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Abstract

Assessing the realism and accuracy of deepfake gener-
ators, especially in cross-reenactment situations, is a ma-
jor challenge. This challenge is primarily attributed to
the absence of ground-truth data, which restricts the ap-
plication of metrics that rely on explicit ground-truth, such
as SSIM and LPIPS. To overcome this challenge, this pa-
per introduces a novel protocol for quantitatively assessing
images generated by face-reenactment techniques. To ad-
dress the scarcity of suitable datasets, two video datasets
are generated: the Real Head and the synthesized Metahu-
man datasets. Furthermore, user studies are conducted to
evaluate the efficacy of our proposed protocol. The results
demonstrate a strong correlation between subjective eval-
uations and quantitative metrics obtained within our pro-
tocol. Comparative analysis with existing evaluation pro-
tocols further validates the effectiveness of our proposed
approach. Notably, our protocol exhibits superior perfor-
mance in analyzing identity preservation, head pose, and
facial expression replication. The source code and datasets
are made publicly available at https://github.com/
SaharHusseini/deepfake_evaluation.git

1. Introduction

The face serves as a highly expressive and complex non-
verbal communication channel for humans. The advance-
ments in AI-generated synthetic faces, known as Deepfakes,
have brought about significant benefits in various domains,
including education, film production, and dubbing.

Among the fundamental techniques in DeepFake face
manipulation are face swapping and face-reenactment. Face
swapping involves transforming a face from a source image
to seamlessly replace the face in a target image, achieving
a result where the replacement blends naturally into the tar-

get image. Face-reenactment methods, on the other hand,
aim to generate a synthesized video that animates a target
face based on the movements captured from a driving video,
while preserving the identity conveyed by the source image.
This process involves treating the person in the source im-
age as a controllable puppet, with the facial expressions,
head pose, and movements from the driving video defining
the corresponding actions in the synthesized video.

Recent face-reenactment techniques [27, 10, 24, 20, 18,
25] have leveraged generative models such as Encoder-
Decoder (ED) networks [26], Variational Auto-Encoders
(VAEs) [15], and Generative Adversarial Networks (GANs)
[9] to generate images that push the boundaries of real-
ism, making it increasingly challenging to discern between
what is real and what is artificially generated. Despite the
progress made in the development and application of face-
reenactment methods, evaluating the realism and accuracy
of the generated images, particularly in cross-reenactment
scenarios where a different individual’s face is used to reen-
act the source face, remains a significant challenge. Directly
employing image based quality metrics, such as Structural
Similarity Index (SSIM) [13] or facial keypoint errors is im-
practical due to the absence of ground-truth data.

To address this challenge and quantitatively assess the
quality of images generated through cross-reenactment, re-
searchers have investigated the extraction of feature embed-
dings from both the source and generated faces. Subse-
quently, they calculate the errors or discrepancies between
these extracted features [3, 8, 31]. Although this approach
offers partial solutions for cross-reenactment evaluation, it
is confined to specific metrics and lacks a comprehensive
assessment. Therefore, there is an urgent need to develop
a new evaluation protocol that can effectively assess the fi-
delity of cross-reenactment images.

This paper introduces a novel protocol for the quanti-
tative evaluation of images produced by face-reenactment
techniques, particularly in cross-reenact scenarios. The pro-
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Figure 1: Proposed protocol (a). Examples of the source image, driving video frame, generated frame, and corresponding
ground-truth provided by our proposed protocol for both the real (b) and synthesized (c) datasets.

tocol enables assessment of cross-reenactment images us-
ing metrics that rely on explicit ground-truth such as SSIM
and LPIPS. To overcome the limited availability of appro-
priate datasets, two video generation approaches are pro-
posed. The first approach involves the utilization of 3D
models of real heads acquired using a multi-view system. In
the second approach, realistic synthesized head models are
employed, encompassing a wide range of human subjects,
facial expressions, pose variations, and lighting conditions.

