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Abstract—Many signal processing problems involve a General-
ized Linear Model (GLM), which is a linear model in which
the unknowns may be non-identically independently distributed
(n.i.i.d.). Vector Approximate Message Passing (VAMP) is a
computationally efficient belief propagation technique used for
Bayesian inference. However, the posterior variances obtained
from (limited complexity) VAMP are only exact when an inde-
pendent and identically distributed (i.i.d.) prior is assumed, due
to the averaging operations involved. In many problems, it is
desirable to not only get estimates of the unknowns but also
correct posterior distributions. Whereas VAMP and esp. AMP is
applicable to problems of high dimensions, in many applications
the dimensions are not very high, allowing for more complex
operations. Also, in finite dimensions, the asymptotic regime
leading to correct variances under certain measurement matrix
model assumptions does not hold. To address these challenges,
we propose a revisited version of VAMP, called reVAMP, which
provides both a multivariate Gaussian posterior approximation
(including inter-parameter correlations) and accurate posterior
marginals which only require the extrinsic distributions to
become Gaussian.

I. INTRODUCTION

The recovery of signal vectors is a fundamental problem in
signal processing and finds applications in various domains,
including image and speech processing, communications, ma-
chine learning, and localization. In many problems, such
as compressed sensing, we are interested in recovering a
random signal vector from noisy measurements through a
linear measurement model, as mentioned in the abstract. In
other problems, such as Direction of Arrival estimation, the
measurement matrix may be a parametric dictionary. In those
problems, the distribution of the random signals may involve
the deterministic parameters of interest. Maximum Likelihood
parameter estimation in such mixed deterministic-random
problems can be carried out using Expectation Maximization
but still requires the posterior distribution of the signal vector.
In the field of localization [1], we are sometimes more
interested in estimating the parameter of the random vector
x, namely, calculating the posterior E{θ|y} while the obser-
vations p(y|x) and priors p(x|θ) are given. By using iterative
methods such as Expectation Maximization, the estimation
problem is transformed into the recovery of a signal vector.
Even in lower dimensions, the application of Bayesian estima-
tion (e.g., Minimum Mean Squared Error (MMSE)) becomes
challenging in a non-Gaussian scenario due to the intractability
of the involved integrals.
To address this challenge, approximate inference methods
have been developed, among which Approximate Message
Passing (AMP) is a popular and efficient approach [2]. AMP
has demonstrated effectiveness in recovering high-dimensional
signals, and its dynamics can be fully characterized by a
state evolution [3]. However, the convergence of AMP can be

problematic when dealing with ill-conditioned measurement
matrices A.
The Vector Approximate Message Passing (VAMP) algorithm
has been proposed to handle ill-conditioned A matrices [4]. It
achieves this by splitting one variable node x into two variable
nodes, x1 and x2, both representing x. Subsequently, an
iterative Expectation-Propagation (EP)-like message passing
algorithm is applied to the factor graph using vector-valued
messages. VAMP has demonstrated favorable performance
under right rotationally invariant A, and its state evolution
has been rigorously established [4].

A. Prior Work

In [4], the VAMP algorithm was introduced. VAMP approx-
imates the posterior marginals as having identical variances
to reduce computational complexity. The paper also proves
that for log-concave priors, the variances of the extrinsic
distributions are always positive.
In [5], an alternative method for implementing VAMP is
presented, which avoids the need to approximate the ex-
trinsic distribution covariances as multiples of the identity
matrix. This approach considers prior distributions with non-
log-concave probability density functions and introduces a
correction term to ensure the non-negativity of the extrinsic
variances.
In [6], Component-Wise Conditionally Unbiased (CWCU)
MMSE estimation with zero prior mean is proposed. They
establish a close relationship between Linear MMSE, Best
Linear Unbiased Estimation (BLUE), and CWCU MMSE
estimators.

B. Main Contribution

In VAMP and its variants, it is often assumed that the
system dimension is high, which motivates the efforts to
avoid expensive matrix inversions and the need for additional
approximations to reduce complexity.
However, in many estimation problems, non-Gaussian distribu-
tions may require approximate Bayesian techniques even when
the dimension is not very high. There is a specific interest in
estimating posterior distributions, particularly variances. The
original VAMP algorithm only provides averaged variances,
which motivates the development of the revisited Approxi-
mate Message Passing (reVAMP) algorithm presented in this
paper. This algorithm leverages the properties of multivariate
Gaussian marginalization and adopts a similar Expectation-
Propagation (EP)-like derivation approach as described in [4].



