
Eliminating Vulnerabilities by Disabling Unwanted Functionality
in Binary Programs

Mohamad Mansouri
EURECOM
France

Jun Xu
University of Utah

USA

Georgios Portokalidis
Stevents Institute of Technology

USA

Abstract

Driven by application diversification and market needs, software
systems are integrating new features rapidly. However, this “fea-
ture creep” can compromise software security, as more code carries
the risk of more vulnerabilities. This paper presents a system for
disabling features activated by common input types, using a com-
ponent called F-detector to detect feature-associated program
control flow branches. The system includes a second component
called F-blocker to disable features without disrupting application
continuity. It does so by treating unwanted features as unexpected
errors and leveraging error virtualization to recover execution, by
redirecting it to appropriate existing error handling code. We imple-
mented and evaluated the system on the Linux platform using 145
features from 9 programs, and results show that it can detect and
disable all features with few errors, hence, outperforming previous
works in terms of vulnerability mitigation through debloating.

CCS Concepts

• Security and privacy→ Software and application security;
Vulnerability management.

Keywords

Feature removal, tracing, binary analysis, vulnerability removal
ACM Reference Format:

Mohamad Mansouri, Jun Xu, and Georgios Portokalidis. 2023. Eliminating
Vulnerabilities by Disabling Unwanted Functionality in Binary Programs. In
Proceedings of 18th ACM ASIA Conference on Computer and Communications

Security (ASIACCS’23). ACM, New York, NY, USA, 15 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 Introduction

Software is continuously growing in terms of functionality and size.
This observation led Microsoft’s Nathan Myhrvold to define his
First Law of Software, stating that “software is a gas” because “it
expands to fit the container it is in” [22]. However, many users do
not use a significant part of the available functionality [37]. We
can view this unused set of features as “bloat,” which unnecessarily
decreases the security and stability of software. In fact, code size
and complexity has been linked to bugs by multiple studies [16, 43]
and serious vulnerabilities [39] have been discovered in rarely used
features. Eliminating feature bloat improves security because it
eliminates unnecessary code that may contain known and unknown
vulnerabilities.

Many previous works [5, 7, 10, 14, 18, 27, 30, 34, 38] have focused
on greedily removing all unused features. They rely on test cases

ASIACCS’23, July 10–14, 2023, Melbourne, Australia

2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

covering part of required functionality to identify the correspond-
ing code and retain it, while erasing all other code, which may
result in the unintentional removal of required code that was not
covered by the test cases, such as environment-, configuration-, and
error-handling code. However, debloating can also be done by only
eliminating specific unwanted features, which has a lower chance of
erroneously removing required code. Landsborough et al. [19] pro-
pose a strategy that uses execution traces collected with unwanted
features to erase related code. Unfortunately, this approach relies
on the availability of complete test suites for unwanted features
and is limited to small, utilities (e.g., sha1sum).

In this paper, we present a system for disabling unwanted features
in binary applications without the above limitations. The system
comprises two major components. F-detector implements a new
method for detecting a key control-flow branch in the application
that corresponds to the activation of an unwanted feature. Prevent-
ing the traversal of that branch, makes the code implementing the
feature unreachable and neutralizes any vulnerabilities contained
within. F-detector operates in a semi-automatic way without re-
lying on the program’s source code. Users provide a small set of
inputs that activate the unwanted features and then follow our
guidelines to minimally mutate the inputs for generating new ones
that avoid the unwanted feature. To detect the feature-activating
branch, F-detector uses execution traces from both user-provided
andmutation-produced inputs, in combination with information ob-
tained through static analysis of the application’s binary. F-blocker
models the unwanted feature as an unanticipated fault and bor-
rows concepts from software dependability research to handle it
gracefully. Technically, F-blocker uses the output of F-detector
and dynamic information to first select a function that can work as
a rescue point, i.e., a location where execution can rollback and an
error can be raised to activate built-in error handling. F-blocker’s
run time deploys the rescue point, so once the feature entrance is
hit, state is rolled back and a valid error code returned.

This work is not the first to target feature removal, but it brings
several unique, widely desired advantages. First, it only requires a
few inputs and some basic understanding of target-software fea-
tures (readily available in manuals) to minimally mutate them,
decreasing the burden placed upon and required expertise of users.
Second, it only disables a single control flow edge, which is more
tractable than finding all the code blocks corresponding to a feature
and reduces the potential of side effects to other functionality. Third,
it can handle different type of programs and features, including
features activated by network requests, graphical user interfaces
(GUI), file formats, command-line arguments, etc. Finally, it ensures
the survival of the application, which is crucial for server programs
and larger client applications where crashes can cause data loss.

We have implemented prototypes of F-detector and F-blocker,
which we evaluated using 145 features from 9 applications. To our

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

Application code

Neutralized vulnerabilities

xx
Unknown vulnerabilities

Other functionalityRequired functionality

Figure 1: Eliminating vulnerabilities through debloating.

Other functionalityApplication code

Unknown vulnerabilities

Required functionality
Test cases
coverage

Disabled functionality

Over-debloating Under-debloating

Figure 2: Debloating based on retaining wanted functionality.

knowledge, this is the most extensive experimental evaluation of
a system removing unwanted features, where the results are also
manually verified. The system was able to detect the correct feature
entrance for most of the tested features, regardless of inputs and
mutations. Only when handling a small set number of features in
BusyBox, did it present errors because we intentionally explored all
mutations without strictly following our guidelines. In addition, our
system disables 6 known vulnerabilities rooted within the tested
features.

In summary, we make the following contributions:
• We define an algorithm for automatically identifying the control-
flow edge in a program that dominates a targeted feature, based
on dynamically profiling an application with user-selected in-
puts and static analysis of its binary, which we implement in
F-detector.

• We define a set of guidelines to assist users in selecting the inputs
to profile the application.

• We develop an algorithm for automatically defining the self-
healing primitives (i.e., rescue points) to disable features while
maintaining the continuity of normal service, which we imple-
ment in F-blocker.

• We evaluate the two components using 9 applications and 145
features with 6 associated vulnerabilities (CVEs). Our results
show that it can disable all features and insulate the application
from the vulnerabilities.

• We compare F-detectorwith the current state-of-the-art system,
Razor [27], and we find that F-detector is better at disabling
specific features, which leads to the mitigation of more vulnera-
bilities.

2 Background and Motivation

2.1 Improving Security through Debloating

By disabling undesired functionality during execution, we can neu-
tralize both known and unknown (i.e., zero-day) vulnerabilities, as
shown in Fig. 1. Ideally, one can disable unwanted features during
compilation before installation. For example, Debian GNU/Linux
offers various versions of the popular Vim editor, with vim-tiny

including only about 12 features compared to the full version’s
100+. To handle applications that lack such options, recent research
has proposed automatically disabling (i.e., debloating) software by
either eliminating all but required functionality or disabling specific
unwanted features.

2.2 Different Debloating Strategies

RetainingWanted Functionality Research [5, 7, 10, 14, 18, 27, 30,
34, 38] in this direction involves the profiling of applications by uti-
lizing test cases to discern essential functionality from non-essential
one and erasing or disabling the latter. Their main advantage is the
removal of significant code and vulnerabilities.
DisablingUnwanted Functionality Several alternative approaches
focus on specific undesired functionality. Some rely on users iden-
tifying functions crucial to the desired feature and then employing
dynamic and static analysis to eliminate the associated code [15]
or blocking its execution [4]. Another technique relies on run-
time profiling to identify the code activated when running with
unwanted-feature inputs and then overwriting it with no-op (nop)
instructions [19].

Table 1: Evaluating Razor with Coreutils. indicates we

discovered a problem and # that we did not.

bz
ip

2-
1.

0.
5

ch
ow

n-
8.

2

da
te

-8
.2

1

gr
ep

-2
.1

9

gz
ip

-1
.2

.4

mk
di

r-
5.

2.
1

rm
-8

.4

so
rt

-8
.1

6

ta
r-

1.
14

un
iq

-8
.1

6

Over-debloating # # # # # # #

Under-debloating # # # # #

2.3 Retaining vs. Disabling Functionality

Two problems affect debloated applications:
Over-debloating – This issue arises when code associated with
necessary functionality is mistakenly disabled. Consequently, the
application fails to operate correctly when debloated code paths
are activated.
Under-debloating – This problem occurs when some unwanted
functionality remains in the program, creating a false sense of
security. For example, users may assume that a newly discov-
ered vulnerability does not affect them because the corresponding
feature has been disabled. However, some code, including the
vulnerable code, remains in the application.
For instance, a recent study [27] has found that Chisel [10],

a debloating system based on reinforcement learning, is suscep-
tible to over-debloating. In extreme cases, the system may even
remove necessary checks, introducing new vulnerabilities. The
same study introduced Razor [27], a system which instead uses a
set of heuristics to determine all the code associated with wanted
functionality. However, our experiments with the prototype made
publicly available by the authors confirm that Razor may also
lead to both over- and under-debloating. Table 1 summarizes our
findings, where we use the original paper’s train and test inputs
to detect over-debloating and new test inputs that correspond to
unwanted features to identify under-debloating.

The problems of debloating based on wanted functionality are
rooted in the fundamental challenge of obtaining perfect inputs
that cover all the code required by desired functionality. As a result,
trying to remove large amounts of code leads to errors like over-
debloating in practice. In contrast, disabling unwanted functionality

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

only requires minimal code trimming and it intuitively reduces the
chance of over-debloating. Additionally, recent research [4, 15]
suggests that disabling a small but crucial piece of code for the
execution of a feature can avoid under-debloating. Therefore, we
postulate that disabling unwanted functionality is a more principled
approach for avoiding both these problems.

2.4 Limitations of Existing Solutions

Current solutions [4, 15] to disabling unwanted functionality have
two main limitations. Firstly, they require manual annotation or
comprehension of the implementation to detect code constructs
associated with features, making them difficult or even impossible
to apply on binaries, and too intricate for non-developers. Secondly,
they typically stop unwanted functionality by simply terminating
execution (e.g., by replacing unwanted code with an invalid instruc-
tion [19]), which is not suitable for servers or applications where
data loss could occur when an unwanted feature is used (e.g., image
editing applications). Our paper aims to address these limitations
and provide a novel solution for removing unwanted functionality.

