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Abstract—In this paper, we present a stealthy and effective
attack that exposes privacy vulnerabilities in Graph Neural Net-
works (GNNs) by inferring private links within graph-structured
data. Focusing on dynamic GNNs, we propose to inject new
nodes and attach them to a particular target node to infer its
private edge information. Our approach significantly enhances
the F1 score of the attack beyond the current state-of-the-art
benchmarks. Specifically, for the Twitch dataset, our method
improves the F1 score by 23.75%, and for the Flickr dataset, it
records a remarkable improvement, where the new performance
is more than three times better than the state-of-the-art. We also
propose and evaluate defense strategies based on differentially
private (DP) mechanisms relying on a newly defined DP notion,
which, on average, reduce the effectiveness of the attack by
approximately 71.9% while only incurring a minimal average
utility loss of about 3.2%.

I. INTRODUCTION

Graph-structured data has become increasingly prevalent, es-
pecially in social networks, biological systems, and recommen-
dation engines. Graph Neural Networks (GNNs) have emerged
as powerful tools for analyzing such data, providing remark-
able performance in various tasks. However, these advantages
come with significant privacy risks as the graph structure often
contains sensitive information. For instance, links in social
networks might reveal users’ interests, beliefs, or personal
attributes, potentially causing serious privacy breaches [1].

This paper advances the understanding of edge privacy in
GNNs by developing a novel link-stealing attack, named Node
Injection Link Stealing (NILS) attack, and proposing a tailored
Differential Privacy notion to protect against it. We focus on
training GNNs for node classification tasks, where the model
processes graph structure and node features to produce class
membership predictions at inference time.

Previous studies like the Linkteller attack [2] showed that
probing node features and analyzing GNN outputs can reveal
graph links. We propose a stronger adversary who enhances
this approach by adding new nodes and querying the model
with malicious input features, aiming to infer and steal graph
connections.

The NILS attack mimics sending a friend request on social
media to uncover and analyze a target’s connections, exploiting
changes in content recommendations or interactions upon
establishing new connections. We explore defense strategies,
mainly DP mechanisms, proposing a new privacy notion, one-
node-one-edge privacy, to counter such attacks.

We make the following contributions: We propose the NILS
attack for inferring private links by injecting new nodes, link
them to target nodes, and analyze changes in GNN output. Our
evaluations demonstrate superior performance over existing
methods like LinkTeller [2] and link-stealing [3]. We also
introduce a new privacy notion and evaluate DP-based defenses
to balance privacy preservation and model utility.

For a more comprehensive discussion and additional results,
see the extended version of this paper on arXiv: https://arxiv.
org/abs/2307.13548.

A. Background on Graph Neural Networks

GNNs [4] have emerged as a powerful class of ma-
chine learning models specifically designed to handle graph-
structured data. They have gained considerable attention due to
their ability to effectively learn and capture complex patterns
in graph data, showing significant performance across a wide
range of tasks, such as node classification [5], [6], link predic-
tion [7], and graph classification [8], [9]. A particular focus of
the current paper is the task of node classification, where the
objective is to assign labels to individual nodes based on their
features and the overall graph structure.

A graph G = (V,E) is defined as a collection of nodes
V and edges E. Nodes represent data points such as users
in social networks or proteins in biological networks, while
edges represent relationships or interactions between the nodes.
Graphs can be represented using an adjacency matrix A ∈
Rn×n, where n = |V | is the number of nodes in the graph,
and Aij = 1 if there exists an edge between nodes i and
j, and Aij = 0 otherwise. Additionally, nodes exhibit a set
of features, which can be represented by vectors containing
d elements. In social networks, these features may include
demographic information such as age, gender, and location,
as well as user interests and preferences. To capture these
features, the feature matrix X ∈ Rn×d includes essential
information about the characteristics of each node in the graph.

