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ABSTRACT

Generalized Approximate Message Passing (GAMP) allows for
Bayesian inference in linear models with non-identically indepen-
dently distributed (n.i.i.d.) priors and n.i.i.d. measurements of the
linear mixture outputs. It represents an efficient technique for ap-
proximate inference, which becomes accurate when both rows and
columns of the measurement matrix can be treated as sets of in-
dependent vectors and both dimensions become large. It has been
shown that the fixed points of GAMP correspond to the extrema of
a large system limit of the Bethe Free Energy (LSL-BFE), which
represents a meaningful approximation optimization criterion regard-
less of whether the measurement matrix exhibits the independence
properties. However, the convergence of (G)AMP can be problem-
atic for certain measurement matrices. In this paper, we revisit the
GAMP algorithm by applying a simplified version of the Alternating
Direction Method of Multipliers (ADMM) to minimizing the LSL-
BFE. We show convergence of the mean and variance subsystems in
AMBGAMP and in the Gaussian case, convergence of mean and LSL
variance to the Minimum Mean Squared Error (MMSE) quantities.

1. INTRODUCTION
In the Gaussian noise case, a sparse signal vector x can be recovered
using the signal model: y = Ax+v, where y is the observed data, A
is the known measurement or sensing matrix of dimension M × N ,
typically with M < N . In the sparse model case, x contains only
K non-zero entries, with K < M < N . Sparse Bayesian Learn-
ing (SBL) is a Bayesian inference algorithm proposed by [1] and [2].
SBL is based on a hierarchical prior on the sparse coefficients x, in-
ducing sparsity by choosing priors for the hyperparameters that make
a portion of the estimate x̂ zero. The Linear Minimum Mean Squared
Error (LMMSE) estimation step in SBL at each iteration involves ma-
trix inversion, which makes it computationally complex [3].
The Approximate Message Passing (AMP) algorithm has been intro-
duced to reduce the complexity of Belief Propagation, from 2MN to
M+N messages. Generalized AMP (GAMP) allows non-Gaussian
priors and measurement processes. But convergence of (G)AMP can
be problematic for some matrices A. Existing converging AMP ver-
sions introduced so far: 1) adding the Alternating Direction Method
of Multipliers (ADMM) [4] leading to a higher complexity ADMM-
GAMP, 2) exploiting part of the singular value decomposition (SVD)
of the measurement matrix in Vector AMP (VAMP) [5], [6] or esp.
Unitarily Transformed UT-AMP [7] (but which do not allow to han-
dle n.i.i.d. priors conveniently), 3) introducing damping [8], but with
typically difficult to determine damping requirements.
1.1. Contributions of this paper
• We propose a convergent version of GAMP, AMBGAMP, which ap-
plies alternating minimization to an augmented Lagrangian of a large
system limit of the Bethe free Energy (BFE). AMBGAMP can be
interpreted as applying a simplified ADMM to the BFE, with a con-
strained Lagrange multiplier parameterization for the mean constraint,
and a quadratic optimization subproblem being solved by a gradient
update with line search. The ADMM is complemented with a fixed

point iteration for the variance constraint.
• We show that AMBGAMP converges to the LMMSE estimate in
the Gaussian case.
• We provide a convergence analysis of the variance subsystem.
• We show that in the Gaussian case the variances converge to the
optimal MSE values in the large system limit.
• We provide a convergence analysis of the mean subsystem.

2. SYSTEM MODEL

The data model considered in GAMP is essentially a linear mixing
model represented by

z = Ax , px(x) , py|z(y|z) (1)

with (possibly non) identically independently distributed (n.i.i.d.)
prior px(x) =

∏N
i=1 pxi(xi) and n.i.i.d. measurements py|z(y|z) =∏M

k=1 pyk|zk (yk|zk). In the case of Gaussian measurement noise, we
have y = z+v with independent zero-mean n.i.i.d. Gaussian noise v
with variance vector σ2

v = [σ2
v1, · · · , σ2

vM ]T . We shall also consider
the case of a zero mean Gaussian prior for x with variances denoted
as σ2

xi. We represent the vector σ2
x = [σ2

x1, · · ·σ2
xN ]T . In Bayesian

estimation, we are interested in the posterior, which is given by

px,z|y(x, z|y)= e
−

N∑
i=1

fxi
(xi)−

M∑
k=1

fzk
(zk)

