.

Protocol Dissectors. We develop Pyshark dissectors that automati-
cally parse BLE captures and detect custom Xiaomi payloads and
advertisement packets. They identify the Xiaomi protocol version
from the packet header and dissect the packet accordingly. We also
develop Scapy scripts to complement the Pyshark dissectors and
offer a more advanced analysis.

We develop an advertisement packet analyzer for Xiaomi e-
scooters. Our script extracts the name of the scooter (e.g., MIS-
cooter1234), the scooter model (i.e., 0x20 for M365), the security
level (i.e., 0x00 for P1, 0x01 for P2, and 0x02 for P3 and P4) and
pairing mode activation (i.e., 0x01 means not active, 0x02 means
active).

Ghidra Utilities. We utilize Ghidra [27] to statically RE portions
of the e-scooter’s BLE firmware. We used the open-source mijia
library [22] to identify some compiled functions in the firmware,
related to BLE advertisement and cryptographic mechanisms (e.g.,
AES, HKDF). We manually name the functions related to Pairing
and Session and release six YARA [47] rules with their signatures
to identify them automatically. We also release our Ghidra project
files to reproduce our setup, as part of E-Spoofer.

We discover how the session downgrade command is imple-
mented in the BLE firmware, and why P4v2 does not support it.
A static memory flag decides whether P3 packets (including the
downgrade command) are accepted or discarded. Firmware running
P4v1 enables this flag, thus becoming vulnerable to SD. Firmware
running P4v2 disables this flag, thus discarding the downgrade
command and becoming immune to SD. We did not find any way to
exploit this flag, unreachable by the unprotected sensitive memory
(V4) root cause presented in Section 5.3.

Frida Hooks. First, we decompile the Mi Home APK. We navigate
the decompiled code to find the classes and functions involved in
Xiaomi security mechanisms and we write down their signature.
Then, we develop Frida [29] hooks to intercept these calls. We print
the input and output values, and we modify them if needed. In
particular, we cast the key to their proper classes, before printing
or altering them. Our hooks are written in Javascript and can be
run by invoking the Frida client from the console, while connected
to a rooted smartphone running a Frida server. Operating with Mi
Home, will print logs on the console.



WiSec ’23, May 29-June 1, 2023, Guildford, United Kingdom Casagrande et al.

7 EVALUATION
In this section, we evaluate the four attacks presented in Section 5
against eight attack scenarios. We cover P1, P2, P3, and P4 – the pro-
prietary Xiaomi application-layer protocols reversed in Section 4,
three popular Xiaomi e-scooters models (i.e., M365, Essential, and
Mi 3), five Xiaomi BLE subsystems (i.e., M365, Pro 1, Pro 2, Essential,
and Mi 3), eight e-scooters’ BLE firmware, and the Mi Home app
for Android and iOS. We now describe our setup and results.

7.1 Setup
Our evaluation setup enables experimentingwithmultiple e-scooters
and BLE configurations by using three e-scooters (M365, Essen-
tial, and Mi 3) configured to host different BLE subsystems and
firmware. We bought the three e-scooters from Amazon for around
1.000 USD. We get access to their BLE subsystem board by unscrew-
ing the dashboard and removing the display. This way, we broaden
our evaluation while limiting the evaluation costs. For example, by
installing the Pro 1 and Pro 2 BLE subsystems and firmware on the
M365 e-scooter, we can test the Pro 1 and Pro 2 subsystems without
spending hundreds of USD to buy the actual e-scooter.

We test five BLE subsystem boards with eight BLE firmware.
Three boards are original parts of M365, Essential, and Mi 3 e-
scooters. Two are clone boards for Pro 1 and Pro 2. The M365
and Pro 1 subsystems include an nRF51822 SoC [39] of the QFAA
variant (16 KB of RAM). Instead, the other subsystems use the QFAC
variant with 32 KB of RAM. We obtain the BLE firmware from the
ScooterHacking repositories [34] or the Mi Home app. We identify
each firmware’s relative proprietary protocol (i.e., BLE072 runs P1,
BLE081 runs P2, BLE090 runs P3, BLE122, BLE129, BLE152, and
BLE153 run P4v1, BLE157 runs P4v2).