GNNs primarily operate by employing a message-passing
mechanism [4] that allows nodes to exchange and aggregate
information from their local neighborhoods. This iterative
process helps GNNs capture local and global structural in-
formation in the graph. For instance, in the context of graph
convolutional networks (GCNs) [10], the most representative
and well-established GNN models, their core architecture
consists of a series of graph convolutional layers, which can
be formulated as follows:

H(0) = X, H(l+1) = σ
(
ÂH(l)W (l)

)
, H(L) = P. (1)

Here, H(0) denotes the node feature matrix X; H(l) ∈ Rn×dl

is the hidden node representation matrix at layer l, where L
is the total number of layers; and P ∈ Rn× c represents the
prediction scores for each potential class or label associated
with the queried nodes, where c reprensents the number of
classes; W (l) ∈ Rdl×dl+1 is the learnable weight matrix for
layer l; σ(·) is an activation function (e.g., ReLU), and Â is a
normalized adjacency matrix.

GNNs usually handle dynamic graph data as in real-life sce-
narios such as social network applications or recommendation
systems, where graphs usually evolve over time: New nodes or
edges may be introduced with the goal of making predictions
for these actual nodes. When a new node is added to the
graph, both the adjacency matrix A ∈ Rn×n, and the feature
matrix X ∈ Rn×d are updated. The adjacency matrix expands
to A′ ∈ R(n+1)×(n+1), while the feature matrix becomes
X ′ ∈ R(n+1)×d, incorporating the new node’s connections and
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features, respectively. Once the graph is updated, the GNN
performs inference on the modified graph, using the message-
passing mechanism described earlier.

II. NODE INJECTION LINK STEALING ATTACK

A. Node injection link stealing attack
In this paper, we focus on a particular attack named as

link stealing attack, where an adversary without access to the
adjacency matrix aims to learn whether a particular edge exists
or not. Here, we consider a GNN application in which a server
has already trained the GNN using a specific dataset and offers
access to this GNN through a black-box API. In this context,
the black-box API is an interface provided by the server that
enables users to interact with the pre-trained GNN model
without directly accessing its internal components, such as the
model architecture, parameters, or graph structure. Users can
submit prediction queries using node IDs. If a new node needs
to be added to the graph, users can employ a connect query
to attach the node to the graph before querying its prediction
based on its ID. The API processes input data into output
predictions, ensuring that the model’s underlying computations
remain hidden from the user. Users can query this GNN for
the purpose of node classification. Hence, the query consists
of the queried node’s ID and the output of this query is the
vector of prediction scores for this particular node. The users
do not have the knowledge of the edges of this graph. Hence
the only information that a user knows is the set of nodes’
IDs. We consider an adversary, A, who assumes the role of
a GNN user. Her objective is to determine the neighbors of a
specific target node, vt, selected from a set of target nodes, VA,
within the graph. This is done based on the GNN’s predictions
for the node set VA. In simpler terms, A aims to identify the
neighbors of the target node vt that are included in the target
set nodes VA.

We should note that if the adversary aims to identify all
the links within the graph, then the set of target nodes VA
becomes the set containing all the nodes of the graph V . To
achieve this, the adversary may need to perform multiple node
injections, targeting different nodes from the graph each time.
However, the practicality of such an approach is debatable. The
adversary’s selection of target nodes reflects her background
knowledge about these nodes. For instance, in the context of
social networks, the adversary’s background knowledge could
include information such as users’ interests. This information
can guide the adversary in selecting target nodes VA that are
more likely to be connected. In our attack scenario, we choose
the target nodes uniformly at random. The adversary A is able
to obtain the predictions of the target nodes VA by sending the
server their corresponding IDs through the provided API. In
addition, the adversary A is able to use the connect query
to connect a node vm to a target node vt. In general, we
assume that the adversary does not have access to the features
of the nodes in the graph, with the exception of certain attack
strategies described hereafter.

Adversary A can connect new nodes and further query the
prediction scores of a set of nodes VA in the graph. While
adding this new node vm, A can choose which existing node vt
it actually connects to and hence try to discover its neighbors.
More formally, NILS is composed of the following steps:

1) A first queries the prediction scores of the target nodes
VA and receives the corresponding prediction matrix P
of the target nodes VA.

