
An Overview Of
Modern Windows
Malware Analysis
Where We Are and Where We Are Going

WoRMA 2023
2023-07-07, Delft, Netherlands 󰐗

Simone Aonzo
1

$ whoami
● ATM: assistant professor @ Eurecom 󰏃

○ Mobile|Android System Security
○ Malware Analysis (Android and Windows)
○ Humans in the Cybersecurity Loop (i.e., Phishing and User Study)
○ Network Security

● Alma mater @ University of Genoa 󰏢
○ Master and Ph.D. in Computer Science and Systems Engineering

● Work experience
○ Android Pentester and Malware Analyst

● Contacts
○ Website: https://simoneaonzo.it
○ No namesakes ⇒ Google name surname

2

https://simoneaonzo.it/

This talk!

● Windows malware analysis from a researcher's point of view

○ Emphasis on the state of the art

○ Oriented to large-scale analysis

● “Data-oriented”

○ What/how we analyze determines our results

● I present some results we obtained

○ With emphasis about “how” we made them

3

Agenda 📋

1. Malware, the tools and how/what to analyse

2. Creating an analysis pipeline

3. Humans vs. Machines

4

Where We Are

Where We Are Going

Agenda 📋

1. Malware, the tools and how/what to analyse

2. Creating an analysis pipeline

3. Humans vs. Machines

5

Malware Analysis - (My) Definition

“Program analysis of a software that does not want to be analyzed”

6

Malware Types
➢ Infection

○ Worm: self-replicate/propagate

○ Virus: infect other programs to include a possibly evolved copy of itself

○ Trojan: benign appearance but hidden malicious features

➢ Features

○ Adware: displays unwanted or malicious advertising

○ Bot: performs a task given a remote command

○ Exploit: exploits a software vulnerability to gain authorized access

○ HackTool: exploiting, attack and scanning tools

○ Ransomware: encrypts device's data for ransom

○ RootKit: stealth and actively hiding software with elevated permissions

○ Spyware: software that invades the user’s privacy

○ … 7

 Windows Malware
Microsoft Windows is an amusement park 🎢 for malware authors ☣

● Native support for Android apps

● No application sandbox (Process Injection)

● Support for old technologies (Classic Visual Basic: Final release 6.0 / 1998; 25 years ago)

● Scripting languages (Batch, Powershell, Javascript)

● Office Macro (VBA, Javascript)

● Portable Executable (PE) format [.exe]

○ Can “hide” a virtual machine (.NET, VB, Python)

○ Different structure w.r.t. language/compiler (C++, Go, Rust)

○ Same structure w.r.t. packer/protector (UPX, Themida)

“Survivalism: Systematic Analysis of Windows Malware Living-Off-The-Land” S&P 2021

8

Types Of Malware Analysis

HYBRIDDYNAMIC

STATIC MEMORY

9

Static Analysis

1. Code (original or lifted to a Intermediate Representation)
○ Data-Flow Analysis

■ Tracks the possible values of variables or expressions at each program point
■ Reason on the Control-Flow Graph (CFG)

○ Abstract Interpretation
■ Systematically explores all executions by a series of over-approximations
■ Uses abstract domains and operators to model the semantics

○ Symbolic Execution
■ It uses symbolic exprs to represent the values of variables and path conditions
■ Relies on constraint solvers to check the feasibility of each path

2. File structure
○ Byte Patterns
○ Executable File Format

“SOK: (State of) The Art of War: Offensive Techniques in Binary Analysis” S&P 2016

10

Static Analysis… what?
“There is no favorable wind for the sailor who does not know where to go” – Seneca

● What type of file are you analyzing?

○ In this talk: Portable Executable (PE) format

● What is the target “architecture”? 🤔
○ Native → Target: CPU

■ However, different code structure w.r.t. language/compiler (C++, Go, Rust)

○ Non-Native → Target: virtual machine/interpreter

■ E.g., .NET, Classic Visual Basic , Python, AutoHotkey, …

■ The exe is just a wrapper around a more complex runtime environment

○ Use the correct tool to get the actual code
11

Native PE – Compiler/Language
The different code structure w.r.t. compiler/language, e.g.