3 Design Overview

3.1 Key Insight and High-level Idea

Our primary observation is that program functionality, given that
it is not always executed independently of the input, is frequently
initiated or regulated by a control-flow branch. Conditional branches
are often utilized to establish state variables that control some
functionality. In the example depicted in Fig.3, the branch from
line 8 to 9 is only executed for HTTP requests utilizing the PUT
method. The request’s state update on line 9, later leads to the
execution of PUT-related functionality in Nginx. Hence, disabling
this edge, e.g., by redirecting it to an aborting instruction, would
disable support for the PUTmethod inNginxwithout requiring the
identification of all code blocks used in its implementation. Indirect
branches, such as indirect calls, represent another popular way for
activating functionality. Usually, code before the indirect branch
points a function pointer to the code implementing the required
functionality, which is then later called using that function pointer.
For example, to process an image in the ImageMagick viewer and
editor, the appropriate module is invoked through a dispatch table,
which contains one function pointer per image type (see Listing 1
in the appendix).

We build on the above observations to accomplish our objective
of disabling unwanted features (F) in binaries. The approach en-
tails identifying the first control-flow edge, which we term feature-

specific edge (FS-edge), that regulates an undesirable feature and
blocking it. Analogous to previous studies [4, 15], we concentrate on
deactivating functionality that is not always executed but, instead,
requires specific inputs for activation. To provide clarity regarding
our scope, we consider any data that can be utilized by the program
as inputs. Particularly, we focus on the following inputs whose

value corresponds to distinct features: command-line options,
network-protocol and file-format fields, configuration variables
stored in files, shell environment variables, and GUI element clicks.
In the remainder of this paper, inputs that lead to the activation of
an unwanted feature F are denoted as 𝐼F , whereas other inputs
are referred to as ¬𝐼F .

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

switch (p - m) { /* p - m equals the length of the HTTP method string */

... /* other switch cases (omitted) */

case 3:

if (ngx_str3_cmp(m, 'G', 'E', 'T', ' ')) {

r->method = NGX_HTTP_GET;

break;

}

if (ngx_str3_cmp(m, 'P', 'U', 'T', ' ')) {

r->method = NGX_HTTP_PUT;

break;

}

break;

...

}

...

return NGX_HTTP_PARSE_INVALID_REQUEST;

...

GET method
PUT method
GET & PUT common
Others

Execution flow

ngx_int_t ngx_http_parse_request_line(...)

Figure 3: Code snippet from the HTTP method parser of Ng-

inx v1.3.9 for checking the method of a request. The edge

8 → 9 controls the activation of the PUT-method functional-

ity, which in this instance, is an unwanted feature.

3.2 F-detector: Disabling Unwanted Features

To detect the FS-edge corresponding to an unwanted feature, we
develop F-detector. F-detector introduces a set of heuristics to
identify the FS-edge that can disable F in binary programs. The
heuristics operate on both statically and dynamically collected data,
such as the program’s control-flow graph (CFG) and execution
traces. Figure 4 highlights its design.
Preparing Test Cases We collect execution traces using test cases
from two groups: 𝐼F and ¬𝐼F . By analyzing the differences between
the two groups, we can greatly reduce the search space for the FS-
edge, as it is bound to be an edge that behaved differently based
on the test case group. However, as prior works have cautioned
us, randomly selecting test cases can lead to problems. Through
experimentation, we found that the edge search space tends to
become smaller, when inputs in 𝐼F and ¬𝐼F are similar.

We incorporate the above finding in F-detector by introducing
a set of guidelines for selecting ¬𝐼F test cases based on 𝐼F , through
minimal mutation M(). It involves making small, directed changes
to key parts of the input. For instance, assuming 𝐼F includes the
HTTP request <PUT /test.html HTTP/1.1> to activate the un-
wanted PUT method from Fig. 3, our minimal-mutation strategy
dictates that we should only replace the PUT field with other valid
options to generate ¬𝐼F , such as <GET /test.html HTTP/1.1>
and <POST /test.html HTTP/1.1>. We have also developed sim-
ilar guides for applying this strategy on the other types of inputs
that F-detector handles, summarized in Table 2. Moreover, we use
this process to produce multiple different sets of ¬𝐼F , allowing us
to apply the detection algorithm multiple times. Different ¬𝐼F can
produce divergent execution traces, which help us avoid debloating
errors.
Detecting FS-edges The detection process is applied on each pair
of 𝐼F (one) - ¬𝐼F (multiple) traces and includes the following steps:

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

Edge selection

Jump-table heuristic
Indirect-call heuristic

Cond.-branch heuristic

F-DETECTOR

FS-edge

BINBINBIN

Application

¬I𝓕𝑢

Other
test cases

¬I𝓕𝑢¬I𝓕

𝓜(•)

CFG extraction

IDA

Trace processing

Normalize
Diff

Filter
Trace collection

Pin

Majority
voting

I𝓕

Feature
test cases

Call-trace
extraction

Pin

Self-healing
system

Reassure
Assure

RP generation

CFG extraction (IDA)
Return value analysis
Dominance analysis

Error-code detection

Fault injection (Pin)

I𝓕

BINBINBIN

RP

F-BLOCKER

Figure 4: Approach overview. Given a set of test cases, including both 𝐼F and ¬𝐼F inputs, F-detector attempts to detect the

control-flow edge (FS-edge) responsible for activating a targeted unwanted feature F . F-blocker generates a rescue points (RP)

for an FS-edge, which can be used by a software self-healing system to disable F without affecting survivability.

❶ keep edges taken with all test cases in 𝐼F but never with ¬𝐼F ,
to focus on F without avoid affecting other features;
❷ eliminate edges from utility functions like strcmp in libc that
support a wide-range of features;
❸ discard edges that do not uniquely control the execution of their
destination, e.g., conditional branches (cbr) leading to code that
is also reachable through other paths. Similar heuristics apply for
other types of edges (§4) to avoid affecting other features. The
remaining edges are considered FS-edge candidates;
❹ select the earliest candidate FS-edge in the trace to block all
feature-related code. If the edge is part of a chain of cbr-based
candidates, pick the deepest one instead to accommodate com-
plex condition checks, where the shallower checks control feature
groups and the deeper ones control individual features.

How does our algorithm work with the example in Fig. 3? If the
PUT method is unwanted, 𝐼F will include a PUT-method request
and we can use a GET-method request as ¬𝐼F . The execution traces
collected will include the following conditional branches:

PUT: 1 → 3, 4 → 8 → 9, 10 → 14
GET: 1 → 3, 4 → 5, 6 → 14

Our algorithmwill exclude 1 → 3, 4, following❶, and 9, 10 → 14,
following ❸. Edge 3, 4 → 8 is initially picked because it is the
earliest in the trace. Finally, we decide that the FS-edge is 8 → 9, as
it is chained after 3, 4 → 8. Blocking this edge off can disable the
PUT method without hurting any other.

The algorithm is robust and will still work if a different method
like POST is used in ¬𝐼F . In that case, the switch would jump
into another location, not shown in the figure. 1 → 3, 4 would be
initially picked due to ❷-❹. Finally, ❹ would pick edge 8 → 9
because it is the last edge in a chain of valid conditional branches.
Majority Voting on FS-edge F-detector incorporates another
mechanism, majority voting, to mitigate potential errors in FS-edge

detection caused by noise in the execution traces. For example,
if ¬𝐼F is significantly different from the corresponding 𝐼F it was
derived from. By producing multiple FS-edges, using different ¬𝐼F
sets, we can pick the most frequently detected FS-edge. F-detector
can also refuse to emit an FS-edge, if multiple candidates are found,
to avoid the over- and under-debloating issues described in §2.
However, the FS-edge candidates could still be used to guide analysts
and help them discover the correct FS-edge manually.

3.3 F-blocker: Exploring Survivability

Given an FS-edge, we can disable F by overwriting the FS-edge’s
destination with a single-byte instruction, like int3, when travers-
ing the edge. This approach is more robust than overwriting large
sections of code but may still result in data loss. How can we provide

continuity of service when the disabled functionality is triggered? To
address this, we leverage techniques from software self-healing [36].
Specifically, we introduce rescue points (RP), functions that return
an error code handled by the application. When an unwanted fea-
ture activates, we raise a virtual error, restore execution state to an
appropriate RP, and return a valid error code, which will be handled
gracefully. F-blocker uses analyses to find a suitable RP. This can
then be used with existing self-healing systems like ASSURE [36]
and REASSURE [26].

In the example of Fig. 3, the unwanted feature (PUT method) is
contained in ngx_http_parse_request_line(), which we can
use as a RP. Upon entry to the RP, a checkpoint of the process
or system state is created. Traversing the FS-edge (8 → 9) will
trigger a fault, causing a rollback to the checkpoint state. Finally,
the RP will return with the valid error code NGX_HTTP_PARSE_-
INVALID_REQUEST to its caller so thatNginx can keep operating. If
the FS-edge is not hit, the checkpoint state is released upon return.

4 F-detector

Figure 4 shows an overview of F-detector. To disable a given
feature F , it requires three inputs: application binaries, a set of
test cases 𝐼F that activate F , and multiple sets of ¬𝐼F produced
by minimally altering 𝐼F , that do not activate F . F-detector then
uses these inputs to determine multiple FS-edge candidates, one
for each ¬𝐼F . It then uses majority voting among the candidates
to select a single FS-edge. The rest of this section describes each
component of F-detector in detail.

4.1 Minimal Mutation of Feature Inputs 𝐼F
F-detector needs both inputs that trigger an unwanted feature (𝐼F)
and inputs that do not (¬𝐼F) for tracing. Users can prepare 𝐼F by
selecting a small set of random test cases that activate the unwanted
feature. To prepare ¬𝐼F , a practical approach is tominimally mutate

𝐼F to prevent F from activating. Users need to provide only a few
mutations of 𝐼F (as few as three mutations based on experiments

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

Table 2: Minimal-mutation guidelines summary for generating ¬𝐼F based on 𝐼F and input type. The user will typically pick one

type of mutation depending on the type of the feature.