Our proposed protocol is applied using these datasets,
along with established metrics such as SSIM [13], Co-
sine Similarity (CSIM) [6], Learned Perceptual Image
Patch Similarity (LPIPS) [32], Average Keypoint Distance
(AKD), Fréchet Inception Distance (FID) [11], and Fréchet
Video Distance (FVD) [23] to assess the quality of four well
known and state-of-the-art reenactment methods: FOMM
[20], X2Face [27], LIA [26], and DaGAN [12].

In addition to quantitative evaluation, a series of user
studies are conducted to investigate the effectiveness of our
proposed protocol. These studies analyze the generated im-
ages in terms of identity preservation, head pose and facial
expression replication, and overall image similarity, provid-
ing further validation of our quantitative results.

2. Related work
Evaluation techniques for face-reenactment can be clas-

sified into three categories: self-reenactment evaluation,
cross-reenactment evaluation, and subjective test evalua-
tion. The self-reenactment evaluation protocol, as depicted
in Figure 2a, involves selecting a single frame from a video
as the source image and using the remaining frames from
the same video sequence to animate it. Since the source and
driver identities originate from the same video sequence, the
driver frames serve as a reliable ground-truth reference for
comparing the generated images. This ensures a consistent
and controlled evaluation of the reenactment process.

To assess the quality of the generated images in self-
reenactment studies, image quality metrics such as SSIM

and Peak Signal-to-Noise Ratio (PSNR) [13] are commonly
employed [27, 20, 19, 26, 30]. These metrics rely on
ground-truth data and provide objective measures of image
similarity and fidelity. Additionally, the self-reenactment
technique enables the measurement of facial keypoint er-
ror such as AKD and Missing Keypoint Rate (MKR) which
offers further insights into the accuracy of the reenact-
ment process [26, 20]. To quantitatively evaluate the qual-
ity of generated frames, Siarohin et al. [20] utilizes self-
reenactment to measure the L1 error, AKD, and Average
Euclidean Distance (AED) between the generated frames
and the ground-truth frames. Similarly, Gao et al. [8] re-
ports the L1, SSIM, PSNR, FID and AKD error between
the generated frames and the corresponding ground-truth
frames for the self-reenactment scenario. Wang et al. [26]
and Yang et al. [29] utilized the LPIPS to compute the sim-
ilarity score between generated and ground-truth frames.

To quantitatively evaluate the generated frames in cross-
reenactment scenarios and address the absence of ground-
truth data, researchers employ a set of metrics that do not
rely on explicit ground-truth comparisons. For the eval-
uation, researchers commonly utilize a cross-reenactment
protocol, as illustrated in Figure 2b. In the existing cross-
reenactment protocol, a prevalent method involves utilizing
a pretrained network to extract identity features from the
source and reenacted images [26, 20]. Alternatively, geo-
metric features can be extracted from the driving and reen-
acted images [1, 4]. These extracted embeddings capture
essential characteristics of the face, such as appearance and
face pose. The quality of the generated frames can be as-
sessed by computing the distance or dissimilarity between
these embeddings. For instance recent face-reenactment
methods [8, 10, 31, 3] evaluate the identity preservation by
computing CSIM of embedding vectors between the gen-
erated frame and the source face [5]. Furthermore, Ha et
al. [10] leverage pretrained networks to estimate the head
pose angles and Facial Action Units (FAU) of generated
image and compare these estimates with the corresponding
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Figure 2: Face-reenactment evaluation protocols: self-
reenactment (a), cross-reenactment (b), and our proposed
evaluation protocol (c). In this illustration, X and Y repre-
sent identities, while S, D, T, and GT correspond to source,
driving, target, and ground-truth, respectively. Additionally,
m1 and m2 indicate the movement of the source and driv-
ing, respectively

driver’s head pose and action units, providing insights into
the accuracy of the reenactment process.

