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ABSTRACT
In recent years we have assisted the proliferation of deep-
fakes. The progress concerning both creation and, to a certain
extent, automatic detection is spectacular. Nevertheless, there
is a lack of protocols concerning the objective evaluation of
deepfakes. In this article, we focus on the quality of head mo-
tion replication by deepfake generators that use a pilot video
of a particular person to animate a single source image of an-
other person. We test several publicly available generators to
reproduce particular head movements (rotation around yaw,
pitch, and a combination of pitch and yaw). In order to mea-
sure how well the deepfake generators replicate head motion,
a 3D head model is utilized to render video sequences with
the known head pose. Then the generated head movements
by deepfake are compared to an exact 3D simulation that can
be used as ground-truth. Several measures, such as SSIM and
average facial keypoint distance, are used to quantify results.

Index Terms— deepfake, face-reenactment, deepfake
evaluation

1. INTRODUCTION

Generating animated videos from a single face image has nu-
merous applications in movie production, image editing, en-
hancement, and photography. Given a single source image
and a driving video, face reenactment methods aim to gen-
erate a synthesized video animated by the driver’s movement
while keeping the identity of the source image. More pre-
cisely, when a source image is fed to a face reenactment net-
work, the source person in the image will turn into a puppet,
and the driving video will define the target’s facial expres-
sion, eyes, and head movements. The recent face manipu-
lation techniques [1, 2, 3, 4] utilize generative models such
as Encoder-Decoder (ED) networks, Generative Adversarial
Networks (GAN) [5], and Variational Auto-Encoders (VAEs)
[6] to generate image animation. These recent works based
on deep learning have significantly improved the automatic
generation of the synthesized videos’ quality and realism.

Despite the researcher’s concerns about generating face
animations, there is a lack of evaluation techniques. For

instance, the lack of the ground-truth for the cross-identity
reenactment does not allow researchers to evaluate the re-
sults by metrics that require pixel-by-pixel comparison such
as Structural Similarity Index (SSIM), Peak Signal-to-Noise
Ratio (PSNR) [7], and the facial keypoint distance. To over-
come this problem, the face-reenactment methods usually
evaluate the generated image quality by performing a sub-
jective test, which often requires a visual inspection of the
generated image. Or they evaluate self-reenactment results,
which does not consider the identity leakage (generated face
resembles the driver facial features).

In order to perform pixel-by-pixel evaluation for the
cross-reenactment methods, we propose an approach to gen-
erate a face video dataset with the ground-truth. Furthermore
we propose a protocol to evaluate different methods using
the proposed dataset. More precisely, we generate a rich face
dataset, that can be flexibly controlled; We can move the
camera and render the face features in the desired view. To
control the head movement, a 3D head point cloud is located
in a scene and rendered in the desired head pose. Rendering
faces in the 3D environment allow us to fully control the
head pose, camera parameters, and scene illumination. The
proposed evaluation protocol focuses exclusively on global
motion, which means that the facial expression is constant
(neutral) in all video frames.

This paper is organized as follows: Section 2 presents re-
lated works. In section 3 we present the proposed methodol-
ogy and sections 4 and 5 present the experiment and conclu-
sion, respectively.

2. RELATED WORK

The face-reenactment evaluation techniques can be classi-
fied into three main categories: self-reenactment evaluation,
subjective test evaluation, and cross-reenactment evaluation
which is based on features/embedding extracted by a pre-
trained network. During self-reenactment, one video frame
is considered as a source image, and the rest of the frames
from the same video are used to animate the source image.
Since the source and driver identity belong to the same video



sequence, the driver frames can afterward be used as ground-
truth to which the generated images can be compared. The
self-reenactment evaluation is usually performed with the
metrics that require pixel-by-pixel comparisons, such as im-
age quality metrics, SSIM and PSNR. Further, it is used to
compare the facial keypoint distance between the source im-
age and the driver image. For example, the first-order motion
model (FOMM) [4] reports the L1 error, Average Euclidean
Distance (AED), and Average Keypoint Distance (AKD)
between the generated and the ground-truth images for the
self-reenactment results. Similarly the X2Face [1] computes
the L1 error between the generated and the ground-truth
images.