In reVAMP, each marginal extrinsic distribution is approxi-
mated as a Gaussian distribution using EP. This approximation
is then used to calculate the marginal posterior of the signal
vector entries through the sum-product rule. Additionally, a
joint Gaussian approximation for the joint posterior is ob-
tained as a byproduct. Furthermore, this paper explores the
relationship between the CWCU estimator and the derivation
of extrinsic in reVAMP, and extends the CWCU estimator by
considering non-zero prior mean
C. Notations
The operations x.y and x./y represent the element-wise
multiplication and division of two vectors, respectively. We use
D(τ ) to represent a diagonal matrix constructed from vector
τ . We use the N (x;µ,Σ) to denote the Gaussian distribution
function evaluated at x with mean µ and covariance matrix
Σ.

II. EP-LIKE DERIVATION
In the linear mixing data model:

y = Ax+ v, px(x), pv(v), (1)

where y is the observed data vector, A ∈ RM×N is the
measurement matrix, x is the signal vector, and v represents
the measurement noise. The niid prior distribution of x is
denoted as px(x) =

∏N
i=1 pxi(xi), and the noise is assumed

to follow a zero-mean Gaussian distribution with covariance
matrix Cvv ∈ RM×M , given by pv(v) = N (v;0,Cvv).
In order to factorize the joint distribution, we express it as:

p(x,y) = p(y|x)
N∏
i=1

pxi
(xi). (2)

This factorization can be viewed as a factor graph in Fig. 1
with xi, i ∈ {1 . . . N} denoting variable nodes and the factors
p(y|x) and pxi

(xi), i ∈ {1 . . . N} standing for factor nodes.

Fig. 1. Factor graph of reVAMP

By applying the sum-product rule [7], the messages passed
from factor nodes a to variable node i is µfa→xi

(xi) ∝∫
p(x)

∏
j ̸=i µxj→fa(xj)dxj .

At variable node i, the received message bsp,i(xi) ∝∏
a µfa→xi

is approximated to Gaussian belief bapp,i(xi) =
N (xi; x̂i, τxi) by minimizing the Kullback–Leibler di-
vergence (KLD). We formulate the approximation by
argminbapp,i

KLD(bsp,i(xi)||bapp,i(xi)).
Analog to the sum-product rule, the message sent from the
variable node i to the factor node a can be represented by the
distribution µxi→fa(xi) = bapp,i(xi)/µfa→xi

(xi).
In the following, we will provide a detailed derivation for the
case where the measurement noise is assumed to be Gaussian.

A. Extrinsic to variable nodes
Suppose that at each iteration, the message passed from
variable nodes to the factor node p(y|x) is qi(xi) for all
i = 1, . . . , N . If for all i ∈ 1, . . . , N , qi(xi) is initialized
as a Gaussian distribution, the EP-like procedure guarantees
that they will remain Gaussian. Without loss of generality,
we define that qi(xi) = N (xi; pi, τpi), where pi, τpi are
the extrinsic (assumed prior) mean and variance of the i-th
element.
The joint distribution

∏
i=1...N qi(xi) equals to N (x;p, τp),

where p =
[
p1 . . . pN

]T
and τp =

[
τp1

. . . τpN

]T
.

The posterior p(x|y) is approximated as q(x) ∝
p(y|x)

∏
i=1...N qi(xi). The extrinsic for any variable

node i is the marginalization of (3) over xi

q(x)/qi(xi) ∝ p(y|x)N (x;p,τp)
qi(xi)

∝ N (x;m,Cm)
qi(xi)

, (3)

where
Cm =

[
ATC−1

vvA+D−1
p

]−1

m = Cm

[
ATC−1

vvy +D−1
p p

]
,

(4)

and Dp is the short hand notation for D(τp). Furthermore, we
define

τm =
[
τm1 . . . τmN

]T
= diag(Cm). (5)

Utilizing the property of multivariate Gaussian distribution,
the marginal of (3) can be expressed as follows:∫

xī
q(x)dxī

qi(xi)
= N (xi;mi,[Cm]ii)

qi(xi)

∝ N
(
xi;