F Activation Method Example Test Case (𝐼F) Guideline Example Results (¬𝐼F)
Command-line option zip f.zip file -T -TT=val Replace option -TT →{-UN, -bs, -Z, . . . }
Protocol field PUT /test.html HTTP/1.1 Replace keyword PUT →{GET, POST, . . . }
File format display im.gif Convert file im.gif →{im.jpg, im.png, . . . }
Configuration variable perl_startup = do ’/etc/ex.pl’ Remove option
Environment variable env x=’() { :;};’ Change assignment ’() { :;};’ →{’ ’, 1, . . . }
GUI actions Click on action 𝐴𝑓 under menu𝑀𝑗 Replace with action under𝑀𝑗 𝐴𝑓 →{ 𝐴𝑖 , for 𝑖 ≠ 𝑓 }

in §6). For example, to disable the HTTP PUT method in Nginx
(Fig. 3), users can create a single PUT request using a utility like
curl. They can then replace the method passed to the utility with
other valid methods to generate 𝐼F as follows:

curl -X PUT http://localhost/file
↓

curl -X POST http://localhost/file
curl -X MOVE http://localhost/file
curl -X DELETE http://localhost/file

We established guidelines on how popular input types handled
by F-detector can be minimally mutated by analyzing how vari-
ous applications handle them. These guidelines are summarized in
Table 2 and described in detail below:
Command-line options In command-line programs, options are
frequently employed to activate specific functionalities. Usually,
a parser processes them and updates the program’s state, e.g.,
by setting a variable. We can generate at least two test cases
in 𝐼F by using both short and long versions of an option (e.g.,
-R and --recursive in chown), when available. We minimally
mutate them by replacing them with other similar options without
modifying anything else, allowing for easy generation of multiple
sets of ¬𝐼F .
Protocol fields Many server features are activated based on the
protocol field values in received requests (e.g., the PUT method in
HTTP). We minimally mutate the single-input 𝐼F by replacing the
protocol field with other valid values to generate multiple ¬𝐼F .
We avoid modifications to the common parts of the request, unless
they are mandated by the new field value.
File formats Applications handling various file types activate func-
tionality based on file format or specific fields within it. For exam-
ple, image viewer applications support multiple image file types
and each of them could be considered as a separate feature. In
𝐼F , we can include one or more files of the unwanted format,
and minimally mutate them by converting them to other formats.
Depending on the format and conversion capabilities, we can
generate multiple ¬𝐼F test cases for each 𝐼F .
Configuration variables Variables in configuration files can also
control the use of a feature. For instance, the variable perl_at_-
start enables the Perl interpreter in the Exim mailer and runs
the script assigned to the variable. We minimally mutate 𝐼F to
(multiple) ¬𝐼F by removing the variable, or replacing the value
assigned to it with other valid options.
Environment variables Can be treated similarly to the above.
GUI actions In GUI applications, user actions like keystrokes or
mouse clicks trigger features. Usually, through a a callback from

the graphical framework in-use into application code implement-
ing the requested functionality. 𝐼F should include inputs corre-
sponding to various activation methods, like clicking on a menu
item and using its shortcut. We minimally mutate menu-item
clicks by clicking on a different item under the same menu and
use a different keyboard shortcut for shortcuts. We can easily
generate different sets of ¬𝐼F for most GUI applications as they
usually include numerous actions.

4.2 Execution-Trace Collection and Processing

F-detector captures execution traces of the application, including
the addresses of executed basic blocks (BBLs), which are sequences
of instructions ending in a control-transfer instruction. By compar-
ing 𝐼F and ¬𝐼F traces, we aim to identify a small set of control-flow
edges, including the FS-edge, that satisfy two conditions: they are
present in every 𝐼F trace and never in any ¬𝐼F trace.
Trace Normalization Traces may have multiple sub-traces, one
for each thread of execution, identified by the thread ID 𝑡𝑖𝑑 . The
traces are normalized by recording the unique control-flow transi-
tions of each sub-trace as a source–destination pair of BBLs (𝑠𝑟𝑐-
𝑑𝑠𝑡). The position (𝑝𝑜𝑠) and the number of appearances (𝑛𝑢𝑚)
of each BBL in the sub-trace are also included. The normalized
traces are merged into a single trace with tuples in the form of
(𝑠𝑟𝑐, 𝑑𝑠𝑡, 𝑡𝑖𝑑, 𝑝𝑜𝑠, 𝑛𝑢𝑚), representing unique edges across threads.
𝑡𝑖𝑑 , 𝑝𝑜𝑠 , and 𝑛𝑢𝑚 correspond to those of the thread sub-trace in
which they first appeared. We refer to the normalized traces as
profiles in the rest of this section.
Profile Diffing To obtain a set of control-flow edges that includes
the desired FS-edge, we compare the collected profiles. We start
by generating set 𝐶 as the intersection of all (𝑠𝑟𝑐, 𝑑𝑠𝑡) pairs in 𝐼F
profiles, which represents the CFG edges consistently taken in all
executions where the feature is activated. We then generate set 𝐸
as the union of all edges in ¬𝐼F profiles. Subtracting 𝐸 from𝐶 gives
us a set of edges that do not appear in ¬𝐼F profiles.
Utility-Function Filtering Applications often rely on utility func-
tions, such as string-comparison functions, from libraries such as
libc. These functions are typically not directly related to any F ,
so the FS-edge is unlikely to be located within them. Therefore,
we filter out ranges that correspond to utility libraries, including
user-configured libraries, to exclude such edges. We also eliminate
built-in utility functions, which are called frequently even for basic
workloads, by discarding edges that occur multiple times. For in-
stance, in the ImageMagick application, CopyMagickString() is
called multiple times and contains a loop that causes internal edges
to appear multiple times, leading to their exclusion.

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

4.3 FS-Edge Detection

We use the heuristics identified in the previous stage to detect
the FS-edge based on how programs usually activate functionality.
This overcomes the limitation of working with traces obtained
with few inputs, which may contain edges associated with other
functionality besides F . We group consecutively executed edges
into packs, where each pack contains edges where the destination
BBL of the first edge is the source BBL of the second. We search
for the earliest pack containing an FS-edge based on our heuristics,
going over packs in order from earlier to later executed edges. This
method exploits the fact that FS-edge usually appear early in the
diffed executions with 𝐼F and ¬𝐼F .
DetectionHeuristics FS-edges correspond to conditional program
control flows, where F -related code is executed conditionally to
input. C and C++ programs use three common mechanisms to
implement such logic:
• if-then-else statements: in binary code, they are implemented
by a conditional branch (cbr) instruction, like je in x86 binaries.

• switch statements: they can be implemented either as a se-
quence of cbr or using an indirect jump (ijmp) instruction (e.g.,
jmp rax in x86) using pointers from a compiler-generated jump
table, containing one entry per switch case.

• Function pointers: they are implemented as indirect calls (icall)
or jumps (ijmp), often using a developer-provided function table.
We have developed three heuristics based on the above con-

structs, which we apply on each pack of edges. If no FS-edge is
detected, we proceed to the next pack, and if none are left we emit
no FS-edge. Our heuristics are the following:
(i) Jump-table heuristic: when an ijmp corresponds to a switch

jump table, we treat it as a cbr. This targets applications us-
ing a switch statement to conditionally activate F via a jump
table. Our example in Fig.3 contains one such switch (line 1)
to check different method-string lengths. We use the IDA Pro
disassembler[11] to analyze the code and detect jump tables and
their corresponding ijmp.

(ii) Indirect-call heuristic: if the pack starts with an icall or a non-
switch ijmp edge, we select that as FS-edge. The heuristic cap-
tures applications using a dispatch table containing pointers to
functions associated with different features. Listing 1 shows one
such use in the ImageMagick application for loading different
image-format processing modules.

(iii) Conditional-branch heuristic: if the pack starts with a cbr, we con-
sider the application may be using an if-then-else or switch
to activate F . Applications often link multiple BBLs, testing for
increasingly specialized conditions. An example of such a pattern
exists in our Nginx example (Fig.3), where a switch is used to
first test for method-string length (1→3), followed by if-then
statements testing for specific method names (4→8→ 9). To han-
dle such cases, we recursively process all edges in the pack until
a stop condition is reached. If at least one cbr was found before
then, it is returned as FS-edge. The stop conditions are:
• the end of the edge pack is reached;
• a function-call or return edge is encountered, terminating the
chain of cbr;

• an edge to a BBL with multiple incoming edges occurs. This
rule aims to exclude branches that lead to code which could

also be executed through other paths. Such paths may exist,
even if they have not been observed during tracing. For ex-
ample, in Fig. 3 the break on line 10 leads to a jump to the
end of the switch statement, which is also accessible by other
cases. To identify such BBLs, we utilize IDA to statically obtain
the partial CFG of the application and determine if there are
multiple incoming edges. The goal of this rule is to select a
cbr-based FS-edge that uniquely controls the execution of its
destination and avoid under- and over-debloating.

FS-Edge Detection in the Presence of Threads To handle the
challenge of absolute ordering in multi-threaded applications, our
algorithm requires the edges in each profile to be ordered. How-
ever, achieving absolute ordering on multi-core architectures where
threads run in parallel is difficult. To overcome this issue, we apply
our approach to each thread’s profile individually, which may result
in identifying one FS-edge per thread. We assume that the FS-edge
executed first caused the subsequent ones. To select it, we re-run
the application with one of the inputs in 𝐼F while instrumenting it
to record the traversal order of FS-edges.
Majority Voting F-detector applies the FS-edge detection algo-
rithm multiple times with both the 𝐼F set and each of the ¬𝐼F sets,
resulting in several FS-edge candidates. To select one FS-edge, we
have two options: (i) be strict and only consider the FS-edge if all
candidates agree (unanimous decision), or (ii) use majority voting
and select the FS-edge (if any) that the majority of runs produced.
In our evaluation, we use option (ii) as it produces better results.

5 F-blocker

F-blocker automatically defines a rescue point to recover from
unexpected errors when attempting to execute F . This point can
be used with a software self-healing system like ASSURE [36] or
REASSURE [26]. The RP function must satisfy the following criteria:
P1: all possible paths leading to the FS-edge include the function, so
we can always “rescue” the application; P2: the function returns an
error code handled by its callers; P3: it is near the FS-edge to reduce
overhead. Fig. 4 provides an overview of F-blocker’s components,
which are discussed in detail in the following sections.
Call-Trace Extraction We run the application using the 𝐼F inputs
used by F-detector, recording function caller-callee pairs, function
returns and potential return values, active memory mappings upon
return, system calls and their return values. Upon hitting the FS-
edge, we also record the call stack at that point and terminate the
run.

5.1 Rescue-Point Generation

Dominance Analysis To satisfy P1, the RP must be one of the
functions in the call stack obtained in the first step. To identify
eligible functions, we extract the application’s CFG to examine
their relations. Functions that dominate the one containing the
FS-edge (meaning all execution paths go through them) are RP
candidates. If a function in the call stack is address taken (AT),
meaning the program has a reference to it, we instead rely on
call-trace data to assign callers (usually one) based on run-time
observations. Although this may underestimate callers, if one of
the callers of an AT function is eventually chosen as an RP, manual
analysis can be used to verify that P1 is satisfied before deployment.

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

Return-Value Analysis To satisfy P2, we need to automatically
determine whether the eligible functions (i) return a value (i.e., not
void), (ii) which values are associated with errors, and (iii) whether
these errors are handled by the application. Binary applications
use calling conventions, such as using the EAX/RAX registers in x86
architectures to return values. We conduct a static analysis of the
application to determine (i) and (iii) as follows:
• For functions that are not address-taken, we analyze all their
callers to determine whether EAX/RAX is used before being set,
right after a call returns, indicating the value is not ignored.