To debug and manage the BLE subsystems, we use the ST-Link V2
debugger [14], which is compatible with the nRF51 SoC family. At-
taching the debugger to a subsystem board requires manual effort,
such as soldering the data (SWDIO), clock (SWCLK), and power
wires. We also remove discrete components to unlock hardware-
based debugging (i.e., C16 and R1 on the M365 BLE board, C2 on
the Pro 1 BLE board). Once debugging was unlocked, we could run
a GDB server for runtime debugging and operate on the SoC RAM
with tools such as OPENOCD [28], PySWD [31], MiDu Flasher [18],
and nRFSec [7]. Runtime access to the subsystem boards was es-
sential to produce the presented results. For example, via GDB,
we discovered that the e-scooters store the cleartext password in
RAM, and via firmware flashing, we restored a BLE subsystem in
an unbricked state after tampering with it.

On the app side, we test Mi Home for Android and iOS on
three smartphones. We evaluate a rooted Pixel 2 running Mi Home
v7.11.704 and Android 11, a rooted Oneplus 3 with Android 9 and a
Realme GT with Android 12, both running Mi Home v7.6.704, and
an iPhone 7 running Mi Home 7.12.204 and iOS v15.7. Our attacks
do not require rooting a smartphone; we only need root privileges
when dynamically instrumenting Mi Home with Frida.

We run E-Spoofer, the novel toolkit we present in Section 6,
from two attacking devices. We deploy our proximity-based MP
and SD attacks from a laptop (i.e., Dell Inspiron 15 3000). We select
the desired attack from the command line, the victim e-scooter
from a list of nearby targets, and the script automatically performs

MP or SD, displaying visual feedback. We deploy our remote MP
and SD attacks from a smartphone (e.g., Pixel 2). Through the UI of
our malicious app, we scan for nearby targets, connect to a victim
e-scooter, and perform MP or SD.

7.2 Results
Table 2 shows our evaluation results. The first two columns in-
dicate the BLE firmware version and the protocol they run. The
third column represents the e-scooter model, which hosts the BLE
subsystem shown in the fourth column. We specify the SoC variant
of the BLE subsystem board in column five. The remaining columns
highlight whether a BLE firmware version is vulnerable to MP and
SD in their proximity-based and remote variant.

In our attack scenarios, we exploit eight unique BLE firmware,
including the latest firmware available on the M365, Essential, and
Mi 3. We test the four Xiaomi proprietary protocols we identified,
including the two variants of P4 Session (i.e., P4v1 and P4v2), and
flash them on five BLE subsystems from different e-scooter models.
We confirm that BLE subsystems using the nRF51822 QFAA SoC
are incompatible with newer e-scooters models (i.e., Essential, Mi
3), as the latter requires BLE subsystem boards with the nRF51822
QFAC SoC. Similarly, newer boards cannot be installed on the M365.
We demonstrate that all evaluated BLE subsystems, regardless of
their application-layer protocol, are vulnerable to the MP attacks.
This happens due to authorization and authentication issues in all
four Xiaomi protocols that we discuss and fix in Section 8. We also
demonstrate that all evaluated BLE subsystems running P4v1 or
P2 are vulnerable to SD to P3 or P1. We highlight that P1, P2, and
P3 have no security guarantees compared to the more secure P4.
This fact makes SD from P4v1 to P3 particularly threatening. We
confirm that P4v2 is immune from the SD attacks, as discussed in
Section 6.

Our E-Spoofer toolkit proved to be effective on all evaluated
Xiaomi e-scooters. Unfortunately, we could not evaluate the Xiaomi
Mi 4 e-scooter due to its release time (end of 2022). E-Spoofer can
be easily extended to support any e-scooter ecosystem that protects
their communications with a proprietary application-layer proto-
col on top of BLE, including the Xiaomi Mi 4 e-scooter. To attain
this goal, future researchers will have to reverse-engineer the pro-
prietary application-layer protocols run by that specific e-scooter
ecosystem. In the Appendix, we present our reverse-engineering
methodology, which is generalizable to any BLE e-scooter and uti-
lizes state-of-the-art tools and techniques. We also confirm that
our toolkit can change the unknown e-scooter password set by an
adversary, restoring the user capability of accessing and managing
the e-scooter from Mi Home, as a post-attack defence.

During our experiments, we even identified and disclosed a se-
vere UI authentication bug in Mi Home for Android and iOS. From
Mi Home v7.6.704 onwards, the user can lock or unlock a password-
protected e-scooter without entering the password. The cause is
a 1 second UI delay between the app wake-up and the password
prompt. We confirmed this bug using the same smartphones we
describe in Section 7.1. Since the password is only checked by Mi
Home, due to the improper e-scooter password enforcement
(V3) root cause we discuss in Section 5.3, the attacker can bypass
app-based password protection, unlock the e-scooter, and steal it.
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As described in the responsible disclosure paragraph, Xiaomi ac-
knowledged this bug, rewarding us with a bounty, but gave no
information about a fix.

