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Abstract—Dynamic Time Division Duplex (D-TDD) is a
promising solution to address newly emerging 5G and 6G services
characterized by asymmetric and dynamic uplink (UL) and
downlink (DL) traffic demands. However, there are two major
issues: (i) determining the TDD scheme (i.e., the number of slots
devoted to UL and DL) to meet the dynamic traffic demands of
the Users Equipment (UE); (ii) cross-link interference between
cells that use different TDD schemes. The 3GPP standard neither
specifies algorithms or solutions to derive the TDD configuration
nor solves the cross-link interference. To fill this gap, we model
the dynamic TDD problem in 5G NR as a linear programming
problem. Then, we design Multi-Agent Deep Reinforcement
Learning based 5G RAN TDD Pattern (MADRP), a fully decen-
tralized solution based on the Multi-Agent Deep Reinforcement
Learning (MADRL) approach. Based on the simulation results,
the algorithm effectively prevents buffer overflows, avoids cross-
link interference, and adapts to changes in the traffic pattern,
ensuring its versatility. We compared our solution with the
optimal solution and different static TDD configurations. We
found that MADRP outperforms the static TDD configurations.
We finally discuss the algorithm’s limitations in terms of the
number of cells, traffic variance, and cross-link interference
probability.

Index Terms—Dynamic TDD, Multi-agent Deep Reinforcement
Learning, 5G NR.

I. INTRODUCTION

5G networks and beyond are designed to support an ex-
tensive range of applications [1][2], including those requiring
high-speed data transfer and low-latency communication, such
as immersive holographic communication, Internet of Skills,
and 4D Interactive mapping [3]. Compared to previous genera-
tions of mobile networks, these emerging applications generate
high UpLink (UL) traffic, corresponding to offloaded intensive
computations that must be executed by a remote application
located at the network’s edge. As a result, emerging services
in 5G and 6G networks may be DownLink (DL) dominant,
UL dominant, or balanced between UL and DL. As a result,
dynamic TDD has become a key enabler for 5G and beyond,
as it allows resources to be allocated to these applications as
needed, ensuring optimal performance and quality of service
(QoS). Dynamic TDD allows the base station (gNB) to change
the TDD scheme dynamically without interrupting user con-
nectivity, i.e., by changing the number of dedicated UL and
DL slots based on the users’ traffic patterns. Thus, Dynamic
TDD is able to: (i) Improve resource utilization efficiency,
e.g., when traffic is dominant on the UL or DL, allocating
more slots on the UL or DL will avoid wasting resources in

the other non-dominant direction; (ii) Reduce the latency since
dynamic TDD reduces the queue buffer size faster than static
TDD [4]; (iii) Increase application throughput as more slots
can be allocated to UL or DL according to various traffic
patterns. However, the 5G NR specifications only cover the
mechanism allowing the gNB to inform the User Equipment
(UE) about the UL/DL slots pattern in a TDD frame, leaving
the algorithm deriving the pattern UL/DL open. In [5], we have
filled this gap by proposing a novel algorithm, namely, Deep
Reinforcement Learning (DRL)-based 5G RAN TDD Pattern
(DRP), which allows deriving the UL/DL pattern of TDD
frames according to the existing cell traffic whatever it is DL
or UL dominant. Besides, we proposed an implementation on
the top of OpenAirInterance[6] in [4]. However, we considered
dynamic TDD for private 5G deployment where a single cell is
considered; in a multi-cell environment, dynamic TDD is more
challenging. Indeed, whereas in a single-cell environment, the
only challenge was to find the UL/DL ratio without knowing
the traffic pattern, in a multi-cell environment, the challenge
is twofold: (i) Finding the UL/DL ratio without knowing
the traffic pattern; (ii) Mitigating cross-link interference. The
latter is defined as interference that occurs when one gNB
transmits while another receives in the same frequency band
(i.e., two neighboring gNBs that use a different TDD pattern).
This usually occurs within the same operator using the same
frequency band for its gNBs.

In this paper, we extend DRP to solve the dynamic TDD
problem in a multi-cell environment and introduce the Multi-
Agent Deep Reinforcement Learning (DRL)-based 5G RAN
TDD Pattern (MADRP) framework. The MADRP approach
is fully decentralized. Each MADRP agent is located close to
the gNB, serving a particular cell. Compared to a centralized
approach, MADRP is executed close to the gNB, which
reduces the control latency between the gNB and MADRP.
Moreover, MADRP reduces the signaling overhead normally
generated when gNBs send data to a central entity. Each
MADRP agent monitors the gNB’s UL and DL buffers and
the number of edge users with neighboring cells. Note that
edge users of a cell correspond to UEs attached to that cell
and are physically located at the cell’s boundaries where the
signal strength from neighboring cells is significant. Then,
each agent uses this local observation along with messages
from neighboring cells to derive the optimal TDD pattern
to accommodate connected users while avoiding cross-link
interference with neighboring cells.
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The main contributions of the paper are summarized as
follows:

• Model the dynamic TDD problem in 5G NR considering
a multi-cell environment. The proposed model takes into
account dynamic traffic patterns and cross-link interfer-
ence.

• Design a solution to solving the problem without knowing
the traffic pattern. The suggested approach is designed as
a fully distributed solution, enabling it to operate near the
gNB and minimize control latency consequently.

• The proposed solution is designed to guarantee generality
in terms of (i) number of cells (ii) radio configuration in
terms of the numerology, the TDD period, and the buffer
capacity.

• The proposed solution takes into account the propagation
effect of cross-link interference between cells, i.e., the
indirect cross-link interference that occurs between two
cells without direct cross-link interference due to a third
cell interfering with the two cells.

• Implementation of the proposed solution using the MAD-
DPG algorithm [7].

• Simulation results with different numbers of cells under
different traffic patterns and cross-link interference prob-
ability. We compared MADRP with the optimal solution
and different static TDD configurations with different
traffic UL/DL proportions. The results show that MADRP
outperforms the static TDD configurations even in high
cross-link interference scenario and the gap between the
optimal solution and the MADRP solution is small in
low-interference scenario.

The remainder of the paper is organized as follows. Section
II gives the necessary background and related work. Section
III introduces the main idea and the problem formulation this
paper targets. The MADRP solution is described in section IV,
while section V shows the simulation results and its discussion.
Finally, section VI concludes the article.

II. BACKGROUND

A. 5G NR TDD

5G New Radio (NR) introduces several new features to
improve the performance of mobile networks. First, 5G NR
uses larger bandwidth (up to 100 MHz in < 6 GHz frequency
band, and up to 400 MHz in > 6 GHz frequency band) to
accommodate data-rate demanding applications [8]. Second,
5G NR introduces different physical layer numerologies to
reshape radio units in time and frequency. Unlike LTE, which
uses a (Time Transmission Interval) of 1ms, 5G NR reduces
TTI to 2, 4, 8, and 16 times smaller. For the sake of paper
readability, the used notations are summarized in Table I.
Numerology in 5G NR, noted ν ∈ 0, 1, 3, 4, is defined by
a Sub-Carrier Spacing (SCS) and a Cyclic Prefix (CP). 5G
NR specifies five numerologies, which result in different SCS
and slot durations. The latter corresponds to the time duration
of 14 OFDM symbols. An OFDM symbol duration reduces
with increased SCS, hence reducing the time duration of a
slot. Indeed, the SCS and slot duration are given as follows:
15 ∗ 2ν and 1/2ν , respectively. While LTE uses a fixed time

slot duration (i.e., 0.5ms), 5G NR reduces the slot duration
up to 16 times (when ν = 4), which allows decreasing the
RAN latency considerably. Since the frame duration is fixed
(i.e., 10ms), the number of slots in a frame depends on the
numerology (i.e., 10× 2ν).