• For AT functions, since we cannot discover all callers, we instead
use the callee’s code. Specifically, we examine if every execution
path within the function sets EAX/RAX without using its value be-
fore returning, which indicates that the function always returns
a value.
To establish return values indicating errors, previous research

relied on static analysis [12, 42]. However, these approaches can
undermine the safety of our system, so instead we opt for a dynamic

approach, which is inspired by two observations. Functions that
return pointers often return NULL to indicate an error, and functions
that issue system calls often test and return an error code to their
callers. Based on these observations and the values we observe
during tracing, we treat a return value as a pointer and NULL a
valid error code, if it lies in the address range of mapped memory.
Otherwise, we assume that the function returns integers and use
the method below to determine error codes.
Error-Code Detection To detect error codes for functions that
return integers and make system calls, we use fault injection at the
system call level. Specifically, we re-run the application with 𝐼F
and deliberately fail all system calls in the target function. If the
return value changes compared to the previous run, we consider
this new value as an error code.

ngx_int_t ngx_http_parse_request_line(...) {
... /* error retval = { ?? } */

int3 r->method = NGX_HTTP_PUT;

...

void ngx_process_events_and_timers(..)

void ngx_http_process_request_line(...)
void ngx_http_init_request(...)

ngx_int_t ngx_epoll_process_events(...) /* error retval = { -1 } */

RP

Figure 5: Rescue Point for Disabling Nginx’s PUT method.

RP Selection After collecting all functions that satisfy P1 and P2,
we choose the one closest to the FS-edge and its associated error
code, which becomes the rescue point (RP). For instance, to disable
Nginx’s PUT method, F-blocker selects function ngx_epoll_-
process_events and return value -1 as the rescue point, as shown
in Fig. 5. This function satisfies all three properties (P1-P3). Al-
though ngx_http_parse_request_line would be the ideal RP,
it does not make any system calls, which prevents us from inferring
the return value used to indicate an error to its callers.

6 Implementation and Evaluation

Our system is implemented∗ on top of Intel’s Pin [20] and IDA
Pro [11] using ≈4K lines of C++ code and 700 lines of Python

∗Publicly available on https://github.com/MohamadMansouri/feature-disable.

Table 3: Successfully disabled features inRazor’s benchmark

suite (coreutils) without over or under-debloating.

Application Wanted Features Unwanted Features

bzip2-1.0.5 –compress –decompress, –test

chown-8.2 –recursive,
–no-dereference

–changes, –no-preserve-root,
–verbose, –from, –reference

date-8.21 +%c, +%d, +%D, +%F, +9
more

+%A, +%a, +%b, +%B, +6 more

grep-2.19 –regexp,
–extended-regexp

–basic-regexp, –perl-regexp,
–word-regexp, –line-regexp,
+4 more

gzip-1.2.4 –compress –decompress, –test

mkdir-5.2.1 –mode, –parents –verbose

rm-8.4 –recursive, –force,
–interactive

–one-file-system,
–no-preserve-root, –verbose

sort-8.16 –reverse, –unique,
–stable,
–zero-terminated

–ignore-case, –month-sort,
–numeric-sort,
–random-source, +6 more

tar-1.14 –create –list, –extract, –compare,
–append, +3 more

uniq-8.16 –count, –repeated,
–skip-fields, +4 more

–zero-terminated

code. Currently, F-detector supports Linux platforms, but its tools
can be extended for Windows platforms. We evaluate F-detector
to answer the following questions: (i) How does it compare with

Razor in terms of under- and over-debloating? (ii) Can it disable

features in larger and more complex applications? (iii) Can it reduce

the attack surface of software and neutralize vulnerabilities? (iv) Can
bad mutations affect its results? and (v) Can F-blocker provide server
continuity when unwanted features are triggered?

6.1 Comparison with Razor

We test F-detector on the same benchmark programs as Razor
to determine, if we can remove features without similar issues.
We consider the features used to train Razor as wanted features
and, based on them, select some of the excluded ones as unwanted
features to disable (listed in Table 3). We use two mutations for each
unwanted feature and manually verify that the FS-edge detected
fully disables it without affecting any of the wanted features. We
find that F-detector managed to disable all unwanted features
without any over- or under-debloating problems.

6.2 Disabling Features in Larger Applications

We evaluate F-detector’s ability to disable features in larger soft-
ware using 8 popular, real-world Linux applications that span a
wide spectrum of families: servers (Nginx v1.3.9, ProFTPD v1.3.5e,
and Exim v4.86), utilities (Zip v3.0 and Exiv2 v0.27.1.19), GUI ap-
plications (ImageMagick v7.0.9 and Evince v3.22.1), and a shell
(Bash v.4.3). We target 40 prominent features of different types
that (i) correspond to various functionalities and services; (ii) are
activated by different types of inputs (command-line options, files,
network data, environment variables, configurations, and UI clicks);
and (iii) are associated with various types of vulnerabilities.

For each feature, we run two set of experiments using two and
three mutations to establish their effect. In each experiment, we

https://github.com/MohamadMansouri/feature-disable

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

Table 4: Evaluation of F-detectorwith larger applications. All features can be disabled by an FS-edge. TP is the number of tests

where the detected FS-edge fully disables the unwanted feature without hurting other features; FN is the number of tests where

majority cannot be reached and no FS-edge is emitted; FP is the number of tests where the detected FS-edge cannot disable the
unwanted feature or hurts other features. Features with identical results are collapsed into the same row/label.

Application F Type F (Feature)

𝐼F 𝑀 = 2 𝑀 = 3

CVEs

Size TP / FN / FP TP / FN / FP

ImageMagick (7.0.9) GUI button Crop, Chop, Flop, Flip, Rotate, Shear 1 10 / 0 / 0 10 / 0 / 0

Evince (3.22.1) GUI button Print, Open, Save, Copy, Properties 2 6 / 0 / 0 4 / 0 / 0

ImageMagick (7.0.9) Formatted input – file TIFF

2

1,584 / 0 / 0 528 / 0 / 0 2019-13136, 2019-15141
(image file support) PNG 16,068 / 0 / 0 5,356 / 0 / 0

JPEG 9 / 0 / 0 3 / 0 / 0
GIF 55 / 29 / 0 21 / 7 / 0

Nginx (1.3.9) Formatted input – network Chunked Transfer Encoding 1 1 / 0 / 0 — 2013-2028
(HTTP methods and options) GET, MOVE, POST, PUT 3 / 0 / 0 1 / 0 / 0

ProFTPD (1.3.5e) Formatted input – network CHGRP, CHMOD
1

1 / 2 / 0 1 / 0 / 0
(FTP commands) CPTO 1 / 2 / 0 1 / 0 / 0 2015-3306

CPFR 3 / 0 / 0 1 / 0 / 0 2015-3306

Exiv2 (0.27.1.19) Cmd. line option Insert, Remove, Print, Extract, Rename 1 12 / 6 / 0 8 / 4 / 0

Zip (3.0) Cmd. line option -ds, -UN, -b, +5 more 2 28 / 0 / 0 56 / 0 / 0
-TT (unzip command) 28 / 0 / 0 56 / 0 / 0 priviledge escalation [3]

Exim (4.86) Config file & cmd. line option perl_at_start, -ps 2 15 / 0 / 0 20 / 0 / 0 2016-1531

Bash (4.3) Environment variable Function definition (e.g., x="() { :; }") 1 1 / 0 / 0 — 2014-6271

target one feature for removal, mutating it to the other features
listed in Table 4. For instance, for ImageMagick as a command-
line utility, a TIFF image is transformed to the other image types:
tiff →{jpg, png, gif}. We conduct an experiment for each com-
bination of mutations, for example, in this case where there are
three possible mutations and𝑀 = 2, there are 𝐶 (3, 2) = 3 combina-
tions for each 𝐼F . As inputs, we use images from the test suites of
libraries, specifically, we use 33 libTIFF, 104 libpng, 3 libjpeg,
and 3 giflib images. Finally, we use two images in 𝐼F and also
try out all possible combinations images, so for TIFF images we
get 𝐶 (33, 2) = 528 different 𝐼F . The approach is similar for the rest
of the applications, but for inputs we manually click on buttons
activating the targeted feature in GUI applications, we use the same
file while mutating command-line options in Zip and Exiv2, we use
the curl and ftp utilities to interact with Nginx and ProFTPD,
and we simply execute Exim and Bash.

Table 4 lists the applications and features, and summarizes the
results of our experiments. We classify each experiment as a True
Positive (TP), False Positive (FP), True Negative (TN), or False Neg-
ative (FN), with a positive corresponding to F-detector reaching
consensus on an FS-edge. To determine if it is a True or False FS-edge,
we manually inspect application code to verify that the FS-edge de-
tected stops the execution of the feature and it does not affect others.
A FN corresponds to an experiment where F-detector is incon-
clusive (voting did not agree on an FS-edge), while such an edge
exists. A TN corresponds to a feature that cannot be disabled by
an FS-edge and F-blocker correctly does not emit an edge either,
which we did not encounter.
Inconclusive Cases (FN) F-detector was not able to find an
FS-edge with𝑀 = 2 for three applications. We discuss the reasons
below:

ImageMagick Two of the GIF images in the test suite included
animations, which when converted to PNG and TIFF retained
GIF-formatted data. Consequently, ¬𝐼F included inputs that still
activated GIF-related functionality, so ¬𝐼F still used the GIF fea-
ture.
ProFTPD The selected features belonged to two command cat-
egories [40]: Direct File Duplication (CPFR/CPTO) and Owner or

Group Change (CHGRP/CHMOD). The first group are sub-commands
of the SITE command and ProFTPD also parses them as a sub-
group of commands. By using a ¬𝐼F outside the SITE-group of
features to disable a feature within the group, essentially, we are
causing F-detector to target all SITE commands in one of the
mutations.
Exiv2 Exiv2 provides three different ways to activate options. For
example, to insert metadata one can use option insert, in, or
-i. Exiv2 uses a separate parser for dashed options, leading to
a similar grouping problem as ProFTPD. Using all aliases of an
option in 𝐼F would eliminate this issue (more in §7).
Overall, our experiments indicate that F-detector produces

correct results for a variety of applications and features. Increasing
the number of mutations𝑀 also helps resolve all FNs, even in the
cases where inputs are not selected carefully. As an alternative, we
can resort to manual analysis of the candidate FS-edges produced
by F-detector to determine of one of them is correct.

6.3 Security Benefits of Feature Removal

We evaluate F-detector’s vulnerability-mitigation capabilities by
examining known vulnerabilities present in our application set.
CoreUtils For CoreUtils, we use the same vulnerabilities as Razor
(only the ones that affect the utilities) with F-detector/F-blocker
and compare the two. To determine if F-blocker actually mitigates
a vulnerability, we manually analyze applications to validate the

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

reachability of vulnerable code or functionality after blocking the
FS-edge. Table 5 lists the vulnerable feature for each utility and the
results of our evaluation.

