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Abstract—In this paper we consider cell-free (CF) massive
MIMO (MaMIMO) systems, which comprise a very large number
of geographically distributed access points (APs) serving a much
smaller number of users. We exploit channel sparsity to tackle
pilot contamination, which originates from the reuse of pilot se-
quences. Specifically, we consider semi-blind methods for channel
estimation in the presence of unknown Gaussian i.i.d. data to
resolve the pilot contamination. This task is further aided by
exploiting prior channel information in a Bayesian formulation.
We develop Bayesian Maximum a Posteriori (MAP) channel
estimators and we also provide various Cramer-Rao Bounds to
characterize performance limits. The main contribution is the
derivation of an original type of Bayesian CRB for the semi-
blind problem at hand, in which a certain expectation operation
is facilitated by the asymptotics of the large system dimensions
considered here. Whereas Bayesian CRBs lead to fairly useless
lose bounds, corresponding to unrealistic genie-aided scenarios,
the proposed variation turns out to be quite tight as illustrated
by performance comparisons with various estimation algorithms.

I. INTRODUCTION

Recently, cell-free (CF) massive MIMO (MaMIMO) sys-
tems are attracting extensive research interests as an effective
and promising approach for next generation wireless systems
thanks to their potential to reap the benefit of both MaMIMO
and distributed antenna systems (DAS). CF MaMIMO systems
consist of a massive number of access points (APs) which
serve a much smaller number of single-antenna users and are
geographically distributed over a large coverage area. All the
APs are connected through a back-haul network to a central
processing unit (CPU). The massive number of antennas
improves spectral efficiency [1] whereas energy efficiency
[2], [3] and macro-diversity gain result from the distributed
topology and ultra-densification. Additionally, since each user
is surrounded by a large number of serving APs, with high
probability all the users enjoy good channel conditions [4].
Therefore, CF MaMIMO systems are expected to provide
significant improvements in terms of spectral/energy efficiency
and coverage probability. In [1], [5], the performance of CF
MaMIMO and small-cell systems were compared under the
assumption of employing maximum ratio (MR) processing.
In [6]–[10], the authors advocated the use of more effective
processing than MR processing in CF MaMIMO to guarantee
superior performance of CF MaMIMO systems compared to
small-cell systems. The performance of CF MaMIMO systems
is critically affected by the so-called pilot contamination. This
impairment originates from the reuse of training sequences
or pilots utilized in channel estimation, which prevents the
possibility of obtaining an adequate estimate of the channel
state information (CSI). The detrimental effects of pilot con-
tamination were highlighted in [11] for centralized MaMIMO
systems. Specific features of centralized MaMIMO channels

such as channel hardening and favorable propagation or lim-
ited angular spread could be exploited to “separate” user
channels in power domain [12], angular domain [13], [14], or
jointly in power and angular domain [15] and thus, mitigate
or annihilate pilot contamination. However, these appealing
properties of channels in centralized MaMIMO systems are
destroyed in a distributed setting and pilot contamination
is still an open and challenging problem in CF MaMIMO
systems. Several pilot assignment (PA) methods for mitigating
pilot contamination in CF MaMIMO systems were proposed
recently in [1], [16]–[18]. In [1], a greedy pilot assignment
(GPA) based on knowledge of large-scale fading channel coef-
ficients was proposed. In [16], a location-based greedy (LBG)
pilot assignment scheme utilized the location information in
a GPA algorithm. The structured PA approach proposed in
[17] maximized the minimum geographical distance between
users sharing the same pilot sequences. An additional PA
method based on graph coloring was proposed in [18]. All
these techniques address the pilot contamination problem via
a careful assignment of pilots and do not exploit the inherent
structure of channels and data in CF MaMIMO systems in
contrast to blind or semi-blind estimation and detection tech-
niques. A blind pilot decontamination approach was proposed
first in [12] for centralized MaMIMO systems and utilized
asymptotic orthogonality of user channels to remove undesired
interference including pilot contamination from the received
signal. The same property was also exploited for semi-blind
channel estimation, e.g., [15], in centralized MaMIMO but it
does not hold in CF MaMIMO systems [8], [9]. Blind and
semi-blind channel estimation have been thoroughly investi-
gated in general settings, see, e.g., [19]–[22] and references
therein. In this context, the concept of identifiability was
very relevant since it guarantees the non-singularity of the
Fisher information matrix (FIM) and thus, the existence of
the Cramer-Rao bound (CRB). The corresponding conditions
provide fundamental insights into the feasibility of reliable
communications in the analyzed system. Conditions under
which channel and data signals are blindly and semi-blindly
identifiable have been thoroughly studied in various settings
for centralized systems, see, e.g., [23], [24]. A semi-blind pilot
decontamination approach was proposed in [25] exploiting the
inherent sparse structure of channels and correlation structure
of data in CF massive MIMO systems. In [26], we proposed a
new variable level expectation propagation (VL-EP) algorithm
to iteratively conduct the semi-blind method for channel
estimation in the presence of Gaussian i.i.d. data to mitigate