Table I: Summary of Notations & Variables.
Notation /
Variable

Description

C set of radio cells
Γc the set of UEs connected to cell c.
γ A UE γ ∈ Γc.
δ TDD period.
νc A numerology used by a cell c.
T c
δ The number of slots in cell c during a period δ . T c

δ =
{2, · · · , 16}.

λUγ The UL traffic generated by γ ∈ Γc.
λDγ The DL traffic from a cell towards the UE γ ∈ Γc.
ψU
γ The UL buffer of the UE γ ∈ Γc.

ψD
γ The DL buffer of the UE γ ∈ Γc.

λUc The UL traffic generated by Γc.
λDc The DL traffic from cell c towards the UEs γ ∈ Γc.
ΨU

c The UL buffer of cell c.
ΨD

c The DL buffer of cell c.
µDc The amount of traffic in bytes transmitted by cell c per

slot.
µUc The amount of traffic in bytes received by cell c per slot.
α A constant that specifies the priority between the UL and

DL traffics.
ΦU

c The initial amount of stored data in bytes in the UL buffer
ψU
c .

ΦD
c The initial amount of stored data in bytes in the DL buffer

ψD
c .

Fc1,c2 A Boolean constant that denotes if there is interference
between cells c1 and c2.

Xc A real variable that denotes the percentage of allocated UL
slots in cell c.

Yc A real variable that denotes the percentage of allocated DL
slots in cell c.

Like LTE, 5G NR supports Frequency Division Duplex
(FDD) and Time Division Duplex (TDD) operations. However,
unlike LTE, which specifies seven predefined UL and DL
allocation patterns in a radio frame, 5G NR allows defining
UL/DL patterns more flexibly. Indeed, it is possible that a
slot may not be configured to be fully used for DL or for
UL. OFDM symbols in a slot can be classified as “downlink”,
“flexible”, or “uplink”. Flexible symbols can be configured
either for UL or for DL transmissions. Finally, like LTE, a
guard period is necessary for the transceiver to switch from
DL to UL to allow timing advance in UL.

The slot configuration, or DL/UL pattern, is indicated to
UE either via Broadcast or Radio Resource Control (RRC)
configuration message. We distinguish between a common
configuration that concerns all the slots marked as DL or UL,
and a dedicated configuration that covers all slots and symbols
noted as Flexible. The DL/UL pattern is repeated periodically
according to DL−UL−TransmissionPeriodicity, noted δ.
The value of δ depends on the NR numerology (ν). In addition
to δ, the common configuration includes the number of slots
for DL (dslots) located at the beginning of the TDD period and
for UL (uslots) located at the end of the TDD period. dsym
symbols within the slot immediately following the last full DL
slot and the last usym symbols in the slot preceding the first
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Figure 1: 5G NR TDD example pattern

full UL slot are also indicated in the common configuration.
The remaining symbols are not used to give time to the
device to switch from DL to UL. These flexible symbols
can further be allocated to either DL or UL by using a
dedicated configuration. Figure 1 illustrates a UL/DL pattern.
For more details on TDD pattern management in 5G NR,
readers may refer to [9]. Compared to LTE, a more flexible
frame structure can provide a greater traffic adaptation gain but
also lead to more dynamic cross-link interference. Cross-link
interference occurs when one gNB transmits while another
receives in the same frequency band (i.e., two neighboring
gNBs using a different TDD pattern). As shown in Figure
2, two types of cross-link interference are introduced: gNB-
to-gNB interference and UE-to-UE interference, which can
significantly degrade system performance and decrease user
throughput.

The UE-to-UE interference impacts edge users, while gNBs
are affected by the gNB-to-gNB interference when they are
neighbors with high transmission power gNBs. Generally,
gNBs use high transmission power to accommodate edge
users. Thus, edge users are considered a main factor for cross-
link interference. As a result, we assume that neighboring cells
may not experience cross-link interference if there are no edge
users.

B. Related Works

The problem studied in this paper can be decomposed into
two sub-problems: (i) The distribution of time slots between
the UL and the DL (ii) the mitigation of the cross-link
interference between neighboring cells. In the literature, most
solutions focus on solving only one of the two sub-problems.

Downlink dominant base station at time t Uplink dominant base station at time t

gNB-to-gNB
interference

UE-
to-U

E

inte
rfer

enc
e

Figure 2: Illustration of cross-link interference in dynamic TDD
system

1) Time slots distribution: In [10], the authors explored
employing deep reinforcement learning to adaptively allocate
TDD UL/DL resources in 5G networks considering high
mobility UEs. However, this work requires additional infor-
mation that is not available at the gNB, such as the ideal
channel capacity and real-time channel capacity. In [11], the

authors proposed a service-oriented soft spectrum slicing for
5G TDD. The objective is to use the flexibility of TDD to
adjust the UL/DL dynamically using forecasted traffic and
user mobility. The problem has been modeled using a weighted
optimization whose objective is to maximize the allocated slice
bandwidth for each corresponding load. The weights describe
the normalized slice size suitable for each service. Although
the paper addresses 5G, it uses the LTE TDD configuration
(i.e., fixed TDD patterns) and the proposed solution requires
predicting the traffic demands for each service, which can lead
to over-allocation or under-allocation of resources when the
predicted traffic is not accurate.

2) Cross-link interference mitigation: The authors of [12]
investigated interference management schemes for 5G dy-
namic TDD and proposed new interference suppression
schemes using advanced receivers. They derived the analytic
expressions of the receivers for dynamic TDD interference
suppression by theoretical analysis. In [13], the authors de-
signed a distributed algorithm to be used by all transmitters
to compute their power allocations in real time and thus
avoid gNB-to-gNB interference. However, the cost of these
solutions is high because they require updating the transmitters
and receivers at all the gNBs and UEs. In [14], the authors
overview the academic research and standardization efforts
undertaken to solve this cross-link interference problem and
make the D-TDD system a reality. However, they did not
provide any solution.