τpimi−τmi
pi

τpi−τmi
,

τmi
τpi

τpi−τmi

)
:= N (xi; ri, τri) ,

(6)

where xī represents a vector that is the same as x except that
it excludes the i-th entry. The extrinsic from p(y|x) to variable
node i is represented by the normal distribution N (xi; ri, τri).
B. Approximation
To approximate the belief at variable node i as a Gaussian
distribution, we minimize the KLD

argminq KLD
[
pi(xi)N (xi;ri,τri )

Zi(ri,τri )
||bapp,i(xi)

]
⇔ argminx̂i,τxi

KLD
[
pi(xi)N (xi;ri,τri )

Zi(ri,τri )
||N (xi; x̂i, τxi

)
]
,

(7)
where Zi(ri, τri) is the normalization factor given by

Zi(ri, τri) =

∫
pi(x)N (x; ri, τri)dx. (8)

We define

gi(ri, τri) =
∫
xpi(x)N (x;ri,τri )dx

Zi(ri,τri )

g′i(ri, τri) =
∂gi(ri,τri )

∂ri
.

(9)

Set the partial derivative of the KLD in (7) with respect to x̂i

and τxi
to zero, we obtain

x̂i =
∫
xpi(x)N (x;ri,τri )dx

Zi(ri,τri )
= g(ri, τri)

τxi
=

∫
(x−x̂i)

2pi(x)N (x;ri,τri )dx

Zi(ri,τri )
= τrig

′(ri, τri).
(10)

It is worth noting that (10) is equivalent to

x̂i = τri
∂ lnZi(ri,τri )

∂ri
+ ri,

τxi
= τ2ri

∂2 lnZi(ri,τri )

∂r2i
+ τri .

(11)



C. Pass the approximation to the factor node p(y|x)
The message distribution (approximated prior) passed from
variable node i to factor node p(y|x) is proportional to the
quotient of two Gaussian probability density functions. There-
fore, this message distribution is also Gaussian if τri ≥ τxi

.
Specifically, it is defined as

N (x; pi, τpi
) ∝ N (x; x̂i, τxi

)

N (x; ri, τri)
. (12)

From (12), pi and τpi
are obtained by

τpi
= ( 1

τxi
− 1

τri
)−1 =

τriτxi

τri−τxi

pi = τpi

(
x̂i

τxi
− ri

τri

)
=

τri x̂i−τxi
ri

τxi
τri

.
(13)

It is important to note that if the sequential updating method is
used, the complexity of the matrix inverse operation in line 5
can be reduced by employing the matrix inverse lemma. Let’s
denote the resulting value of τpi

as τnewpi
during the update of

the i-th element. We define ∆p = 1
τnew
pi

− 1
τpi

. Moreover, we
define hC(·) as the update of Cm with the new value of τnewpi

as follows:

Cnew
m := hC(Cm, ei,∆p) =

[
C−1

m +∆peie
T
i

]−1

= Cm −Cmei
(
1/∆p + eTi Cmei

)−1
eTi Cm.

(14)

Here, ei is a unit vector with only the i-th entry set to 1. To
handle the cycles, we define e0 = eN .
The computation for updating m can also be simplified with
the same technique. Define Ωp =

pnew
i

τnew
pi

− pi

τpi
. We denote hm(·)

as its update equation:

mnew:=hm(m,Cm,ei,∆p,Ωp)
=Cnew

m (ATC−1
vv y+Dpp+Ωpei)

= m+
Ωp−∆pe

T
i m

1+∆peT
i Cmei

Cmei

(15)

To summarize, we repeatedly compute the messages from
the factor nodes to the variable nodes and then compute the
message from the variable nodes back to the factor nodes until
convergence. The final approximation for p(x|y) is given by
N (x;m,Cm). We have presented these steps in Algorithm 1.
Additionally, note that these update steps can be performed in
parallel which will generate an algorithm similar to VAMP but
with individual variance updates. By exploiting matrix inverse
lemma, the sequential update has the same complexity as the
parallel update.