Subjective test form the third category of evaluation
techniques for cross-reenactment. In these evaluations, hu-
man observers play a crucial role by providing judgments
on various aspects such as the visual quality, realism, and
coherence of the generated cross-reenactment frames. For
instance, Siarohin et al. [20] and Wang et al. [26] con-
ducted a user study in which participants were presented
with a source image, a driving video, and the correspond-
ing results of their method and a competitive method. Par-
ticipants were asked to select the most realistic image an-
imation. Despite the significant advancements in cross-
reenactment evaluation, there is still a need for an auto-
mated protocol that can compute errors for metrics relying
on explicit ground-truth data. The establishment of such
a protocol would contribute to a comprehensive and robust
evaluation of cross-reenactment methods, enabling a deeper
understanding of their performance and fostering further ad-
vancements in the field.

3. Proposed methodology

This section presents our proposed protocol for evaluat-
ing the image quality of reenactment methods, with a fo-
cus on cross-reenactment scenarios.To fulfill this objective,
we generate video sequences comprising different identi-
ties with precisely controlled and known head pose and ex-
pression for each frame. These video sequences are then
employed in conjunction with our proposed protocol and
a set of quantitative metrics to measure the fidelity of im-
ages generated by various reenactment methods. In the fol-
lowing subsections, we provide a detailed description of the
proposed protocol and the process of data generation.

3.1. Protocol

The pipeline of our proposed protocol is depicted in Fig-
ure 1. The protocol involves two video sequences, de-

noted as A and B, representing distinct identities. For each
frame, the head pose and expression are identical in both
sequences. Initially, any frame can be selected from video
sequence A as the source image, representing the face to
be reenacted. Subsequently, the video frames of identity B
are utilized to animate the source image, resulting in frames
of identity A that simulate the expressions and movements
of identity B. These generated frames, known as deepfake
frames, are then compared with the original frames of iden-
tity A in the ground-truth video sequence to evaluate the
accuracy of the cross-reenactment process. The evaluation
protocol can be summarized as follows:

1. Select a frame from video sequence A as the source
image. In our experiments, we begin with frames dis-
playing a frontal head pose and a natural expression,
gradually introducing extreme variations in head pose
and expression.

2. Select a driving video sequence, comprising video
frames of identity B, to animate the source image. The
head pose and expression in all frames of the driving
video correspond to those of the source face.

3. Input the source image and driving video frames into a
face-reenactment method to generate a new video se-
quence representing source identity A. This generated
video sequence should accurately reflect the facial ex-
pressions and movements that match those of the driv-
ing video sequence.

4. Assess the accuracy of the generated frames by com-
paring them to the ground-truth video using metrics
such as SSIM, CSIM, LPIPS, AKD, FID, and FVD.

3.2. Dataset generation

Two video datasets were generated for evaluating face-
reenactment techniques: one comprised real face models
generated from the Facescape dataset [28], and the other
consisted of synthesized MetaHumans [7].

3.3. Real face dataset

To create a dataset comprising real human subjects,
we employed the Pyrender 3D environment and utilized
FaceScape [28], a well-established 3D face dataset. The
FaceScape dataset consists of multi-view RGB images and
intrinsic and extrinsic camera parameters, which were cap-
tured using 68 DSLR cameras. Leveraging this data, we
generate 3D head point clouds with RGB values for vari-
ous individuals exhibiting a neutral expression. By placing
these 3D head models in desired scenes and defining spe-
cific camera parameters, we render them in the desired head
poses. Figure 3 illustrates the rendering process.
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Figure 3: Multiview RGB images and their correspond-
ing depth maps utilized to inverse project pixels into point
clouds (a). The resulting reconstructed 3D head model (b).
Rendered images of 3D models from desired angles(c).

In our study, we generated a total of 40 video se-
quences to investigate the impact of head rotations on face-
reenactment. These sequences included five unique iden-
tities, and for each identity, we incorporated eight specific
head rotations. The primary objective was to highlight dif-
ferent head rotation scenarios, namely a rotation around the
pitch axis, a rotation around the yaw axis, and a combined
rotation involving both pitch and yaw axes. To ensure con-
sistent evaluation, each video began with the frontal head
position in the initial frame and gradually transitioned the
head towards the desired rotation axis in the final frame.
Throughout the duration of the clips, the facial expression
of the subjects remained constant. Each video clip consisted
of 100 frames with a resolution of 512×512 pixels.

