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Abstract—In this work, we consider mixed traffic with time-
sensitive users; a deadline-constrained user, and an AoI-oriented
user. To develop an efficient scheduling policy, we cast a novel
optimization problem formulation for minimizing the average
AoI while satisfying the timely throughput constraints. The
optimization problem is a Constrained Markov Decision Process
(CMDP). We relax the constrained problem to an unconstrained
Markov Decision Process (MDP) problem by utilizing Lyapunov
optimization theory. The unconstrained problem is solved for each
frame by applying backward dynamic programming. Simulation
results show that the timely throughput constraints are satisfied
while minimizing the average AoI. Also, simulation results show
the convergence of the algorithm for different values of the
weighted factor and the trade-off between the AoI and the timely
throughput.

I. INTRODUCTION

With the advent of 5G communication networks, the
metric of latency plays a vital role in wireless connectivity
for addressing the requirements of real-time communications,
such as autonomous vehicles, wireless industrial automation,
environmental, and health monitoring, to name a few [2],
[3]. In real-time communications, information is required to
arrive at the destination within a certain period (deadline-
constrained) due to stringent requirements in terms of latency,
while in other cases, it is required to keep the information
at the destination as fresh as possible. The notion of packets
with deadlines is connected with the timely-throughput, that
is the average number of successful packet deliveries before

their deadline expiration [4]. Age of Information (AoI) can
capture the information freshness and it was first introduced
in [5]. AoI [6], [7] is defined as the time elapsed since the

generation of the status update that was most recently received

by a destination. Furthermore, time-sensitive applications with
different requirements co-exist in the same network and share
the same resources. Therefore, it is important to allocate the
resources efficiently in order to satisfy the requirements of the
heterogeneous traffic.
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Packets with deadlines had been considered in wireless
systems almost two decades ago [8]. An extensive survey that
provides an overview of the mathematical tools that are used
in the area of resource control for delay-sensitive networks can
be found in [9]. Recently, there has been a renewed interest in
studying the performance of systems with deadline-constrained
traffic [10]–[14], especially due to the ongoing automation of
traditional manufacturing and industrial practices under the
fourth industrial revolution. Packets with deadlines are con-
nected with the notion of timely throughput. Timely throughput
was first introduced in [4], and it is defined as the average
number of successfully delivered packets before their deadlines
expiration. In [4], the authors propose an algorithm that satisfies
any feasible timely throughput constraint. Furthermore, in [15],
the authors analyze the fundamental limits for networks with
timely throughput constraints.

Although many works consider the AoI optimization or
performance analysis, there are few works that consider AoI
optimization in a system with heterogeneous traffic, e.g., [16]–
[20]. The work that is closer to our work is [19], where the au-
thors consider a wireless network including AoI-oriented users
and deadline-constrained users. The goal is to minimize the
average AoI while satisfying the timely throughput constraints.
In addition, it is considered that the time is divided into frames
and the frames into slots. However, the authors additionally
assume that the AoI-oriented user can be scheduled in any time
slot within the frame and the value of the AoI remains 1, if the
transmission succeeds, during the whole frame. Furthermore,
it is assumed that the channel remains fixed during a frame.
On the contrary, in our work, we assume that AoI is 1 only
when the AoI-oriented user transmits a packet successfully.
Furthermore, the channel of a user can change from slot to
slot unlike from frame to frame. These assumptions make the

considered problem in our paper fundamentally different and

more realistic.

In this work, we consider two users that send their informa-
tion over an error-prone channel to a common receiver. The first
user is AoI-oriented and the second user has timely throughput
requirements. We consider that the channel states are correlated
over time. Our goal is to minimize the average AoI while
satisfying the timely throughput requirements. The problem is
initially formulated as a Constrained Markov Decision Process
(CMDP) problem which is known to be a difficult problem to
solve and standard approaches, such as the method of Lagrange
multipliers, cannot be directly applied. To solve this problem,
we first apply tools from Lyapunov optimization theory to
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Fig. 1: System with an AoI-oriented user and a
deadline-constrained user.

transform the CMDP into a Markov Decision Process (MDP).
It is shown that the infinite horizon CMDP can be reduced to an
unconstrained weighted stochastic shortest path problem, i.e., a
finite-horizon MDP, that is easier to be solved. We obtain that

the optimal decision is not to schedule the AoI only at specific

slots of the frame with high probability, e.g., at the beginning

or the end of the frame. Instead, it is more beneficial to spread

the scheduling time across all the slots within the frame.