the pilot contamination problem originating from the reuse of
training sequences. The proposed VL-EP algorithm provides
an approximate minimum mean square error (MMSE) channel
estimator which can not be found analytically. The main
constributions in this paper are as follows:
• Whereas we proposed a basic Maximum a Posteriori

(MAP) algorithm for the joint estimation of channels
and unknown data in [25], we present here further MAP
estimation algorithms for the channels separately, with
the unknown data symbols being eliminated from the
inference problem. The performance evaluations lead us
to observe that MAP estimation of a reduced parameter
subset leads to estimates that are apparently closer to
MMSE estimates, compared to the case in which a joint
MAP estimation of all parameters is performed.

• CRBs are obtained as the result of an expectation step in
the Fisher Information Matrix, followed by an inversion.
In the Bayesian case there is a further expectation step
over prior information. Applied to the (semi-)blind esti-
mation of both channels and data, the result is a bound
in which the coupling in the estimation between channels
and data disappears, and each gets estimated as if the
other were known, leading to a very lose bound. We
propose an original Bayesian CRB in which the expecta-
tions are based on approximate large system asymptotics,
and an analytical solution is obtained by interpolating the
manageable low and high SNR regimes results. Given that
the best algorithms approach the resulting bound quite
closely, we conclude that the propose bound is quite tight.

• We also propose another CRB based on a Gaussian
(interference) approximation, which we term the extrinsic
information lower bound, which is actually a CRB upper
bound due to the worst case assumption of Gaussian
interference.

Notation: In the following, superscripts T , ∗, and H stand
for transpose, conjugate, and conjugate transpose, respectively.
The expectation operator is indicated by E{.} and IP is the
P × P identity matrix. Here, ‖ · ‖ and diag(.) denote the
Euclidean norm operator and the squared diagonal matrix
consisting of the diagonal elements of matrix argument, re-
spectively. vec(.) denotes vec(A) =

[
AT

:,1 AT
:,2 · · ·AT

:,n

]T
,

where A:,j is the j-th column of matrix A and tr{.} is
the trace operator. The Kronecker operator is denoted by
⊗. Finally, N (µ, σ2) and CN (µ, σ2) denote a real and a
complex Gaussian distribution with mean µ and variance σ2,
respectively.

II. SYSTEM MODEL

We consider a CF massive MIMO system in uplink in which
M APs serve K users in the same time-frequency resource. All
APs and users equipped with a single antenna are randomly
distributed over a D × D square area. Furthermore, all APs
are connected to a CPU via a back-haul network. The channel
is assumed to remain constant over L consecutive symbol

intervals, i.e., a block. In the uplink transmission, each user k
sends P pilot sequences known by the CPU followed by L−P
unknown data symbols. The pilot sequences are assumed to
be ortho-normal, i.e., orthogonal with unit norm. The received
signal Y ∈ CM×L at the M APs over the block interval is
given by

Y =
√
ρ H X + V, (1)

where ρ denotes the transmit power at each user terminal
normalized by the noise variance, XT = [x1 . . .xK ] ∈ CL×K
is a matrix of the transmitted symbols and xk ∈ CL×1 is the
signal vector sent by user k. The channel vector between user
k and M APs is denoted by hk = [h1k . . . hMk]

T ∈ CM×1,
then the channel matrix between the APs and users is given
by H = [h1 . . .hK ] ∈ CM×K . The matrix V ∈ CM×L
represents the additive white Gaussian noise (AWGN) with
i.i.d. components having zero mean and unit variance. The
channel coefficient hmk between AP m and user k is modeled
as follows

hmk =
√
βmk gmk, (2)

where βmk represents the large-scale fading coefficient which
accounts for path loss and shadowing effects and gmk rep-
resents the small-scale fading. We assume that gmk, m =
1, · · ·M, k = 1, · · ·K, are independent and identically
distributed (i.i.d.) complex normal random variables, i.e.,
gmk ∼ CN (0, 1). Furthermore, we assume perfect knowledge
of the large-scale fading coefficients βmk, m = 1, · · ·M, k =
1, · · ·K at the CPU.