3.4. Synthesized dataset of MetaHumans

Evaluating the performance of face-reenactment meth-
ods solely using real data has limitations in assessing their
ability to handle different facial expressions, as the indi-
viduals in the real dataset maintain a neutral expression
throughout all the videos. To establish accurate ground-
truth for facial expressions in the context of real datasets,
image matching techniques like optical flow can be em-
ployed to reconstruct different expressions [2, 14]. How-
ever, the potential errors associated with these techniques
necessitate an alternative approach. Therefore, we propose
utilizing synthesized data, which provides complete control
over the scene, allowing precise manipulation of geometry
and appearance. This approach ensures data reliability and
creates a controlled and accurate evaluation environment.

We utilized the Unreal Engine and the MetaHuman asset
from the Quixel Bridge library [22] to generate a realistic
synthesized face video dataset. MetaHumans are 3D hu-
man models created with advanced scanning, rigging, and
animation technology, featuring high-quality photo scans of
real skin textures and additional artificial textures for details
like light reflection and surface roughness. Their riggability
enables precise control over facial expressions and move-
ments. To generate the video dataset, the scene was set up
in the Unreal Engine with adjusted lighting conditions and

(a) (b)

Figure 4: Head (left) and Face (right) Control Rig Boards
enabling adjustment of pose and facial expression (a). Two
MetaHumans with identical facial expressions and head
poses (b).

configured camera properties. MetaHuman characters were
placed within the scene and animated using the Control Rig
Board as shown in Figure 4a. The resulting animations
were rendered, capturing the desired facial expressions and
movements.

In Unreal Engine, the process of applying animations
from one MetaHuman character to another is straightfor-
ward. By substituting the model references in the scene,
the animations originally designed for the first character can
be effortlessly transferred to the second character. This re-
placement ensures that both characters share the same ex-
pression setting, resulting in identical head pose and facial
expression. Leveraging this capability, it becomes possi-
ble to generate multiple videos, each showcasing a different
identity, while preserving consistent head pose and expres-
sion across all videos. Figure 4b illustrates two MetaHuman
identities with the exact same head pose and expression.

The video sequences were meticulously designed to en-
sure a structured progression, starting with a frontal head
position and neutral expression and culminating in expres-
sive facial expressions or head rotations, or a combina-
tion of both. These sequences encompassed a diverse set
of facial expressions, including amusement, anger, disgust,
laughter, sadness, and surprise. The head rotations in the
dataset covered 8 rotations around the yaw axis, pitch axis,
and combinations of the pitch and yaw axes, including var-
ious directions such as up, down, left, right, and diagonal
directions. A total of 20 distinct face movement animations
were produced for each of the 10 MetaHuman identities, re-
sulting in a dataset comprising 200 videos (10 identities ×
20 face animation). All videos were rendered at a resolution
of 1920×1080 pixels, ensuring a high level of visual quality
and detail for the evaluation process.

4. Subjective evaluation
Three subjective evaluations were conducted to assess

the proposed protocol and evaluate the strengths and weak-
nesses of each reenactment method. These evaluations uti-
lized a set-wise ranking method, where participants were
presented with a set of videos or frames and tasked with



Table 1: Summary of subjective evaluation methods.
Evaluation

name
Objective Videos/

Images
Number of
scenarios

Blind
comparison

Subjective Test
Example

VR Assess perceived ’Realism’ of
generated videos Videos 46 Test Includes

Ground-Truth

IS Evaluate users ’Satisfaction’
with generated outputs for

specific head rotations
Images 132

Explicitly
Informed
(On Top)