II. SYSTEM MODEL

We consider two users transmitting their information in the
form of packets to a single receiver over a wireless fading
channel, as shown in Fig. 1. Let i 2 {1, 2} denote the ith

user of the system. Time is assumed to be slotted, and let
t 2 Z�0 denote the tth slot, where t 2 Z�0 is the set
of nonnegative integer numbers. We consider a centralized
scheduler that decides every slot to schedule up to one user.
Let ui(t) denote the decision of the scheduler, where

ui(t) =

(
1 , if user i is scheduled at time slot t,
0, otherwise,

(1)

and u(t) = [u1(t) u2(t)]
T . Note that

P
i
ui(t)  1, 8t. Due to

the wireless nature of the channels, we assume that a packet is
successfully transmitted from user i to the receiver with some
probability. Let di(t) denote the successful packet reception of
user i, given that ui(t) = 1, where

di(t) =

(
1, successful packet reception for user i,
0, otherwise,

(2)

and d(t) = [d1(t) d2(t)]
T .

User 1 is an AoI-oriented user who either samples and
transmits fresh information to the receiver or remains silent
depending on the scheduling policy. Let A(t) 2 Z>0 represent
the AoI of user 1 at the receiver. We assume that the value of
the AoI is bounded by Amax. This assumption is considered for
the following two reasons:

1) In practical applications, values of AoI that are larger
than a threshold will not provide us additional informa-
tion about the staleness of the packet, [21]–[23].

2) Assuming unbounded AoI will complicate significantly
the solution of the optimization problem without provid-
ing additional insights for the performance of the system.

The evolution of the AoI at the receiver is described as

A(t+ 1) =

(
1, successful packet transmission of user 1,
min {Amax, A(t) + 1}, otherwise.

(3)

The time average AoI is defined as

Ā = lim
t!1

sup
1

t+ 1

tX

⌧=0

E{A(⌧)}, (4)

where the expectation is with respect to the scheduling policy
and the channel randomness. Note that we use a generate-at-
will policy. Furthermore, since we do not consider sampling
cost, user 1 does not retransmit a packet if the transmission
fails. Instead, user 1 samples new information whenever it is
scheduled in one of the following slots. We consider that the
sampling and transmission process needs one-time slot to be
performed.

User 2 is deadline-constrained including packets that must be
transmitted within a specific time frame, i.e., before a deadline.
More specifically, we consider that K packets arrive to the
queue of user 2 every T slots, where K  T . We consider that
a packet needs one slot to be transmitted. The time between two
consecutive packet arrivals is a time frame whose length is T
time slots. Let m 2 Z�0 denote the mth frame, and tm = mT
be the first slot of frame m. The packets must be transmitted
before the end of the frame, i.e., T slots after their arrival,
otherwise they are dropped.

We denote by fm(t) the time interval between the beginning
of the current frame and slot t, i.e., fm(t) = t�mT . Let Q(t)
denote the number of packets that are in the queue of user 2
in time slot t. The evolution of the queue is described as

Q(t+ 1) = max{Q(t)� d2(t), 0}1{fm(t)6=0} +K1{fm(t)=0}, 8t.
(5)

The timely throughput measures the average number of
successful deliveries, i.e., the packets delivered before the
deadline [4], [15]. In this work, we are interested in ensuring
frame-based timely throughput above a threshold, for user 2,
defined as

lim
M!1

1

M + 1

MX

m=0

0

@
(m+1)T�1X

⌧=mT

E {d2(⌧)}

1

A . (6)

Our motivation for defining per frame average timely through-

put is that it is not only important to serve as many packets as
possible, but also to keep high QoS for every frame. In other
words, to ensure a high average number of successful packets
delivery before their deadline expiration, i.e., before the end of
the frame.