Let the matrices Xp ∈ CK×P and Xd ∈ CK×(L−P )

denote the pilot sequences and data symbols, respectively.
Then, X = [Xp Xd] and xk = [xTp,k xTd,k]

T . Similarly,
Y = [Yp Yd] where Yp ∈ CM×P and Yd ∈ CM×(L−P )

represent the matrices of received training and data signals,
respectively

III. CRB FOR DETERMINISTIC SEMI-BLIND JOINT
CHANNEL ESTIMATION AND DATA DETECTION

To analyze the performance of the semi-blind channel esti-
mation, we first derive the CRB in a deterministic framework.
In the deterministic framework, both data signal Xd and
relevant channel coefficients HI are modeled as unknown
deterministic quantities. In the deterministic framework, we
are forced to split the channel as H = HI + H0 in which
HI contains significant channel coefficients that need to be
estimated, and H0 contains channel coefficients that are con-
sidered sufficiently small and that will not be estimated [25] (in
the Bayesian framework below, this split will be unnecessary).
Thus, we have

y ∼ CN
(
my(θ),Cyy

)
(3)

where y = vec(Y) and θ = [hHI vecH(Xd)]
H is the complex

unknown parameter vector to be estimated. Here, hI is a vector
deduced from the non-zero elements of the matrix HI , whose
support is known. Mean and covariance of received signal y
are given by my(θ) =

√
ρ vec(HIX) and Cyy = IL⊗CYY,



respectively, with CYY = IM + ρC0 and covariance matrix
C0 specified in the following:

C0 = E
{

H0H
H
0

}
= diag

( ∑
(1,k)∈K0

β1k, · · · ,
∑

(M,k)∈K0

βMk

)
.

The probability density function1 (pdf) of the observations Y
in the parameter θ is given by

p(Y|θ) = 1

πML(det(CYY))L
exp
(
− ‖C−1/2yy (y −my)‖2

)
.

Computing the Jacobian of my(θ) with respect to θ, the de-
terministic complex Fisher information matrix (FIM) denoted
as J dθ,θ on the basis of the data Y is given by

J dθ,θ =
(∂mH

y

∂θ∗

)
C−1yy

(∂mH
y

∂θ∗

)H
= ρ

[
Q

′
R

′]H [
Q

′
R

′]
(4)

where Q
′
= C

−1/2
yy Q, Q =

1
√
ρ

∂my

∂hTI
and R

′
= C

−1/2
yy R,

R =
1
√
ρ

∂my

∂vecT (Xd)
. Note that

1
√
ρ
my = vec(HI X) =

Q hI = vec(HI [Xp 0]) + R vec(Xd). The FIM J dθ,θ is a
2 × 2 block matrix. The deterministic CRBd is obtained as
the inverse of the Fisher information matrix J dθ,θ

CRBd =
(
J dθ,θ

)−1
. (5)

The blocks (1, 1) and (2, 2) of the CRBd in (5) relative to the
estimation of the channel coefficients hI and data symbols
vec(Xd), respectively are given as follows

CRBdhI =
1

ρ

(
Q

′H P⊥
R′ Q

′)−1
(6)

CRBdvec(Xd)
=

1

ρ

(
R

′H P⊥
Q′ R

′)−1
(7)

where PA = A
(
AHA

)−1
AH and P⊥A = I − PA denote

the projection matrices on the column space of matrix A and
its orthogonal complement, respectively. In the deterministic
identifiability analysis that follows, we shall ignore C0 (C0 =
0) and hence CYY = IM , Cyy = IML.

IV. PILOT BASED BAYESIAN PERFORMANCE BOUNDS

From the moment that prior channel information is ex-
ploited, we consider estimating the whole channel H (limiting
to HI will not affect estimation performance much since H0 is
small). We consider that pilots and data have the same power
σ2
x = 1. Observe that vec(H Xp) = (XT

p ⊗ IM )h. As a result
the pilot portion leads to the following

FIMp = ρ (X∗pX
T
p )⊗ IM (8)

for h, which is of course singular, due to pilot reuse. We can
get a first idealized pilot only based CRB, by assuming that
the pilots would somehow be orthogonal

CRBp,o = FIM−1p,o , FIMp,o = ρ diag(X∗pX
T
p )⊗IM = ρP IMK .