Based on the results reported by its authors [27], Razor fails to
mitigate 6 of the 10 vulnerabilities. Note that for Razor a vulnera-
bility is considered mitigated, only if the function containing it is
erased from the binary, even if all the paths leading to it have been
debloated, so it is possible that they under-approximate the vulner-
abilities mitigated. F-blocker is able to mitigate all vulnerabilities
except CVE-2014-9471, which resides in the core functionality of
date and is associated with multiple features. It corresponds to
a denial-of-service vulnerability, where an attacker can provide a
malicious crafted date to crash the program. The vulnerability lies
in function parse_datetime, which is used by many features, like
–date, –file, –TZ, etc., and Razor was also unable to disable it.
We further discuss the mitigated vulnerabilities, organized by type,
below:
Race condition CVE-2017-18018, CVE-2005-1039, and CVE-2015-
1865 are time-of-check, time-of-use (TOCTOU) vulnerabilities that
affect chown, mkdir, and rm, respectively. They are all associated
with particular functionality of these utilities and can be mitigated
by F-blocker by disabling it. Specifically, disabling recursive di-
rectory traversal in chmod and rm, and creating a directory with
specific permissions with mkdir.
Memory corruption CVE-2010-0405, CVE-2015-1345, CVE-2010-
0001, and CVE-2009-2624 are memory-corruption vulnerabilities,
with the first and third introduced by an integer overflow. The vul-
nerabilities are contained within specific functions of the utilities
that are only reachable when certain features are activated, like
decompression for gzip and bzip2, and the –fixed-strings op-
tion in grep. F-blocker is able to mitigate them by disabling these
options. For interested readers, the corresponding functions made
unreachable are: bzip2→BZ2_decompress(), grep→bmexec_-
trans(), gzip→huft_build() and unlzw().
Directory traversal CVE-2005-1228 is a directory traversal vul-
nerability in gzip that allows an attacker to write to arbitrary
directories by using ‘..’ in the filename passed to the –name
option. F-detector disables the –name option in gzip’s parser,
mitigating this vulnerability.
Overall, F-detector and F-blocker can target and disable spe-

cific features by design, unlike Razor which despite erasing more
code, allows vulnerabilities to persist due to the heuristics working
to avoid over-debloating.
Larger Applications We conduct the same experiment for the
CVEs and applications listed in Table 4. We chose these CVEs be-
cause they reside in a specific feature of the applications that we
previously selected. To determine if F-blockermitigates a vulnera-
bility, we performed the same kind of manual analysis we did for the
CoreUtils vulnerabilities. Moreover, we used the proof-of-concept
inputs accompanying the CVEs, which trigger the vulnerable code,
to ensure that we did not falter during the manual analysis, as these
applications are significantly larger. In all cases, F-blocker caused
the application exit, before it reached vulnerable code, mitigating
all vulnerabilities. Below, we further discuss each one:
CVE-2013-2028 The vulnerability is a stack buffer overflow inNg-
inx’s ngx_http_parse_chunked() [32]. This function is called
by the four functions (marked by 1○- 4○ in Listing 5), only when

Table 5: Mitigation of CoreUtils vulnerabilities.

Application CVE Vulnerable Feature Razor F-detector

bzip2-1.0.5 CVE-2010-0405 –decompress, –test ✗ ✓

chown-8.2 CVE-2017-18018 –recursive/-L ✓ ✓

date-8.21 CVE-2014-9471 Multiple ✗ ✗

grep-2.19 CVE-2015-1345 –fixed-strings ✓ ✓

gzip-1.2.4

CVE-2005-1228 –name ✓ ✓

CVE-2009-2624 Type 2 decompression
✗ ✓(dynamic huffman code)

CVE-2010-0001 LZW decompression ✓ ✓

mkdir-5.2.1 CVE-2005-1039 –mode ✗ ✓

rm-8.4 CVE-2015-1865 –recursive ✗ ✓

tar-1.14 CVE-2016-6321 –extract ✗ ✓

r->headers_in.chunked is true. The only location setting that
field to true is the destination basic block of the FS-edge detected
by F-detector (shown in Listing 4).
CVE-2019-13136 and CVE-2019-15141 Both these vulnerability
lie in the libTiff module of ImageMagick. F-detector detects
the FS-edge as an indirect call to RegisterTIFFImage (see List-
ing 1), which loads libTiff at run time, therefore neutralizing
the vulnerability.
CVE-2015-3306 This ProFTPD vulnerability allows unauthenti-
cated users to copy files around on the server using commands
CPFR and CPTO. Since F-blocker can disable both of them, using
the FS-edge in Listing 9, the vulnerability is mitigated.
CVE-2016-1531 This vulnerability allows users to run a Perl script
with elevated privileges, when Exim is installed with setuid on,
by using the perl_startup option. The FS-edge detected blocks
access to the only call site of init_perl, hence, mitigating the
issue (see Listing 7).
CVE-2014-6271 This Bash vulnerability allows arbitrary code
execution through defining a function in an environment variable.
This particular functionality is implemented in initialize_-
shell_variables(), which contains the FS-edge detected by
F-detector (see Listing 8). By blocking the environment-variable
function parser, F-blocker mitigates the issue.
Zip priviledge escalation Zip allows users to replace the
command used to decompress files through the option
–unzip-command/-TT. Thus, running Zipwith elevated privileges
allows attackers to run arbitrary commands. The variable unzip_-
command is only assigned during options parsing, which matches
the FS-edge blocked by F-blocker (see Listing 6).

6.4 Effects of Bad Mutations

To evaluate the effect of mutations, when we have not necessarily
adhered to our minimal mutation guidance, we use BusyBox, a tool
that combines tiny versions of many common UNIX utilities into
a single executable. We evaluate F-detector with each of the 105
features implemented by BusyBox v1.22.0. For each feature, we run
an experiment for each possible combination of mutations, so for
𝑀 = 3 we try 𝐶 = 182104 combinations.

For 100/105 features, F-detector reaches a consensus on the
correct FS-edge in 99.5% (181,104) of the experiments with three

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

mutations. The FS-edge is routed on the same instruction because
it corresponds to an icall to the function implementing the un-
wanted applet.

However, we encounter significant errors (≈99%) when trying
to disable the remaining five features. These correspond to the
following applets: ping, traceroute, ping6, traceroute6, and
crontab. Features are grouped into two groups (100|5), based on
whether they need to drop SUID privileges. As a result, when trying
to disable the five that do not drop privileges, using mutations from
the other set (the vast majority of features), F-detector ends up
disabling the keep or drop SUID feature. Increasing the number
of mutations will help detect these cases. However, in the case of
BusyBox, the vast majority of selected mutations are problametic.
Thus, we need to run with more than 100 mutations (this will
include at least one of the correct mutation) to detect the error.

Alternatively, a better strategy is to only mutate to similar ap-
plets, e.g., file-utilities to file-utilities, network-utilities to network-
utilities and so on. Selecting mutations more carefully can signifi-
cantly reduce errors, if not eradicate them. This experiment shows
that consulting manuals and having some familiarity with the soft-
ware being debloated is important. This is a reasonable expectation
for system administrators and similar roles.

6.5 Continuity of Service after Feature Removal

We finally tested whether F-blocker can maintain the continuity of
server programs using the generated rescue points with an existing
software-self healing system, namely REASSURE [26]. REASSURE,
which was made available to us by its authors, implements rescue
points over Pin, using log-based checkpoint and rollback. While
it is limited in terms of performance and scope of checkpoints, it
enabled us to verify the effectiveness of the generated RPs.

We applied F-blocker on the FS-edge detected for Nginx’s
PUT method (other methods can be handled similarly) and for
ProFTPD’s CPFT command. The RP for Nginx is on function ngx_-
epoll_process_events and returns an error value of -1, while
for ProFTPD it is on function copy_cpfr and it returns a NULL
error value. In both cases, when deploying the RPs the fault trig-
gered by the FS-edges is correctly virtualized allowing the services
to continue processing requests. In particular:
• ProFTPD returns error code 500 to the client that issued the in-
valid command, along with a message that the command cannot
be interpreted, and continues accepting new connections.

• Nginx stops processing the request and returns to the main
serving loop. The user does not receive an error message, but its
connection is terminated.
For reference, we list all the RPs generated by F-blocker for all

tested applications in Table 6 in the appendix.

7 Limitations and Future Work

Command-line option aliases Command-line utilities usually
take various options to customize their operation and access dif-
ferent features. On Linux, options have a short (‘-’ prefix) and
long form (‘--’ prefix), for instance, chown -R is equivalent to
chown --recursive. F-detectormethods attempt to capture op-
tion activation at the parsing staging to disable them before any
feature code is run. Other utilities may provide more aliases for an

option, for example, Exiv2 provides three different ways to activate
options: exiv2 insert, exiv2 in, and exiv2 -i a are all equiv-
alent. The unique aspect of Exiv2 is that it uses two separate parser
routines to process options. Therefore, if we only used the first two
inputs, which use the same parser, the detected FS-edge would not
disable the third alias of the insert option. To avoid such errors, it
is important to include all aliases of an option in 𝐼F . Interestingly,
GUI applications do not suffer from this issue by construction, be-
cause the frameworks, they are built upon, are event driven and
use indirect calls and dispatch tables.
Problematic Non-Feature Inputs Our experiment with Busy-
Box revealed that picking ¬𝐼F indiscriminately can be problematic.
By further looking at BusyBox material, we found that system ad-
ministrators are already aware of the different applet requirements
in terms of access rights. BusyBox is a corner case in this respect, as
system administrators are aware of which applets require additional
permission, but the manual itself does not explicitly differentiate
between them. It is possible that system tools may require addi-
tional expertise when selecting which mutations to use during trace
collection.
Augmenting Traces with Data Flow Information The above
limitation could be potentially addressed by also collecting data flow
information while collecting traces, for instance, using a data-flow
tracking tool, such as libdft [17]. This would help us determine if a
branch is using information dependent on mutated inputs. Further
research is required to determine how such information can be
incorporated into our algorithms.