Z(y)
1{z=Ax},

(2)

with the negative log-likelihoods defined as fxi(xi) =−ln pxi(xi),
fzk (zk) = − ln pyk|zk (yk|zk), where the equality in case of fzk (zk)
is up to constants that may depend on y (and which are absorbed in the
normalization constant Z(y)). The problem in Bayesian estimation is
the computation of this constant Z(y) and of the posterior means and
variances. Belief propagation is a message passing technique that al-
lows to compute the posterior marginals. However, due to loops in
the factor graph, loopy belief propagation may have convergence is-
sues and is furthermore still relatively complex. GAMP is an approx-
imate belief propagation technique which is motivated by asymptotic
considerations in which the rows and columns of the measurement
matrix A are considered as random and independent, in which case
GAMP can actually produce the correct posterior marginals. In any
case, GAMP computes a separable approximate posterior of the form

qx,z(x, z) = qx(x) qz(z) =

N∏
i=1

qxi(xi)

M∏
k=1

qzk (zk), (3)

in which the dependence on y has been omitted. The GAMP algo-
rithm [9], [8] appears in the table for Algorithm 1. We only consider
here Sum-Product GAMP (for MMSE estimation, as opposed to Max-
Sum GAMP for MAP estimation).

3. PROPOSED AMBGAMP

The abbreviation AMB stands for ACM-LSL-BFE, which stands for
Alternating Constrained Minimization of the LSL of the BFE. AM-
BGAMP employs most of the same updates as GAMP, but GAMP
does not apply a strict alternating minimization (block coordinate de-
scent) principle, particularly in the presence of constraints. Previous



Algorithm 1 GAMP
Require: y, A, S = A.A, fx(x), fz(z)
1: Initialize: t = 0, x̂t, τ t

x, st−1 = 0
2: repeat
3: [Output node update]
4: τ t

p = S τ t
x

5: pt = A x̂t − st−1.τ t
p

6: ẑt = E(z|pt, τ t
p)

7: τ t
z = var(z|pt, τ t

p)

8: st = (ẑt − pt)./τ t
p

9: τ t
s = (1 − τ t

z ./τ
t
p)./τ

t
p

10: [Input node update]
11: τ t

r = 1./(ST τ t
s)

12: rt = x̂t + τ t
r .A

T st

13: x̂t+1 = E(x|rt, τ t
r)

14: τ t+1
x = var(x|rt, τ t

r)

15: until Convergence

work [10] has demonstrated that any fixed point of the GAMP algo-
rithm is a critical point of the following constrained minimization of
a LSL of the BFE (see also [8] and references therein):

min
qx,qz,τp

JLSL−BFE(qx, qz, τp)

s.t. E(z|qz) = A E(x|qx)
τp = S var(x|qx),

(4)

where the LSL BFE is given by
JLBFE(qx, qz, τp)=D(qx||e−fx)+D(qz||e−fz)

+HG(qz, τp), with HG(qz, τp) =
1
2

M∑
k=1

[
var(zk|qzk )

τpk
+ln(2πτpk )

]
(5)

and where D(q||p)=Eq(ln(
q
p
)) is the KLD and HG(qz, τp) is a sum

of a KLD and an entropy of Gaussians with identical means but dif-
ferent variances. The LSL BFE optimization problem (5) can be re-
formulated with the following augmented Lagrangian

min
qx,qz,τp,u

max
s,τs

L(qx, qz, τp,u, s, τs) with

L = D(qx||e−fx)+D(qz||e−fz)+HG(qz, τp)

+sT (E(z|qz)−A E(x|qx))− 1
2
τT
s (τp − S var(x|qx))

+ 1
2
∥E(x|qx)− u∥2τr

+ 1
2
∥E(z|qz)−Au∥2τp

,

(6)

where s, τs are Lagrange multipliers, and τr = 1./(ST τs) is just a
short-hand notation for a quantity that depends on τs. We also use
the notations: ∥u∥2τ =