(9)

1For the sake of compactness, we adopt an identical notation p(Y|θ)
to indicate the pdf of random variable (r.v.) Y in vector parameter θ or
conditioned to r.v. θ when θ is assumed to be a deterministic unknown vector
parameter or a r.v., respectively.

The pilot contamination can be alleviated by prior channel
information, leading to the Bayesian pilot based CRB

CRBp,B = (FIMp + C−1o )−1 . (10)

For the semi-blind approaches considered here, another ideal-
ized MSE lower bound can be considered, considering to the
genie-aided scenario in which the data Xd would be detected
exactly, hence becoming also pilots for the channel estimation,
leading to the genie-aided semi-blind Bayesian CRB

CRBp+d,B = (ρ (X∗XT )⊗ IM + C−1o )−1 (11)

where X = [Xp Xd]. For any of the CRBs considered, we
get a corresponding Normalized MSE (NMSE) bound in the
form of NMSE = tr{CRB}/tr{Co}, where asymptotically
‖h‖2 = E ‖h‖2 = tr{Co}. Note that we get for all Bayesian
approaches NMSE < 1.

V. SEMI-BLIND WITH GAUSSIAN I.I.D. INPUTS

In this section we consider approaches in which the un-
known Xd are (still) modeled as i.i.d. Gaussian and hence can
be eliminated, leading to the Gaussian distribution p(Y|h).
Some (unofficial) motivations:
• Overall joint estimation approaches, with EP or other, are

not very simple.
• The joint estimation of Xd also may slow down the

overall convergence.
• It looks like the introduction of an i.i.d. Gaussian prior

on Xd does not improve much the identifiability (w.r.t.
deterministic unknown Xd), though still the exploitation
of the blind part Yd appears to be important. The identifi-
ability probably relies mostly on the prior information on
h (leading in particular to the sparsity structure in HI ).

• Still the joint estimation of hI and Xd is important
and is expected to play a larger role when more prior
information on Xd would be exploited.

So, eliminating the i.i.d. Gaussian Xd, and approximating
Y′ = H0 X+V as Gaussian noise (assuming pilots and data
have the same per symbol power) we get

ln p(Y|hI)
= −tr{(Yp −

√
ρHIXp)

HC−1Y′Y′(Yp −
√
ρHIXp)}

−(L−P ) ln det(HIH
H
I + CY′Y′)

−tr{(HIH
H
I + CY′Y′)−1 YdY

H
d }+ ct

(12)where y′ = vec(Y′). So, the per channel use covariance
matrix in the blind data part is CYY = HIH

H
I +CY′Y′ . The

non-quadratic appearance of hI in the last two terms in (12)
complicates the obtention of the posterior p(hI |Y). The MAP
estimator does not require the posterior, and can be obtained
by maximizing p(Y|hI) p(hI).

VI. GAUSSIAN INPUTS SEMI-BLIND BAYESIAN CRB
From now on we drop the split in H = HI + H0 and

estimate all of H. Eliminating the i.i.d. Gaussian Xd, we get
ln p(Y|h)
= −tr{(Yp −

√
ρHXp)

HC−1VpVp
(Yp −

√
ρHXp)}

−(L−P ) ln det(ρHHH + CVdVd
)

−tr{(ρHHH + CVdVd
)−1 YdY

H
d }+ ct

(13)



The per channel use noise covariance matrices are CVpVp
=

CVdVd
= IM . The blind FIM per channel use can be shown

to be

FIMb = ρ2 (HHC−1H)∗ ⊗C−1 , C = IM + ρHHH (14)

which results in the deterministic semi-blind CRB

CRBsb,d = (FIMp + (L−P )FIMb)
−1 (15)

which depends on the true channel. CRBsb,d could be com-
pared to its genie-aided version CRBp+d,d = 1

ρ (X
∗XT )−1 ⊗

IM . The corresponding Bayesian semi-blind CRB

CRBsb,B = (FIMp + (L−P )Eh{FIMb}+ C−1o )−1

= (CRB−1p,B + (L−P )Eh{FIMb})−1
(16)

is difficult to compute analytically (except at low/high SNR)
and might be loose. In any case, assuming that H is tall (M >
K), at high SNR we get the dominating term