III. RELATION OF EP PDF DIVISION AND
COMPONENT-WISE CONDITIONALLY UNBIASED (CWCU)

MMSE ESTIMATION FOR EXTRINSICS

In the context of estimating the i-th entry of the signal vector
x, we can follow the approach of the CWCU estimator. This
approach assumes that the i-th entry of x is deterministic
while the other entries are random. With the approximated
prior qi(xi) = N (xi; pi, τpi

), the Linear MMSE (LMMSE)
for estimating signal x is

m = p+ (D−1
p +ATC−1

vvA)−1ATC−1
vv (y −Ap);

Cm =
(
D−1

p +ATC−1
vvA

)−1
,

(16)

Algorithm 1 reVAMP (Gaussian measurement noise sequen-
tial update)
Require: y, A, px(x), pv(v), define e0 := eN

1: Initialize: τp, p, ∆p = 0, Cm =
(
ATC−1

vvA+D−1
p

)−1

2: repeat[For iteration step t]
3: repeat [For each i = 1 . . . N ]
4: [Update the posterior approximation]
5: Ct,i

m = hC(C
t,i−1
m , ei−1,∆

t,i−1
p )

6: mt,i = hm(mt,i−1,Ct,i−1
m ,ei−1,∆

t,i−1
p ,Ωt,i−1

p )
7: [Update the extrinsic]
8: τ t,i

m = diag(Ct,i
m )

9: rti =
τt−1
pi

mt
i−τt

mi
pt−1
i

τt−1
pi

−τt
mi

10: τ tri =
τt
mi

τt−1
pi

τt−1
pi

−τt
mi

11: [Approximate the marginal posterior]
12: x̂t

i = gi(r
t
i , τ

t
ri)

13: τ txi
= τ trig

′
i(r

t
i , τ

t
ri)

14: [Propagate the approximation back]
15: pti =

τt
ri

x̂t
i−τt

xi
rti

τt
ri

−τt
xi

16: τ tpi
=

τt
ri

τt
xi

τt
ri

−τt
xi

17: ∆t,i
p = 1

τpt
i

− 1
τ
p
t−1
i

18: Ωt,i
p =

pt
i

τpt
i

− pt−1
i

τ
p
t−1
i

19: until All i-s have been updated
20: [Ct+1,0

m ,pt+1,0,∆t+1,0
p ,Ωt+1,0

p ]=[Ct,N
m ,pt,N,∆t,N

p ,Ωt,N
p ]

21: until Convergence

where p = E{x} denotes the prior mean and Dp = E{(x −
p)(x−p)T } = D(

[
τp1 . . . τpN

]T
) is the prior covariance

matrix. Based on (16), we define

F = C−1
m = (D−1

p +ATC−1
vvA);

τm = diag (Cm) .
(17)

When considering only the i-th entry of the signal vector x to
be deterministic (assume the prior variance to be +∞), and
treating the other entries as random variables, we can estimate
the i-th entry of x and the associated error using the following
equations:

ri = eTi p+ eTi (F − 1
τpi

eie
T
i )

−1ATC−1
vv (y −Ap);

τri = eTi (F − 1
τpi

eie
T
i )

−1ei.
(18)

We will first show that the estimation step in (18) can be used
to obtain the extrinsic from the LMMSE step. After that, we
will demonstrate that (18) is CWCU estimation.
Note that eTi F

−1ei = τmi . We apply matrix inverse lemma
and the common term eTi (F − 1

τpi
eie

T
i )

−1 in τri and ri can
be simplified to

eTi (F − 1
τpi

eie
T
i )

−1

= eTi F
−1 − eTi F

−1ei(e
T
i F

−1ei − τpi)
−1eTi F

−1

= (1− τmi

τmi
−τpi

)eTF−1 =
τpi

τpi−τmi
eTF−1.

(19)

With this simplification, we obtain τri and ri by

τri =
τmi

τpi
τpi−τmi

⇒ 1
τri

= 1
τmi

− 1
τpi

,

ri = pi +
τri
τmi

eTi F
−1ATC−1

vv (y −Ap).
(20)



Observe the LMMSE estimate in (16), we have

mi = pi + eTi F
−1ATC−1

vv (y −Ap). (21)

Compare ri in (20) and mi in (21), we obtain the relation

ri =
τri
τmi

mi + (1− τri
τmi

)pi =
τri
τmi

mi −
τri
τpi

pi

⇒ ri
τri

= mi

τmi
− pi

τpi
.

(22)

From (20) and (22), we observe that the estimation of ri and
τri given by (18) matches the extrinsic obtained from (6).
In the following, we will demonstrate that equation (18)
corresponds to CWCU estimation.
An important relationship to note is:

F−1ATC−1
vvA = [(ATC−1

vvA)−1D−1
p + I]−1

= I− F−1D−1
p .