3) Joint time slots distribution and cross-link interference
mitigation: In [15], the authors proposed a Q-learning ap-
proach to reconfigure the TDD pattern of gNBs in order to
maximize users’ Quality of Experience (QoE) while mitigating
cross-link interference. However, they relied on a centralized
architecture that does not guarantee generalization, i.e., if they
add/remove another gNB, they have to re-train the model from
scratch. In addition, they only considered fixed configuration
patterns, ignoring the flexibility of 5G NR. In [16], authors
proposed a dual reinforcement machine learning approach for
online pattern optimization in 5G new radio TDD deploy-
ments. However, they considered a centralized approach with
the limitations mentioned above. Also, they require knowledge
of the UL latency, which is impossible to obtain in real 5G
deployments. In [17], the authors proposed a dynamic resource
allocation scheme in TDD. They have designed a clustering
algorithm to group the radio units into different sets. Then,
they adopted coordinated multipoint technology to eliminate
interference in each set. However, they used a centralized
approach and considered fixed configuration patterns without
taking advantage of the flexibility of 5G NR. In [18], authors
modeled the D-TDD configuration problem as a dynamic pro-
gramming problem. Then, they designed a fully decentralized
solution with distributed MARL technology. Each agent in
MARL makes decisions only based on local observations.
However, their models lack generality because they assume
a fixed number of TDD patterns with a fixed number of slots,
so a change in numerology involves retraining all MADRL
agents. In addition, they only considered 4 types of traffic,
i.e., high UL, high DL, low UL, and low DL, which implies
the need to know the traffic type and pattern in advance.



4

Overall, current solutions rely on a centralized approach that
increases control latency and signaling overhead. Furthermore,
they do not consider the flexibility of 5G NR in terms of
numerology and dynamic number of slots per TDD period
which results in a lack of generality and the necessity to retrain
the models for each numerology. Furthermore, they ignore
the propagation effect of cross-link interference, i.e., indirect
cross-link interference that occurs between two cells with no
direct interference due to the transitivity relation between cells.
Figure 3 depicts three cells with a direct cross-link interference
between cell 1 and cell 3, cell 2 and cell 1. By transitivity, cell
2 and cell 3 are experiencing indirect cross-link interference.
As a result, the three cells must align their TDD period even
without direct cross-link interference between cell 2 and cell
3.

Downlink buffer

Cell 1

Cell 2

Cell 3

Downlink buffer

Downlink buffer

Uplink buffer
Uplink buffer

Figure 3: Multi-cell scenario with 3 Radio Units (RU) and 2 User
Equipment(UE) with different traffic characteristics experiencing
indirect interference

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network model

In the system, we consider a set of Radio Access Network
(RAN) cells, denoted C, whereby a set of UEs, denoted Γc,
are connected to each cell c ∈ C. We assume that cells are
covered by radio units operating under TDD and using a fixed
TDD period δ and the same numerology. Each UE γ ∈ Γc
has UL and DL traffic that can vary from one application to
another. The UL traffic is generated and transmitted from the
UE γ to the cell c radio unit, while the DL traffic is sent from
the radio unit of cell c to the UE γ. Let λUγ and λDγ denote the
amount of UL and DL traffic in bytes of UE γ, respectively. In
contrast to LTE, where the DL traffic λDγ is more critical than
the UL traffic λUγ , in 5G networks and beyond the amount of
traffic in UL and DL is application dependent. For instance,
in AR applications that offload the AR processing to the edge,
high UL traffic λUγ is expected. On another side, in some ap-
plications, such as video streaming, the DL traffic λDγ is more
important. Other applications, such as immersive applications
(e.g., the Metaverse), require high data rates in both directions.
The users in new generation applications are characterized by
colossal collaborative interactions, tremendous precision, and
high data synchronization. Furthermore, the same UE γ can
use multiple applications, which makes it hard to predict the

UL λUγ and DL λDγ traffic of a UE γ. Let λUc and λDc denote
the traffic of the cell c in UL and DL, respectively. Formally,
λUc =

∑
γ∈Γc

λUγ , and λDc =
∑
γ∈Γc

λDγ .

Let ψU
γ and ψD

γ denote the UL and DL buffer size of UE γ,
respectively. While ψU

γ is located at the UE γ, ψD
γ is located

at the gNB connected to the radio unit serving cell c ∈ C.
The UE γ periodically keeps informing the gNB about the
state of ψU

γ . In 5G NR, this operation corresponds to the
Buffer Size Report (BSR) sent by UE when requesting UL
resources. Meanwhile, the DL buffers are monitored by gNB,
corresponding to the radio bearer data channels maintained
by gNB for each UE. Let ΨU

c and ΨD
c denote the UL and

DL buffer of all the UEs connected to cell c ∈ C. Formally,
ΨU
c =

∑
γ∈Γc

ψU
γ , and ΨD

c =
∑
γ∈Γc

ψD
γ . For the sake of simplicity

and without loss of generality, we assume that each cell c has
a maximum UL ΨU

c and DL ΨD
c buffers size, respectively.

Let |ΨU
c | and |ΨD

c | denote the maximum size of UL and DL
buffers in bytes, respectively.

The UEs at the edge of the cells experience cross-link
interference when two or more neighbor cells are using the
same frequency and different slot directions (i.e., UL and DL)
at a given time. Figure 4 illustrates a scenario of 3 neighboring
cells and 7 UEs with different traffic patterns. Each UE is
connected to a cell (the connection is illustrated with a pointed
line). The oval shape around each radio unit represents the
cell coverage. In this example, the intersection between cells’
coverage represents the cross-link interference region wherein
UEs can experience cross-link interference.

Interference region

Downlink buffer

Downlink buffer

Downlink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Cell 1

Cell 2
Cell 3

Figure 4: Multi-cell scenario with 3 Radio Units (RU) and 7 User
Equipment(UE) with different traffic characteristics showing the
interference region

B. Problem formulation

In this work, we assume that all the cells in C are using
the same TDD period δ and are synchronized in time (i.e.,
slots boundaries of all the cells are aligned). However, the
distribution of the UL and DL traffic is unknown. The main
research question targeted by this paper is how to distribute
the TDD slots among the UL and DL traffic to guarantee that:
(i) UL and DL buffers are not overflowed; (ii) edge users
do not experience cross-link interference. The main challenge
addressed in this paper is that both UL λUc and DL λDc
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traffics are unknown and hard to predict. Let µD
c and µU

c

denote the transmission capacity of cell c per slot in DL and
UL, respectively. We assume that the cell capacity is static
during the period δ. Let Xc be a real variable that denotes the
percentage of UL slots available at cell c ∈ C. Similarly, let
Yc be a real variable that denotes the percentage of reserved
slots for the DL. Formally, the following statements should
hold (2), (3) and (4). All the UEs γ ∈ Γc will share the UL
and DL slots. The number of UL and DL slots in which a
UE γ is scheduled is proportional to the UE’s UL and DL
buffers, respectively. Further, the percentage of UL and DL
slots in which a UE γ ∈ Γc is scheduled is defined as follows
§γ =

ψU
γ

ΨU
c
×Xc and †γ =

ψD
γ

ΨD
c
× Yc, respectively.

Let α be a given constant (0 ≤ α ≤ 1) that defines the
priority between the UL and DL traffics. This parameter can
be defined by the solution designer to specify the priorities
between the two traffics. If α = 1, then we are interested only
in optimizing the UL traffic. Otherwise, if α = 0, we are only
interested in optimizing the DL traffic.