VI

VPE

VS

Assess quality focusing on
’Identity’ preservation (VI),
head ’Pose and Expression’

preservation (VPE),
and overall ’Satisfaction’ (VS)

Videos 20
Explicitly
Informed
(On Top)

directly comparing and organizing them based on specific
criteria. Table 1 provides a summary of the three evaluation
methods along with an example of each test conducted with
the participants. The evaluations involved the participation
of 23 professionals specializing in computer vision, ensur-
ing their expertise in accurately assessing the fidelity of the
generated frames produced by face-reenactment methods.
Prior to the evaluation, participants were provided with de-
tailed explanations of each test and completed practice tests
to ensure their comprehension of the procedures. To opti-
mize the evaluation time per participant, the test dataset was
divided randomly into two batches, allowing participants to
complete half of the test. On average, each evaluation ses-
sion lasted approximately one hour.

In the first evaluation, titled ”Realism Assessment,” par-
ticipants were presented with sets of five videos that in-
cluded one ground-truth video and four reenacted videos.
The videos were carefully selected to cover a wide range
of facial expressions and head rotations. Participants were
asked to rank the videos based on their perceived realism,
using a scale from 1 to 5. To minimize bias, the order of
the videos within each set was randomized, and participants
were unaware of which video was the ground-truth.

The second evaluation, titled ”Overall Satisfaction with
Head Rotation,” aimed to assess users’ overall satisfaction
with the generated outputs at specific head rotations. Partic-
ipants were presented with sets of four frames generated by
the reenactment methods, along with a ground-truth image
depicting a specific head pose. Participants were explicitly
informed about the identity of the ground-truth image and
instructed to compare each generated image to the ground-
truth. They were then asked to assign a rank to each image
on a scale of 1 to 4, indicating their overall satisfaction rel-
ative to the ground-truth image.

The third evaluation aimed to assess the quality of the

generated videos, focusing on three aspects: 1) identity
preservation, 2) head pose and expression preservation, and
3) users’ overall satisfaction. Participants were presented
with sets of four videos alongside the ground-truth video
and were asked to rank each video in relation to the ground-
truth. The rankings were reported separately for the preser-
vation of identity, head pose and expression, and overall sat-
isfaction. Participants provided scores ranking from 1 to 4,
with 1 indicating the highest satisfaction. The first test con-
sisted of 46 scenarios, the second test had 132 scenarios,
and the third test comprised 20 scenarios.

Statistical analysis of subjective evaluation: To assess
the distance between reenactment methods through subjec-
tive evaluation, each technology is assessed by a group of
observers using a set of images and videos. We utilize the
outlier detection and scaling method described in the study
by Perez et al.[17], which is based on Thurstone’s model
and its assumptions [21]. This method, given a matrix that
includes the results for all participants, measures the proba-
bility of observing the data of each observer in comparison
to the rest of the observers.

The method uses Maximum Likelihood Estimation
(MLE) to compute an inter-quartile-normalized score for
each subject. Let’s suppose we aim to compare n condi-
tions O1, ..., On (i.e., n technologies) with unknown under-
lying true quality scores q = (q1, ..., qn), where qi ∈ R
represents the quality score for condition Oi. The goal of
this analysis is to estimate scores q̂ = (q̂1, ..., q̂n) that ap-
proximate the true quality q.

The perceived quality of a condition Oi is modeled as
a random variable: ri ∼ N(qi, σ), where the mean of the
distribution is assumed to be the true quality score qi. When
scaling the data, the focus is primarily on recovering the
distance qi−qj between underlying quality scores qi and qj
(as scores are relative). If we know the true probability of



selecting Oi as better than Oj (P (ri > rj)), the probability
that Oi was selected over Oj in exactly cij trials out of the
total number of nij = nji = cij + cji trials is given by the
binomial distribution.