(23)

If p = 0, it can be shown that r corresponds to the CWCU
estimator described in [6]. According to the result from [6],
the CWCU estimator is given by:

mi,u = (eTi [(A
TC−1

vvA)−1D−1
p + I]−1ei)

−1mi

=(1−eTi F
−1D−1

p ei)
−1mi=

τpi
τpi−τmi

mi=
τri
τmi

mi.
(24)

If we compare ri in (22) and mi,u in (24) when p = 0,
we observe that ri is equivalent to the CWCU estimation.
However, when p ̸= 0, we can split p as p =

∑N
i=1 ei pi.

Subsequently, from (20), we obtain the following expression:

ri = pi −
τri
τmi

eTi F
−1ATC−1

vvAeipi

− τri
τmi

eTi F
−1ATC−1

vvA
∑N

j=1,j ̸=i ejpj

+
τri
τmi

eTi F
−1ATC−1

vvy.

(25)

From (23) and (24), we can deduce that:

eTi F
−1ATC−1

vvAei
= eTi [(A

TC−1
vvA)−1D−1

p + I]−1ei =
τmi

τri
. (26)

Therefore, the estimate in (25) can be written as

ri =
τri
τmi

eTi F
−1ATCvv(y −A

∑N
j=1,j ̸=i ejpj). (27)

The conditional expectation is

Ex,v|xi
[ri] = Ex,v|xi

[
τri
τmi

eTi F
−1ATCvv(A

∑N
j=1 ejxj

+v −A
∑N

j=1,j ̸=i ejpj)] = xi,
(28)

which is indeed conditionally unbiased.
Next, we want to find out whether the estimation error
corresponds to τr given by (18). To analyze the estimation
errors, we can represent the estimations in equation (18) as
vectors:

r =
[
r1 . . . rN

]T
; τr =

[
τr1 . . . τrN

]T
. (29)

From (22), the vector r can also be expressed as

r = p+DrD
−1
m (m− p). (30)

The estimation error correlation matrix is given by

Crr = E[(r− x)(r− x)T ]

= E
[(
(p−x)+DrD

−1
m (m− p)

)(
(p−x)+DrD

−1
m (m−p)

)T]
(31)

We observe that, according to (16), the term m − p in (31)
can be expressed as:

m− p = F−1ATC−1
vv [A(x− p) + v]. (32)

By applying the matrix inverse lemma to F−1 and utilizing the
relation given by (23), we can obtain the following expression:

E[(m− p)(x− p)T ]
= F−1ATC−1

vvAE[(x− p)(x− p)T ]
=F−1ATC−1

vvADp=Dp−F−1=DpA
TC−1

yy ADp.
(33)

Similarly, we have

E[(m− p)(m− p)T ]
= F−1ATC−1

vv [ADpA
T +Cvv]C

−1
vvAF−1

= DpA
TC−1

yyADp.
(34)

Applying (34) and (33) into (31), it follows that

Crr = Dp +DrD
−1
m DpA

TC−1
yyADpD

−1
m Dr−

DrD
−1
m DpA

TC−1
yyADp −DpA

TC−1
yyADpD

−1
m Dr.

(35)
We can express (20) in the form of diagonal matrices as
follows:

I−DrD
−1
m = Dr(D

−1
r −D−1

m ) = −DrD
−1
p . (36)

With this relation, we further simplify Crr by

Crr = Crr +DpA
TC−1

yyADp −DpA
TC−1

yyADp

= Dp −DpA
TC−1

yyADp +DrA
TC−1

yyADr
(37)

To establish a relationship between Crr and Dr, we observe
that Cm defined in (16) can be expressed by

Cm = Dp −DpA
TC−1

yyADp. (38)

Combine (37) with (38),

Crr = Cm +DrD
−1
p (Dp −Cm)D−1

p Dr

⇒ diag(Crr) = Dm +Dr(D
−1
p −D−2

p Dm)Dr

= Dm +D2
rD

−1
p Dm(D−1

m −D−1
p ) = Dr.

(39)

Therefore, we can conclude that the extrinsic distribution
represented by the parameters (r, τr) can also be interpreted as
the mean and error of the CWCU estimation, which is used
to recover the true signal x from observations y using an
approximate prior distribution N (p,Dp).