8 COUNTERMEASURES
To address the four impactful attacks described in Section 5, we
design and evaluate two usable, backward-compliant, and low-cost
countermeasures. The first countermeasure stops the MP attacks
by providing a stronger pairing mechanism that is appropriately
authorized and authenticated. The second countermeasure fixes the
SD attacks by patching away the hidden downgrade command from
the vulnerable e-scooter BLE firmware. We now describe them in
detail and release them as part of E-Spoofer.

8.1 Authorized and Authenticated Pairing
The MP attacks presented in Section 5.1 are enabled by authoriza-
tion and authentication issues affecting P1, P2, P3, and P4 Pairing
phases. We develop a better pairing phase addressing both issues
in a backward-compatible way. This countermeasure addresses
the unauthenticated pairing (V1), unintentional pairing mode (V2),
and improper e-scooter password enforcement (V3) root causes from
Section 5.3. We now describe how we provide authorization and
authentication during pairing.

Authorized Pairing Mode. We require the Xiaomi Pairing phase
to implement a dedicated pairing activation command that also
notifies the user. In particular, to enter pairing mode, the user must
press the headlight button while holding down the left brake. Then,
the e-scooter’s tail light should blink until the completion of Pairing.
This fix prevents unexpected and unnotified pairing sessions such
as the ones exploited in the MP attacks by waiting until the victim
presses the headlight button. The fix is trivial to implement for
Xiaomi as it requires minimal modifications to the BLE firmware.
On our side is challenging to test as we do not have access to the
BLE firmware source code and build tools.

Password-Protected Authenticated Pairing. We require a password
protected pairing protocol to prevent an unauthenticated attacker
from pairing with a victim e-scooter. This fix prevents the MP
attacks even if the adversary manages to put the e-scooter in pairing
mode. This countermeasure is easy to implement by extending the
Mi Home password protection functionality. In particular, while
pairing an e-scooter with Mi Home for the first time (including after
a factory reset), the user should set a password via Mi Home. Then,
the password should be stored on Mi Home and the e-scooter and
enforced in case of re-pairing. Hence, an attacker cannotmaliciously
pair with the e-scooter as she cannot provide the password to the
e-scooter. We successfully evaluated this fix using our toolkit to
replicate P4 Pairing between an e-scooter and Mi Home.

8.2 Anti-Downgrade BLE Firmware Patching
The SD attacks presented in Section 5.2 are enabled by a vendor-
specific command, which downgrades Xiaomi Session P4v1 to P3,
and P2 to P1. We focus on patching P4v1 because e-scooter running
the insecure P2 should update their BLE firmware to the latest
version. Regardless, the downgrade command is present even in
recent BLE firmware versions, including the latest M365 and Pro 1

BLE firmware. We release a script capable of finding and removing
the downgrade command from a vulnerable BLE firmware to fix this
issue. Our script addresses the downgradable and insecure Session
(V5) root cause presented in Section 5.3.

The script looks for a specific conditional statement and patches
it to allow only P4 Session. Hence, the patch introduces no over-
heads (e.g., memory, computation). Our scripts opens the binary
firmware, finds the function responsible for BLE packet analysis,
and alters the conditional statement that accepts either P3 and P4
packets, causing it to only accept P4 packets. More specifically, it re-
places the cmp instruction 5a2f with 552f. As a result, the attacker
can neither downgrade P4v1 to P3, nor send any other insecure P3
command.

Developing the script required a one-time manual overhead to
understand how to remove the downgrade command. Then we
automated our binary-patching process. We reuse the BotoX M365
patcher tool [6] to encrypt the patched firmware with the Tiny En-
cryption Algorithm (TEA). We reuse the third-party M365DownG
app [9] to flash the zipped and newly encrypted BLE firmware.

We successfully evaluated our fix on the M365 and Pro 1 e-
scooters. We flashed a patched BLE122 firmware on the e-scooters
and deployed the proximity-based and remote SD attacks. Both
attacks failed, as downgrading the protocol from P4v1 to P3 was
impossible with our fix.