The cross-reenactment evaluation is performed when the
source face is animated by a different identity. Currently, the
generated images by cross-reenactment can not be evaluated
by the metrics requiring the exact ground-truth. To overcome
the lack of the ground-truth problem, usually, a subjective test
is performed for the quality assessment. In [4], the cross-
reenactment quality assessment is performed by a user study
where a source image, the driving video, and the correspond-
ing results for different methods are shown to the users, and
the user selects the most realistic image animation. On the
other hand, the few-shot vid2vid method [3] performs AB
tests where they provide the user with videos from two differ-
ent methods and ask user to choose the one with better quality.

To evaluate the cross-reenactment results quantitatively
and overcome the lack of the ground-truth, the researchers
use a set of metrics that do not require the ground-truth. First,
a pretrained network is used to extract some embedding/fea-
tures from the generated and the driver image, and then the
distance between these two embeddings is computed. For in-
stance, recent face-reenactment methods [2, 8, 9] evaluate the
identity preservation by computing Cosine Similarity (CSIM)
of embedding vectors generated by pre-trained face recogni-
tion model [10]. Furthermore, Ha et al. [2] use pretrained net-
works to estimate the head pose angles and facial action units
of generated image and compare the result with the driver’s
head pose and action unit. Using pre-trained networks to ex-
tract and compute the error between the feature embeddings
has partially solved the cross-reenactment evaluation; how-
ever, there is still a lack of metrics for computing the error
pixel-by-pixel. In this paper we propose an approach to gen-
erate a face video dataset with ground-truth and a protocol to
evaluate the cross-reenactment results.

3. PROPOSED METHODOLOGY

We use Pyrender 3D environment to create the face video
dataset. A 3D head model is inverse projected to create the
2D video sequences where the head pose is controlled and
known for each frame. Thanks to our protocol, it is possible
to create an exact 2D video ground-truth with exact geomet-
rical information that can be later compared to the deepfake

results, which utilize only the 2D information to create the
synthesized images. The dataset generation and the evalua-
tion protocol are explained in section 3.1.

3.1. Dataset generation and preprocessing

We use an existing 3D face dataset, namely, FaceScape [11].
This dataset contains high-quality 3D face models captured
using a multi-view system (MVS) consisting of 68 Digital
Single-Lens Reflex (DSLR) cameras. The face models are
captured from different subjects under controlled position,
and expression. The dataset provides a detailed mesh model
without RGB values for each subject, and the correspond-
ing multi-view RGB images with their intrinsic and extrinsic
parameters. We use the detailed mesh with the neutral expres-
sion and the provided camera parameters to render the depth
for each RGB image. Then we use the inverse projection
to map 2D data to the 3D point cloud. During head point
cloud reconstruction, we apply auto-white balance [12] to all
the images to normalize the effect of the scene’s illumination
[13].

Having a 3D point cloud head model, we can locate it
in the desired scene, define a camera with specific parame-
ters and render it in the desired head pose [14]. The size
of rendered images is 256x256, and to improve the quality
of the rendered images, we further apply the super-resolution
method proposed in [15]. Figure 1, from left to right, illus-
trates the detailed mesh model, Multi-view images with the
corresponding depth, 3D point cloud head model with RGB
values, and images rendered from the head point cloud with
the desired head and camera pose.

Fig. 1: Dataset generation and preprocessing

Fig. 2: The sample images illustrate head rotations around
combinations of pitch and yaw-axes, with each row showing
a different identity at the same angle. The characters are de-
picted with neutral expressions.