IV. SIMULATION RESULTS

A. MMSE for Gaussian mixture model

Assume that the prior distribution of each element xn of vector
x ∈ RN×1 is given by:

pxi(xi) =
∑3

n=1 αnN (xi;µni, σ
2
ni);

∑2
n=1 αn = 1. (40)

For each combination sequence [n1, . . . , nN ] ∈ {1, 2, 3}N , we
can define a bijective mapping l : {1, 2, 3}N → N

l =

N∑
i=1

(ni − 1) · 3i−1. (41)

We denote its inverse mapping as nl = [nl1, . . . , nlN ]. For
simplicity, we define

cl = αil
1 α

jl
2 α

kl
3 ,µl = [µnl11, . . . , µnlNN ]T ,

Σl = diag[σ2
nl11

, . . . , σ2
nlNN ],

(42)



where il, jl, kl are the numbers of 1-s 2-s and 3-s in nl. In
this case, the distribution of the vector x can be presented as

p(x) =
∏N

i=1 pxi
(xi) =

∑3N

l=1 cl N (x;µl,Σl). (43)

Due to the Bayesian law, the exact posterior first- and second-
order moments are computed as

E[x] =
∫
xp(x|y)dx =

∫
xp(x)p(y|x)dx∫
p(x)p(y|x)dx

E[xxT ] =
∫
xxT p(x|y)dx =

∫
xxT p(x)p(y|x)dx∫

p(x)p(y|x)dx ,
(44)

where∫
p(y|x)N (x;µl,Σl)dx = (2π)−

M
2 |AΣlA

T +Cvv|−
1
2

exp
[
− 1

2 (y −Aµl)
T (AΣlA

T +Cvv)
−1(y −Aµl)

]
,

(45)∫
p(x)p(y|x)dx =

∑3N

l=1 cl
∫
p(y|x)N (x;µl,Σl)dx

(46)∫
xp(x)p(y|x)dx =

∑3N

l=1 cl
[
µl + (Σ−1

l +ATC−1
vvA)−1AT

C−1
vv (y −Aµl)

] ∫
p(y|x)N (x;µl,Σl)dx,

(47)∫
xxT p(x)p(y|x)dx =

∑3N

l=1 cl
[
(Σ−1

l +ATC−1
vvA)−1+

µlµ
T
l

] ∫
p(y|x)N (x;µl,Σl)dx.

(48)
The true MMSE estimation mean and covariance matrix for
Gaussian mixture can therefore be expressed as

x̂MMSE = E[x],
CMMSE = E[xxT ]− E[x]E[x]T . (49)

B. reVAMP algorithm

The computation of the posterior (10) in reVAMP with a
Gaussian mixture prior (40) can be derived analogously to
(49). Thus we have

x̂i =
∫
x
∑3

n=1 αnN (xi;µni,σ
2
ni)N (x;ri,τri )dx∫ ∑3

n=1 αnN (xi;µni,σ2
ni)N (x;ri,τri )dx

(50)

τxi
=

∫
x2 ∑3

n=1 αnN (xi;µni,σ
2
ni)N (x;ri,τri )dx∫ ∑3

n=1 αnN (xi;µni,σ2
ni)N (x;ri,τri )dx

− x̂2
i (51)

C. MATLAB simulation for Gaussian mixture model

In the simulation, the measurement matrix A has the dimen-
sion M × N := 10 × 5. Its entries are independently drawn
from N (0, 1) Gaussian distribution. The prior distribution of
signal vector x follows

∀i ∈ 1, . . . , N, pxi
(xi) = 0.25N (xi; 0, 4 · i)

+0.5N (xi; 0, 1) + 0.25N (xi; 0, 0.25 · i).
(52)

The measurement noise is set to be a random vector following
N (0, I). To determine the performance of the reVAMP pos-
terior estimation of the first- and second-order moment, we
compare the KL divergent between the Gaussian distribution
generated from MMSE solution and the Gaussian distribution
given by reVAMP

KLD[N (x; x̂MMSE,CMMSE)||N (x;m,Cm)]. (53)

The simulation results can be found in fig. 2. The KL-
Divergence shown in the figure is the average of 200 simula-
tion results. From the figure, we see that sequential updates and
parallel updates have the same steady state. However, when the
sequential update is used, the algorithm converges faster than
the parallel update method.
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Fig. 2. Performance of sequential and parallel update scheme by comparing
their KL divergence between Gaussian generated from MMSE result

V. CONCLUDING REMARKS

In this paper, we present an iterative method to calculate
the posteriors in a linear mixing model, where the prior is
considered to be independent and the measurement noise is
Gaussian. Similar to VAMP, we apply EP-like approximations
to the factor graph. However, since the system dimension is
not high, the complexity of matrix inversion in each iteration
is assumed affordable. Further research is required for the
convergence analysis.
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