 C++ Rust

12

Non-Native PE – Internal/External VM

Non-Native PE files embeds the “bytecode” and need a “VM” to run it

1. External VM

○ Assumed that it is already installed on the system, e.g.:

■ mscoree.dll – .NET

■ msvbvm(50|60).dll – Classic Visual Basic

2. Internal VM

○ Embedded in the executable

○ ⇒ Large file size

○ Most common in malware: AutoHotKey~AutoIt and PyInstaller

○ ⚠ .NET can also be embedded in a stand-alone file

13

Dynamic Analysis

Executing a sample inside an isolated and instrumented environment to analyse its behavior

Also known as: Sandbox

● Runtime Environment

○ Virtual Machines (VM) – virtualized or emulated hw

○ Bare metal

● Analysis Component

○ In-guest

■ User-space (debugger or Dynamic Binary Instrumentation tool)

■ Kernel-space (module or driver)

○ Out-of-guest

■ Hypervisor or Emulator APIs
14

Dynamic Binary Analysis Tools
Requirements: instruction granularity + suitable for large-scale

1. Intel Pin - DBI

○ https://www.intel.com/software/pintool

○ Pros: well documented, stable, full control

○ Cons: just x86-64, closed source, learning curve

2. PANDA - Emulator (QEMU) based

○ https://github.com/panda-re/panda

○ Pros: multiarch, oss, record & replay executions, taint engine

○ Cons: just monitoring, records need disk space

3. Triton - DBA

○ https://github.com/JonathanSalwan/Triton

○ Pros: multiarch, oss, different inputs (Pin, QEMU, …), symbolic|taint engine

○ Cons: bugs 15

https://www.intel.com/software/pintool
https://github.com/panda-re/panda
https://github.com/JonathanSalwan/Triton

Large-Scale Dynamic Analysis

Two approaches

1. Single machine, multiple emulators

○ Best control over the instances

■ But you have to write all the management APIs

○ If the machine gets stuck… 🤬
2. Multiple machines, single runtime environment

○ Type-1 hypervisor (ESXi, KVM, …) and management (vCenter, Proxmox, …)

○ Off-the-shelf virtualization management APIs

■ Not meant for being stressed 🥵
16

Large-Scale Dynamic Analysis – Tips
● Prepare a Windows machine

○ Minimum: Windows 7 x32 with 2 GB of RAM

○ Make it look “used”: install programs, surf the internet, populate with documents, …

○ Install SSH for remote management and take a snapshot at the end

● Buy RAM 💸 and abuse RAM Disks

● Try to use the original filename of the sample

○ How? Check VirusTotal report

● State-Of-The-Art: Run the sample for at least 2 minutes

○ But consider the overhead introduced from your analysis!

● Simulate common internet services
○ https://www.inetsim.org/

● Mitigate evasive techniques…

“Does Every Second Count?
Time-based Evolution of Malware Behavior in Sandboxes”

NDSS 2021

“Spotless sandboxes:
Evading malware analysis systems using wearand-tear artifacts”

S&P 2017

17

https://www.inetsim.org/

Evasive Techniques
40-92% 🤔 of malware use at least one evasive technique

Taxonomy

● Anti Debug
● Anti Dump
● Anti Instrumentation
● Code Injections
● Resource Profiling
● VM Checks
● Timing Attacks (time stalling & runtime measurements)

Resources

● Public evasive techniques: https://github.com/LordNoteworthy/al-khaser
● Detection and Mitigation: https://github.com/Maff1t/JuanLesPIN-Public

"On the dissection of evasive malware" IEEE Forensics and Security 2020

“Longitudinal Study of the Prevalence of Malware Evasive Techniques” arXiv 2021

18

https://github.com/LordNoteworthy/al-khaser
https://github.com/Maff1t/JuanLesPIN-Public

