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Abstract
For the most popular x-vector–based approaches to speaker
anonymisation, the bulk of the anonymisation can stem from
vocoding rather than from the core anonymisation function
which is used to substitute an original speaker x-vector with
that of a fictitious pseudo-speaker. This phenomenon can im-
pede the design of better anonymisation systems since there is a
lack of fine-grained control over the x-vector space. The work
reported in this paper explores the origin of so-called vocoder
drift and shows that it is due to the mismatch between the sub-
stituted x-vector and the original representations of the linguis-
tic content, intonation and prosody. Also reported is an origi-
nal approach to vocoder drift compensation. While anonymisa-
tion performance degrades as expected, compensation reduces
vocoder drift substantially, offers improved control over the
x-vector space and lays a foundation for the design of better
anonymisation functions in the future.
Index Terms: anonymisation, pseudonymisation, privacy,
vocoder drift, automatic speaker verification

1. Introduction
Speaker anonymisation broadly refers to the task of process-
ing speech recordings to conceal the identity of the speaker
while preserving linguistic and paralinguistic content. Recently,
the topic has attracted notable research interest, particularly
through the VoicePrivacy Challenge [1, 2, 3], first launched in
2020 to define the task and to encourage the development of
more effective speaker anonymisation techniques. According to
the VoicePrivacy Challenge Evaluation Plan [3], the evaluation
of a speaker anonymisation solution is based upon estimates of
the trade off between privacy (protection of the speaker identity)
and utility (how well the remaining signal content is preserved).
The former is estimated by the ability of an attacker to use au-
tomatic speaker verification (ASV) to infer the original speaker
identity and is measured in terms of equal error rate (EER). The
latter is estimated using the word error rate (WER) of an auto-
matic speech recognition (ASR) system as a proxy for utility.

Currently, the better-performing anonymisation solutions
reflect the processing pipeline described in [4] and rely upon
an initial decomposition of the input signal into the following
three components:
• a set of features representing the linguistic content of the sig-

nal, typically in the form of ASR;
• a component representing intonation and prosody, normally

a fundamental frequency (F0) curve;
• a neural embedding representing the identity of the speaker,

usually an x-vector.
To obfuscate the speaker identity, an anonymisation function

is applied to the x-vector embedding, thereby obtaining a new
embedding which represents the voice of a fictitious pseudo-
speaker. The three components are subsequently fed to a
vocoder model which synthesises a waveform with the same
spoken content and prosody as the original input audio, but in
the voice of the substitute pseudo-speaker.

For effective anonymisation, the pseudo-speaker’s voice
should sound different to that of the original speaker. For
the majority of anonymisation systems proposed to date,
this requirement is fulfilled by maximising some measure
of the distance between the chosen pseudo-speaker embed-
ding and the original speaker embedding. The most pop-
ular anonymisation function to date uses a pool of external
x-vectors [2, 3, 4, 5, 6, 7]. The pseudo-speaker embedding is
obtained by averaging a random subset of the furthest x-vectors
in the pool from the x-vector of the original speaker. More
refined methods of pseudo-speaker selection, e.g. based upon
the use of singular-value decomposition [8] and generative ad-
versarial networks [9], have also been explored. However, in
our previous work [10], we showed that anonymisation perfor-
mance is influenced by more than just the role of the anonymi-
sation function. The vocoder also plays a role and its impact
is comparable to, or even dominates that of the anonymisation
function. We termed this phenomenon vocoder drift.

While one interpretation of these observations is that
vocoder drift contributes positively to anonymisation, and is
hence a benefit, another is that it implies a lack of fine-grained
control over the x-vector space and that this lack of control
in turn impedes the design of effective x-vector anonymisation
functions. Moreover, vocoder drift can be learned and reversed
to undermine anonymisation safeguards [10].