2) A generates malicious features of a malicious node vm
based on the obtained prediction matrix P .

3) Next, A sends a connect query to inject the malicious
node vm. The query has the following parameters: the
features xm of the new node, and the ID of the target
node vt the adversary wishes to connect vm to.

4) The server adds this malicious node vm to the graph and
links it to the target node vt.

5) A queries back the server for new prediction matrix P ′

of the target nodes VA and obtains it.
6) With access to P and P ′, A computes the L1 distance

between P (v) and P ′(v) of each node v in VA. A
significant change in the prediction scores of a node v
indicates a high probability of being a neighbor with vt.
If the difference exceeds a threshold R, the adversary
infers that node v is a neighbor of vt.

The decision threshold R is determined through an extensive
parameter tuning process, aiming for an optimal trade-off
between precision and recall in identifying the true neighbors
of the target node. This balance is represented by the F1 score.
We evaluate various candidate values of R, selecting the one
that yields the highest F1 score as the optimal threshold. The
results reported in our study are based on the optimal value of
R. NILS attack strategy is outlined in Algorithm 1.

Algorithm 1: Node Injection Link Stealing Attack
Input: set of nodes VA and target node vt.
Output: the identified neighbors of vt by the adversary.
P = GNN(VA, XVA ) ▷ Step 1
Generate malicious features xm of node vm ▷ Step 2
Connect node vm to vt. ▷ Step 3-4
P ′ = GNN(VA ∪ vm , XVA ∪ xm) ▷ Step 5
for each node v in VA do

D(v) = ∥P (v)− P ′(v)∥1 ▷ Step 6
if D(v) ≥ R then

v is a neighbor of vt
end
else

v is not a neighbor of vt
end

end

To assess the impact of introducing a malicious node vm on
GNN predictions, we explore five strategies for generating its
feature vector xm:

1) All-ones strategy: Assigns xm = 1, creating a dense
feature vector that may significantly alter predictions but
lacks stealth due to its density.

2) All-zeros strategy: Uses xm = 0, leading to a sparse
vector that subtly changes GNN outputs, enhancing
stealth.

3) Identity strategy: Sets xm = xt, copying the target
node’s features, which disrupts the model’s predictions
for neighboring nodes; stealth varies with the similarity
between the target and malicious nodes.

4) Max attributes strategy: Forms xm by taking the
maximum attributes from nodes of different classes
than the target node, resulting in pronounced feature
exaggerations and potential detection risks.

5) Class representative strategy: Chooses xm from a node
with the highest confidence in a class not shared with
the target, subtly altering neighboring predictions and
potentially increasing stealth.

Additionally, we introduce the LinkTeller Influence strat-
egy, modifying the target node’s features by a small value α



(xm = xt +α), blending their perturbation approach with our
model.

B. Defense

LapGraph is a DP defense strategy typically adopted for
link stealing attacks [2]. In the specific context of our work,
we adapt LapGraph to effectively protect against our node
injection link stealing attack under the one-node-one-edge-
level DP framework. This unique application is crucial because
the adversary in our model adds a malicious node to the
graph, connected through a single edge, aiming to exploit the
adjacency matrix’s sensitivity to reveal confidential links. By
perturbing the adjacency matrix using the Laplace mechanism
and binarizing it, where the top-N largest values are set to 1
and the rest to 0, LapGraph obscures the changes induced by
such node injections.

The post-processing property of DP, which LapGraph lever-
ages, ensures that the privacy of the edge information is
maintained even when an adversary observes the GNN’s
output predictions. Furthermore, each addition of a new node
triggers a regeneration of the adjacency matrix according to the
LapGraph method, thereby reinforcing the privacy protections
incrementally through the sequential composition of DP. This
adaptation is particularly pertinent for our one-node-one-edge-
level DP as it addresses the nuanced threat posed by node
injections—a scenario where traditional edge-level DP mech-
anisms might fall short due to the increased sensitivity and
potential for information leakage