FIMhSNR
b = ρ IK ⊗P⊥H (17)

where P⊥H denotes the projection on the orthogonal comple-
ment of the column space of H. Then we get approximately

Eh FIMhSNR
b ≈ ρ (1− K

M
) IKM (18)

which would be exact if the elements of H were i.i.d. On
the other hand, at low SNR we get C ≈ IM and hence
FIMlSNR

b ≈ ρ2 (HHH)∗ ⊗ IM from which

Eh FIMlSNR
b ≈ ρ2 trM{Co} ⊗ IM (19)

where trM{A} is a diagonal matrix obtained by taking the
trace of A over consecutive diagonal element portions of size
M . In other words (trM{Co})k,k = E‖hk‖2. Remains to find
an interpolation between low and high SNR. For that purpose,
consider the SVD of H = U[Σ 0]TVH (where U, V and the
diagonal Σ are square) and note that C−1 = I−H(HHH +
1
ρI)−1HH , then we get

FIMb = ρ (HHH(HHH + 1
ρI)−1)∗ ⊗C−1 =

ρ (VΣ2(Σ2+ 1
ρI)−1VH)∗ ⊗ (U

[
(ρΣ2+I)−1 0

0 IM−K

]
UH) .

(20)
If H would have had i.i.d. elements then U, V and Σ would
be independent. This incites us to take the expectation of the
two factors in the Kronecker product separately. With some
futher approximation, we then get

EhFIMb ≈ ρ (1− K
M + 1

M tr{(ρ trM{Co}+ IK)−1})
trM{Co}(trM{Co}+ 1

ρIK)−1 ⊗ IM
(21)

which is consistent with the high and low SNR limits in (18),
(19), and which needs to be plugged into (16).

Should check here also the Modified CRB and other varia-
tions on the Bayesian CRB theme.

VII. GAUSSIAN-GAUSSIAN EXTRINSIC INFORMATION
LOWER BOUND

Another performance bound can be obtained by considering
HkXd,k as Gaussian. Since for the estimation of the signal
of user k, considering the interfering signals to be Gaussian
corresponds to a worst case interference for given interference
covariance, the resulting mutual information lower bound
should lead to an information matrix lower bound and hence
to an error covariance (MSE) upper bound. For the signal
k in the resulting model, the Gaussian input xd,k can then
be eliminated, and the CRB for hk can be computed. In the
absence of a prior on hk, this would correspond to extrinsic
information on hk. Once we exploit prior information on the
channel (at least for the interferers), estimation of the whole
channel vector hk (and not just hI,k) becomes conceivable.

Let hk ∼ CN (0,Co,k) with Co,k = diag(β1k, . . . , βMk).
Eliminating the Gaussian Hk, xk and HkXd,k, we get

ln p(y|hk) = −(yp −
√
ρxp,k ⊗ hk)

H

(Cv,p + ρ
∑
i6=k xp,ix

H
p,i ⊗Co,i)

−1(yp −
√
ρxp,k ⊗ hk)

− ln det(Cv,d + ρIL−P ⊗ (hkh
H
k +

∑
i6=k Co,i))

−yHd (Cv,d + ρIL−P ⊗ (hkh
H
k +

∑
i6=k Co,i))

−1yd + ct.
(22)

We assume here normalized white noise Cv = I. In that case
the data portion of (22) simplifies to

ln p(yd|hk) = −(L− P ) ln det(Σ)

−tr{YH
d Σ−1Yd}+ ct, with

Σ = IM + ρ (hkh
H
k +

∑
i6=k Co,i)

(23)

where we used det(A⊗B) = (det(A)dim(B)(det(B)dim(A),
and vecT (A) (D ⊗B) vec(C) = tr{ATB C DT }. Using the
FIM for a circularly complex Gaussian pdf, we get

FIMGGei
hk

= ρ2 (L− P )hHk Σ−1hk Σ−∗+

ρ(xHp,k ⊗ IM )(I + ρ
∑
i6=k xp,ix

H
p,i ⊗Co,i)

−1(xp,k ⊗ IM )
(24)

where Σ−∗ = (Σ∗)−1. Then we have an extrinsic information
CRB upper bound: CRBGGeihk

= (FIMGGei
hk

)−1.

VIII. CHANNEL MAP

Here we consider the Gaussian i.i.d. xd eliminated, as in
Section V.

