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Abstract—Optical network control platforms are facing an
unprecedented increase of complexity due to the requirements
for openness and optical system dis-aggregations. While Rein-
forcement Learning (RL) and Deep RL (DRL) methods can
be used for network control decision-configuration solutions,
these methods can be unsuitable to find correct policies to
control open disaggregated transport networks (ODTN). In this
context, this article proposes DeepSF-PCE, a single-agent deep
reinforcement learning spectrum fragmentation aware path com-
putation engine to solve the Routing, Modulation and Spectrum
Assignment (RMSA) problems in ODTN. DeepSF-PCE engine
learns fragmentation-aware policies that maximize the number of
allocated service requests. Simulation results show that DeepSF-
PCE can increase by more than 40% the number of configured
optical connectivity services compared to existing solutions.

Index Terms—RMSA, DRL, SDN, ODTN.

I. INTRODUCTION

6G requires stringent connectivity services for the far
edges, where future transport networks will have to play a
new role in enabling end-to-end optical connectivity services.
To guarantee critical requirements between network edges,
transport network control platforms must break through to
enable optimal end-to-end optical connections as connectivity
services provisioned over open, disaggregated, i.e., multi-
vendor, optical network infrastructures. Moreover, optical-
switched network controllers will have to coordinate more with
packet-switched network controllers and to move jointly IP-
over-WDM network control to the edges with the integration
of the next-generation coherent optical terminal modules [1].

However, the convergence of IP-Optical networks and Elas-
tic Optical Networks (EONs) will increase drastically the
complexity of transport network service provisioning. This
convergence requires the coordinated control of optical chan-
nel connections, i.e., Quality of Transmission (QoT), and IP
flows that interconnect the far edges. More re-configurable
optical network systems are required to adapt with the changes
of the demands of 6G services. Dynamic transport connectivity
services will be provisioned by unified Software Defined

Network (SDN) Control platforms to configure the required re-
sources on demand. Therefore, design, planning, and resource
allocation in optical networks need to be reconsidered.

There has been a lot of proposals in applying RL and
DRL for optical network control and management. The Rout-
ing, Modulation format and Spectrum Assignment (RMSA)
problem is one of the fundamental challenges in EONs.
The objective is to select the optimal optical channel paths
between a source and destination as well as the frequency slots
(FS) while ensuring spectrum continuity, contiguity, and non-
overlapping constraints in a dynamic network environment.
Per [7], Deep Reinforcement Learning (DRL) has been able
to solve a wide range of complex decision-making tasks.
Subsequently, DRL is considered a good candidate to solve
the RMSA problem. In [2], a DRL framework for RMSA
in EONs is described to reduce the blocking ratio of op-
tical channel connection requests by more than 20,3% in
the NSFNET topology and 14,3% in COST239 topology.
However, DeepRMSA best performance is obtained for one
candidate FS block per k-path and this is similar to first-fit (FF)
spectrum allocation. For cases in which multiple candidate
paths can be considered for spectrum allocation, DeepRMSA
starts experimenting spectrum fragmentation (SF) issues. SF is
a well-known problem in EONs, where frequent configuration
changes derive in higher SF and subsequently, it significantly
increases the service blocking probability [8].

In this paper, we propose a new DRL-assisted SF-aware
Path Computation Engine (DeepSF-PCE) for Cloud-native
SDN platforms to control open and fully disaggregated optical
networks as in [5]. DeepSF-PCE performances were evaluated
with NSFNET topology and the simulation results verify its
superiority with respect to existing RMSA algorithms.

II. DEEPSF-PCE SYSTEM ARCHITECTURE & DESIGN

A. Transport Control Architecture

The software architecture shown in Fig. 1 indicates how
DeepSF-PCE can be deployed as a network control func-



Fig. 1: System Architecture

tion that interfaces with Transport SDN controller through
Transport-API [11] standard interface. Upon reception of a
connectivity service request through the Graphical User Inter-
face (GUI), the SDN controller retrieves the current network
state from its database and sends a path computation request to
DeepSF-PCE. Then, DeepSF-PCE provides an RMSA scheme
for the SDN controller. The controller attempts to provision the
corresponding connectivity service along the computed path
using NETCONF protocol with open device data models (e.g.,
OpenConfig [12]). The deployment of a Kafka broker enables
to follow the service provisioning state by subscribing to the
corresponding Kafka topic.

The objective of DeepSF-PCE is to learn optimal RMSA
policies that maximize the number of served requests.

B. DeepSF-PCE Design

DeepSF-PCE involves three components: the network state
(i.e., the observation vector), the set of actions that can be
performed by the DRL-agent (i.e., action space), and the
reward function that gives feedback to the agent.

• The action space, A is a set of discrete actions of size
k × J + 1, where k is the number of candidate paths
for each source-destination pair in the network and J
determines the number of candidate FS blocks in each
path. The additional action represents the possibility of
rejecting a request.