The proposed solution should be periodically applied to
specify Xc and Yc aiming at preventing the overflow of UL
buffers ΨU

c and DL buffers ΨD
c . Let Fc1,c2 be a Boolean

constant (i.e., fixed by the system for one iteration) that
denotes if there is an interference between the two neighboring
cells c1 and c2. Fc1,c2 equals to 0 when there are no edge users
between c1 and c2. Fc1,c2 equals to 1 otherwise. If Fc1,c2
equals to 1, cells c1 and c2 must use the same TDD pattern
(i.e., the same percentage of UL and DL slots in the TDD
period δ). This helps to avoid the cross-link interference at the
edge UEs. Otherwise, cells c1 and c2 can use different TDD
patterns since there is no edge users that will be impacted by
the cross-link interference. Let ΦU

c and ΦD
c denote the initially

stored data of the UL and DL buffers. Both ΦU
c and ΦD

c are
initialized by zero. At each iteration, we aim to optimize the
following linear integer programming:

min
∑
c∈C

(
α

|ΨU
C | ×

(
ΦU
c + λUc − µU

c ×Xc × T cδ
)
+

1−α
|ΨD

C | ×
(
ΦD
c + λDc − µD

c × Yc × T cδ
) ) (1)

S.t,

∀c ∈ C : 0 ≤ Xc ≤ 1 (2)

∀c ∈ C : 0 ≤ Yc ≤ 1 (3)

∀c ∈ C : Xc + Yc = 1 (4)

∀(c1, c2) ∈ C2, c1 ̸= c2 : Fc1,c2 × (Xc1 − Xc2) = 0 (5)

∀c ∈ C : ΦU
c + λUc − µU

c ×Xc × T cδ ≤ |ΨU
C | (6)

∀c ∈ C : ΦD
c + λDc − µD

c × Yc × T cδ ≤ |ΨD
C | (7)

∀c ∈ C : Xc × T cδ = Ac (8)

∀c ∈ C : Yc × T cδ = Bc (9)

∀c ∈ C : (Ac,Bc) ∈ N 2 (10)

The objective function (1) aims to minimize the amount of
stored data in the UL and DL buffers in all the cells to prevent
their buffers overflow. While ⌊Xc × T cδ ⌋ denotes the number
of slots reserved for the UL traffic, ⌈Yc × T cδ ⌉ corresponds
to the number of slots reserved for the DL traffic in each
cell c ∈ C during the period δ. We have used the weighted
normalized sum method to prevent an objective (i.e., buffer)
from dominating the other. Meanwhile, constraints (2), (3)
and (4) ensure that the variables Xc and Yc are rates of slots
distribution for UL and DL. Meanwhile, constraint (5) ensures
that two cells experiencing cross-link interference can not use
different TDD patterns (i.e., different percentages of UL and
DL slots in the TDD period δ), aiming at avoiding the impact
of the cross-link interference on the edge UEs. Meanwhile,
constraints (6) and (7) ensure that the UL and DL buffers
of c ∈ C do not overflow, respectively. Note that Ac and
Bc are two integer variables that denote the number of UL
slots and DL slots of cell c, respectively. Constraints (8) and
(9) transform the percentages of UL and DL slots to integers
given the number of slots available in the period δ. Constraint
(10) ensures that the number of UL and DL slots allocated in
each cell c ∈ C is an integer.

The proposed model can be reformulated by replacing Yc by
1−Xc in equations (1), (3), (5), (7) and (9) and removing the
constants from the Objective function (1). Therefore, we obtain
a boxed-constrained linear minimization problem as follows:

min
∑
c∈C

( (
1− α
|ΨD

C |
×µD

c ×T cδ−
α

|ΨU
C |
×µU

c ×T cδ
)
×Xc

)
(11)

S.t,

∀c ∈ C : 0 ≤ Xc ≤ 1 (12)

∀(c1, c2) ∈ C2, c1 ̸= c2 : Fc1,c2× (Xc1 − Xc2) = 0 (13)

∀c ∈ C : Φ
U
c + λUc − |ΨU

C |
µU
c × T cδ

≤ Xc (14)

∀c ∈ C : Xc ≤
−ΦD

c − λDc + |ΨD
C | + µD

c × T cδ
µD
c × T cδ

(15)

If we assume a static environment where we know the
traffic distribution, it requires an exponential time to solve the
problem optimally in the worst case using the simplex method
as shown in [19]. However, we should recall that to solve the
optimization problem, there is a need to know in advance the
exact traffic model, which is not possible in reality.
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Unfortunately, we cannot use the optimization problem
mentioned above for distributing the slots in a dynamic envi-
ronment. This is mainly due to the fact that the amount of UL
λUc and DL λDc traffics are unknown and hard to be predicted
a priory.

IV. MADRP: MULTI-AGENT DEEP REINFORCEMENT
LEARNING BASED 5G RAN TDD PATTERN

As stated earlier, it is hard to efficiently distribute TDD
slots by solving the optimization model without prior knowl-
edge of traffic generation patterns. Besides, traffic patterns
between cells may differ, and cross-link interference between
neighboring cells may exist. For these reasons, using a multi-
agent framework where each agent controls a cell configu-
ration is essential. Each agent will adapt the TDD pattern
to accommodate its cell traffic while agents of neighboring
cells collaborate with each other to align their TDD pattern
to avoid cross-link interference when there are edge UEs
between neighboring cells. The multi-agent framework has
several motivations: (i) Decreases the control latency since
the agents are executed near the gNB; (ii) Reduces the
control overhead compared to the centralized solution since the
agents observe local information to make a decision instead of
sending the observation to a central entity to take the decision;
(iii) Decreases the action space since each agent will take one
action compared to a single agent solution where the agent will
take a tuple of actions. Decreasing the action space makes the
training faster and more stable. In this context, we propose the
MADRP system that leverages MADRL, more precisely, the
MADDPG algorithm, to dynamically define the 5G NR TDD
pattern. The MADRL hides the complexity and stochastically
of the environment and helps the MADRP framework to
make efficient and quick decisions that adapt according to
traffic patterns. Besides, MADRL allows different cells to
make distributed decisions using local information, enabling
communication between cells to collaborate and avoid cross-
link interference. Moreover, the MADRP framework gains the
ability to learn with time and adapt to different and unseen
situations. In the balance of this section, we will present the
DRL and MADRL background, the MADRP system overview,
more precisely, the MADDPG Algorithm, and a detailed
description of the MADRP system.

A. DRL Background

Deep Reinforcement Learning (DRL) will play a crucial role
in communication and networking [20] with the ability to pro-
vide a self-configured and self-optimized network that easily
adapts to network changes. Moreover, DRL is a lightweight
framework that enables quick decisions and hence takes real-
time actions in the network characterized by its dynamicity
and needs fast decisions. DRL techniques are based on the
interaction of the DRL Agent with its environment by applying
different actions and receiving rewards according to the actions
taken. Let S denotes a set of possible states and A denotes a
set of actions. The state s ∈ S is a tuple of the environment’s
features relevant to the problem at hand. Also, it describes the
agent’s relation with its environment. Assuming discrete time

steps, the agent observes the state of its environment, st ∈ S at
time step t. It then takes action at ∈ A according to a certain
policy π. Once the agent takes action at, its environment
moves from the current state st to the next state st+1. As
a result of this transition, the agent gets a reward rt+1 that
characterizes its benefit from taking action at at state st. This
scheme forms an experience at time t + 1, hereby defined
as et+1 = (st, at, rt+1, st+1), which describes an interaction
with the environment. The set of interactions et ∈ E is called
Replay Buffer, which is used to train the DRL agent in order
to derive the optimal policy π∗. The latter provides the optimal
action at, to take in each state st, in a way to maximize future
cumulative discounted reward Gt defined as follows:

Gt .
=

T∑
k=0

γkrt+k+1 = rt+1 + γGt+1 (16)

With γ ∈ [0, 1] defined as the discount rate that penalizes
the future rewards, and T equal to the time horizon, which
is finite for episodic problems (i.e., problems that end when
the environment is a final state) and infinite for continuing
problems.