The channel of each user i is assumed to be a time-correlated
fading channel and each one evolves as a two-state Gilbert-
Elliot model. The evolution of the channel states can be
modeled as a Markov chain. Let hi(t) denote the channel state
of user i at time slot t, which is modeled as a Markov chain
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with two states, and let h(t) = [h1(t) h2(t)]
T . “Bad” state

represents deep fading of the channel and any transmission
will fail. “Good” state represents mild fading of the channel
and any transmission will succeed. The channel transition
probabilities are given by Pr{hi(t+1) = 1|hi(t) = 1} = p11,i,
Pr{hi(t + 1) = 1|hi(t) = 0} = p01,i. We consider delayed
channel sensing for both users. More specifically, the channel
state for each user i is known at the receiver only at the end
of each slot.

III. PROBLEM FORMULATION

Definition 1 (Scheduling Policy). A scheduling policy ! is a

(possibly randomized) rule of scheduling user i at each time

slot t. Policy ! takes into account only the information of

state of the system at time slot t, which consists of the delayed

information of the channel state, queue length of user 2, value

of the AoI of user 1. Since we consider random channels, the

outcome of a scheduling decision is a random variable. A policy

! specifies a probability distribution u!(t), where u!
i (t) is the

probability of scheduling user i at time slot t given the system

state. The set of all policies is denoted by ⌦.

In this work, our target is to find a policy ! that solves the
following optimization problem

min Ā! (7a)

s. t. lim
M!1

inf
1

M + 1

MX

m=0

0

@
(m+1)T�1X

⌧=mT

E {d!2 (⌧)}

1

A � q,

(7b)

where q, 0  q  K, is the minimum per frame average timely
throughput requirements of user 2, and ⇡ is the scheduling
policy.

Definition 2 (Feasible Region of Timely-Throughput Require-
ments). Consider the set of all policies ⌦, and denote by q̄! the

timely-throughput that is achieved by applying policy !. Then,

the feasible region of timely throughput requirements, denoted

by �, is � = [!2⌦ {q 2 [0,K]|q  q̄!} .

A. Slackness Assumptions

The problem in (7) is a CMDP with state s(t) =
(A(t), Q(t),h(t)). Under mild assumptions (such as the state
space and the action space being finite) the MDP has an optimal
stationary policy that chooses u(t) as a stationary and possibly
randomized function of the state s(t) only [24]. Note that the
system experiences regular renewals, i.e., at the beginning of
each frame a batch of K packets arrive at the queue while the
remaining packets from the previous frame has been discarded.
Therefore, the performance of any s(t)-only policy can be
characterized by ratios of expectations over one renewal time
[25]. Thus, we make the following assumption.

Assumption 1: There exists a policy ! 2 ⌦, that satisfies the
following, over any renewal frame:

E
"
(m+1)T�1P

⌧=mT
A!1(⌧)

#

T
= Āopt, (8)

q � E

2

4
(m+1)T�1X

⌧=mT

d!1
2 (⌧)

3

5  0, (9)

where A!1(⌧), and d!1
2 (⌧), are the values of A(t) and d2(t)

obtained by applying policy !1, and Āopt is the optimal value of
the time average AoI. Note that Assumption 1 is mild and holds
whenever problem (7) is feasible, i.e., 8q 2 �. We now make
a stronger assumption guaranteeing that the constraint in (7b)
is met with ✏-slackness. In the following assumption, we focus
only on the satisfaction of the constraints. This assumption is
related to standard “Slater-type” assumptions in optimization
theory [26].