8 Related Work

Debloating Unreachable Code Various prior works have focused
on detecting code that is included in applications, because of the
use of shared libraries, packages, etc., but is actually never used
and is unreachable during execution. Such code can be eliminated
through techniques employing static and dynamic analysis. For
example, JRED [14] debloats Java applications and the Java Run-
time Environment by performing conservative static analysis on
Java bytecode to understand reachability. It relies on rewriting byte-
code files to remove unreachable methods and classes. Quach et
al. [28] focus on C and C++ applications to eliminate unreachable
code from the libraries they use. They analyze applications and
libraries to extract their external dependencies and function-call
graph (FCG) at compile and link time. The extracted information
is utilized at load time by a customized loader to eliminate discon-
nected and thus unreachable code. Similarly, Nibbler[1] analyzes
binary applications to obtain their FCG and library dependencies to
produce debloated shared libraries, where unused functions have
been erased. BinTrimmer [29] improves the reachability analysis
performed by previous binary analysis tools by using a type of value-
set analysis (VSA) to refine the extracted control-flow graph (CFG).
It offers small improvements over the Angr [35] binary-analysis
framework, hence, eliminating more unreachable code.

Debloating unreachable code comes with virtually no overhead;
however, it does not affect the reachability of known or unknown
vulnerabilities in applications, since they are only relevant if located
in code used by some part of the application. Instead, this work

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

aims to block code paths that are used by applications and can po-
tentially include relevant vulnerabilities. The discussed works can
also remove many gadgets that can be used in code-reuse attacks
(CRAs), but they are not able to remove all instances of gadgets use-
ful to attackers from all libraries, packages, etc. Consequently, their
post-exploitation benefits are application and vulnerability depen-
dent. In this respect, F-detector is orthogonal to gadget reduction
approaches.
Dynamic Debloating Works in this line of research dynamically
include or exclude library code at run time. BlankIt [25] proposes a
debloating technique that selectively activates library functions as
they are used by an application. When an API function is invoked,
its code, along with all reachable functions, are enabled, while the
remaining code is disabled (i.e., debloated). Static analysis of code
determines the reachable code for each API function. PacJam [24] is
another solution that utilizes static analysis to identify the library
dependencies of applications, which it then uninstalls by remov-
ing their corresponding Linux packages. It also traces applications
using test inputs of to determine the packages used in those scenar-
ios, replacing all other dependencies with mostly-blank, shadow
packages. To avoid issues caused by the limited coverage of test
cases, PacJam can reinstall a package if its code ends up being used
by an application at run time.

Like the studies discussed earlier, BlankIt does not eliminate
vulnerabilities from applications, as all reachable code can be loaded
on-demand. The same is the case with PacJam when packages are
dynamically reinstalled. Not doing so significantly debloats libraries
at the package level, but it can lead to application crashes when
inputs differ from the test inputs used. As such, it can only be applied
when test inputs accurately represent all possible desired inputs. In
terms of performance, BlankIt also imposes non-negligible run-time
overhead of about 20% on average.
Debloating based on Wanted Features Many past approaches
have focused on eliminating unwanted code by disabling all fea-
tures except a small set of wanted ones. State-of-the-art program
reduction tools such as Perses [38] and C-Reduce [30] build upon
the concept of delta debugging [21, 41] to minimize the size of a
given program while preserving its correctness with respect to a
specified property test function. Recently, Chisel [10] has further
improved upon this approach by incorporating reinforcement learn-
ing. Through trial and error, Chisel builds a model to predict the
likelihood of a candidate minimal program passing the property
test.

Chisel and our approach share a reliance on input-based spec-
ifications. However, Chisel requires comprehensive inputs that
activate all desired functionality, which can be difficult to generate.
Previous studies have shown that even developer-written tests of-
ten achieve low coverage of program functionality [13]. In contrast,
our approach requires only a small number of inputs and a set
of guided mutations to disable specific functionality. Additionally,
Chisel employs statistical methods that may introduce errors. Ra-
zor [27], which we extensively discuss in §2, uses heuristics instead
of statistical methods to overcome Chisel’s limitations, but still re-
sults in over- and under-debloating errors. Although our approach
also uses heuristics, it focuses on disabling specific application fea-
tures, requires fewer inputs and avoids the same errors. Finally, it
is worth noting that Chisel operates on source code, while Razor

and F-detector operate on binary code, which has its semantic
information stripped during compilation.
Disabling Unwanted Features More closely-related to our work
are approaches focusing on disabling unwanted features. JCut [15]
operates on Java programs and relies on manually-identified seed

methods that define an unwanted feature. To remove a feature, JCut
removes all call sites to the seed methods and all code made re-
dundant by this removal. Similarly, DamGate [4] aims to debloat
binaries by associating each function with a feature and blocking
features by inserting gates at all possible call sites of the function. A
follow-up work [5] employs symbolic execution to improve gate in-
sertion for network-based applications. However, these approaches
depend heavily on accurate method or function selection, require
extensive developer involvement, and are time-consuming.

Test-based Software Minimization [6, 7] (TBSM) is a technique
that removes unwanted functionality based on developer-defined,
annotated test cases. TBSM’s approach leverages developers’ famil-
iarity with tests, which can make defining unwanted functionality
more practical than using formal methods or architectural descrip-
tions. TBSM can remove arbitrary functionality from applications,
even if it is not directly connected to inputs. However, it does re-
quire extensive test cases to be developed, which faces the same
challenges we presented earlier.

Landsborough et al. [19] developed several early-stage approaches
for removing features. These approaches consider the instruction
traces following a specific group of inputs as a feature. To remove
unwanted functionality, they collect instruction traces with test
inputs for both desired and undesired features. They then rewrite
the code that is never reached with nops, while also overwriting
the code activated by unwanted features but not by desired ones.
However, these approaches, as well as TBSM, largely rely on the
comprehensiveness of test inputs, which can easily result in acci-
dental removal of functional code.
Neutralizing Known Vulnerabilities TALOS [12] proposes an
alternative to feature removal for mitigating vulnerabilities without
patching. It operates on source code to create security workarounds
for newly disclosed vulnerabilities, by redirecting all execution
paths that reach them to builtin error handling code. TALOS was
later extended in RVM [42] to also handle binary-only programs. In
comparison to these works, our approach is not limited to blocking
known vulnerabilities, but can pro-actively disable unnecessary
features to protect from undiscovered ones. F-blocker is also more
robust at recovering execution, because of its use of state rollback.

9 Conclusion

This paper presents a novel approach to reducing attack surface
by disabling unwanted features, without the need for burdensome
and extensive user specifications and inputs. Our method involves
dynamic tracing and static analysis to identify a single control-flow
edge that leads to the unwanted feature and uses error virtualization
to safely disable it. This ensures that normal service continues in the
target program. We have implemented and evaluated our approach
on Linux, successfully disabling 145 features in 9 applications. Our
results demonstrate the effectiveness of our method in improving
security for a range of binary applications and reveal worthwhile
areas for future research.

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

Acknowledgments

We thank the anonymous reviewers and Juanru Li, our shepherd,
for their valuable comments. This work was supported by the Office
of Naval Research (ONR) awards N00014-17-1-2788 and N00014-
17-1-2787, DARPA award D21AP10116-00, and National Science
Foundation (NSF) award CNS-2213727. Any opinions, findings, and
conclusions or recommendations expressed herein are those of
the authors and do not necessarily reflect the views of the US
government, ONR, DARPA, or NSF.

References

[1] Ioannis Agadakos, Di Jin, David Williams-King, Vasileios P. Kemerlis, and Geor-
gios Portokalidis. 2019. Nibbler: Debloating Binary Shared Libraries. In Proceed-

ings of the Annual Computer Security Applications Conference (ACSAC) (San Juan,
Puerto Rico). ACM, USA, 70–83.

[2] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman. 2016. Design and Im-
plementation for Checkpointing of Distributed Resources Using Process-Level
Virtualization. In International Conference on Cluster Computing (CLUSTER). IEEE,
USA, 402–412.

[3] Raj Chandel. 2019. Linux for Pentester : ZIP Privilege Escalation. https://www.
hackingarticles.in/linux-for-pentester-zip-privilege-escalation/.

[4] Y. Chen, T. Lan, and G. Venkataramani. 2017. DamGate: Dynamic Adaptive
Multi-feature Gating in Program Binaries. In Proceedings of the Workshop on

Forming an Ecosystem Around Software Transformation (FEAST). ACM, 23–29.
[5] Y. Chen, S. Sun, T. Lan, and G. Venkataramani. 2018. TOSS: Tailoring Online

Server Systems Through Binary Feature Customization. In Proceedings of the

Workshop on Forming an Ecosystem Around Software Transformation (FEAST).
ACM, 1–7.

[6] A. Christi, A. Groce, and R. Gopinath. 2017. Resource Adaptation via Test-Based
SoftwareMinimization. In 2017 IEEE 11th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO). 61–70.

[7] A. Christi, A. Groce, and A. Wellman. 2019. Building Resource Adaptations via
Test-Based Software Minimization: Application, Challenges, and Opportunities.
In IEEE International Symposium on Software Reliability Engineering Workshops

(ISSREW). 73–78.
[8] Will Glozer. 2019. WRK: Modern HTTP benchmarking tool. https://github.com

/wg/wrk.
[9] P. H. Hargrove and J. C. Duell. 2006. Berkeley lab checkpoint/restart (BLCR) for

Linux clusters. Journal of Physics: Conference Series (sep 2006), 494–499.
[10] K. Heo,W. Lee, P. Pashakhanloo, andM. Naik. 2018. Effective ProgramDebloating

via Reinforcement Learning. In Proceedings of the Conference on Computer and

Communications Security (CCS). ACM, 380–394.
[11] Hex-Rays. 2020. The IDA Pro Disassembler and Debugger. https://www.hex-

rays.com/products/ida/.
[12] Z. Huang, M. DAngelo, D. Miyani, and D. Lie. 2016. Talos: Neutralizing Vulnera-

bilities with Security Workarounds for Rapid Response. In Symposium on Security

and Privacy (SP). IEEE, 618–635.
[13] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated

with Test Suite Effectiveness. In Proceedings of the 36th International Conference

on Software Engineering. 435–445.
[14] Y. Jiang, D. Wu, and P. Liu. 2016. JRed: Program Customization and Bloatware

Mitigation Based on Static Analysis. In Proceedings of the Annual Computer

Software and Applications Conference (COMPSAC). IEEE, USA, 12–21.
[15] Y. Jiang, C. Zhang, D. Wu, and P. Liu. 2016. Feature-Based Software Customiza-

tion: Preliminary Analysis, Formalization, and Methods. In Proceedings of the

International Symposium on High Assurance Systems Engineering (HASE). ACM,
122–131.

[16] S. H. Kan. 2002. Metrics and Models in Software Quality Engineering. Addison-
Wesley Professional.