9 RELATEDWORK
E-Scooters Security and Privacy Issues. Academic research on

e-scooter security and privacy is scarce, especially on personal
e-scooters. Zimperium, a mobile security company, exploits the
locking system to stop a running e-scooter [52]. The hacker Lanrat
evaluated M365 authentication, discovering that it is not enforced
by the e-scooter [16]. Both attacks were publicly disclosed in 2019
and only targeted the Xiaomi M365 model. In our work, we target
all Xiaomi e-scooter models from 2016 to 2021.

Security researchers focused on e-scooter rental ecosystems in-
stead of private e-scooters. In [1], the authors identify some vul-
nerabilities in the APIs exposed by the Bird e-scooter sharing plat-
form, which utilizes M356 e-scooters [5]. Public e-scooters from
the Lime sharing company are weak to a man-in-the-middle attack
that allows for arbitrarily swapping audio files [26]. N. Vinayaga-
Sureshkanth et al. [46] provide an extended evaluation of Android
e-scooter rental applications. In particular, they investigate the user-
related data collected and shared with third parties, which could
monitor the users’ schedules and visited locations. In our work, we
perform a security assessment. Therefore, we consider out-of-scope
any privacy study on user data.

E-Scooters Hacking Communities. ScooterHacking [37] is the
largest e-scooter hacking community with around 20.000 mem-
bers. ScooterHacking releases hacking tools [34] and offers a third-
party companion app [36] for Xiaomi e-scooters. Expert users can
download custom DRV and BLE firmware to alter the e-scooter
performances (e.g., maximum speed). Alternatively, users can build
their DRV firmware with the ScooterHacking Custom Firmware
Toolkit [33] and the BotoX Xiaomi M365 Firmware Patcher [6].
These tools offer limited customizability as they can only binary
patch hardcoded and unsigned portions of the firmware.
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Table 2: Evaluation results. The first and second columns represent the BLE firmware version and the Xiaomi protocol version.
The third column states the e-scooter model, which hosts the BLE subsystem board, specified in the fourth column, indicating if
the BLE board is original from Xiaomi or a clone. The fifth column specifies the System-on-Chip present on the BLE subsystem.
The last four columns highlight if the evaluated combination is vulnerable to our proximity-based and remote Malicious
Pairing (MP) and Session Downgrade (SD) attacks. A hyphen (-) means the attack does not apply to that target.

Proximity Remote

Firmware Protocol E-Scooter BLE Sub. Board SoC MP SD MP SD

BLE072 P1 M365 M365 (Original) nRF51822 QFAA ✓ - ✓ -
BLE081 P2 M365 M365 (Original) nRF51822 QFAA ✓ ✓ ✓ ✓

BLE090 P3 M365 Pro 1 (Clone) nRF51822 QFAA ✓ ✗ ✓ ✗

BLE122 P4v1 M365 M365 (Original) nRF51822 QFAA ✓ ✓ ✓ ✓

BLE129 P4v1 M365 Pro 2 (Clone) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE152 P4v1 Essential Essential (Original) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE153 P4v1 Mi 3 Mi 3 (Original) nRF51822 QFAC ✓ ✓ ✓ ✓

BLE157 P4v2 Mi 3 Mi 3 (Original) nRF51822 QFAC ✓ ✗ ✓ ✗

Third-party researchers provided non-peer-reviewed blog posts
about the BLE traffic exchanged by some Xiaomi e-scooters [8, 12,
24, 35]. These resources helped in the initial stage of our work but
failed short on the technical details and e-scooter coverage. For
example, some report confuses encryption with obfuscation, giving
a false sense of security. Or none of the reports cover the session
downgrade command, and the flag responsible for it. This work
instead provides the first comprehensive and sound description and
security evaluation of these protocols.

Security Analysis of Xiaomi Ecosystems. Xiaomi manages mul-
tiple ecosystems, including e-scooters, smartphones, smart home
devices, and fitness trackers. In [11], the authors root a Xiaomi vac-
uum cleaning robot, inspect its internals, assess data privacy, and
flash the robot with custom firmware. Another previous work [44]
also finds several security issues with Xiaomi vacuum cleaners.

Several researchers [10, 15, 19, 49] highlight the limitations of the
application-layer protocols run by Xiaomi Mi Band fitness trackers
over BLE. These devices were found vulnerable to eavesdropping,
man-in-the-middle, and impersonation. Using a fuzzing approach,
X. Du et al. [13] find 95 vulnerabilities in the R1D Xiaomi router.
Other Xiaomi IoT devices evaluated in the academic literature are
Xiaomi smart speakers [21] and Xiaomi security cameras [43, 45].