B. MADRL Background

Unfortunately, traditional DRL approaches, such as Q-
Learning or policy gradient, are poorly suited to multi-agent
environments. One issue is that each agent’s policy changes
as training progresses, and the environment becomes non-
stationary from the perspective of any individual agent (in a
way that is not explainable by changes in the agent’s own
policy). This presents learning stability challenges and pre-
vents the straightforward use of past experience replay. Policy
gradient methods, on the other hand, usually exhibit very high
variance when coordination of multiple agents is required
[7]. Besides, the state-action space will grow exponentially
when a learning agent keeps track of all agent actions. Hence,
MADRL approach was introduced to address the above issues.

MADRL system can be represented by the tuple of ({Sj}N1 ,
{Aj}N1 , {πj}N1 , {rj}N1 ). Let G denotes a set of agents. Each
agent j ∈ G observes a state stj ∈ Sj from the environment
and executes an independent action atj from its own set of
actions Aj on the basis of its local policy πj : Sj → Sj .
Agents perform joint action at = at1, at2, · · · , atN ∈ A, where
A = (A1 × A2 × · · · × AN ), which leads the environment to
move from state stj ∈ Sj to a new state st+1

j ∈ Sj , then the
agent j receives a reward rt+1

j . In a centralized reward setting
(i.e., the agents are cooperating), the agents receive a common
reward rt+1. The goal of each agent is to learn a local optimal
policy π∗

j that forms a central optimal policy π∗ = π∗
1 , π∗

2 , ·
· · , π∗

N .
In general, MADRL leverages DRL methods for each agent.

DRL methods are classified into three categories: i) value-
based methods, such as DQN; ii) policy-based methods,
such as REINFORCE (i.e., Monte-Carlo Policy Gradient); iii)
actor-critic methods that combine the two previous methods,
such as A3C and DDPG [21]. In the actor-critic approach,
we have mainly two families, the stochastic policy approach
(e.g., A2C and A3C) and the deterministic approach (e.g.,



7

DDPG). In the stochastic policy approach, the actions are
selected from the Actor with different probabilities using
the Softmax activation function. The agent should pick the
action that has a high probability. Unfortunately, the main
limitation of the stochastic policy approach is the number of
actions that should be limited. In contrast, in the deterministic
approach, the actions are generated directly from the actor-
network, enabling continuous actions. In this paper, we are
interested in specifying the percentage of UL and DL slots.
For this reason, we have adopted the MADDPG algorithm,
which is an improved version of DDPG applied in multi-agent
environment. We will explain further the MADDPG Algorithm
when explaining our MADRP approach.

Interference
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Downlink buffer

Downlink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer

Uplink buffer
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Figure 5: MADRP Architecture

C. MADRP System Overview
As depicted in Figure 5, we propose a MADRL learning

scheme with one agent for each cell. The set of agents is part
of the RAN control plane, while the RAN functions executing
dynamic TDD at the gNB level are part of the RAN user
plane. Each agent observes the state of the cell’s buffers and
exchanges information with neighboring agents (i.e., agents
controlling the neighboring cells), thus observing the state of
the buffers associated with neighboring cells in case of cross-
link interference. Communication between agents can be based
on the Xn Application Protocol (XnAP) specification to com-
ply with 3GPP [22]. Specifically, an agent will send an XnAP
message containing the Information Element (IE) “Intended
TDD DL-UL Configuration NR” to inform the destination
gNB of the source gNB’s current TDD configuration in order
to mitigate cross-link interference.

We have adopted a centralized training and decentralized
execution approach. Thus, we allow the policies to use extra
information to ease the training step, so long as this informa-
tion is not used at test time. It is unnatural to do this with Q-
learning, as the Q function generally cannot contain different

information at training and test time. Thus, MADDPG extends
the actor-critic policy gradient methods, whereby the critic is
augmented with extra information about other agents’ policies.

More concretely, let consider N agents with policies param-
eterized by θ = (θ1, ..., θN ), and let π = (π1, ..., πN ) be the
set of all agent policies. Let [Ri] be the cumulative discounted
reward of agent i. As we have seen in the background section,
each agent aims to maximize Ri. And, since MADDPG is a
policy gradient method, it samples the actions directly from the
policy π. Let µ = (µ1,..., µN ) be a continuous and deterministic
policy function. Then we can write the gradient of the expected
cumulative reward for agent i, J(θi) = E[Ri] as:

∇θiJ (µi) = Es,a∼D
[
∇θiµi (ai | oi)∇aiQ

µ
i (s, a1, . . . , aN )

∣∣
ai=µi(oi)

]
(17)

Where Qµi (s, a1, ..., aN ) is a centralized action-value func-
tion that takes as input the actions of all agents, a1, ..., aN
as well as some state information s and outputs the Q-value
for agent i. In the simplest case, s could consist of the
observations of all agents, s = (o1, ..., oN ). However,
we may also include additional state information if available.
Since each Qµi is separately learned, agents can have arbitrary
reward structures, including conflicting rewards in a competi-
tive setting. Here the experience replay buffer D contains the
tuples (st, st+1, at1, ..., a

t
N , r

t+1
1 , ..., rt+1

N ), recording
experiences of all agents.

D. MADRP detailed description

We have designed the MADRP to be lightweight to ensure
fast interaction with the environment. Also, we have designed
the MADRP to ensure generality and then work in an unseen
environment. Besides, MADRP has been designed to work
independently from the number of slots, the size of the
buffers, and the number of cells. Moreover, it considers the
variation and correlation in the buffer states to predict the
traffic patterns. In what follows, we define the elements of the
MADRP, including the state, the reward, and the action.

i) State: Let ξtU,c and ξtD,c denote the amount of traffic
in the UL ΨU

c and the DL ΨD
c at the step t at the cell

c, respectively. To ensure the generalization, we define the
observation OtU,c and OtD,c of the UL and DL buffers as

normalized values (Figure 6: 1). Formally, OtU,c =
ξtU,c

|ΨU
c | and

OtD,c =
ξtD,c

|ΨD
c | , respectively. The benefits of the normalization

are twofold: i) It ensures generality by enabling the MADRP
agent to be agnostic to the scenario scale in terms of the buffer
capacity. It works similarly in different buffers with different
sizes. The most important is to catch the buffer fullness ratio
of ΨU

c and ΨD
c ; ii) It is well known that the activation

functions in the neural network work well for small values,
which positively impacts MADRP’s convergence. Moreover,
to capture the traffic patterns, we define the state stj of the
agent j at time t as follows:

stj =
N⋃

k=0

ŝtj,k (18)



8

Figure 6: MADDPG architecture and workflow

Where ŝtj,k is defined as follows:

ŝtj,k =


(K−1⋃

i=0
Ot−i

U, j ,
K−1⋃
i=0

Ot−i
D, j

)
if k = j or F(k, j) = 1(K−1⋃

i=0
0,

K−1⋃
i=0

0

)
else

(19)

, whereby F(k, j) = 1 when there is an interference between
cells k and j (i.e., direct cross-link interference) or ∃k′ ∈ C
such that F(k, k′) = 1 or F(k′, j) = 1 (i.e., indirect cross-link
interference)

In the state stj , the MADRP agents, besides the current
observation, consider K previous observations before taking
any action. This enables capturing the behavior of both buffers
and traffic before taking any action.