Assumption 2: There exists a value ✏ > 0 and a policy !2 2
⌦ policy that satisfies the following over any renewal frame:

q � E
"
(m+1)T�1P

⌧=mT
d!2
2 (⌧)

#

T
 �✏, (10)

where d!2
2 (⌧) is the value of d2(⌧) obtained by applying policy

!2. In the next section, we describe our proposed dynamic
control algorithm.

IV. DYNAMIC CONTROL ALGORITHM

Before describing our proposed algorithm that solves (7), let
us recall some basic definitions. The Lyapunov function and
the Lyapunov drift are denoted by L(q(t)) and �(L(q(t))) ,
E {L(q(t+ 1))� L(q(t))|q(t)}, respectively.

Definition 3 (Strong Stabilitity). A discrete time process Q(t)

is strongly strable if: lim sup
t!1

1
t

t�1P
⌧=0

E {|Q(⌧)|}  1.

We define a virtual queue Z(t) represent the constraint in
(7b), where Z(0) = 0. We update the value of the virtual queue
as Z(t+1) = max [Z(t)� d2(t), 0]+

q
T . Process Z(t) can be

seen as a queue with “service rate” d̄2 and “arrival rate” q
T .

We will show that the average constraint in (7b) is transformed
into a queue stability problem.
Definition 1. A discrete time process Q(t) is rate stable if
lim
t!1

Q(t)
t = 0 with probability 1.

Lemma 1. If Z(t) is rate stable, then the constraint in (7b) is

satisfied.

Proof. Please see the proof of Lemma 1 in [1].

A. Lyapunov Drift

We define the following quadratic Lyapunov function as

L(Z(t)) , 1

2
Z2(t). (11)
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We define the frame-based Lyapunov drift as

�(Z(tm)) , E [L(Z(tm + T ))� L(Z(tm))|Z(tm)] , (12)

where tm = mT is the starting slot of the mth frame.

Lemma 2. Under any policy u(⌧) for all slots during a

renewal frame ⌧ 2 {tm, . . . , tm + T � 1}, we have

�(Z(tm))  B + E [G(tm)|Z(tm)] , (13)

where G(tm) is defined as

G(tm) , Z(tm)
tm+T�1X

⌧=tm

(q � d2(⌧)), (14)

and B is a finite constant defined as B , Tq2+T (T�1)
2 .

Proof. Please see Appendix A in [1].

B. Frame-Based Drift-Plus Penalty Algorithm

In order to provide a solution to the optimization problem
in (7), we implement a policy over the course of the frame to
minimize the following expression

min
u(t)

E
"
G(tm) + V

tm+T�1X

⌧=tm

A(⌧)|Z(tm)

#
, (15)

where the expectation is with respect to the policy and the
randomness of the channel. The problem in (15) is a stochastic

shortest path problem which usually is solved approximately
[24]. In the next subsection, we analyze the performance of the
algorithm under the assumption that we have a policy that can
approximate (15).

C. Approximation Theorem

Assumption 3: For constants, C � 0, � � 0, define a (C, �)
- approximation of (15) to be a policy for choosing u(t) over
a frame ⌧ 2 {tm, . . . , tm + T � 1} such that

E
"
G(tm) + V

tm+T�1X

⌧=tm

A(⌧)|Z(tm)

#


E
"
Gopt(tm) + V

tm+T�1X

⌧=tm

Aopt(⌧)|Z(tm)

#
+ C

+ �Z(tm) + V �, (16)

where Aopt and Gopt are the optimal values.

Theorem 1. Suppose that Assumptions 1, 2, hold for a given

✏ > 0, and suppose we use a (C, �)-approximation every frame

so that Assumption 3 holds. If ✏ > �
T , then constraint (7b) is

satisfied and

lim
R!1

sup
1

R

RX

r=0

E [Z(tm)]  B + C + V (TĀopt + �)

✏T � �
(17)

and

lim
t!1

sup
1

t

t�1X

⌧=0

E [A(⌧)]

 B

V T
+ �(Amax � 1) + (1� �)Aopt +

C

V T
+

�

T
, (18)

where � = �
✏T .

Proof. Please see Appendix C in [1].