With the work reported in this paper, we have sought to un-
derstand the cause of vocoder drift and how it can be reduced
in order to improve control over the x-vector trajectory and full
anonymisation process. We show that the cause of drift is re-
lated to the mismatch between the distribution of x-vectors used
for vocoder training and the distribution after anonymisation.
Such a mismatch can be compensated for during anonymisa-
tion by aligning the input and output x-vectors of the vocoder
via gradient descent.

2. Relation to prior work

In this section, we describe the typical structure of an x-vector–
based anonymisation solution, the concept of drift, and other
relevant, prior work. We also describe the system we used for
the experiments reported in Sections 3 and 4.
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Figure 1: Diagram of the speaker anonymisation system used in
this work. The dashed arrows indicate which x-vectors are used
to compute target distance and vocoder drift.

2.1. X-vector–based anonymisation

A graphical overview of a typical x-vector–based approach to
anonymisation is shown in Figure 1. Let s be a speech sig-
nal which we seek to anonymise and from which we extract
the following components: an F0 curve f ∈ RN , where N is
the number of frames into which s is split; a set of linguis-
tic features G ∈ Rc×N , where c is the feature dimension; an
x-vector f(s) = xo ∈ Rm, where m is the embedding di-
mension and f(·) is the embedding extraction function. The
x-vector is duplicated once for each frame, resulting in a matrix
Xo ∈ Rm×N . The set of features are then concatenated into a
final matrix of dimension (1+c+m)×N and fed to a vocoder
model to produce an utterance s̃ = V (f ,G,Xo).1

The vocoder is trained in a self-supervised fashion to re-
construct the original signal. At test time, an input utterance
is anonymised by substituting the original speaker embedding
xo with a pseudo-speaker embedding xp, which is obtained
by means of an anonymisation function a (xo) = xp. The
anonymised utterance s̃a is synthesised as s̃a = V (f ,G,Xp),
and a further x-vector xa = f(s̃a) can then be extracted from it.
Thus, as a result of anonymisation, the speaker identity follows
an x-vector trajectory, from xo to xp and then xa.

2.2. Vocoder drift

In [10], we sought to understand the degree to which the
anonymisation function and the speech synthesis procedure im-
pact upon the x-vector trajectory from xo to xa. We did so by
measuring how much the x-vector is perturbed during these two
steps of the anonymisation pipeline.

The anonymisation function controls the shift from xo

to xp. Given a distance metric d, we define d(xo,xp) as the
target distance: this quantity is set by the system designer
and indicates the desired perturbation which is applied to the
original speaker embedding to give the pseudo-speaker embed-
ding. As a result of synthesis, xp is further perturbed by the
vocoder, giving xa. We term d(xp,xa) the vocoder drift. To
provide fine-grained control over the x-vector space, the impact
of drift should be as small as possible in the total trajectory of
an individual x-vector. In other words, ideally, d(xo,xp) ≫
d(xp,xa).

Our work reported in [10] shows that the impact of the
anonymisation function and vocoder are comparable and that,
in some cases, the bulk of the anonymisation is delivered by
the vocoder, not the anonymisation function. In this work, we
propose a technique to compensate for vocoder drift.

1Henceforth, a bold lowercase x refers to a single x-vector, while
an uppercase X of the same subscript represents the matrix constructed
from the same x-vector duplicated N times.
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Figure 2: Vocoder drift plotted against target distance for the
LibriSpeech dataset and for female speakers. Dots and bars
represent mean and standard deviation of each of the following
experimental setups: (A) λ = 0; (B) λ = 1/3; (C) λ = 1/2;
(D) λ = 1.