∑
i u

2
i /τi, element-wise multiplication as in

s.τ and element-wise division as in 1./τ , and 1 is a vector of ones.
In [11], [12], a careful updating schedule was considered with partial
optimization steps on subsets of primal and dual variables. However,
that approach is not guaranteed to converge in general. In [13] we
continued to consider an alternating optimization approach in which
the schedule is less critical and some of the optimizations are re-
duced to gradient updates. The resulting algorithm can be considered
an extended and generalized version of the ADMM algorithm (ex-
tended: there are more than two primal variable groups, generalized:
the quadratic augmentation term does not exactly correspond to the
linear (mean) constraint). However, there is an alternative point of
view, based on [4], where a double mean constraint was introduced
leading to the ADMM-GAMP augmented Lagrangian

min
qx,qz,τp,u

max
q,s,τs

LA(qx, qz, τp,u,q, s, τs) with

LA =D(qx||e−fx)− 1
2
τT
s (τp−S var(x|qx))+D(qz||e−fz)

+HG(qz, τp) +qT (E(x|qx)− u)) +sT (E(z|qz)−Au))

+ 1
2
∥E(x|qx)− u∥2τr

+ 1
2
∥E(z|qz)−Au∥2τp

,

(7)

For ADMM, the first two terms are the cost function for qx, the next
two terms constitute the cost function for qz. The two groups of pri-
mal variables are {qx, qz} and u (and the optimization of LA is de-
coupled between qx, qz). The two linear constraints together consti-
tute a single extended set of linear constraints with extended Lagrange

multiplier [qT sT ]T . The appropriately weighted quadratic augmen-
tation terms correspond exactly to the set of linear constraints. The
optimization in [4] is organized with the usual ADMM algorithm al-
ternating between minimizations over the two groups of primal vari-
ables, followed by the ADMM specific Lagrange multiplier update.
The optimization over the remaining variable τp, τs is then performed
in an outer loop. We show here (by the variance subsystem conver-
gence analysis) that this organization in two levels is not necessary.
Furthermore, there is a redundancy between the linear and quadratic
constraint terms in (7). Indeed, if we impose the constrained Lagrange
multiplier structure qT = −sTA, then we obtain the proposed L in
(6). This is constrained enough since the Lagrange multiplier s will
lead to E(z|qz) = A E(x|qx), in which case the quadratic augmen-
tation terms are minimized by u = E(x|qx) and disappear. However,
constraining qT = −sTA leads to a deviation from the strict ADMM
structure and requires separate convergence analysis, which we pro-
vide here.
At iteration t we propose the following updating sequence

{ut}= argmin
u

L(qt−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s ) (8)

{qtx}= argmin
qx

L(qx, q
t−1
z , τ t−1

p ,ut, st−1, τ t−1
s ) (9)

{qtz}= argmin
qz

L(qtx, qz, τ
t
p,u

t, st−1, τ t−1
s ) (10)

{st}= argmax
s

L(qtx, q
t
z, τ

t
p,u

t, s, τ t−1
s ) (11)

{τ t
p, τ

t
s}=argmin

τp

max
τs

L(qtx, q
t
z, τp,u

t, st, τs) (12)

The result appears in Algorithm 2.
3.1. Update of u
To update u, we use a gradient descent method with line search to
optimize the step-size. From (6), (8), we get

L(qt−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s )

= 1
2
∥x̂t−1 − u∥2

τt−1
r

+ 1
2
∥ẑt−1 −Au∥2

τt−1
p

+ const.
(13)

where const. denotes constants w.r.t. u. The minimizing update can
be obtained as

ut = ut−1 − ηt gt (14)
with gradient gt = gt(ut−1) where

gt(u) = ∇uL(q
t−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s )

= −AT ((ẑt−1 −Au)./τ t−1
p )− (x̂t−1 − u)./τ t−1

r

= gt(0) +Ht u, Ht = D(1./τ t−1
r ) +ATD(1./τ t−1

p )A

(15)

where D(τ ) denotes a diagonal matrix with diagonal elements τ . The
step-size ηt gets optimized for maximum descent :

∂L(qt−1
x , qt−1

z , τ t−1
p ,ut, st−1, τ t−1

s )

∂ηt
= 0

⇒ ηt = ∥gt∥2/gt THtgt .