3.2. Evaluation protocol

To comprehend which head movements are more challeng-
ing for the face-reenactment method, we generated video se-



quences, each containing movement around a specific axis in
the Euler angles system. More specifically, three types of
head movement are investigated: rotation around the pitch,
yaw, and a combination of pitch and yaw axis. Each video
sequence consists of 100 frames; in each frame, we rotate
the head by 0.30 degrees toward the desired axis. It means
that in the first frame, we have the frontal head; in the last
frame, the head is rotated 30 degrees around the desired axis.
Furthermore, for each head rotation, 5 video sequences are
created, each having different identities with a neutral expres-
sion. Figure 2 presents sample images containing a combi-
nation of pitch and yaw head rotation. The first row shows
images corresponding to the first video frame, and the second
row corresponds to the same video where the head is rotated
by 23 degrees. From left to right, the identities’ names are A,
B, C, D, and E, which refer to the identities 122, 212, 340,
344, and 359 in the original paper [11]. Identity A serves as a
source, while the other identities are utilized to drive identity
A.

Fig. 3: Proposed protocol: Computing error between gener-
ated image and the ground-truth

To evaluate self-reenactment results, one video sequence
corresponding to identity A is evaluated. The first frame of
video A is considered as a source, and the rest of the frames in
the same video are used to drive the source face. To evaluate
cross-reenactment, first, the video sequence corresponding to
identity A is considered as a ground-truth, and its first frame
is considered as a source image. Since the head pose and ex-
pression in the remaining video sequences, corresponding to
identities B, C, D, and E, match with identity A, they are used
to drive the source image. Finally, four cross-reenactment re-
sults are generated in which the identity matches the source
image and the expression and head movement matches the
driving images.

The cross-reenactment evaluation protocol is as follows:
1) select the first frame of the ground-truth video as a source
image 2) use one of the driving videos to animate the source
image 3) feed the source image and the driving video frame to
one of the face reenactment methods 4) having the result from
the face reenactment method, one can compare the result with
the ground-truth. Figure 3 illustrates the evaluation protocol,
where we have two video sequences, one corresponding to
ground-truth and the other to the driving sequence. As can be
seen, the first frame of the ground-truth sequence is selected

as a source image. Then, another video frame is used to drive
the source image. Finally, both the source frame and driving
frame are fed to the face reenactment method. In this step,
the resulting image must match the ground-truth. Then, hav-
ing the face-reenactment result and the ground-truth, one can
compute the error between them.

In our protocol, we evaluate four face reenactment meth-
ods, namely, X2Face [1], Fs-vid2vid [3], FOMM [4], and
ICface [16]. The performance of these methods is evaluated
in terms of identity preservation, pose replication, and im-
age quality. First, to investigate the capability of the model
to reenact the driver’s pose properly, we compute the Av-
erage Keypoint Distance (AKD) between the ground-truth
image and face-reenactment result using MediaPipe library
[17], which extracts 468 keypoints over the face. To inspect
the image quality, we compute the Masked-SSIM (M-SSIM),
where the measurements are restricted to the face region. Fur-
thermore, we compute the Cosine Similarity (CSIM) of em-
bedding vectors generated by the pre-trained face recognition
model [10] to evaluate the quality of identity preservation.

4. EXPERIMENTAL RESULTS

This section presents the evaluation results for the proposed
dataset and protocol. Figure 4 visualizes a selection of the
results during head rotation around the yaw-axis. The im-
ages on the right side present the self-reenactment results, and
the images on the left side are animated by identity B. The
source frame to all the reenactment models is the first frame
from ground-truth (identity A); therefore, the identity in all
the reenactment results should match this identity.