2.3. System setup

For all experiments reported in this paper, we use a system
which, except for the use of different vocoders, is the same
as that described in [10], which is itself inspired by original
work in [7]. The F0 contour f and the linguistic features G
are produced with YAAPT [11] and a HuBERT-based soft con-
tent encoder [12], respectively. All x-vectors are extracted
with ECAPA-TDNN [13], and the vocoder model is a HiFi-
GAN [14]. The anonymisation function a (·) is the same x-
vector pool-based averaging function described in Section 1.
Given an input xo, the K x-vectors furthest from it are selected
from the pool. K∗ of them are then randomly chosen and av-
eraged to obtain xp. We set K = 200, K∗ = 100, and use
the cosine distance metric as in [10]. Following the VoicePri-
vacy Challenge 2022 [3] protocol, the external x-vector pool
is derived from LibriTTS-train-other-500 [15], and the evalua-
tion sets are derived from the LibriSpeech-test-clean [16] and
VCTK [17] (split into female and male sub-partitions) datasets.
For consistency with a (·), the target distance and vocoder drift
are also measured in terms of the cosine distance.

3. The cause of vocoder drift
In this section, we describe what we believe to be the source of
vocoder drift and present a set of experiments which validate
our hypothesis.

3.1. Feature mismatch

As illustrated in Section 2.1, the vocoder model is trained in
self-supervised fashion to reconstruct input signals s at the out-
put. While, ideally, input components f , G and xo should be
disentangled from one another – so that none contains any in-
formation that is also contained in any other – there is no ex-
plicit incentive in the training criterion of any of the three ex-
traction models which would encourage the learning of disen-
tangled representations. Previous work has confirmed that the
representations are indeed entangled to some extent. For exam-
ple, results in [18, 19] show that speaker-related information,
normally captured in xo, can leak into linguistic representa-



Table 1: Average target distance and drift (without and with compensation) for the four different VoicePrivacy Challenge 2022 data
subsets and for four different values of λ.

λ = 0 (copy-synthesis) λ = 1/3 λ = 1/2 λ = 1 (normal anon.)
target drift drift (compens.) target drift drift (compens.) target drift drift (compens.) target drift drift (compens.)

LibriSpeech (F) 0 0.29 0.047 0.13 0.38 0.049 0.35 0.50 0.054 1.0 0.63 0.052
LibriSpeech (M) 0 0.27 0.047 0.11 0.35 0.048 0.31 0.48 0.051 1.0 0.65 0.052
VCTK (F) 0 0.29 0.049 0.11 0.36 0.051 0.30 0.49 0.084 1.0 0.69 0.082
VCTK (M) 0 0.29 0.049 0.08 0.35 0.049 0.26 0.46 0.062 1.1 0.79 0.078

tions G. The vocoder can hence learn to rely on such mutual
dependencies between input features in learning how it should
reconstruct s̃.

Through anonymisation, original speaker embeddings xo

are substituted by pseudo-speaker embeddings xp, and used by
the vocoder to reconstruct a speech signal using the F0 curve f
and linguistic features G extracted from the input speech sig-
nal corresponding to x-vector xo. The new pseudo-speaker em-
bedding will hence not match any speaker-related information
contained in f and G. This results in a mismatch with the data
distribution learned by the vocoder at training time. It is our
hypothesis that this mismatch is the source of vocoder drift.

We verified our hypothesis with an experiment in which
we anonymised a set of utterances s and computed original
x-vectors xo and corresponding pseudo-speaker embeddings
a (xo) = xp. Then, rather than synthesising new waveforms
according to the usual approach V (f ,G,Xp), we compute in-
stead V (f ,G,Xi), where xi is an interpolation between xo

and xp:
xi = xo + λ(xp − xo) (1)

The parameter λ ∈ [0, 1] acts to control the distance between
xi and either xo or xp. In line with definitions presented in
Section 2.2, we term d(xo,xi) the target distance. The target
distance can be interpreted to reflect the mismatch between the
speaker embedding that would naturally complement f and G
and the embedding received by the vocoder. By adjusting λ, we
conducted a set of anonymisation experiments with increasing
target distances, i.e. higher values of λ, equivalent to increasing
feature mismatch. For each experiment, we also measure the
resulting vocoder drift. A positive correlation between drift and
target distance would then suggest that vocoder drift does in-
deed have some dependency on the mismatch between vocoder
input features.