(16)

3.2. Update of qx
For the update of qx, consider the relevant terms in the augmented
Lagrangian (and remember that 1./τ t−1

r = ST τ t−1
s )

L(qx, q
t−1
z , τ t−1

p ,ut, st−1, τ t−1
s )

= D(qx||e−fx)− st−1TA E(x|qx)
+ 1

2
τ t−1T
s S var(x|qx) + 1

2
∥E(x|qx)− ut∥2

τt−1
r

+ const.

= D(qx||e−fx) + 1
2
(1./τ t−1

r )T E(x.x|qx)
−st−1TA E(x|qx)− (ut./τ t−1

r ))T E(x|qx) + const.

= D(qx||e−fx) + 1
2
(1./τ t−1

r )T E(x.x|qx)
−(ut + τ t−1

r .AT st−1)T (E(x|qx)./τ t−1
r ) + const.

= D(qx||e−fx) + 1
2
E(∥x− rt∥2τt

r
|qx) + const.

(17)



where const. denotes constants w.r.t. x, and rt = ut+τ t−1
r .AT st−1 .

The Lagrangian in (17) is separable. We get per component

min
qxi

D(qxi ||g
t
xi
/Zt

xi
) ⇒ qtxi

= gtxi
/Zt

xi
, Zt

xi
=

∫
gtxi

(xi) dxi ,

− ln gtxi
(xi) = fxi(xi) +

1
2τt

ri

[(xk − rti)
2 − rt 2i ] .

(18)The partition function Zt
xi

acts as cumulant generating function:

τ t
ri

∂ lnZt
xi

∂rti
= E(xi|qtxi

) = E(xi|rti , τ t
ri) = x̂t

i

(τ t
ri)

2 ∂2 lnZt
xi

∂rt 2i
= var(xi|rti , τ t

ri) = τ t
xi

.

(19)

In the Gaussian prior case, we get a Gaussian posterior qtx with

1./τ t
x = 1./τ t−1

r +1./σ2
x, x̂

t=τ t
x.(r

t./τ t−1
r ) . (20)

3.3. Update of {qz}
The relevant terms in the augmented Lagrangian are

L(qtx, qz, τ
t−1
p ,ut, st−1, τ t−1

s )

= D(qz||e−fz) + 1
2

var(z|qz)./τ t−1
p

+st−1 T E(z|qz) + 1
2
∥E(z|qz)−Aut∥2

τt−1
p

+ const.

= D(qz||e−fz) + 1
2
E(zT z|qz)./τ t−1

p

−(E(z|qz))T ((Aut)./τ t−1
p − st−1) + const.

= D(qz||e−fz) + 1
2
E(∥z− pt∥2

τt−1
p

|qz) + const.

(21)

where const. denotes constants w.r.t. z and pt = Aut−st−1.τ t−1
p .

The Lagrangian in (21) is again separable. We get per component

min
qzk

D(qzk ||g
t
zk/Z

t
zk ) ⇒ qtzk = gtzk/Z

t
zk

Zt
zk =

∫
gtzk (zk) dzk , − ln gtzk (zk) =

fzk (zk) +
1

2τt−1
pk

[(zk − ptk)
2 − (ptk)

2].

(22)

The partition function Zt
zk acts again as cumulant generating func-

tion:

−
∂ lnZt

zk

∂st−1
k

= E(zk|qtzk ) = E(zk|ptk, τ t−1
pk ) = ẑtk

∂2 lnZt
zk

∂st−1 2
k

= var(zk|ptk, τ t−1
pk ) = τ t

zk

−
∂3 lnZt

zk

∂st−1 3
k

= E((zk − E zk)
3|qtzk ).

(23)

The case of Gaussian noise leads again to a Gaussian posterior qz with

1./τ t
z = 1./τ t−1

p +1./σ2
v, ẑ

t=τ t
z .(y./σ

2
v+pt./τ t−1

p ) . (24)

3.4. Update of {s} (ADMM style)
Although the quadratic augmentation terms in the Lagrangian do not
correspond exactly to a weighted quadratic version of the linear mean
constraint, due to the introduction of the auxiliary variable u which
streamlines the derivation of the updates of qx and qz, nevertheless an
ADMM style update of the mean constraint Lagrange multiplier s is
possible. Indeed, the terms in (21) that contains s or ẑ are

ẑT ((
1

2
ẑ− pt)./τ t−1

p ) = ẑT (st−1 + (
1

2
ẑ−Aut)./τ t−1

p ) (25)

Taking the gradient w.r.t. ẑ (as part of the optimization over qz) leads
to the RHS of

st = st−1 + (ẑt −Aut)./τ t−1
p . (26)

Hence, if we use this update for s, then (25) reduces to ẑT st, as if
the quadratic augmentation terms have disappeared! This is the main
characteristic of the Lagrange multiplier update in ADMM, which
corresponds to a gradient ascent with a particular choice of (diago-
nal) step-size.