L(q̂i − q̂j | cij , nij) =(
nij

cij

)
P (ri > rj)

cij(1− P (ri > rj))
nij−cij =(

nij

cij

)
Φ(

q̂i − q̂j
σij

)cij(1− Φ(
q̂i − q̂j
σij

))nij−cij , (1)

Where, cij represents the count of cases where condition
Oi was chosen as better than condition Oj , out of a total
number of trials nij = nji . The true probability of choos-
ing condition Oi over condition Oj can be computed using
the cumulative normal distribution Φ, given two Gaussian
random variables ri and rj .

P (ri > rj) = P (ri − rj > 0) = Φ(
qi − qj
σij

), (2)

The parameter σij represents the noise parameter in Thur-
stone’s model [21]. It is typically determined based on the
probability pij of a 1 Just-Objectionable-Difference (JOD)
unit, as described in Perez et al. [17]. The scaling of the
comparisons is then performed by maximizing the products
of the likelihoods.

arg max
q̂2,...,q̂n

=
∏

i,j∈Ω

L(q̂i − q̂j | cij , nij) (3)

where Ω denotes the number of pairs with at least one made
comparison. Subjects with an inter-quartile-normalised
score above a threshold of 1.5 are tagged as outliers and
discarded.

5. Experiment and results
Dataset: Two video datasets were compiled to assess

face-reenactment techniques. The first dataset included 40
videos of real face models, featuring five identities with 8
head rotations each. The second dataset comprised 200
synthesized videos of MetaHumans, exhibiting 10 identi-
ties with 20 variations of head movement and facial ex-
pressions. A systematic approach was employed for both
datasets, selecting first frame of one video as the source for
each identity and utilizing the remaining videos from the
same face animation type but different identities as driving
videos. This methodology yielded a total of 1960 scenarios,
with 160 scenarios derived from the real dataset and 1800
scenarios from the synthesized dataset. Table 1 provides an
overview of the scenario distribution in the three subjective
tests, ensuring an equal representation of synthesized and
real scenarios in each test. These datasets offer a compre-
hensive and diverse range of scenarios, providing valuable
insights into the performance of face-reenactment methods.

Methods and Metrics: In our evaluation, we compare
the performance of four face-reenactment methods: FOMM
[20], X2Face [27], LIA [26], and DaGAN [12]. The effec-
tiveness of these methods is evaluated using six widely rec-
ognized metrics: SSIM [13], CSIM [6], LPIPS [32], FID
[11] and FVD [23]. The CSIM metric utilizes facial em-
beddings extracted through the ArcFace [5] face recogni-
tion model to measure content similarity between generated
and ground-truth images. The AKD metric quantifies key-
point discrepancies by extracting 468 facial landmarks us-
ing the MediaPipe library [16]. To interpret subjective eval-
uation results, we employ Thurstone’s model assumptions
to scale the ranking scores, as detailed in Section 4. The
scores are represented on the Just-Objectionable-Difference
(JOD) scale, where a difference of 1 JOD signifies that 75%
of observers favored one condition over another.

Evaluation and Analysis of Protocol Performance:
Table 2 presents the performance evaluation results of
cross-reenactment methods on real datasets, while Table 3
showcases the results on synthesized Metahuman datasets.
The evaluation is conducted using various quantitative met-
rics, including SSIM, AKD, and LPIPS, which are com-
puted based on 1960 scenarios derived from 240 videos.
These metrics are employed to measure the disparities be-
tween the reenacted images and the corresponding ground-
truth images provided by our protocol design. Addition-
ally, our evaluation protocol incorporates the utilization of
CSIM, FID, and FVD, which are commonly employed in
existing face-reenactment evaluation.

FID assesses the photo-realism of the generated samples
by comparing them to the ground-truth images at a deep fea-
ture level, while FVD, a modified version of FID, accounts
for temporal coherence by considering spatial-temporal fea-
tures. Notably, these metrics operate at the data distribution
level, rather than focusing on individual frames. The cal-
culation of FID and FVD metrics remains consistent with
existing approaches since the ground-truth comprises data
distributions of the Metahumans and real head videos.