A. Joint Channel MAP for All Users

As in (13) but now estimating h and not just hI , we get

− ln p(Y|h) = − ln p(Yp|h)− ln p(Yd|h)
= tr{(Yp −

√
ρH Xp)

H(Yp −
√
ρH Xp)}

+(L−P ) ln det(ρH HH + I)
+tr{(ρH HH + I)−1 YdY

H
d }+ ct

(25)

The pilot part is convex. For the blind part − ln p(Yd|h), we
construct a convex majorizer as in [27, Section V.A 4)], [28]
which can actually also been derived with an EM approach.
The construction of the majorizer is simply based on first-order



Taylor series expansion of concave functions, either w.r.t. H
directly or w.r.t. a covariance type expression (which is then
quadratic in H). So let H′ be a current estimate of H. Then

ln det(ρH HH + I) = ln det(ρHH H + I)

≤ tr{(ρH
′H H′ + I)−1ρHHH + ct .

(26)

On the other hand, using the matrix inversion lemma and
Taylor series expansion,

tr{(ρH HH + I)−1 YdY
H
d }

= tr{[I−H(HH H + 1
ρ I)−1HH ]YdY

H
d }

≤ tr{HA′HH − B′HH −HB′H}+ ct
(27)

where

A′ = (H
′H H′ + 1

ρ I)−1H
′HYdY

H
d H′(H

′H H′ + 1
ρ I)−1

B′ = YdY
H
d H′(H

′H H′ + 1
ρ I)−1 .

(28)
Now (26), (27) lead to the following quadratic majorizer in
(25)

− ln p(Yd|h) ≤ tr{(ρ(L− P )(ρH
′H H′ + I)−1 +A′)HHH

−B′HH −HB′H}+ ct .
(29)

At this point, note that the quantities in (26), (28) have the
following interpretation

X̂d =
1√
ρ (H

′H H′ + 1
ρ I)−1H

′HYd

CX̃dX̃d
= (L− P ) (ρH

′H H′ + I)−1
(30)

which are the LMMSE estimate and associated error covari-
ance matrix of Xd (which is i.i.d. across channel uses). This
means that the majorizer in (29) has the following Expectation
Maximization (EM) interpretation (which was not observed in
[28], in spite of EM being discussed there also):

− ln p(Yd|H) = − lnEXd
p(Yd|Xd,H)

= − lnEXd|Yd,H′ (p(Yd|Xd,H) p(Xd)/p(Xd|Yd,H
′))

= − lnEXd|Yd,H′ p(Yd|Xd,H) + ct

≤ EXd|Yd,H′{− ln p(Yd|Xd,H)}+ ct

= EXd|Yd,H′‖Yd −
√
ρH Xd‖2 + ct

= ‖Yd −
√
ρH X̂d‖2 + ρH CX̃dX̃d

HH + ct

(31)
where the inequality follows from Jensen’s inequality and
the convexity of − ln(.), and ct denotes (various) terms that
are constant w.r.t. H. The MMSE estimate X̂d and error
covariance matrix CX̃dX̃d

are defined in (30) and corre-
spond to LMMSE estimation due to the joint Gaussianity of
p(Yd,Xd|H′). At this point we have the following quadratic
majorizer

− ln p(Y|h) ≤ f ′(h|h′)
= ρ tr{HHH(XpX

H
p + X̂dX̂

H
d + CX̃dX̃d

)}
−2√ρ< tr{H(XpY

H
p + X̂dY

H
d )}+ ct

(32)

which is separable between the channel use dimension and the
Rx antenna dimension. When we add the channel prior, which
contains different channel covariance matrices for different
users, we need to switch from H to h and we get with
− ln p(h) = hHC−1o h + ct (Co = Chh),

Fig. 1. NMSE [dB] versus SNR [dB]

− ln p(Y|h)− ln p(h) ≤ f(h|h′)
= hH(C−1o + ρ ((XpX

H
p + X̂dX̂

H
d + CX̃dX̃d

)T ⊗ IM ))h

−2√ρ<{hH vec(YpX
H
p + YdX̂

H
d )}+ ct

(33)
which leads to the following estimate

ĥ =
√
ρ (C−1o + ρ ((XpX

H
p + X̂dX̂

H
d + CX̃dX̃d

)T ⊗ IM ))−1

vec(YpX
H
p + YdX̂

H
d ) .