Algorithm 2 AMBGAMP
Require: y, A, S = A.A, fx(x), fz(z)
1: Initialize: t = 0, u0 = 0, x̂0 = 0, ẑ0 = 0, s0 = 0, τ0

r = 1, τ0
p = 1

2: repeat (t=1,2,. . . )
3: ut=ut−1 − ηt gt, with gt, ηt from (15), (16)
4: [Input node update]
5: rt = ut + τ t−1

r .(AT st−1)

6: x̂t = E(x|rt, τ t−1
r ), Gaussian px : 1./τ t

x=1./τ t−1
r + 1./σ2

x

7: τ t
x=var(x|rt, τ t−1

r ), Gaussian px : x̂t = τ t
x.(r

t./τ t−1
r )

8: τ t
p = S τ t

x

9: [Output node update]
10: pt = Aut − st−1.τ t

p

11: ẑt = E(z|pt, τ t
p), Gaussian py|z : 1./τ t

z = 1./τ t
p + 1./σ2

v

12: τ t
z =var(z|pt, τ t

p), Gaussian py|z : ẑt=τ t
z .(y./σ

2
v+pt./τ t

p)

13: st = st−1 + (ẑt − Aut)./τ t
p

14: τ t
s = (1 − τ t

z ./τ
t
p)./τ

t
p , Gaussian py|z : τ t

s = 1./(σ2
v + τ t

p)

15: τ t
r = 1./(ST τ t

s)

16: until Convergence

3.5. Update of {τp, τs}
In [11], [12], the carefully chosen updating schedule made the
quadratic augmentation terms inactive when updating {τp, τs}. Here
these terms only become inactive at convergence. Nevertheless, these
terms only play an active role for the means and not for the variances.
Hence, we shall ignore them here. Thus, the terms of interest in (6)
for (12) are

L(qtx, q
t
z, τp,u

t, st, τs)

= HG(q
t
z, τp)− 1

2
τT
s (τp − S τ t

x) + const. = const.+

1
2

M∑
k=1

[
τ t
zk

τpk
+ ln(2π τpk )

]
− 1

2

M∑
k=1

τsk (τpk − Sk,: τ
t
x)

(27)

where const. denotes constants w.r.t. {τp, τs}. Deriving w.r.t.
{τp, τs} yields the feasibility conditions

∂L

∂τsk
= 0 ⇒ τ t

pk = Sk,: τ
t
x (28)

∂L

∂τpk
= 0 ⇒ τ t

sk =
1

τ t
pk

(1−
τ t
zk

τ t
pk

). (29)

which we run as a fixed-point sub-algorithm. The position of these
updates in the updating schedule is less important. Nevertheless we
shall update {τp, τs} as soon as the quantities on which they depend
have been updated.

4. CONVERGENCE TO LMMSE
In the case of Gaussian px, py|z, the cost function is quadratic in x
etc., and we check convergence to the LMMSE estimate. At conver-
gence we have

st = st−1 ⇒ ẑ = Au
⇒ u = x̂ from g(u) = 0 = g(0) +Hu
ẑ =τz.(y./σ

2
v+(Au)./τp − s)

⇒ s = y./σ2
v+(A x̂)./τp−(A x̂)./τz = (y−A x̂)./σ2

v

x̂ = (τx./τr).(u+ τr.(A
T s))

⇒ (1− τx./τr)x̂ = τx.x̂./σ
2
x = τx.(A

T s)) or
x̂ =

[
ATD−1(σ2

v)A+D−1(σ2
x)
]−1

ATD−1(σ2
v)y.

(30)

Note that at convergence x̂ does not depend on the various variance
estimates that the algorithm produces. One can also get the following
convergence values

s = R−1
yyy, x̂ = D(σ2

x)A
T s, r = D(σ2

x + τr)A
T s (31)

where r corresponds to the componentwise conditionally unbiased
MMSE estimate of x [14], [15] if τr converges to its correct value.