Besides, MADRP agents capture the behavior of the func-
tion F by communicating with each other. An agent j sends a

message containing
(K−1⋃
i=0

Ot−iU, j ,
K−1⋃
i=0

Ot−iD, j

)
to agent k when

agent j observes an edge user with the cell associated to
agent k. This message is considered an interference alert. The
operator can define a policy to trigger the interference alert, for
example, when the number of edge users exceeds a predefined
threshold. Each agent stores a list of agents with which it has
interference, and each time it receives an interference alert,

it broadcasts the received alert to its interference list. This
mechanism allows MADRP to capture indirect interference
(i.e., interference between two cells without edge users be-
tween each other but ∃k ∈ C such that there is interference
between cell k and both cells).

ii) Action: We have only one continuous action atj per agent
j that presents the percentage of slots that should be reserved
for the UL traffic at step t. Each MADRP agent j ∈ G enforces
the taken decisions as depicted in Figure 6:6. Accordingly, the
⌊atj×T

j
δ ⌋ slots are reserved for the UL traffic, and ⌈(1−atj)×

T jδ ⌉ slots are reserved for the DL traffic. It is worth noting that
the action is independent of the number of slots T jδ , which
ensures the generality and enables the MADRP agent to be
agnostic to the scenario scale.

iii) Reward: We have adapted an episodic approach,
whereby each episode runs for max T steps before it ends.

Let r̂tj denotes the buffer reward of each agent j, defined
in (20) as follows:

r̂tj =

{
α× (1−Ot

U, j) + (1− α)× (1−Ot
D, j) if |Ot

U, j | < 1 ∧ |Ot
D, j | < 1

−M else

(20)

Equation (20) allows MADRP agents to get a positive reward
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for each step, which succeeds in keeping the buffers ΨU
c and

ΨD
c do not exceed their threshold. Moreover, the emptiest the

buffers are, the highest reward becomes. When one of the
buffers exceeds its capacity, then the agent receives a penalty
−M, such that M is a significant number. This strategy
will force the MADRP agents to keep both buffers empty as
much as possible and prevent their overflow, which positively
impacts the Quality of Service (QoS). α is the priority between
the UL and DL traffic.

Let rtj, k denotes the cross-link interference reward, defined
in (21) as follows:

rtj, k =

{
0 if F(j, k) = 0 ∨ F(j, k) = 1 ∧ at−1

j = at−1
k

−M else
(21)

Equation (21) gives a penalty when two agents experience
direct or indirect interference and do not choose the same
TDD pattern (i.e., the same percentage of UL slots).

The agent reward rtj is the sum of the buffer and the cross-
link interference reward, defined in (22) as follows:

rtj = r̂tj +
∑

k ∈ C

(
rtj, k

)
(22)

As depicted in Figure 6, the MADRP system leverages
the MADDPG algorithm and is executed on three different
steps: i) Decision making (Figure 6: 1 − 6) presented with
blue color; ii) Updating policy networks (Figure 6: 7 − 17)
presented with red color; iii) Updating target networks
(Figure 6: 18−19) presented by green color. Each MADDPG
agent has two networks: a) Policy networks that consist of
the Actor and the Critic neural networks. These networks
are used to predict the deterministic actions atj . While
the actor-network has as input the state stj and it is used
to predict the action atj , the critic-network has as inputs
st = st1, ..., s

t
N and at = at1, ..., a

t
N and returns the

Q value that is used for criticizing the taken action; b) The
target networks that consist of target actor-networks and
target critic-network. These two networks are frozen and used
to help the convergence of policy networks and stabilize their
learning. In deep learning, the optimizer (e.g., ADAM) should
update the neural network parameters of the policy networks
closer to the labels, which are the fixed target neural network
values. Moreover, to stabilize the learning, a replay buffer
is used. The training is performed using a random replay
buffer sample, reducing the correlation between the agents’
experiences.

Decision making: At the reception of the observation

(OtU,c,OtD,c,
N⋃
i=0

ntj), with ntj is the number of users at the

edge between the current agent’ cell c and agent j’ cell.
ntj is used to set the variable F(c, j), i.e., F(c, j) = 1 if
ntj > 0 or a message is received from agent j, F(c, j) = 0
otherwise. Each MADRP agent generates the state stj using
the equation (19) (Figure 6: 2). The received state is used
by the actor-network to predict the deterministic action
atj . In order to enable the MADRP agents to explore the
environment, a noise J tj is added to the action. Accordingly,

Algorithm 1 Multi-Agent Deep Deterministic Policy Gradient
for N agents

1: for episode = 1 to M do
2: Initialize a random process Ji for action exploration

for each agent i
3: Receive initial state s
4: for t = 1 to max-episode-length do
5: for each agent i, select action ai = µθi (oi) + J

t
i

w.r.t. the current policy and exploration
6: Execute actions a = (a1, . . . , aN ) and observe

reward r and new state s′

7: Store (s, a, r, s′) in replay buffer D
8: s← s′

9: for agent i = 1 to N do
10: Sample a random minibatch of S samples(

sj , aj , rj , s′j
)

from D
11: Set yj = rji +

γQµ′

i

(
s′j , a′1, . . . , a

′
N

)∣∣∣
a′k=µ′

k(o
j
k)

12: Update critic by minimizing the loss L (θi) =
1
S

∑
j

(
yj −Qµi

(
sj , aj1, . . . , a

j
N

))2

13: Update actor using the sampled policy gradi-

ent: ∇θiJ ≈
1

S

∑
j

∇θiµi
(
oji

)
∇aiQ

µ
i

(
sj , aj1, . . . , ai, . . . , a

j
N

)∣∣∣∣∣∣
ai=µi(o

j
i)

14: end for
15: Update target network parameters for each agent

i: θ′i ← τθi + (1− τ)θ′i
16: end for
17: end for

the UL and DL slots are reserved (Figure 6: 5− 6).