(34)
This (34) needs to be solved iteratively, with X̂d and CX̃dX̃d

in (30) computed with the previous channel estimate. The
iterative process can be initialized with ĥ(−1) = 0, which
leads to a first iterate ĥ(0) being based only on pilots and
prior information. Note that the previous Bayesian Semi-Blind
MAP can be obtained from the channel MAP considered here
by putting CX̃dX̃d

= 0 in (34).

B. Joint Channel MAP for Users on Same Pilot

Other user signals zi modeled as Gaussian noise. Given that
the extrinsic information FIM does not appear to correspond
to a lot of information, this approach, as well as the next
one, is perhaps less interesting, although it would lead to
reduced complexity and be potentially more amenable to
distributed implementation. The extrinsic information FIM
showing reduced information may mean that the modeling of
zk as Gaussian interference leads to significant performance
loss. For Separate Channel MAP per User: as in the extrinsic
information FIM formulation.

IX. PERFORMANCE EVALUATION

In this section, we provide numerical results verifying the
analytical derivations and the performance of the proposed
approaches. The M=100 APs and K=24 users are uniformly
distributed at random over a square area of size 1000× 1000.
The large-scale fading coefficient βmk in (2) models the path
loss and shadow fading as follows

βmk = 10
PLmk

10 10
σshzmk

10 (35)



where PLmk represents the path loss (expressed in dB),
and 10

σshzmk
10 represents the shadow fading with standard

deviation σsh, and zmk ∼ N (0, 1), i.e., we assume un-
correlated shadow fading. The three-slope model in [29] is
adopted for the path loss. The performance of the differ-
ent channel estimators is assessed by the normalized mean
square error (NMSE) versus SNR. The NMSE is defined as
NMSE = avg‖h−ĥ‖2

avg‖h‖2 where avg stands for average. Fig. 1
compares the performance of the channel estimation VL-EP
algorithm for GG-SB proposed in [26] and channel MAP
estimation discussed above and presents NMSE [dB] versus
SNR [dB]. The VL-EP algorithm outperforms the channel
MAP estimation and a joint channel and data MAP algo-
rithm, termed Bayesian semi-blind approach in [25]. The joint
channel and data MAP alternatingly estimates the channel
or data as if the estimate for the other quantity is perfect,
whereas the channel MAP estimation takes into account the
data error covariance matrix CX̃dX̃d

. Therefore the channel
MAP estimation outperforms the Bayesian semi-blind iterative
algorithm. The performance of these three different semi-blind
channel estimation algorithms is compared to the different
Cramer-Rao bounds (CRBs). For the semi-blind approaches
one can consider the genie-aided scenario in which the data
Xd would be detected exactly, hence becoming also pilots for
the channel estimation, leading to the genie-aided Bayesian
semi-blind (B-SB) CRB. For the VL-EP or channel MAP
scenario, we consider Gaussian channels with the Gaussian
input symbols eliminated, leading to the Gaussian inputs B-SB
CRB. The deterministic CRB curve in the figure corresponds
to a deterministic framework in which both data signal and
channel coefficients are modeled as unknown deterministic
quantities [25]. The performance of the different CRBs is
evaluated by NMSE = tr{CRB}/tr{Chh}, where Chh =
diag(β11, . . . , βM1 . . . β1K , . . . , βMK). The simulations show
that exploiting prior information gives significant performance
gains. Compared to a fictitious scenario of just orthogonal
pilot based channel estimation (pilots still of length P ),
deterministic semi-blind does not do as well whereas Bayesian
semi-blind still does much better. On the other hand, the
Bayesian pilot based CRB shows that just adding channel
prior information to the contaminating pilots allows already to
significantly improve MSE at low to moderate SNR, but floors
at higher SNR. Adding the blind channel information from
the data second-order statistics breaks this flooring, and both
channel MAP and especially VL-EP allow to get performance
close to the corresponding CRB, which behaves with just an
SNR offset compared to the genie-aided CRB.

X. CONCLUSION
In this paper, we considered semi-blind methods for channel

estimation in the presence of Gaussian i.i.d. data, exploiting
prior channel information to mitigate the pilot contamination
which originates from reusing pilot sequences, in CF massive
MIMO systems. Whereas Bayesian Cramer-Rao Bounds are
often very lose, we propose for the semi-blind channel esti-

mation scenario an original variation on the Bayesian CRB
which turns out to be quite tight, as has been demonstrated
by numerical comparisons with powerful semi-blind channel
estimation algorithms that provide an approximate MMSE
channel estimator.
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