Below we shall analyze the convergence of the proposed AMBGAMP
algorithm. Note that the updates of qx, qz in (18), (22) imply that
these approximate posteriors inherit the higher order cumulants of
their respective priors (cf. Edgeworth expansions around a Gaussian).
Only the means and variances are affected by the iterative algorithmn.
In the Gaussian case, the mean subsystem depends on the variances,
but the variance subsystem runs independently. Hence their conver-
gence can be analyzed separately. In the non-Gaussian case, their
coupling may need to be reconsidered though.

5. CONVERGENCE OF THE VARIANCE SUBSYSTEM
In the Gaussian priors case, the updates of the variances can be
checked to result in the following variance subsystem

1./τ t
x = 1./σ2

x + ST τ t−1
s ,

1./τ t
s = σ2

v + S τ t
x.

(32)

To analyze convergence, we investigate the contractiveness of the
mappings via their Jacobians

∂τ t
x

∂τ t−1T
s

= −Dt, 2
x ST ,

∂τ t
s

∂τ t T
x

= −Dt, 2
s S (33)

where we introduced the notation Dt
x = D(τ t

x) etc., Dt, 2
x = (Dt

x)
2

etc. By the chain rule, we get
∂τt

x

∂τt−1T
x

=
∂τt

x

∂τt−1T
s

∂τt−1
s

∂τt−1T
x

∂τt
x

∂τ1T
x

= Dt, 2
x STDt−1, 2

s SDt−1, 2
x STDt−2, 2

s S . . . .
(34)

Note that the cascade of Jacobians involves a cascade of the following
matrices

Bt = Bt
x B

t−1
s = (Dt

x S
TDt−1

s ) (Dt−1
s SDt−1

x ) (35)
We can investigate the contractivity of Bt using any norm since all
valid norms are commensurate. A judicious choice here is the infinity
norm

∥Bt∥∞ = max
x̸=0

∥Bt x∥∞
∥x∥∞

= max
∥x∥∞=1

∥Btx∥∞ = ∥Bt1∥∞ (36)

where the last identity follows from the non-negativity of the elements
of B (and Bx or Bs) which implies that Btx ⪯ Bt1 for any x with
∥x∥∞ = 1 (where the relation x ⪯ y indicates that x is element-wise
not larger than y). Now we have

Bt1 = Bt
x B

t−1
s 1 ⪯ ∥Bt−1

s ∥∞ Bt
x 1 ⪯ ∥Bt

x∥∞ ∥Bt−1
s ∥∞ 1

⇒ ∥Bt∥∞ ≤ ∥Bt
x∥∞ ∥Bt−1

s ∥∞ < 1
(37)

where we assume that at least one of ∥Bt
x∥∞ ≤ 1, ∥Bt−1

s ∥∞ ≤ 1 is
strictly smaller than one. So, (37) implies converges of the variance
subsystem. The statements in (37) hold in the general non-Gaussian
case. In the Gaussian case, we get from (35), (32)

∥Bt−1
s ∥∞ = ∥Bt−1

s 1∥∞ = ∥Dt−1
s SDt−1

x 1∥∞

= ∥Dt−1
s S τ t−1

x ∥∞ = maxk
Sk,:τ

t−1
x

σ2
v k

+Sk,:τ
t−1
x

≤ 1,

∥Bt
x∥∞ = ∥Bt

x1∥∞ = ∥Dt
x S

TDt−1
s 1∥∞

= ∥Dt
x S

T τ t−1
s ∥∞ = maxi

ST
:,iτ

t−1
s

1/σ2
x i+ST

:,iτ
t−1
s

≤ 1.