[17] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. 2012. libdft: Practical Dynamic Data Flow Tracking for Commodity
Systems. In Proceedings of the ACM SIGPLAN/SIGOPS International Conference on

Virtual Execution Environments (VEE) (London, UK). 121–132.
[18] H. Koo, S. Ghavamnia, and M. Polychronakis. 2019. Configuration-Driven Soft-

ware Debloating. In Proceedings of the European Workshop on Systems Security

(EUROSEC). ACM, 9:1–9:6.
[19] J. Landsborough, S. Harding, and S. Fugate. 2015. Removing the Kitchen Sink

from Software. In Companion Publication of the Annual Conference on Genetic

and Evolutionary Computation. ACM, USA, 833–838.
[20] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,

and K. Hazelwood. 2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proceedings of the Conference on Programming

Language Design and Implementation (PLDI). ACM, 190–200.

[21] G. Misherghi and Z. Su. 2006. HDD: Hierarchical Delta Debugging. In Proceedings

of the International Conference on Software Engineering (ICSE). 142–151.
[22] Nathan P Myhrvold. 1997. The Next Fifty Years of Software. http://hartenstein.

de/EIS2/next50years.pdf.
[23] S. Osman, D. Subhraveti, G. Su, and J. Nieh. 2002. The Design and Implementation

of Zap: A System for Migrating Computing Environments. SIGOPS Oper. Syst.
Rev. 36 (Dec 2002), 361–376.

[24] Pardis Pashakhanloo, Aravind Machiry, Hyonyoung Choi, Anthony Canino,
Kihong Heo, Insup Lee, and Mayur Naik. 2022. PacJam: Securing Dependencies
Continuously via Package-Oriented Debloating. In Proceedings of the 2022 ACM on

Asia Conference on Computer and Communications Security (ASIACCS). 903–916.
[25] C. Porter, G. Mururu, P. Barua, and S. Pande. 2020. BlankIt Library Debloating:

Getting What You Want Instead of Cutting What You Don’t. In Proceedings of the

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI). 164–180.
[26] Georgios Portokalidis and Angelos D. Keromytis. 2011. REASSURE: A Self-

contained Mechanism for Healing Software Using Rescue Points. In Proceedings

of the International Workshop on Security (IWSEC) (Tokyo, Japan). Springer-Verlag,
Berlin, Heidelberg, 16–32.

[27] C. Qian, H. Hu, M. Alharthi, P. H. Chung, T. Kim, and W. Lee. 2019. RAZOR:
A Framework for Post-deployment Software Debloating. In USENIX Security

Symposium. USENIX Association, Santa Clara, CA, 1733–1750.
[28] A. Quach, A. Prakash, and L. Yan. 2018. Debloating Software through Piece-Wise

Compilation and Loading. In Proceedings of the USENIX Security Symposium.
USENIX Association, USA, 869–886.

[29] Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,
and Christopher Kruegel. 2019. BinTrimmer: Towards Static Binary Debloat-
ing Through Abstract Interpretation. In Proceedings of the 16th International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment

(DIMVA), Roberto Perdisci, Clémentine Maurice, Giorgio Giacinto, and Magnus
Almgren (Eds.). 482–501.

[30] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. 2012. Test-case
Reduction for C Compiler Bugs. In Proceedings of the ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI). 335–346.
[31] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay, A. Lumsdaine, J. Duell, P. Hargrove,

and E. Roman. 2005. The Lam/Mpi Checkpoint/Restart Framework: System-
Initiated Checkpointing. The International Journal of High Performance Computing

Applications (2005), 479–493.
[32] SecurityFocus. 2013. Nginx ’ngx_http_parse.c’ Stack Buffer Overflow Vulnerabil-

ity. https://www.securityfocus.com/bid/59699.
[33] Selectel. 2014. ftpbench. https://github.com/selectel/ftpbench.
[34] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar. 2018. TRIMMER: Application

Specialization for Code Debloating. In Proceedings of the International Conference

on Automated Software Engineering (ASE). ACM, 329–339.
[35] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In Proceedings of the IEEE Symposium on Security and Privacy.

[36] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot, J. Nieh, and A. D. Keromytis. 2009.
ASSURE: Automatic Software Self-Healing Using Rescue Points. In Proceedings

of the 14th International Conference on Architectural Support for Programming

Languages and Operating Systems. Association for Computing Machinery, 37–48.
[37] Standish Group. 2009. CHAOS report 2009. https://www.classes.cs.uchicago.ed

u/archive/2014/fall/51210-1/required.reading/Standish.Group.Chaos.2009.pdf.
[38] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su. 2018. Perses: Syntax-guided Program

Reduction. In Proceedings of the International Conference on Software Engineering

(ICSE). 361–371.
[39] Synopsys, Inc. 2020. The Heartbleed Bug. https://heartbleed.com/.
[40] WinSCP. 2020. Supported File Transfer Protocols. https://winscp.net/eng/docs/

protocols.
[41] A. Zeller and R. Hildebrandt. 2002. Simplifying and Isolating Failure-Inducing

Input. IEEE Trans. Softw. Eng. (Feb. 2002), 183–200.
[42] H. Zhen and T. Gang. 2019. Rapid Vulnerability Mitigation with Security

Workarounds. In Proceedings of the Workshop on Binary Analysis Research (BAR).
ISOC, Reston, VA, USA.

[43] T. Zimmermann, N. Nagappan, and L. Williams. 2010. Searching for a Needle in a
Haystack: Predicting Security Vulnerabilities for Windows Vista. In Proceedings

of the International Conference on Software Testing, Verification and Validation

(ICST). IEEE, 421–428.

A Examples from Razor Analysis

This section contains examples of the analysis we performed on
the coreutils programs debloated by Razor. We show two types
of failures: failures corresponding to over-debloating (i.e., wanted

https://www.hackingarticles.in/linux-for-pentester-zip-privilege-escalation/
https://www.hackingarticles.in/linux-for-pentester-zip-privilege-escalation/
https://github.com/wg/wrk
https://github.com/wg/wrk
https://www.hex-rays.com/products/ida/
https://www.hex-rays.com/products/ida/
http://hartenstein.de/EIS2/next50years.pdf
http://hartenstein.de/EIS2/next50years.pdf
https://www.securityfocus.com/bid/59699
https://github.com/selectel/ftpbench
https://www.classes.cs.uchicago.edu/archive/2014/fall/51210-1/required.reading/Standish.Group.
https://www.classes.cs.uchicago.edu/archive/2014/fall/51210-1/required.reading/Standish.Group.
https://heartbleed.com/
https://winscp.net/eng/docs/protocols
https://winscp.net/eng/docs/protocols

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

functionality dropped) ; failures corresponding to under-debloating
(i.e., unwanted functionality preserved).

A.1 Required Functionality Dropped

We identify these cases by simply running the Razor benchmarks
provided by the authors. Some of the functionalities and command
line fails in the prepared tests although they where used in the
training cases.
chown-8.2 Fails on recursive mode if used on non-empty directo-
ries.
./chown.org.debloat -R root:root d1/d1/d1/d1
chown-8.2 Fails if multiple files used as input.
./chown.org.debloat root:root file1 file2
rm-8.4 Fails in recursive mode if used on non-empty directories.
./rm.org.debloat -rf root:root d1
tar-1.13 Fails on one of the input files from the Razor test examples
./tar.org.debloat cf tmp.tar obj.bz2

A.2 Unwanted Functionality Included

We identify functionalities preserved in the debloated binary al-
though they where not used in the training cases. To identify these
we explore the debloated program by testing manually different
untrained features.
date-8.21 some of the options for formatting the output execute
even though not present in the training test cases (note that some
of the untrained options are debloated).
./date.orig.debloated -d "1995-1-17" +%a
./date.orig.debloated -d "1995-1-17" +%b
./date.orig.debloated -d "1995-1-17" +%C
./date.orig.debloated -d "1995-1-17" +%e
./date.orig.debloated -d "1995-1-17" +%g
./date.orig.debloated -d "1995-1-17" +%n
./date.orig.debloated -d "1995-1-17" +%N
./date.orig.debloated -d "1995-1-17" +%z
./date.orig.debloated -d "1995-1-17" +%:z
./date.orig.debloated -d "1995-1-17" +%Z

grep-2.19 the option of printing the context of the regex match
(-NUM) executes even though not present in the training test cases
(note that options -CNUM and –context=NUMwhich are alternatives
of -NUM are debloated).
./grep.orig.debloated -1 [0-9] ../test2
mkdir-5.2.1 the verbosity option executes normally even though
not present in the training test cases.
./mkdir.orig.debloated -v -p d1/d2/d3
uniq-8.16 the options –zero-terminated and –all-repeated
execute normally even though not present in the training test cases.
./uniq.orig.debloated --all-repeated=prepend file
./uniq.orig.debloated --all-repeated=separate file
./uniq.orig.debloated --zero-terminated file

B Analysis of FS-edges
We analyse the detected FS-edge for our evaluated application
shown in Table 4. We use blue and yellow to highlight the lines of
code corresponding to the source and destination of the FS-edge
respectively.
ImageMagick-file: In the test of features supporting TIFF / SVG
/ PNG / JPEG, we detected the same, proper FS-edge with any com-
bination of 2-images and 𝑀-mutations. The FS-edge, as shown in
Listing 1, is an indirect call to register the module responsible for

the target format. Removing the FS-edge prevents registration of the
module and thus, indeed disables the target format. Moreover, each
module is designated for the target format and therefore, removing
the FS-edge does not hurt other formats.
ImageMagick-UI: We detected the correct FS-edge for every fea-
ture, using any combination of 2-images and𝑀-mutations. Listing 2
shows the FS-edges for the UI features we disabled. It is an indirect
jump from the switch checking the UI click to the case implement-
ing the corresponding action. Cutting off the edge disables the
feature without affecting the others.

1 MagickBooleanType RegisterStaticModule(...) {
2 ...
3 if (MagickModules[i].registered == MagickFalse)
4 /* Indirect call to TIFF module */
5 (void)(MagickModules[i].register_module)();
6 ...
7 }
8 ModuleExport size_t RegisterTIFFImage(void) { ... }

Listing 1: The Branch handling different image types in

ImageMagick.

1 /* FS-edge is an indirect jump to a case in switch*/
2 static Image *XMagickCommand(...}
3 switch (command) {

4 case CropCommand: { // Crop image.
5 (void) XCropImage(display,resource_info,
6 windows,*image,CropMode,exception);
7 break;
8 }
9 case ChopCommand: {...} // Chop image.

10 case FlopCommand: {...} // Flop image scanlines.

11 case FlipCommand: {...} // Flip image scanlines.

12 case RotateRightCommand: {...} // Rotate image

13 case ShearCommand: {...}
14 ...
15 }

Listing 2: FS-edges in ImageMagick for the UI features.

Evince: For every feature in Evince, we detected the correct FS-
edge with any combination of 2-files and𝑀-mutations. The FS-edge
is an indirect call to the function implementing the feature. The
related code is in Listing 3.