V. SOLUTION OF THE MDP
The problem in (15) is an MDP problem. Let A =

{1, 2, . . . , Amax} denote the set of possible values of AoI of
user 1. Furthermore, let Q = {0, 1, 2, . . . , L} be the set of
possible values of the queue of user 2. Then, A(t) 2 A, and
Q(t) 2 Q. A transmission policy u(t) specifies the decision
rules every time slot t. Note that the described MDP problem
is a finite-horizon problem. We solve the optimization problem
at every frame. At the beginning of each frame, we know the
channel conditions of the previous slot for each users, the state
of the queue (it is always L packets at the beginning of the
frame), and the value of the AoI of user 1.

The next state depends on both the scheduler’s decision and
the channel states. Note that we schedule user 2 only if it has
remaining packets in its queue, and recall that at the end of
frame m, we drop all the remaining packets, if there is any.

A. Transition Probabilities

The system state in time slot t is described by s(t) =
(A(t), Q(t),h(t)). The transition probabilities are described in
Table I.

B. Backward dynamic programming algorithm

Initially, we drop the frame indices and take t 2
{0, 1, . . . , T � 1}. As a first step, we consider that the trans-
mission error probabilities are fixed, i.e., the channels are
i.i.d over the slots. In our system model, we take an action
in time slot t, and we observe the cost in time slot t + 1.
If we transmit a packet, it will successfully be transmitted
with some probability. We know whether the transmission is
successful or not at the end of the slot due to ACK/NACK.
Below we define the costs for the different channel models. The
instantaneous cost at time slot t is defined in Table II, where
Ĉt+1(s(t),u(t),Wt+1|s(t),u(t),h(t) is the cost received in
time slot t. The Bellman’s equation is described below

Vt(s(t)) = min
u(t)

E
n
Ĉt+1(s(t + 1),Wt+1|s(t),u(t))

o
=

min
u(t)

0

@Ct(s(t),u(t)) + �
X

s02S

Pr(s(t + 1) = s0|s(t),u(t))Vt+1(s
0)

1

A , (21)

where 0 < � < 1.
We can solve the recursions in (21) by applying

backward dynamic programming. We denote by S the set with
all possible states. The idea of the algorithm is quite simple.
The algorithm runs over the duration of each frame starting at
the last slot, i.e., the T th of each frame. We initialize the value

4



Pst!st+1 =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

p11,1, if u(t) = [1 0]T , h1(t) = 1, and s(t+ 1) = (1, Q(t), (1, x)),

1� p11,1, if u(t) = [1 0]T , h1(t) = 1, and s(t+ 1) = (min {A(t) + 1, Amax} , Q(t), (0, x)),

p01,1, if u(t) = [1 0]T , h1(t) = 0, and s(t+ 1) = (1, Q(t), (1, x)),

1� p01,1, if u(t) = [1 0]T , h1(t) = 0, and s(t+ 1) = (min {A(t) + 1, Amax} , Q(t), (0, x)),

p11,2, if u(t) = [0 1]T , h2(t) = 1, and s(t+ 1) = (min {A(t) + 1, Amax} , Q(t)� 1, (x, 1)),

1� p11,2, if u(t) = [0 1]T , h2(t) = 1, and s(t+ 1) = (min {A(t) + 1, Amax} , Q(t), (x, 0)),

p01,2, if u(t) = [0 1]T , h2(t) = 0, and s(t+ 1) = (min {A(t) + 1, Amax} , Q(t)� 1, (x, 1)),

1� p01,2, if u(t) = [0 1]T , h2(t) = 0, and s(t+ 1) = (min {A(t) + 1, Amax} , Q(t), (x, 0)),

(19)

TABLE I: Transition probabilities. x is used to show that the value of the corresponding element does not affect the state
transition.