(38)

6. LARGE SYSTEM ANALYSIS WITH N.I.I.D. A
To show that at convergence, the variance subsystem τx converges in
the large system limit to the optimal MSE in the Gaussian case. We
use the following result from [16], [17] :
Theorem 1. Let QN ,DN ∈ RN×N be deterministic symmetric ma-
trices and YN = XNDXH

N =
∑M

i=1 dixix
H
i , with diagonal D and

XN containing M independent columns xi with covariance matrix
Θi. Also, assume that QN , DN , Θi have uniformly bounded spec-
tral norms. Then, as M,N → ∞ at constant ratio

1

N
tr
[
QN (YN +DN )−1]− 1

N
tr [QNTN ]

a.s.−→ 0, with (39)

TN =

(
M∑
i=1

diΘi

1 + ei
+DN

)−1

, where the ei satisfy (40)

ek = tr

dkΘk

(
M∑
i=1

diΘi

1 + ei
+DN

)−1
 , k = 1, . . . ,M.(41)

The convergence in (39) is the convergence of a scalar to its mean,
by LLN. Note the presence of the weights 1+ei in the denominator
of the sum in TN in (40), which reflect that the expected value of
a matrix inverse is not the inverse of its expected value. Note that
the tr [Θi] should be of order 1, which means that the sum in TN

is implicitly normalized. The ei satisfy the implicit equations (41),
and can be obtained as the fixed points of the RHS interpreted as a
mapping (with global convergence).
We assume the columns of AT =

[
a1 . . .aM

]
to be zero mean and

independent with diagonal covariance matrix E
(
aia

T
i

)
= Θi. The

optimal MSE in the Gaussian case is given by (with e.g. Dσ2
x

=

D(σ2
x))

MSE =
1

N
tr
{[

ATD−1
σ2
v
A+D−1

σ2
x

]−1
}

a.s.−→ 1

N
tr


[

M∑
i=1

Θi

σ2
v,i(1 + ei)

+D−1
σ2
x

]−1
 , with (42)

ek = tr

 1

σ2
v,k

Θk

[
M∑
i=1

Θi

σ2
v,i(1 + ei)

+D−1
σ2
x

]−1
 . (43)

On the other hand the GAMP variance subsystem converges to (32),
without iteration indices. With large A, Sτx and ST τs converge to
their expected values

E [Sτx]i = E
[
ADxA

T
]
ii
= tr{ΘiDx}; (44)

ED
(
STτs

)
= E diag

(
ATDsA

)
=

M∑
k=1

τs,kΘk. (45)

Therefore, the empirical mean of the posterior variance τx becomes

1

N
tr{Dx} =

1

N
tr


[
D−1

σ2
x
+

M∑
k=1

τs,kΘk

]−1
 . (46)

From (32), (44), it follows that

τs,k =
1

σv,k + tr{ΘkDx}
. (47)

Define e′k = tr{ΘkDx}
σ2
v,k

and substituting (47) into (46), we obtain

1

N
tr{D(τx)} =

1

N
tr


[
D−1

σ2
x
+

M∑
i=1

Θi

σv,i(1 + e′i)}

]−1
 ;

e′k = tr

 Θk

σ2
v,k

[
D−1

σ2
x
+

M∑
i=1

Θi

σv,i(1 + e′i)}

]−1
 .

(48)

This shows that the system of equations defined by (48) is the same
as the system defined by (42), (43). Therefore, the empirical mean
of τx converges to the optimal MSE in the large system limit. Note
that above we have applied the Theorem with QN = IN but the
same results hold for any QN , corresponding to deterministic limits
for variably weighted MSEs tr{QNDx}/tr{QN}.



7. CONVERGENCE OF THE MEAN SUBSYSTEM

We consider here the convergence proof for the case in which the
update of u minimizes its quadratic cost function, i.e. gt(ut) =
gt(0) + Ht ut = 0⇒ ut = −(Ht)−1gt(0). We shall investigate
the convergence of the mean subsystem once the variance subsystem
has converged. Similar to the convergence proof in [4], we will de-
rive the Jacobian of the updating function and prove the convergence
by showing that the Jacobian is contractive. We define the short hand
notations

τ =
[
τT
r τT

p

]T
,D = D(1./τ ),B = D

1
2
[
I AT

]T
,

C = D− 1
2
[
A −I

]T
,H =

[
0M×N I

]
D

1
2 ,

wt = D
1
2
[
x̂t T ẑt T

]T
,P = B

(
BTB

)−1
BT .