3.2. Experiments and results

We conducted experiments with values of
λ = {0, 1/3, 1/2, 1}. In the case of λ = 0, (1) reduces to
xi = xo, which corresponds to the absence of anonymisation
(i.e. a (·) is not applied): the system performs copy-synthesis.
Conversely, in the case of λ = 1, (1) reduces to xi = xp:
the pseudo-speaker embedding is employed during synthesis
as with usual anonymisation. Values of λ = 1/3 and 1/2
correspond to different interpolations between xo and xp. We
measured the target distance and vocoder drift for all four
configurations.

Results are reported in Table 1, which shows the target dis-
tance and drift in the first two columns of each set of results for
each value of λ. Results are shown separately for LibriSpeech
and VCTK datasets and for male and female subsets in both
cases. A degree of positive correlation between λ and both the
target distance and drift is apparent. For λ = 0, the target dis-
tance is always 0 (since xi = xo) and the drift is consistently
in the order of 0.28. For λ = 1/3, the target distance increases

to an average of 0.1 and the drift to an average of 0.36. Both
the target distance and drift increase further for higher values
of λ: such a correlation is evident when plotting the two met-
rics against one another for a whole data partition and different
values of λ, as in Figure 2. These results show that, the greater
the degree of mismatch between input features, the greater is
the vocoder drift. This in turn implies that greater target dis-
tances incur less control over the x-vector space. However, but
not surprisingly, for copy-synthesis when λ = 0, the drift is still
substantial. For this configuration, there is no mismatch in the
input features; those used for reconstruction are exactly those
extracted from the input signal. This suggests that a component
of the drift stems from the intrinsic nature of the waveform re-
construction process. In the following, we report an approach
to compensate for the vocoder drift.

4. Drift compensation
Vocoder drift, while advantageous in terms of anonymisa-
tion [10], can be undesirable in that it prevents fine-grained con-
trol over the x-vector space. Because the impact of the vocoder
upon the x-vector space can dominate that of the anonymisa-
tion function, this lack of control impedes the design of better
anonymisation functions. Hence, even if lower vocoder drift
might initially degrade anonymisation performance, it may de-
liver better control over the x-vector space and then be bene-
ficial to the future development of better anonymisation func-
tions. In this section, we introduce a new technique for vocoder
drift compensation. It is based upon the iterative alignment of
xa to xp at inference time.

4.1. X-vector alignment

Our goal is to adjust the matrix Xi so as to reduce the mismatch
to G and f in order then to reduce vocoder drift. This adjust-
ment can be formulated as an optimisation problem:

X∗
i = argmin

Xi

d
(
f
(
V (f ,G,Xi)

)︸ ︷︷ ︸
xa

, xp

)
(2)

where d is again the cosine distance. In essence, we seek to ad-
just Xi so as to minimise the cosine distance between xp (the
x-vector vocoder input) and xa (the x-vector extracted from its
output). The resulting, optimised matrix X∗

i is then used to syn-
thesise an anonymised utterance s̃∗a, whose drift-compensated
x-vector we denote as x∗

a. We optimise the objective func-
tion directly at inference time via gradient descent. With this
approach, the drift can be arbitrarily reduced by any desired
amount, at the cost of proportionately increasing the computa-
tion time required to synthesise the anonymised waveform.

4.2. Experiments and results

We optimise (2) at the utterance level using Adam [20] with a
learning rate of 5e−3. Optimisation runs for a maximum of 150
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Figure 3: t-SNE visualisations of four different x-vector spaces and embeddings for the enrolment and trial utterances of the LibriSpeech
dataset and female speakers. Different colours correspond to different speakers. From left to right: original x-vectors xo, pseudo-
speaker embeddings xp, anonimised embeddings xa, anonymised and drift-compensated embeddings x∗

a.

steps, but stops earlier if the drift falls below 0.05 (set arbitrarily
to reduce processing time). The impact of drift compensation is
then observed by repeating the experiments described in Sec-
tion 3 but with Xi replaced by drift compensated versions X∗

i

and by observing the reduction in vocoder drift.
Results are shown in the third columns of each block in