1 /*The source basic block is in the gnome library. The feature-specific
edge is a callback to the function ev_window_cmd_file_print.*/

2 GActionEntry actions[] = {
3 { "print", ev_window_cmd_file_print },
4 ...%
5 };
6 ...
7 /* A gnome function registering the callback functions*/
8 g_action_map_add_action_entries (ev_window, actions) ;
9 ...
10 /* The callback function called by the gnome framework */
11 static void ev_window_cmd_file_print (...) { ... }

Listing 3: FS-edge in Evince for Print feature.

Nginx: By using any 2-urls and 𝑀-mutations, we detected the
correct FS-edge for each feature supporting a HTTP request method.
The FS-edge, following the same pattern shown in Fig. 3, checks the
method and picks the proper handler. With this edge cut off, the
handler is no longer accessible and the method is disabled. We also

ASIACCS’23, July 10–14, 2023, Melbourne, Australia Mohamad Mansouri, Jun Xu, and Georgios Portokalidis

detected an FS-edge, shown in Listing 4, to disable the “Chunked
Encoding ” feature without hurting other functionality (only one
combination of 2-mutations is available in this case). The FS-edge
is a jump from a check of the size of the method name to a check
of the actual method name. By intuition, the FS-edge can be unsafe
since other method names may share the same length. Fortunately,
this did not happen because "Chunked" is the only method name
with size of 7.

1 /* FS-edge is a jump from a check of the length of method name to a
check of the actual method name. "Chunked" is the only method
with size of 7.*/

2 ngx_int_t ngx_http_process_request_header(...){
3 ...
4 if (r->headers_in.transfer_encoding->value.len == 7 &&

5 ngx_strncasecmp(r->headers_in.transfer_encoding

6 ->value.data,(u_char *) "chunked", 7) == 0){
7 r->headers_in.content_length = NULL;
8 r->headers_in.content_length_n = -1;
9 r->headers_in.chunked = 1;
10 }
11 ...
12 }

Listing 4: FS-edge inNginx for the "Chunk-Encoding" feature.

1 int ngx_http_discard_request_body_filter(...){ 1
2 if (r->headers_in.chunked) {
3 rc = ngx_http_parse_chunked(r, b, rb->chunked);
4 ...
5 }
6 }
7 int ngx_http_request_body_filter(...){
8 if (r->headers_in.chunked) {
9 return ngx_http_request_body_chunked_filter(r, in); 2
10 }
11 ...
12 }
13 int ngx_http_proxy_input_filter_init(...){
14 if (u->headers_in.chunked) {
15 u->pipe->input_filter =
16 ngx_http_proxy_chunked_filter; 3
17 u->input_filter = ngx_http_proxy_non_buffered_chunked_filter; 4
18 ...
19 }
20 }

Listing 5: Control flow to reach CVE-2013-2028-related code.

Zip: The tests with ZipWe detected the correct FS-edge for every
feature, using any combination of 2-files and𝑀-mutations. Listing 6
shows the FS-edge of an indirect jump from the switch checking
the command line to the case implementing the target feature.

1 /* The feature-specific edge is a jump from a switch to the case "O_TT"
*/

2 int main(argc, argv)
3 {
4 ...
5 switch (option)
6 {
7 ...
8 case o_TT : /* command path to use instead of 'unzip -t ' */
9 if (unzip_path)
10 free(unzip_path);
11 unzip_path = value;
12 break;
13 ...
14 }
15 }

Listing 6: FS-edge in Zip that corresponds to the "Archive test

command" feature. (Conditional jump)

Exim: We detected the FS-edge shown in Listing 7 for the “startup
script” feature in Exim, using any combination of 𝑀-mutations.
The FS-edge is a conditional jump to the code launching the startup
script. With this jump disabled, the “startup script” can no longer
work but no other functionality is affected.

1 /* FS-edge is a conditional jump to the code launching the startup
script. */

2 int main(int argc, char **cargv){
3 ...
4 if (opt_perl_at_start && opt_perl_startup != NULL){

5 errstr = init_perl(opt_perl_startup);
6 .../*code handling Chunked Encoding''*/
7 }

Listing 7: FS-edge in Exim for the “startup script” feature.

Bash:We detected the FS-edge shown in Listing 8 for the “defin-
ing functions by environment variable” feature in Bash, with any
2-commands and𝑀-mutations. The FS-edge is a conditional jump
to the code reading and executing the functions defined in the en-
vironment variable. Cutting off the FS-edge will prevents execution
of those function without harm to any other functionality.

1 /* FS-edge is a jump to the code reading and executing the function
defined in the environment variable"*/

2 void initialize_shell_variables (...){
3 ...
4 if (privmode == 0 && read_but_dont_execute == 0 &&

STREQN ("() {", string, 4)){

5 string_length = strlen (string) ;
6 ...
7 }
8 }

Listing 8: FS-edge in Bash for “functions in env. variables”

feature.

ProFTPD: We detected the FS-edge shown in Listing 9 for “CPFR”
feature in ProFTPD with 𝑀 = 3 mutations. The FS-edge is a con-
ditional jump to the code executing the “CPRF” command after
a string compare with the user input. By disabling this edge, the
user command “CPFR” cannot be treated without affecting other
functionalities.

1 /* FS-edge is a jump to the code that implements the "CPFR"
command */

2 MODRET copy_cpfr(cmd_rec *cmd) {
3 ...
4 if (cmd->argc < 3 ||
5 strncasecmp(cmd->argv[1], "CPFR", 5) != 0) {
6 return PR_DECLINED(cmd);
7 }
8 CHECK_CMD_MIN_ARGS(cmd, 3) ;
9 .../* code implementing "CPFR".*/

Listing 9: FS-edge in ProFTPD for the CPFR feature

(conditional jump).

Eliminating Vulnerabilities by Disabling Unwanted Functionality in Binary Programs ASIACCS’23, July 10–14, 2023, Melbourne, Australia

Table 6: Rescue points generated by F-blocker. For RP distance (c)/(b)/(a): The values correspond to (a) the depth of the function

containing the FS-edge, (b) and the depth of the nearest rescue point function in the call trace (c) the depth of the detected

Rescue point function in the call trace (distance from __libc_start_main()).

Feature

RP Detection

Error Returned RP Function Name

Distance Method

ImageMagick (file) 6/7/8 Pointer return 0 (NULL) GetMagickInfo

ImageMagick (UI) 3/4/5 Syscall failing 0 (old value = 1) DisplayImageCommand

Evince 23/23/28 Pointer return 0 (NULL) g_action_group_activate_action

Exiv2 4/4/4 Pointer return 0 (NULL) Action::Insert::clone_()

Nginx 7/9/10* Syscall failing -1 (old value = 0) ngx_epoll_process_events

ProFTPD 8/8/8 Pointer return 0 (NULL) copy_cpfr

BusyBox 6/6/6 Syscall failing 1 (old value = 0) wget_main

Exim 1/1/1 Syscall failing 1 (old value = 0) main

Bash 1/1/3 Syscall failing 1 (old value = 0) main

Zip 1/1/1 Syscall failing 1 (old value = 0) main
* Some of Nginx functions uses function parameters to pass errors.

C Overhead of Deploying RPs with REASSURE

We measured the overhead of REASSURE when deploying our RPs
using Nginx and ProFTPD to show that our RPs are not more
heavyweight than those proposed by prior works. Note that RE-
ASSURE can incur significant overheads over native execution,
because it builds on Pin, however, it is ideal for fast prototyping.
In production environments, more efficient checkpoint-rollback
systems should be used [2, 9, 23, 31, 36].

(a) Nginx (b) ProFTPD

Figure 6: Performance of Nginx and ProFTPDwith and with-

out REASSURE. (a) We used WRK [8] to measure requests /

second with different page sizes. (b) We used ftpbench [33]

to measure the throughput with different files sizes.

We ran Nginx and ProFTPD on a 2-core Xeon E3-1270 V2 @
3.50GHz Xen VM with 29GB of RAM (Debian 4.9.168-1+deb9u5,
Xen 4.1). The benchmark clients ran on another host with a 4-core

Xeon E3-1270 v6 @ 3.80GHz and 64GB of RAM (Ubuntu 16.04.6
LTS), connected over 1Gb/s Ethernet to the server. The client opens
10 simultaneous connections and sends requests for 1 minute with
random files of different size (1KB, 10KB, and 100KB GET HTTP
requests for Nginx and 1MB, 10MB, and 100MB RETR FTP requests
for ProFTPD).We used 2 threads for theNginx client to saturate the
server. For comparison, we considered three different scenarios: (1)
running the application natively; (2) running the application with
Pin; (3) running the application with REASSSURE. The experiments
were repeated five times, and we show the mean and standard
deviation (SD) in Figures 6a and 6b.

In the Nginx evaluation with requests of small files (1KB), RE-
ASSURE incurs x5.6 and x1.98 overhead, respectively comparing to
native execution and Pin. The overhead is because the rescue point
sits on a critical path, which is activated in nearly every request.
When the file size increases to 100KB, we observed no significant
overhead. This is potentially because the bottleneck moves from
the CPU to the network and the frequency of requests is lower
(but they take longer). In the case of Nginx, REASSURE added
no observable overhead over Pin. The reason is that the rescue
point is not activated during the file transfer requests issued by the
benchmark, representing the best scenario.

To sum up, the overhead incurred by REASSURE depends on
the unwanted features and the correlation between the unwanted
features and other features. Even if significantly faster checkpoint-
restart is used, rescue points on the critical path of the server are
bound to incur some overhead. However, in many cases unwanted
features are in rarely executed code and overhead will be minimal.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Improving Security through Debloating
	2.2 Different Debloating Strategies
	2.3 Retaining vs. Disabling Functionality
	2.4 Limitations of Existing Solutions

	3 Design Overview
	3.1 Key Insight and High-level Idea
	3.2 F-detector: Disabling Unwanted Features
	3.3 F-blocker: Exploring Survivability

	4 F-detector
	4.1 Minimal Mutation of Feature Inputs IF
	4.2 Execution-Trace Collection and Processing
	4.3 FS-Edge Detection

	5 F-blocker
	5.1 Rescue-Point Generation

	6 Implementation and Evaluation
	6.1 Comparison with Razor
	6.2 Disabling Features in Larger Applications
	6.3 Security Benefits of Feature Removal
	6.4 Effects of Bad Mutations
	6.5 Continuity of Service after Feature Removal

	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Examples from Razor Analysis
	A.1 Required Functionality Dropped
	A.2 Unwanted Functionality Included

	B Analysis of FS-edges
	C Overhead of Deploying RPs with REASSURE