Ct(s(t),u(t)) = E
n
Ĉt+1(s(t+ 1),Wt+1|s(t),u(t))

o
=

8
>>><

>>>:

Zq + V (p11,1 + (1� p11,1)min {A(t) + 1, Amax}), if u1(t) = 1 and h1(t) = 1,
Zq + V (p01,1 + (1� p01,1)min {A(t) + 1, Amax}), if u1(t) = 1 and h1(t) = 0,
Z(q � p11,2) + V (min {A(t) + 1, Amax}), if u2(t) = 1 and h2(t) = 1,
Z(q � p01,2) + V (min {A(t) + 1, Amax}), if u2(t) = 1 and h2(t) = 0,

(20)

TABLE II: Instantaneous cost.

of being at each state at the last slot, and then, we calculate the
value of each state at every time slot by going backward. This
algorithm is standard and well known in the literature [27].

VI. SIMULATION RESULTS

In this section, we provide results to study the performance
of our proposed algorithm in terms of the average value of
the AoI and the convergence regarding the timely throughput
requirements. We investigate how different values of the weight
factor V can affect both the value of AoI and the convergence
of the algorithm. For the following results, we consider that
p11,1 = p11,2 = 0.9, and p01,1 = p01,2 = 0.6. The length of
the frame, T , is 20 time slots, and the number of arrived packets
at the beginning of every frame, K, is equal to 15 packets. We
consider that the maximum value of the AoI, Amax = 20. The
timely throughput requirements are q = 12 packets/frame or
q/T = 0.6 packet/slot. We run each experiment for 0.5⇥ 106

time slots, and we use MATLAB environment to perform our
simulations.

In Fig. 2, we provide the average value of AoI for different
values of V as well as the convergence of the timely throughput
constraints. In Fig. 2a, we compare the average value of AoI of
five sample paths with that of one sample-path. We observe that
the values are quite close to each other. Therefore, the algorithm
offers high performance regarding robustness. Furthermore, it is
shown that the AoI reaches its minimum value even for small
values of V . We see that for values of V larger than 5 the
change of the value of the average AoI is negligible. In Fig.
2b, we see that for large values of V , for example, V = 150,
the algorithm needs long time to stabilize the virtual queue
because the value of the virtual queue becomes larger than the
term of AoI after many slots.

In Fig. 3, we provide results that show the scheduling time
percentage per slot within a frame for each user. In Fig. 3a,
we observe that for V = 10, the scheduling time for user 1
is spread within the frame. That means that the percentage of

0 200 400 600 800 1000
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(a) Average AoI for different values of weight factor V .

(b) Convergence of the timely throughput constraints.

Fig. 2

scheduling time does not change significantly from slot to slot.
On the other hand, for larger values of V , we observe that the
percentage of the scheduling time for user 1 changes from slot
to slot, especially after the 10th slot and for V = 100 because
the AoI is multiplied by a large weight and if the value of
AoI starts increasing as time passes by the corresponding term
becomes quite large. Therefore, the scheduler schedules the
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(a) V = 10.
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(b) V = 100.

Fig. 3: Scheduling time percentage per slot within a frame.

user 1 in order to minimize the objective function.

VII. CONCLUSION

In this work, we considered a wireless network consisting of
time-critical users with different requirements under uncertain
environments. We studied how an AoI-oriented user and a
deadline-constrained user can share the same resources to sat-
isfy their requirements. To this end, we formulated a stochastic
optimization problem for minimizing the average AoI while
satisfying the timely-throughput constraints which is a CMDP
problem. In order to solve the problem, we utilized tools
from Lyapunov optimization and MDP. With this approach,
we reduced the CMDP to an unconstrained weighted stochastic
shortest path problem. We implemented backward dynamic
programming to solve the unconstrained problem. Simulation
results showed that the timely-throughput constraint is satisfied
while minimizing the average AoI. Furthermore, we provided
the trade-off between the minimum value of AoI and the
convergence of the average constraint.

REFERENCES

[1] E. Fountoulakis, T. Charalambous, A. Ephremides, and N. Pappas, “A
dynamic scheduling policy for a network with heterogeneous time-
sensitive traffic,” arXiv preprint arXiv:2109.04784, 2021.