III. EVALUATION OF THE ATTACK AND DEFENSE

The success rates of these strategies, as shown in Table I,
reveal that the All-ones, Max attributes, and Class represen-
tative strategies are the most effective in causing significant
changes in the predictions of the target node’s neighbors.
These results suggest that injecting nodes with high-valued
or class-specific features can effectively disrupt the model’s
output predictions. Conversely, the All-zeros, and Identity
strategies exhibit relatively lower success rates, as shown in
Table I. While these strategies offer certain benefits in terms of
stealthiness, their impact on the graph structure and predictions
is less pronounced, highlighting a trade-off between attack
effectiveness and stealthiness. These findings underscore the
importance of considering both the effectiveness and stealthi-
ness of malicious feature generation strategies when devising
link inference attacks on GNNs.

Method Twitch-FR Twitch-RU Flickr

Class Rep. 0.94± 0.01 0.83± 0.06 0.96± 0.06
Max Attr. 0.99± 0.00 0.98± 0.02 1.00 ± 0.00
All-ones 0.99 ± 0.00 0.97 ± 0.01 0.99± 0.02
All-zeros 0.58± 0.02 0.48± 0.01 0.71± 0.07
Identity 0.81± 0.02 0.69± 0.01 0.95± 0.07
Influence NILS 0.81± 0.02 0.70± 0.01 0.89± 0.10
Influence LinkTeller [2] 0.80± 0.02 0.74± 0.01 0.32± 0.13

Table I: F1 scores and standard deviations for different attack
methods and datasets.

Hereafter, we present the results of experiments conducted
to evaluate the performance of NILS attack in comparison to
the LinkTeller attack, using an identical experimental setup.
Our focus is on analyzing the optimal attacks for both ap-
proaches, which involved accurately estimating the number of
neighbors of the target set nodes. The results, summarized in
Table II, demonstrate that our attack outperforms LinkTeller
on both Twitch datasets (TWITCH-FR and TWITCH-RU).

Furthermore, our method exhibits a substantial improvement
over LinkTeller on the Flickr dataset, achieving nearly double
the precision and recall values. Notably, our attack demon-
strates stable performance across varying node degrees, with
only a marginal decrease in effectiveness for high-degree target
nodes. This can be attributed to the smaller influence that each
neighboring node has on the aggregation of the GCN layer
when the target node degree is high. Overall, our proposed
NILS attack demonstrates consistently a superior performance
as opposed to the LinkTeller attack. We further compare
our attack with link-stealing attacks introduced in [3], where
the authors’ various attack strategies rely on different types
of background knowledge available to the adversary, such
as node attributes and shadow datasets. Specifically, in their
Attack-2, the adversary has access to both the features and
prediction scores of the nodes. Utilizing this information, the
adversary creates two types of attacks: LSA2-attr and LSA2-
post. LSA2-attr calculates distances between node attributes,
while LSA2-post computes distances between node prediction
scores (posteriors). It is important to highlight that these two
attacks align closely with our threat model, as both assume that
the adversary has access to the features and prediction scores
of the target node. This similarity in assumptions renders
these attacks particularly relevant for comparison with our
proposed NILS attack. The attacks are executed under the
transductive setting, where training and inference occur on the
same graph. As shown in Table III, our proposed NILS attack
outperforms the LSA2-post and LSA2-attr attacks constructed
in [3]. However, our attack performance is nearly equivalent to
that of LinkTeller. These results demonstrate that NILS attack
maintains effectiveness under the transductive setting, just as
in the inductive setting.

Figure 1 presents the F1 score of the attack for various
ε values. We observe that applying LapGraph reduces the
effectiveness of NILS. The F1 score becomes almost zero
when the privacy budget ε is small. However, for large ε,
LapGraph provides moderate protection, but the attack’s F1

score remains significantly lower than in the non-private case
where DP is not applied. For comparison, in the LinkTeller [2]
attack, where LapGraph is applied only once to ensure edge-
level DP, LapGraph offers limited protection when ε is large,
allowing LinkTeller to achieve a success rate nearly as high as
in the non-private case. Conversely, in our scenario, where
LapGraph is also applied after the adversary’s node injec-
tion, LapGraph provides stronger protection.The application of
LapGraph during inference makes it more challenging for the
adversary to distinguish between the target node’s neighbors
and non-neighbors, as the prediction scores of all target nodes
change after each inference query. Consequently, the distances
between the prediction scores P and P ′, before and after the
node injection, become noisier due to LapGraph’s application
following the node injection.