(49)

Furthermore, we define the update function for
[
x̂t T ẑt T

]T as[
x̂t

ẑt

]
= g

([
rt

pt

])
=

[
gx(r

t)
gz(p

t)

]
=

[
E(x|rt, τr)
E(z|pt, τp)

]
. (50)

In the following we will show that the system θt =
[
wt,T st,T

]T
is converging. With notations defined above, we can rewrite ut =
−(Ht)−1gt(0) as

ut =
(
BTB

)−1

BTwt−1. (51)

The vector wt is updated via
wt = g̃

(
Pwt−1 +Cst−1) = g̃

([
P C

]
θt−1) , (52)

where g̃(v) = D
1
2 g
(
D− 1

2 v
)

. The update of st can be written as

st = st−1 +H
(
wt −But

)
= st−1 +H

[
g̃
([
P C

]
θt−1

)
− Pwt−1

]
.

(53)

Combining (52) and (53), we obtain the update equation for θt,

θt = h(θt−1) =

[
I
H

]
g̃
([
P C

]
θt−1)+ [ 0 0

−HP I

]
θt−1,

(54)
where h(θt−1) denotes the update function. We get for the Jacobian
g̃′t = g̃′ ([P C

]
θt−1

)
= D

1
2 g′t D− 1

2 = g′t which is diagonal
since g(.) is an elementwise function. As mentioned in [4], g′t is a
positive semi-definite diagonal matrix with all elements smaller than
1. Furthermore, in the Gaussian case g′t is a constant matrix. The
Jacobian of h(θt−1) is given by

h′t =

[
I
H

]
g′t [P C

]
+

[
0 0

−HP I

]
=

[
g′tP g′tC

H(g′t − I)P Hg′tC+ I

]
.

(55)

We calculate the terms Hg′tC and H(g′t − I), which leads to

Hg′tC = −g′t
z , H(g′t − I) = (g′t

z − I)H. (56)

Hence, the Jacobian h′t becomes

h′t=

[
g′tP g′tC

(g′t
p − I)HP I− g′t

z

]
=

[
g′t 0
0 I−g′t

z

][
P C

−HP I

]
. (57)

Since all the elements of g′t range from 0 to 1,

0 ⪯
[
g′t 0
0 I− g′t

z

]
⪯ max{∥g′t∥∞, 1− ∥g′t

z ∥∞} I ≺ I. (58)

We calculate the eigenvalues of the second matrix at the right of (57)
via

det

[
λI− P −C
HP λI− I

]
= 0. (59)

For the determinant of block matrices, we have

det

[
λI− P −C
HP λI− I

]
= det(λI− P ) det[λI− I+HP (λI− P )−1C].

(60)
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By the matrix inverse lemma and the definition of P , we get

(λI− P )−1 =
I

λ
− P

λ− λ2
. (61)

Note that from the definition in (49), PC = B(BTB)−1BTC = 0.
Hence (60) becomes

det

[
λI− P −C
HP λI− I

]
= det(λI− P ) det(λI− I). (62)

Set this determinant to 0 and solve for λ, we find that the eigenvalues
are 0 and 1. Therefore, the update operation h(θ) is contractive.

8. SIMULATION RESULTS
For the simulations, we set the SNR to 20dB, and the system dimen-
sions to M ×N = 512× 1024. We consider a Gaussian setting with
white noise and x is drawn from an n.i.i.d. Gaussian distribution with
zero mean and variance profile σ2

xi
= 0.991i−1, i = 1, . . . , N . For

A, we follow the setup in [18]. Namely first A gets generated as i.i.d.
zero mean Gaussian, its SVD gets computed and the singular values
{s1 ≥ · · · ≥ sM} are changed to a geometric series with a spe-
cific condition number s1

sM
. We compare the results to the LMMSE

estimator. Fig. 1 illustrates the difference between the x̂t and the
LMMSE x̂MMSE, whereas Fig. 2 compares the difference between
τ t
x and τMMSE. The ”normalization” mentioned in the captions refers

to division by N . These simulations show that the AMBGAMP algo-
rithm continues to work in unrealistically severe scenarios (in which
AMP diverges).

9. CONCLUDING REMARKS
We propose a convergent version of GAMP, AMBGAMP, which
applies alternating minimization to an augmented Lagrangian of a
large system limit of the Bethe free Energy (BFE). AMBGAMP can
be interpreted as applying a simplified ADMM to the BFE, with a
constrained Lagrange multiplier parametrerization for the mean con-
straint, and a quadratic optimization subproblem being solved by a
gradient update with line search. The ADMM is complemented with
a fixed point iteration for the variance constraint.
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