• The observation vector, ot contains the source-
destination pair in 1-hot encoding (s, d), a normalized
value of the service capacity requirement (c in Gbps),
the service duration (τ ) and the spectrum utilization of k
shortest paths (SP) between source and destination. For
each path, we compute the starting indices xk

1,J , the size
of the FS block xk

2,J , the resulting fragmentation state
xk
3,J in case of selecting that particular FS block, the

number of FS needed xk
4 and the average FS block size

xk
5 . For calculating the fragmentation state, we use the

Shannon entropy (Hfrag) at two different levels: link-
based (LB) and path-based (PB), as proposed in [6]. The
objective is to provide to the agent the resulting spec-
trum fragmentation measure after allocating the service

Fig. 2: DeepSF-PCE state representation

request. Higher level of SF lead to large values of Hfrag,
therefore we normalize Hfrag, between [0-1]: (e−Hfrag ).
Thus, a common scale is preserved for every parameter
in the observation vector. Fig. 2 shows an example of the
state representation using the PB fragmentation approach.

• The reward function considers the resource allocation
capability of the agent for a given request and the
resulting fragmentation caused by the allocation. If the
agent can accommodate the service request, it will get
a positive reward +1 plus an additional fragmentation-
aware metric. If not, it will receive a negative reward
−1. For that reason, we introduce the difference in
fragmentation (∆Hfrag) between t and t − 1. The
reward function is defined as follows:

rt =

{
1 + e−∆Hfrag successfully allocated
−1 otherwise (1)

III. EXPERIMENTAL SET UP AND PERFORMANCE
EVALUATION

A. Experimental Set up

The DRL agent was trained using two algorithms: Advan-
tage Actor-Critic (A2C) and Proximal Policy Optimization
(PPO) provided by the stable-baselines library [3]. Both agents
are modeled with two fully-connected Deep Neural Networks
(DNNs): Actor and Critic. The input layer size is equal to the
length of ot. 5 hidden layers, each one of 128 neurons and the
output layer consisting of k×J neurons for the Actor network
and 1 neuron for the Critic network. The difference between
A2C and PPO lies on the learning phase. PPO estimates the
policy gradients using the ratio between the new and old
policy instead of using the logarithm of the new policy as
in A2C [10]. We selected a discounted factor γ = 0.96 and
a learning rate α = 10−4 as they produced the best results.
The simulations consider an extended dynamic network en-
vironment from [9], where service requests arrive following
a Poisson process with arrival rate λ = 10 and a mean
service duration of 25 units of time. The source-destination
pair is randomly selected, and the capacity demand follows a
uniform distribution between [10-200] Gbps. The C-band is
considered for each link of the network topology (384 FSs
of 12.5GHz). The distance-adaptive based impairment aware



(a) (b) (c)

Fig. 3: Blocking probability for J = 2, 3, 5

model explained in [4] is used to select the modulation format
and, subsequently, determine the number of FS needed to
accommodate the service request. The agents were trained for
1000 episodes, where each episode consisted of 1000 service
requests. An episode begins with a fully available spectrum,
and ends when all service requests have been processed i.e.,
provisioned or rejected, by the agent. The objective is to
prove the benefit of including spectrum fragmentation related
information when quantifying the service blocking probability.

B. Performance evaluation

The performance of DeepSF-PCE is evaluated using
NSFNET topology (14 nodes, 22 links). We set k = 5 and
consider three different values of J = 2, 3, 5.

Fig. 3 illustrates the results in terms of request blocking
probability. As the number of candidate spectrum allocation
schemes increases, it is essential that the agent selects the
solution (path, modulation format and FS block) that will
maximize the system expected cumulative reward, rather than
the immediate reward. By adding the network fragmentation
state to the agent observation, DeepSF-PCE is able to learn im-
proved RMSA policies. DeepSF-PCE algorithm outperforms
DeepRMSA, SP-FF and kSP-FF by accepting more requests
at the end of training. It reduced the blocking probability
by 28.5%, 50% and 80.7% for J =2,3 and 5 respectively,
as compared to DeepRMSA. These results demonstrate the
benefit of adding the link/path fragmentation state in the
observation vector and the reward function. However, learning
good policies is more time-expensive for higher values of J ,
since both ot and A become larger. Therefore, more training
episodes are needed for J = 5 (Fig. 3c) to reduce the blocking
probability as for J = 2, 3 (Fig. 3a and Fig 3b). In addition,
DeepSF-LB outperforms DeepSF-PB for higher values of J .
The PB approach captures the end-to-end spectral voids, and
does not have the information regarding to free FS blocks
that are only available on some of the links along a path.
Lastly, PPO achieves lower blocking probability than A2C
when comparing any results as it relies on specialized clipping
in the objective function (expected cumulative reward). This

technique accelerates learning and reduces the impact of
extreme observations making the model more robust.

IV. CONCLUSION

A Fragmentation-aware Path Computation Engine based
on DRL was described with its performance reducing the
blocking probability with respect to traditional RMSA tech-
niques and DRL methods. It proves that spectrum fragmenta-
tion aware policies can be defined and learned efficiently to
maximize the spectrum grid utilization. A cooperative Multi-
Agent approach of DeepSF-PCE for service provisioning over
a multi-domain optical network is left for future studies.
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