Agenda 📋

1. Malware, the tools and how/what to analyse

2. Creating an analysis pipeline

3. Humans vs. Machines

19

Pipeline

DATASET FILTERING ANALYSIS PROCESSING

20

Datasets

● 🔝 https://www.virustotal.com/ 🔝
○ Insanely expensive 💸

● https://www.virussign.com/
○ “Cheap” live feed

● https://virusshare.com/
○ Torrents (must be cleaned up)

● https://urlhaus.abuse.ch/
○ Malicious URLs

● https://bazaar.abuse.ch/
○ Advanced APIs

● https://www.vx-underground.org/
○ APT samples, organized in families, and source codes

● https://malshare.com/
○ Daily digest, researchers often upload famous samples

21

https://www.virustotal.com/
https://www.virussign.com/
https://virusshare.com/
https://urlhaus.abuse.ch/
https://bazaar.abuse.ch/
https://www.vx-underground.org/
https://malshare.com/

Filtering
1. File structure

○ Compiler, packer, protector, installer…
○ https://github.com/packmad/Siggregator

2. Family

○ CARO naming convention 😓
○ VirusTotal report ➡ AVClass2 ➡ family
○ https://github.com/malicialab/avclass

TeslaCrypt

“AVclass2: Massive Malware Tag Extraction from AV Labels” ACSAC 2020

22

https://github.com/packmad/Siggregator
https://github.com/malicialab/avclass

AVclass Family Filtering 🚨
AVclass output strips information
● Sometimes family name == campaign
● Within the same family you have different

○ Stages ⇒ Types
■ E.g., trojan/dropper and virus/ransomware

○ Versions
■ E.g., updated crypto algorithm in virus/ransomware

○ Variants
■ E.g., trojan/dropper detected ⇒ new obfuscation

○ Technologies
■ E.g., dropper created with pyinstaller, ransomware in rust

… let's think about it when we build a dataset 23

Large-Scale Dynamic Analysis + Processing

VM1

Orchestrator

NAS

PostgreSQL

VM2

VMx

Why not… ? 🤔
● MongoDB
● Apache Spark
● Elasticsearch
● …

24

118,111 samples dynamically analyzed (with IntelPin) in less than a month

● Properly filtered by removing non-natives, installers, and DLLs

● 21 Proxmox VMs: 2 (dedicated) CPUs and 2GB RAM each

○ Non-persistent storage (in a RAMdisk)

Real-World Numbers

“Decoding the Secrets of Machine Learning in Malware Classification: A Deep Dive
into Datasets, Feature Extraction, and Model Performance” CCS 2023

25

Agenda 📋

1. Malware, the tools and how/what to analyse

2. Creating an analysis pipeline

3. Humans vs. Machines

“Humans vs. Machines in Malware Classification” Usenix-Security 2023

26

Machine Learning 🤖

27

ML offers an easy-to-deploy and scalable solution

● Vast amount of research on ML-based malware classification

● ML works great in applications like speech/text/image recognition

○ Pronunciations/Characters/Objects remain relatively constant over time

● Models cannot go beyond the training data

○ Attackers aware of this limitation will always be one step ahead

○ ⇒ Malware constantly changes to evade detection

○ Which features really influences the accuracy of classification?

🐒 Humans vs. Machines 🤖

28

What info do humans and machines use to decide if a sample is benign or malicious?

● 110 humans 🐒
○ 38 Experts

■ Renowned cybersecurity companies + Academic researchers

○ 72 Novices – attended at least a course malware analysis

■ Students + Beginner CTF players

● State-of-the-art Machine Learning algorithms 🤖
○ Random Forests (RF) 👵
○ Convolution Neural Network (CNN) 👶

Experiment setup (for the humans 🐒)

We designed an web-based game: “Detect Me If You Can!” [DMIYC]

● Participants have to classify 20 suspicious files based on sandox report

○ Static and dynamic

● Design elements

○ Points: numerically represent a player’s outcome

○ Leaderboard: rank players according to their relative success

● Players must correctly classify (goodware/malware) the higher number of samples

○ Using as few features as possible

○ ⇒ Players have to “buy” each feature

29

Scoring Mechanism

Players start with a blank report

● Adds new features to the report by choosing them from a pre-defined catalog of 15 features