Table 1. Drift compensation reduces the vocoder drift for all
values of λ. For λ = {0, 1/3}, 150 optimisation steps are gen-
erally sufficient for the drift to reach the lower bound of 0.05,
for all datasets. This is also the case for the LibriSpeech dataset
for λ = {1/2, 1}. For the VCTK dataset, we obtain drift val-
ues of approximately 0.07 — slightly higher than LibriSpeech,
yet still considerably lower than the initial vocoder drift. Infor-
mal listening tests show that drift compensation introduces no
discernible degradation to speech quality — any differences are
negligible to the point that signals generated with and without
drift compensation are difficult to tell apart.

4.3. Impact upon privacy protection

If the vocoder drift is responsible for the bulk of anonymisation
performance, and if drift compensation performs as intended,
then the application of drift compensation is expected to result
in degraded anonymisation performance. We performed a set
of ASV experiments to observe the impact. Experiments were
conducted according to the protocol described in the VoicePri-
vacy Challenge 2022 evaluation plan [3]. For each dataset, the
experiment is run four times, each time using one of the set of
x-vectors (xo, xp, xa, x∗

a) for each utterance. The results are
reported in Table 2.

As expected, low EERs for x-vectors xo increase for xp and
even more noticeably for xa, indicating the dominant impact of
the vocoder upon anonymisation. This is especially evident in
VCTK partitions, likely because of a domain mismatch with the
HiFi-GAN vocoder which, in accordance with the VoicePrivacy
2022 protocol, is trained on LibriTTS-train-clean-100. EERs
for x-vectors x∗

a are close to those of xp, indicating successful
vocoder drift compensation. This result can also be observed
visually in Figure 3, which shows t-SNE visualisations [21] of
all four x-vector embeddings for the LibriSpeech dataset and fe-
male speakers (both trial and enrolment utterances). The effect
of drift is clearly visible upon the comparison of the visualisa-
tions for xp and xa: in the latter, embeddings are notably more
dispersed. The visualisation for x∗

a shows that drift compensa-
tion reduces the dispersion, giving compact clusters once more.

Table 2: ASV results (EER, %) for VoicePrivacy 2022 test sets,
using the same set of different x-vector speaker embeddings as
in Figure 3.

xo xp xa x∗
a (comp.)

LibriSpeech (F) 0.54 2.51 15.0 2.75
LibriSpeech (M) 0.88 2.99 14.5 3.34

VCTK (F) 1.13 5.59 25.3 9.20
VCTK(M) 0.17 3.04 18.5 5.23

5. Conclusions

This paper shows that the mismatch between the representations
of linguistic information, intonation and prosody and a substi-
tute pseudo-speaker embedding is a source of vocoder drift –
the difference between a target x-vector and that which can be
extracted from the synthesised output of popular approaches to
speaker anonymisation.

While beneficial to anonymisation, vocoder drift can
nonetheless be undesirable: it reduces fine-grained control over
the x-vector space and hence impedes optimisation of the core
anonymisation function. Experiments show that a novel ap-
proach to compensate for vocoder drift through the iterative ad-
justment of pseudo-speaker embeddings to linguistic, intonation
and prosodic components is effective in reducing the drift. As
expected, however, the loss of vocoder drift degrades anonymi-
sation performance. This result adds further weight to our pre-
vious findings that vocoder drift plays a substantial, but only su-
perficial role in anonymisation; the vocoder drift can be learned
and undone, or reversed by an adversary.

The anonymisation function remains to be of paramount
importance since its impact cannot be, or is at least much more
difficult to reverse. The design of better anonymisation func-
tions should hence remain a focus in future work. The allevia-
tion of extraneous influences coming from vocoder drift delivers
better control over the x-vector space and hence better potential
to design more effective anonymisation functions in the future.
This does not preclude the study of disentangled representations
or other vocoder schemes which might also offer complemen-
tary opportunities to reduce drift and improve control over the
x-vector space.
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