Updating policy network: In order to take optimal
actions, the policy network should be updated (Figure 6:
7 − 17). The action taken by all the agents should be
stored in the replay buffer (Figure 6: 7), as well as their
corresponding state and reward (Figure 6: 8). First the critic-
network is updated by leveraging a random batch sample
(st, st+1, at1 + J t1 , ..., atN + J tn, rt+1

1 , ..., rt+1
N ) from

the replay buffer (Figure 6: 9− 14). Using mean square error
(MSE) and ADAM optimizer, the parameters of the critic-
network are optimized by considering the critic values and
target critic values. Then, the actor-network is also optimized
by leveraging the gradient generated against the critic-network.

Updating target network: The target networks (actor and
critic) should be updated slowly and periodically towards the
policy networks using soft update (Figure 6: 18 − 19). This
strategy helps the Algorithm for providing optimal determin-
istic action. We utilize a distributed training procedure, where
only the critic-networks are identical among the agents while
the actor-networks are specific for each agent. Hence, the
execution phase is distributed, with each agent making its own
decision at each interval relying only on the specific observa-
tions it receives from the environment and its neighbors.

Overall, the MADDPG algorithm is summarized in Algo-
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(a) 4 cells (b) 7 cells (c) 14 cells

Figure 7: Convergence evaluation of MADRP agent during the training mode

(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 8: Performance evaluation of MADRP of 4 agents during the inference mode

rithm 1 where µ′ = (µ′
1, ..., µ′

N ) is the set of target policies
with delayed parameters θ′i.

V. PERFORMANCE EVALUATION

We implemented our simulation environment using Python
and Pytorch. We leveraged the simulator built in [5] and
the open-source MADDPG implementation [7]. We used a
physical machine with Intel(R) Core(TM) i7-8700K CPU
@ 3.70GHz with 64 GB of memory and NVIDIA GP102
GPU using Ubuntu 20 as an operating system. Following an
empirical approach, we conducted several experiments with
different neural network parameters and activation functions.
We selected those which gave us the best performance. For all
the agents, we employed two fully connected hidden layers
of 400 and 300 nodes for both policy and target networks.
We also used layer normalization between the hidden lay-
ers to enable smoother gradients, faster training, and better
generalization accuracy. While Rectified Linear Unit (ReLU)
activation function has been used in the two hidden layers,
Hyperbolic Tangent (tanh) activation function has been used
in the output layer. We employed a discount factor γ of 0.99,
batch size of 1024, and the learning rates of the actor and
critic-networks are set to 10−5 and 10−3, respectively. We
used the soft update with coefficient τ 0.001. Also, ADAM
optimizer has been leveraged in both actor and critic-networks.

Finally, the optimization problem is solved using Gurobi
version 9.1.2. The absolute optimality gap is set to 10−8.

A. MADRP Training mode

As shown in Figure 7, we considered three different con-
figurations: (i) 4 neighboring cells; (ii) 7 neighboring cells;
(iii) 14 neighboring cells. For each configuration, we trained
4, 7, and 14 agents, respectively. We trained the MADRP
agents using 20000, 35000, and 35000 independent episodes
for configuration (i), (ii) and (iii), respectively. We set the
maximum number of steps in each episode T to 200. We set
the penalty M to −100, and the number of slots T cδ to 40.
We considered three successive observations (i.e., K = 3).
We used a Poisson distribution to generate the traffic in each
cell for the UL and DL. The arrival rates for UL and DL
are randomly chosen at each iteration λ ∈ {50, 100, 200, 300}
with unit u per δ. We assumed a fixed serving rate µ for each
cell (i.e., the amount of data scheduled at each slot equals 14
times the unit u; 14 being the number of symbols per slot in
5G NR). Figures 7(a), 7(b), and 7(c) depict the evolution of
the averaged 100 sum rewards of all the agents over time. We
observe that MADRP converges at 5000, 15000, and 30000
episodes for configuration (i), (ii), and (iii), respectively.
Thus, we observe that the more agents we add, the more
episodes the agents need to converge.
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(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 9: Performance evaluation of MADRP of 7 agents during the inference mode

(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 10: Performance evaluation of MADRP of 14 agents during the inference mode

B. MADRP Inference mode

For the three configurations and under different interference
probabilities, we have evaluated the MADRP agents in terms
of i) The percentage of the fullness of the UL and DL buffers;
ii) The number of conflicts successfully mitigated. Let p be the
probability that agent i has a direct cross-link interference with
agent j (i.e., cell i has edges users with cell j). We recall that
indirect cross-link interference can happen by transitivity even
if there are no edge users between two cells. The terms dTDD
and sTDD in the figures’ legend stand for dynamic TDD and
static TDD, respectively. It should be noted that we considered
different static TDD configurations: (i) stdd 20D/20U: half of
the TDD period slots (i.e., 20 slots) are dedicated to DL, while
the other half are dedicated to UL; (ii) stdd 30D/10U: 75%
of the slots are dedicated to DL (iii) stdd 10D/30U: 75% of
the slots are dedicated to UL.

In Figure 8, we evaluated the performance of 4 agents
during 1000 independent episodes, each of which with 200
iterations. We considered three different interference prob-
abilities p. Figure 8(a) depicts the Cumulative Distribution
Function (CDF) of the ratio of solved interference conflicts
among all the interference cases. A solved interference conflict
means two agents aligned their TDD pattern while there
is direct or indirect interference between them. The x-axis

represents the solved conflicts ratio, while y-axis represents
its CDF. For p = 0.1 (i.e., agent i’ cell has a probability
of 0.1 to have an edge user with agent j’ cell), we notice
that MADRP is able to solve more than 96% of the conflicts.
While for p = 0.5 and p = 0.8, MADRP is able to solve more
than 80% and 92% of the conflicts, respectively. We noticed
that with p = 0.8, there is always interference (i.e., direct +
indirect interference). While in static TDD, no interference is
present since all the cells share the same TDD pattern. For
instance, we consider all the conflicts are solved since there is
no unsolved conflict. We can see that MADRP outperforms all
static TDD solutions. For the 20D/20D configuration, MADRP
is better in UL and DL, while for the 30D/10U configuration,
MADRP is better in UL, and for the 10D/30U configuration,
MADRP is better in DL. Indeed, over 60% of the samples
represent a buffer overflow for 30D/10U and 10D/30U static
TDD in DL and UL, respectively. As a result, MADRP is able
to balance DL and UL traffic dynamically.

In Figure 9, we evaluated the performance of 7 neighboring
agents during 1000 independent episodes, each of which with
200 iterations. Figure 9(a) depicts the CDF of the ratio of
solved interference conflicts among all the interference cases.
For p = 0.1, MADRP solved more than 90% of the conflicts
during 60% of the samples and more than 70% of the conflicts
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(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 11: Performance evaluation of MADRP of 4 agents during the inference mode with DL dominant traffic

(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 12: Performance evaluation of MADRP of 4 agents during the inference mode with UL dominant traffic

(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 13: Performance evaluation of MADRP of 7 agents during the inference mode with DL dominant traffic

among the 80% of the samples. While for p = 0.5 and
p = 0.8, we notice that MADRP solves more than 70% of
the conflicts among 50% of the samples. Figures 9(c) and
9(b) depict the CDF of the UL and the DL buffers’ fullness
percentage, respectively. For p = 0.1, the buffer size is lower
than 10% in 80% of the samples and higher than 20% in less
than 2% of the samples. While for p = 0.5 and p = 0.8,
the buffer size is lower than 20% in 70% of the samples and
lower than 40% in 80% of the samples. In all cases, MADRP
outperforms all static TDD solutions. In the case of static TDD
20D/20U, we observe that around 20% of samples represent a
buffer overflow (i.e., the buffer is full) in both UL and DL. In

contrast, in the 30D/10U and 10D/30U static TDD solutions,
around 70% of samples represent buffer overflow in UL and
DL, respectively.