To provide insights about the privacy-utility tradeoff of
LapGraph, we present in Figure 2 the utility of the GCNs
for different values of the privacy budget. We observe that the
utility increases when ε increases, as expected. Large values of
ε ≥ 7 give a better utility close to that in the non-private vanilla
case. Therefore, carefully choosing an ε will give fairly good
utility and a certain level of protection against NILS attack.

IV. CONCLUSION

In this paper, we have presented a powerful new NILS
at- tack—a link-stealing attack using node injection against
GNNs. Our results have demonstrated the superior perfor-



Dataset Method low uncontrained high
precision recall precision recall precision recall

TWITCH-FR NILS (Ours) 100.0±0.0 100.0±0.0 99.13±0.8 99.57±0.35 99.91±2.6 100.0±0.0

LinkTeller 92.5±5.4 92.5±5.4 84.1±3.7 78.2±1.9 83.2±1.4 80.6±6.7

TWITCH-RU NILS (Ours) 100.0±0.0 100.0±0.0 96.45±0.4 98.34±0.7 99.77±0.1 99.37±0.1

LinkTeller 78.8±1.9 92.6±5.5 71.8±2.2 78.5±2.4 89.7±1.7 65.7±3.9

Flickr NILS (Ours) 100.0±0.0 100.0±0.0 99.11±1.7 95.83±5.0 93.72±3.1 78.9±1.9

LinkTeller 51.0±7.0 53.3±4.7 33.8±13.3 32.1±13.3 18.2±4.5 18.5±6.1

Table II: Comparative performance of our proposed attack NILS and LinkTeller across three datasets (TWITCH-FR, TWITCH-
RU, and Flickr) under low, unconstrained, and high constraint settings. The results are presented in terms of precision and
recall with corresponding standard deviations
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Figure 1: F1 score of the attack for different values of ε.
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Figure 2: F1 score utility of the GCN for different values of ε.

Method Cora Citeseer Pubmed
precision recall precision recall precision recall

NILS (Ours) 99.7±0.2 99.6±0.3 97.4±0.2 98.2±0.1 99.7±0.0 100.0±0.0

LinkTeller 99.5±0.1 99.5±0.1 99.7±0.0 99.7±0.0 99.7±0.0 99.7±0.0

LSA2-post 86.7±0.2 86.7±0.2 90.1±0.2 90.1±0.2 78.8±0.1 78.8±0.1

LSA2-attr 73.6±0.1 73.6±0.1 80.9±0.1 80.9±0.1 82.4±0.1 82.4±0.1

Table III: Comparative performance of NILS attack with
LinkTeller [2] and link-stealing attacks in [3] across three
datasets (Cora, Citeseer, and Pubmed).

Dataset Method Depth-2 Depth-3
precision recall precision recall

TWITCH-FR NILS (Ours) 99.13±0.8 99.57±0.35 85.06±1.2 81.56±1.2

LinkTeller 84.1±3.7 78.2±1.9 50.1±5.1 46.6±5.0

TWITCH-RU NILS (Ours) 96.45±0.4 98.34±0.7 78.78±3.8 76.35±9.3

LinkTeller 71.8±2.2 78.5±2.4 45.7±2.2 50.0±2.8

Table IV: Success rates of the attack for different depths in
comparison with LinkTeller [2]. We use the all-ones strategy
and Twitch-FR dataset.

mance of NILS compared to previous attacks, further empha-
sizing the vulnerabilities of GNNs regarding edge information
leakage. We have also evaluated NILS against differentially
private GNNs, ensuring a one-node-one-edge-level DP notion
specifically designed to protect against our proposed attack.
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