BLE Misuse in Android. Researchers identified multiple flaws
in Android BLE APIs. For example, Android saves Bluetooth keys
in data structures shared among different apps [25, 41], allowing
malicious apps to communicate illegitimately with paired devices.
In [42], V. Toubiana et al. present a vulnerability, available from
Android 6 to Android 11, that allows an Android app to perform
a BLE scan without requiring location permission. Android appli-
cations may also misuse the BLE link-layer, allowing attackers to
bypass encryption and authentication procedures [51]. In this paper,
we focus on application-layer protocols instead and only utilize
Android BLE APIs in our remote threat model.

Attacks on BLE Pairing. Several attacks over the years have tar-
geted BLE link-layer pairing. In 2013, Crackle [32] broke the Just
Works and Passkey modes of BLE Legacy pairing by brute-forcing
their temporary key. In 2019, the KNOB [2] attack minimized the
entropy of the encryption key in BLE Legacy pairing and Secure
Connections, allowing for brute-force attacks on that key. In 2021,
Method Confusion [48] performed a man-in-the-middle attack on
BLE Secure Connections by separately pairing two devices in two
different pairing modes. Xiaomi e-scooters do not utilize BLE link-
layer pairing. Instead, we reverse-engineer and attack the propri-
etary Xiaomi Pairing phase (and Session) at the application-layer.

10 CONCLUSION
We present the first security evaluation of the proprietary security
protocols employed by Xiaomi to protect its e-scooter ecosystem
since 2016. We uncover and reverse-engineer four protocols using
ad-hoc Pairing and Session mechanisms at the application-layer
on top of an insecure BLE link-layer. We describe their (lack of)
security properties.

We show four novel attacks to exploit protocols at the specifica-
tion level requiring realistic and low-cost attacker models (i.e., a
proximity-based adversary with a laptop or remote attacker who
installed a malicious app on the victim’s smartphone). The attacks
enable stealing a software-locked and password-protected e-scooter
from its owner or preventing the owner from using the e-scooter
via Mi Home. The threats pivot on MP and SD attack strategies and
are enabled by six severe root causes that we also uncover.

We open-source E-Spoofer, a toolkit implementing our attacks
and offering RE utilities for the Xiaomi e-scooter ecosystem (e.g.,
protocol dissectors, Ghidra scripts, and Frida hooks). We success-
fully evaluate our attacks in eight relevant scenarios covering five
e-scooter BLE subsystems and eight BLE firmware. We empirically
demonstrate that our attacks have a critical impact on the Xiaomi
ecosystem (e.g., all reversed protocols are affected by at least two
of our four attacks), amounting to millions of exploitable devices.
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We propose two practical, low-cost, and backward-compliant
countermeasures to stop our attacks and release them in our toolkit.
We propose Authorized Pairing Mode and Password-Protected Au-
thenticated Pairing to fix the MP attacks and a script to stop the
SD attacks by automatically patch the vulnerable e-scooter BLE
firmware.
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APPENDIX

RE Methodology
We present the RE methodology that we employed to reconstruct
the protocols described In Section 4. Thismethodology can be reused
by other researchers to tackle similar RE efforts (e.g., reversing a
proprietary and unknown application-layer protocol implemented
on top of an insecure BLE link-layer). Specifically, we explain how
we analyzed the Xiaomi and BLE traffic, the Mi Home app, and the
scooter’s BLE firmware.

Xiaomi and BLE Traffic. The BLE e-scooter exposes a GATT server
with unknown characteristics used to exchange the proprietary
P1, P2, P3, P4 payloads. We enumerate these characteristics with
a GATT client program (e.g., gatttool). The e-scooter utilizes a
Xiaomi custom GATT service (0xFE95), and its UPNP (0x0010)
and AVDTP (0x0019) characteristics for Pairing and Session, and
the Nordic UART service for the encrypted communication during
Session. Then, we run multiple Pairing and Session phases using
different combinations of e-scooter models, BLE subsystems, and
firmware. We capture the generated BLE traffic (HCI-layer, includ-
ing GATT) in dedicated pcap files. The pcap files are produced
by our Android smartphone running Mi Home with Developer
Options, and HCI Snooplog turned on. We open the pcaps in Wire-
shark with custom display filters to focus only on the proprietary
application-layer payloads. We use Pyshark and Scapy to reverse
the Xiaomi payloads and develop custom dissection classes capable
of decoding and re-encoding the packets. For example, we devel-
oped the PairChal and SessRand classes to dissect P4 Pairing and
Session security mechanisms. Table tab:appendix-opcodes lists BLe
packets from P3 and P4 Pairing and Session phases.