In our analysis, we also incorporate the calculation of
CSIM using the existing protocol depicted in Figure 2b, re-
ferred to as CSIMtrad. This metric evaluates the cosine sim-
ilarity between the source and reenacted faces. However,
the presence of distinct head poses between the source and
reenacted faces poses a challenge, resulting in lower CSIM
scores in traditional evaluation compared to the measure-
ments obtained through our protocol.

Furthermore, the subjective test results are reported in
both Table 2 and Table 3. The subjective evaluation serves
multiple objectives in our study: firstly, it allows for the
identification of strengths and weaknesses of each face-
reenactment method, providing qualitative insights into
their performance. Secondly, it enables the assessment of
the effectiveness of our proposed protocol compared to ex-



Table 2: Evaluation results for cross-identity reenactment for real dataset.

Method Quantitative Evaluation using the Proposed Protocol Subjective Evaluation (JOD) Traditional
SSIM↑ LPIPS↓ CSIM↑ AKD↓ FID↓ FVD↓ VR↑ IS↑ VI↑ VPE↑ VS↑ CSIM↑

X2Face [27] 0.749 0.260 0.695 3.892 39.4 224.0 1.065 1 1 1 1 0.52
FOMM [20] 0.788 0.222 0.867 1.983 32.2 202.4 1 1.264 1.244 1.843 2.096 0.71
DaGAN [12] 0.803 0.159 0.833 2.883 34.6 217.1 1.964 2.654 2.139 2.640 2.164 0.66
LIA [26] 0.818 0.133 0.847 2.137 30.9 210.5 3.154 3.989 4.053 4.532 4.165 0.64
Ground-truth 5.071

Table 3: Evaluation results for cross-identity reenactment for synthesized MetaHuman dataset.

Method Quantitative Evaluation using the Proposed Protocol Subjective Evaluation (JOD) Traditional
SSIM↑ LPIPS↓ CSIM↑ AKD↓ FID↓ FVD↓ VR↑ IS↑ VI↑ VPE↑ VS↑ CSIM↑

X2Face [27] 0.656 0.190 0.652 4.821 50.6 293.5 1 1 1 1 1 0.61
FOMM [20] 0.687 0.182 0.838 3.971 41.6 257.7 2.159 2.918 1.805 2.187 2.293 0.67
DaGAN [12] 0.821 0.147 0.865 1.902 45.4 271.5 3.075 4.034 2.557 2.789 3.320 0.64
LIA [26] 0.836 0.142 0.874 2.159 43.6 255.2 4.004 5.438 2.996 3.300 3.490 0.68
Ground-truth 5.269

isting evaluation approaches. Lastly, the subjective results
aid in determining the most informative quantitative met-
rics within our protocol that best describe the quality of
reenacted images, thereby facilitating the identification of
suitable metrics for future evaluations.

During the subjective tests, the reenactment methods are
evaluated based on their performance in generating realis-
tic content (VRJOD), preserving identity (VIJOD), trans-
ferring pose and expression (VPEJOD), and overall satis-
faction (VSJOD). Statistical analysis reveals that the LIA
method consistently achieves the highest scores in all sub-
jective tests, slightly surpassing DaGAN. Both LIA and
DaGAN consistently outperform X2Face and FOMM. A
significant finding emerges from the blind comparison be-
tween the ground-truth and reenacted videos. The VRJOD

scores, calculated based on blind comparisons where the
ground-truth is questioned alongside the reenacted videos,
indicate that all four reenactment methods fail to generate
sufficiently realistic content. Human subjects were able to
distinguish reenacted content from the ground-truth images.
FID and FVD are commonly used metrics to assess image
and video realism. It is noteworthy that although FOMM
demonstrates a good FID score, it does not align with the
qualitative results (VRJOD).