● Until she has gained enough information to make a confident binary classification

● 20 samples → 20 rounds

● 20 potential points for each round

○ When she buys a new feature → potential_points -= 1

■ “Empty feature” → potential_points -= 0

● If the sample is correctly classified → the player gets the remaining potential points

○ Otherwise zero 😞
● Final score = sum of all points obtained in each round * number of correct answers

○ ⇒ Highest possible score in DMIYC is 19*20*20 = 7600
30

31

Samples of the game

32

Samples of the game + VirusTotal T/F P/N

33

True Positive →

True Negative →

False Positive →

False Negative →

VirusTotal Impact

34

True Positive →

True Negative →

False Positive →

False Negative →

View of the results

35

Statistically-significant differences between E|N? Welch’s t-test
1. Time needed to complete the game
2. Final score
3. Number of correct answers
4. … features? 🤔 

Feature Ranking

36

Most used top 5 features

🤖 Machine Learning Players – Dataset

37

● Benchmark Dataset: 21,944 reports from VirusTotal

○ 50% (10,972) malware

■ [2018, 2020]

■ Detection >= 21 antivirus engines

■ No malware families were over-represented (AVClass2)

● Most frequent family had 125/10,972 occurrences (1.1%)

○ 50% (10,972) goodware

■ Clean Windows 10 machine

■ Installed all community-maintained Chocolatey software

■ Extracted all the executable files present on the hard disk

■ Filtered by detection < 3 (e.g., hacking/scanning tools)

🤖 Machine Learning Players – Validation

38

Validation of the classification accuracy using Machine Learning Players

● Balanced dataset containing VirusTotal reports

○ 10,972 goodwares and 10,972 malware samples.

● Training: 80% of the goodwares and malwares are selected randomly

● Testing: remaining 20% of the samples

● 5-fold cross-validation to derive averaged AUC-ROC scores

● Both Machine Learning players reach high classification accuracy

○ 0.9962 for RF and 0.9950 for CNN

Humans 🐒 vs. 🤖 Machines

39

● Results (reminder, machines had the “all feature advantage”)

○ Human Experts: 16/20 (avg == median)

○ RF: 17/20 – CNN: 16/20

● Machines errors

○ Both samples 3 [M] and 17 [G]

■ Sample 3 connects to a malicious domain

■ Human experts who correctly classified it looked at the “Network”

○ RF: sample 12 [G]

○ CNN: samples 4 [G] and 15 [M]

● The misclassified game files by the ML players and the human subjects are different

Humans 🐒 vs. 🤖 Machines – Feature Ranking

40

● We adopt SHAP as a model-agnostic model explanation tool

● Not the recursive feature elimination using out-of-bag error (OOB) evaluation of RF

○ Inclines to overestimate the importance of high-cardinality categorical variables

Takeaways (1/2)

41

● Experts and Novices base their decisions on the same set of features

● Humans and Machines agree on the importance of two features

○ “Network traffic” and a valid “signature”

● Machines rank top “resources”, Humans last – always take a look at it analysts!

● During goodware classification

○ Experts used more features

○ Novices make the majority of mistakes

○ ⇒ We must teach that one must check for the absence of any malicious

signs!

Takeaways (2/2)

42

● Experts classify samples by using less than 1/3 of the available features

○ With a preference for dynamic behaviour

● The problem of missing dynamic features

○ Missing observations weaken the trustworthiness of the ML-based decision

● Impact on the human-computer interaction; machines must show to humans

○ OSINT data to humans (e.g., IP and domains info)

○ What are the most significant features that helped classify the sample

■ The analyst can focus on the others and bridge the cognitive gap

Final Remark

43

The patient Elliot of Antonio Damasio

● A (successfully cured) brain tumor wounded the frontal lobe tissue in his brain

● Fully recovered, BUT: loss of his job, divorced, bankruptcy, etc.

● Several doctors declared that his mental faculties were intact ⇒ denied assistance

● Damasio tested him with lots of emotionally charged images: NO RESPONSE 💡
● When emotion was impaired, so was decision-making

– The End –
Thanks for your attention

Q&A

44