In Figure 10, we evaluated the performance of 14 neighbor-
ing agents during 1000 independent episodes, each of which
with 200 iterations. Figure 10(a) depicts the CDF of the ratio
of solved interference conflicts among all the interference
cases. We observe that all the conflicts are solved for all
the conflict rates. This is because MADRP found that the
configuration (50% DL slots, 50% UL slots) is the best
due to the strong dynamics of the environment. Since the
configuration is fixed among all the agents, all the interference
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(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 14: Performance evaluation of MADRP of 7 agents during the inference mode with UL dominant traffic

(a) Conflicts mitigation (b) DL buffer (c) UL buffer

Figure 15: Performance evaluation of MADRP of 4 agents during the inference mode

cases are mitigated. Figures 10(c) and 10(b) depict the CDF of
the UL and the DL buffer’s fullness percentage, respectively.
We observe that the buffer size is lower than 40% in 80% of
the samples and lower than 80% in 90% of the samples. In all
the cases, MADRP outperforms all the static TDD solutions.
We observe that, in static TDD 20D/20U, around 20% of the
samples represents buffer overflow (i.e., the buffer is full) in
both UL and DL. While in static TDD 30D/10U and 10D/30U,
around 70% of the samples represents buffer overflow in UL
and DL, respectively.

Figures 11 and 13 illustrate the performance evaluation
of MADRP when traffic is DL-dominant. That is, traffic
arrives with higher arrival rates in the DL direction, while
traffic arrives with lower arrival rates in the UL direction. We
compared the MADRP solution with the optimization model
solution.

In Figure 11(b), we see that the optimal solution empties the
buffer continuously, whereas the MADRP solution keeps the
buffer below 60% in 99% of the time. The gap between the
optimal solution and the MADRP solution is 1%, representing
the percentage of cases where the DL buffer was full. We recall
that the aim of MADRP is to avoid buffer overflow without
the knowledge of the arriving traffic model.

In Figure 13(b), we see that the optimal solution empties
the buffer permanently, whereas the MADRP solution keeps
the buffer below 20% in 90% of cases when the probability
of interference is low, while the buffer overflows in 60% of

cases when the probability of interference is high.
Figures 12 and 14 depict the performance evaluation of

MADRP when the traffic is UL-dominant. We have compared
the MADRP solution with the optimization model solution.

In Figure 12(c), we note that the optimal solution always
empties the buffer, whereas the MADRP solution keeps the
buffer below 20% in 99% of the time. In figure 14(c), the
MADRP solution keeps the buffer empty in 40% of samples
and below 40% in 80% of the time in the UL buffers when
the probability of interference is low. We note that the buffer
overflows in 60% of cases when the probability of interference
is high.

Figures 15 and 16 depict the impact of arrival rates on
the MADRP agents for configurations with 4 and 7 cells,
respectively. Each plotted point represents the average of 1000
episodes, each of which with 200 steps. The first observation
we can draw from this figure is the amount and the variance of
the traffic handled by the MADRP agents. Figures 15(a) and
16(a) depict the average solved interference ratio variation over
the arrival rates for different interference probabilities. The x-
axis represents the arrival rate of the traffic, while the y-axis
represents the average solved conflicts. We notice that while λ
increases, the average ratio of solved conflicts decreases. We
recall that the serving cell capacity is T cδ ×µ (i.e., 560). Hence,
we notice that when λ ≥ µ, MADRP is able to solve around
30% and 60% of the interference. When µ

2 ≥ λ ≤ µ in the 7
agents scenario, MADRP is able to solve between 60% and



14

95% for p = 0.1 and between 50% and 60% of the interference
for p = 0.5. While in the 4 agents scenario, MADRP is
able to solve all the interferences. We conclude that when
increasing λ, the traffic variance increases (i.e., due to Poisson
distribution), which introduces more aggressive conflicts in the
agents’ observations. This will results in difficulties in aligning
the TDD pattern between interfered neighbors while serving
each cell’s traffic.

Figures 15(b) and 16(b) depict the average DL buffer
fullness percentage in the 4 cells and 7 cells environment,
respectively. While figures 15(c) and 16(c) depict the average
UL buffer fullness percentage in the 4 cells and 7 cells
environment, respectively. We notice that while λ increases,
the average buffer fullness ratio increases. When λ reaches
800 units, the average buffer size is 70% for p = 0.1 and 85%
when p = 0.5. We conclude that even when the arrival rate is
bigger than the serving rate, MADRP is able to balance the
traffic between UL and DL.

Overall, MADRP is able to change the TDD pattern dynam-
ically by allocating UL and DL slots to different cells while
avoiding direct and indirect cross-link interference between
cells. When there is a small number of neighbors (i.e., 4
cells), small direct interference probability (i.e., p = 0.1),
and an arrival rate lower than a serving rate with a traffic
variance lower than half of the arrival rate, MADRP is able
to avoid more than 96% of the interference cases while
serving different UL and DL traffic rates. Indeed, MADRP
allocates the number of UL/DL slots needed for each cell
in each iteration according to the UL/DL buffer size, and
hence it avoids buffer overflow while avoiding cross-link
interference. However, when we increase the number of cells,
the probability of direct interference, or the variance of the
traffic, MADRP starts finding difficulties in satisfying the
traffic load in UL/DL while solving the interference issues.
In all the cases, MADRP outperforms the static TDD solution
by reducing the probability of buffer overflow in both UL and
DL.

In conclusion, we propose to create small subsets of neigh-
boring cells (e.g., 7 cells per subset) that use the same
frequency band in order to make dynamic TDD more efficient.

VI. CONCLUSION

In this paper, we introduced MADRP, a Multi-Agent Deep
Learning Reinforcement (DRL)-based solution that permits
deriving and adjusting the TDD pattern in 5G NR while
mitigating cross-link interference. MADRP approach consists
in deploying a MADRP agent at each gNB serving a cell.
Without prior knowledge of the UEs traffic model, each
MADRP agent computes the number of slots dedicated to
UL and DL in a TDD frame aiming at reducing both UL
and DL buffers while avoiding cross-link interference with
the neighboring cells. Simulation results clearly showed that
MADRP could avoid buffer overflow and dynamically adapt
to the cell traffic while avoiding cross-link interference. Fur-
ther, the results showed that MADRP clearly outperforms
the different static TDD configurations with different UL/DL
proportions and the gap between the optimal solution and

the MADRP solution is small in low-interference scenarios.
Our future focus is on implementing MADRP on top of
OpenAirInterface (OAI) 5G to demonstrate self-adapted and
plug-and-play deployment of 5G and MADRP.
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