4.1. Results and discussion

We report the self-reenactment and cross-reenactment results
over our dataset in Table 1. The self-reenactment values are
computed using simply one video sequence and the cross-
reenactment results are the average of four generated images
(e.i. the four videos generated by B, C, D, and E identities).
Moreover, to compare with the existing self-reenactment pro-
tocol, we have included in table 2 the results from existing
works [18], [9]. Although the evaluation type and results are
not the same as the deepfake generator reported in the liter-
ature, they are highly consistent. The results gained by our
protocol depict similar results compared to the existing self-
reenactment protocol; The FOMM generator outperforms
other methods, and ICFace gets the highest error. However,
in our proposed protocol, the generated images are com-
pared with ground-truth faces with the exact source identity
and head pose derived from the driver. By this means, it
depicts which of these generators keeps identity for cross-
reenactment as the subject rotates her/his head from the
frontal pose (see Figure 4, 5 ).



AKD↓ CSIM↑ M-SSIM↑
Method self cross self cross self cross

pi
tc

h X2Face [1] 1.33 2.76 0.52 0.45 0.81 0.71
Fs-vid2vid[3] 2.36 4.07 0.35 0.32 0.62 0.53

FOMM [4] 1.18 1.90 0.49 0.48 0.81 0.74
ICFace [16] 8.61 8.45 0.31 0.32 0.49 0.48

ya
w

X2Face [1] 1.13 3.03 0.78 0.68 0.79 0.69
Fs-vid2vid [3] 2.36 4.07 0.18 0.21 0.69 0.61

FOMM [4] 0.75 1.82 0.84 0.67 0.81 0.74
ICFace [16] 10.75 10.89 0.30 0.37 0.47 0.47

pi
tc

h-
ya

w X2Face [1] 3.14 4.29 0.75 0.68 0.70 0.64
Fs-vid2vid [3] 7.90 9.18 0.19 0.21 0.51 0.48

FOMM [4] 1.90 2.27 0.75 0.66 0.77 0.70
ICFace [16] 14.90 15.16 0.34 0.37 0.42 0.41

Table 1: Evaluation result for the self and cross-reenactment
over the pitch, yaw, and combination of pitch and yaw axis.
Upward/downward pointing arrows correspond to metrics
that are better when the values are higher/lower.

Fig. 4: A few example images from identity A being self-
reenacted and cross-reenacted by identity B during head rota-
tion around the yaw axis.

Method AKD↓ CSIM ↑ SSIM ↑
X2Face 0.75 0.48 0.65
Fs-vid2vid N/A 0.41 0.67
FOMM 0.44 0.61 0.75
ICFace 1.71 0.30 0.54

Table 2: The evaluation results of self-reenactment setting on
VoxCeleb2 dataset [18, 9].

In figure 4, we present a detailed analysis of the errors
associated with four different face reenactment methods,
thereby highlighting their respective sensitivities to changes
in head poses relative to the initial frontal pose. This ex-
amination allows for a more comprehensive understanding
of the comparative performance of these methods. As can
be seen, the four deepfake methods produce animated faces
close to each other, near the frontal head position. Thereafter,
it is difficult to tell from the frontal head position how much
the results of deepfake generators differ. The metrics error
for X2Face, Fs-vid2vid and ICFace are low until a certain

critical viewing radius (5 degrees) and, after that, increase
sharply. However, the curve corresponding to the FOMM
method shows that rotating the head by 5 degrees around the
combination of pitch and yaw axis produces roughly the same
error as rotating the head by 30 degrees.

Fig. 5: The AKD and M-SSIM scores per frame are shown
for four different reenactment methods: FOMM, X2Face, Fs-
vid2vid, and ICFace. The scores are plotted for head rotations
around the pitch (first row), yaw (second row), and a combi-
nation of pitch and yaw-axis (third row).

5. CONCLUSION

This paper introduces a protocol for the objective evaluation
of face reenactment methods when the source and driving
identities differ (cross-reenactment). To accomplish this, we
utilize a 3D head model to generate video sequences in which
the head is rotated towards a desired axis. The head pose is
precisely controlled and known for each frame of the video.
Four publicly available models were examined to determine
their ability to replicate head movements. The results show
that replicating the rotation around a combination of pitch and
yaw axis is a more difficult task for the reenactment models,
as evidenced by the higher error values observed in this sce-
nario.
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