Mi Home for Android. For Mi Home, we focused on its Android
version because it is much easier to inspect and reverse than its iOS
counterpart. We locate the Mi Home APK with adbshellpmpathc
om.xiaomi.smarthome. We pulled It with adb pull and extracted
its content, including the decompiled Smali and Java code, with
apktool and jadx. We perform static analysis of the decompiled
Java code, looking for API calls to cryptographic primitives and
Android’s BLE framework. In parallel, we use Frida and Objection
for dynamic binary instrumentation of Mi Home. Frida requires a
rooted phone and a Frida server application running on the phone.
With our dynamic tests, we can list all the Classes involved with Mi
Home, isolate the ones related to P1, P2, P3, and P3, hook them to
observe their runtime execution, and reimplement some of their be-
haviors. For example, we found that Mi Home, during Pairing, calls
_m_j.fyp.O000000o to perform ECDH, and, during Session, calls
_m_j.fys.O000000o to perform the HMAC-based authentication
and _m_j.fyl.O000000o to encrypt communications.

E-Scooter BLE Firmware. Reversing the e-scooter BLE firmware is
challenging, as is a stripped binary with no debugging symbols.
We obtain multiple firmware samples from different sources, i.e.,
ScooterHacking repositories, the Mi Home app storage, the Xiaomi
backend, and by reading the BLE SoC memory at runtime via the
ST-Link debugger. We statically analyze the firmware using Ghidra
configured for ARM Cortex M0 little-endian. We also configure the
Ghidra memory layout using the nRF51822 Product Specification
3.4 [38] from Nordic Semiconductors. In particular, we consult the
instruction table to retrieve the memory addresses for instantiating
the peripherals such as the FICR_UICR, POWER, CLOCK, and GPIO.
We also use the ST-Link debugger to inspect the firmware at runtime
using gdb, dumping its memory and flashing it with different BLE
firmware versions.
Table 3: Mapping between the vulnerabilities (rows) and the
presented attacks (columns). We put a ✓ if an attack exploits
a vulnerabilit. Otherwise, we put an ✗. We split our two at-
tacks, Malicious Pairing (MP) and Session Downgrade (SD),
depending on their threat model, either proximity-based or
remote.

Proxim. Remote

Vulnerability MP SD MP SD

V1: Unauthenticated Pairing ✓ ✗ ✓ ✗

V2: Unintentional Pairing mode ✓ ✗ ✓ ✗

V3: Improper e-scooter passw. enfor. ✓ ✓ ✓ ✓

V4: Unprotected sensitive memory ✓ ✓ ✓ ✓

V5: Downgradable and insec. Session ✗ ✓ ✗ ✓

V6: No BLE sec. despite device support ✗ ✓ ✗ ✓
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Table 4: BLE packets for the Xiaomi protocol P3 and P4. The
first and second columns indicate the name we assigned to
the packet and the protocol which uses them. The third and
fourth columns specify who sends the packet and its content.
The value "00X0" stands for an increasing counter (i.e., 0010,
0020, 0030, 0040) placed in a fragmented packet.

Packet P From Content

SessReq P3 App 5AA5 0E 3D21 5D00 Serial

SessReqOk P3 Esc 5AA5 0E 213D 5D00 Serial

Comms P3 App, Esc 5AA5 Len From To Cmd Pay

PairReq P4 App A2000000

PairReqOk P4 Esc 000000000200

PairChal1 P4 Esc 0010 01000000 Chal2Part

PairChal2 P4 Esc 0020 Chal2Part

PairECStart P4 App, Esc 000000030400

PairPubKey P4 App, Esc 00X0 PubKey4Part

PairECEnd P4 App 000000000200

PairSol P4 App 00X0 PairSol2Part

PairSolAck P4 Esc 00000100

PairOk P4 App 13000000

PairOkAck P4 Esc 11000000

SessReq1 P4 App 24000000

SessReq2 P4 App 0000000B0100

SessRand P4 App, Esc 0100 AuthChal

SessAskRand P4 Esc 0000000C0200

SessSol P4 App, Esc 00X0 AuthSol2Part

SessOk P4 Esc 21000000

Comms P4 App, Esc 55AB Len Count Encr Cksm
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