Furthermore, FOMM exhibits good scores in CSIM and
AKD, which are considered identity preservation metrics
in the literature. For example, its CSIM and CSIMtrad

scores in real dataset evaluation outperform other methods.
It should be noted that FOMM employs relative keypoint lo-
cations to address the identity preservation problem, which
seemingly increases CSIM, CSIMtrad, and AKD scores.
However, its subjective score VIJOD is lower than both LIA
and DaGAN. To determine which quantitative metrics bet-
ter describe the quality of reenacted images, the Pearson
correlation coefficient is presented in Figure 6. The re-
sults demonstrate that the frame-based metrics within our

protocol, where the ground-truths are provided, exhibit the
strongest correlation with subjective evaluations.

Pose Transferability Evaluation Using Our Proposed
Protocol: Supplementing the results in Tables 2 and 3, we
conducted a comprehensive analysis encompassing subjec-
tive and quantitative results using both the real head dataset
and the synthesized dataset. A dedicated subjective test was
conducted to assess overall satisfaction with image-based
reenactment, with a specific focus on head rotation at dif-
ferent degrees. The driving sequences were incrementally
rotated up to 50 degrees while maintaining natural facial ex-
pressions. The resulting overall scores, denoted as ISJOD

scores, were calculated for various head rotation scenar-
ios, including rotations around the pitch axis, yaw axis, and
combinations of pitch and yaw axes. The obtained scores
are presented in Table 2 for the real head dataset and in Ta-
ble 3 for the synthesized MetaHuman dataset.

To further analyze the quality of generated images un-
der specific rotation conditions, we provide results for yaw
rotation (right) and yaw-pitch rotation (up and left) in Fig-
ure 5. In addition to the subjective evaluations, quanti-
tative scores such as SSIM, CSIM, and AKD were com-
puted using ground-truth data as per our proposed protocol.
Based on the findings presented in Tables 2 and 3, both the
LIA and DaGAN methods demonstrate comparable perfor-
mance in generating animated faces. However, based on
Figure 5 they exhibit distinguishable sensitivities to head
rotation. Through the subjective tests and SSIM evaluation,
it is evident that LIA performs better in scenarios with more
significant head movement in the driving video. Conversely,
DaGAN exhibits superior performance in scenarios involv-
ing minimal head rotation, particularly those closer to the
frontal head pose. Notably, DaGAN’s quality deteriorates
gradually, and beyond a certain threshold (approx. 30◦),
it becomes comparable to or even worse than FOMM. In
contrast, the FOMM method showcases resilience to head



(a) MetaHumans; Yaw (b) Real dataset; Yaw (c) MetaHumans; Pitch-Yaw (d) Real dataset; Pitch-Yaw
Figure 5: Pose transferability evaluation using our proposed protocol. The figure presents the results of the image-based
overall satisfaction subjective test scores (ISJOD) for different head degrees, along with the corresponding quantitative scores
such as SSIM, CSIM, and AKD, computed using ground-truth data following our proposed protocol.

Figure 6: Confusion matrix depicting the correlation of
metrics within Real (left) and synthesized (right) datasets

rotation, as the quality of reenacted images remains rela-
tively unaffected and comparable to scenarios with a frontal
head pose. When evaluating the CSIM and AKD metrics,
FOMM achieves scores on par with those of LIA and Da-
GAN. However, its SSIM score is notably lower.

6. Future work
The application of our proposed protocol to face swap-

ping methods shows great promise for future research. To
implement our protocol for face swapping, we recommend
utilizing our MetaHumans dataset and creating a com-

prehensive ground-truth by integrating elements generated
from diverse sources. Specifically, the backgrounds, body
and hairstyles can be preserved and rendered similarly to
the driving videos, while the face identities should be de-
rived from the source images.

7. Conclusion
This paper presents a novel protocol for evaluating the

realism and accuracy of face-reenactment generators in
cross-reenactment scenarios. Comparative analysis with ex-
isting evaluation approaches demonstrates the effectiveness
of our protocol, supported by user studies validating its ef-
ficacy in analyzing identity preservation, head pose, and
facial expression replication. The results reveal a strong
correlation between subjective evaluations and frame based
metrics (e.g., SSIM and LPIPS) within our protocol.
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