[2] M. A. Abd-Elmagid, N. Pappas, and H. S. Dhillon, “On the role of age
of information in the internet of things,” IEEE Comm. Mag., vol. 57,
no. 12, pp. 72–77, 2019.

[3] T. Shreedhar, S. K. Kaul, and R. D. Yates, “An age control transport
protocol for delivering fresh updates in the Internet-of-Things,” in Proc.

IEEE WoWMoM, 2019.

[4] I. . Hou, V. Borkar, and P. R. Kumar, “A theory of QoS for wireless,” in

Proc. IEEE INFOCOM 2009, 2009.
[5] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should

one update?,” in Proc. IEEE INFOCOM, 2012.
[6] A. Kosta, N. Pappas, and V. Angelakis, “Age of information: A new

concept, metric, and tool,” Foundations and Trends in Networking,
vol. 12, no. 3, pp. 162–259, 2017.

[7] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new
metric for information freshness,” Synthesis Lectures on Communication

Networks, vol. 12, no. 2, pp. 1–224, 2019.
[8] S. Shakkottai and R. Srikant, “Scheduling real-time traffic with deadlines

over a wireless channel,” Wireless Networks, vol. 8, no. 1, pp. 13–26,
2002.

[9] Y. Cui, V. K. Lau, R. Wang, H. Huang, and S. Zhang, “A survey
on delay-aware resource control for wireless systems—Large deviation
theory, stochastic Lyapunov drift, and distributed stochastic learning,”
IEEE Trans. Inf. Theory, vol. 58, no. 3, pp. 1677–1701, 2012.

[10] L. You, Q. Liao, N. Pappas, and D. Yuan, “Resource optimization with
flexible numerology and frame structure for heterogeneous services,”
IEEE Comm. Letters, vol. 22, no. 12, pp. 2579–2582, 2018.

[11] E. Fountoulakis, N. Pappas, Q. Liao, V. Suryaprakash, and D. Yuan,
“An examination of the benefits of scalable TTI for heterogeneous traffic
management in 5G networks,” in Proc. WiOpt, 2017.

[12] S. ElAzzouni, E. Ekici, and N. Shroff, “Is deadline oblivious scheduling
efficient for controlling real-time traffic in cellular downlink systems?,”
in Proc. IEEE INFOCOM, 2020.

[13] C. Tsanikidis and J. Ghaderi, “On the power of randomization for
scheduling real-time traffic in wireless networks,” IEEE/ACM Trans. Net.,
2021.

[14] A. Destounis, G. S. Paschos, J. Arnau, and M. Kountouris, “Scheduling
URLLC users with reliable latency guarantees,” Proc. WiOpt, 2018.

[15] S. Lashgari and A. S. Avestimehr, “Timely throughput of heterogeneous
wireless networks: Fundamental limits and algorithms,” IEEE Trans. Inf.

Theory, vol. 59, no. 12, pp. 8414–8433, 2013.
[16] Z. Chen, N. Pappas, E. Björnson, and E. G. Larsson, “Optimizing

information freshness in a multiple access channel with heterogeneous
devices,” IEEE OJCS, vol. 2, pp. 456–470, 2021.

[17] N. Pappas and M. Kountouris, “Delay violation probability and age of
information interplay in the two-user multiple access channel,” Proc.

IEEE SPAWC, 2019.
[18] E. Fountoulakis, T. Charalambous, N. Nomikos, A. Ephremides, and

N. Pappas, “Information freshness and packet drop rate interplay in a
two-user multi-access channel,” JCN, 2022.

[19] J. Sun, L. Wang, Z. Jiang, S. Zhou, and Z. Niu, “Age-optimal scheduling
for heterogeneous traffic with timely throughput constraints,” IEEE JSAC,
vol. 39, no. 5, pp. 1485–1498, 2021.

[20] G. Stamatakis, N. Pappas, and A. Traganitis, “Optimal policies for status
update generation in an iot device with heterogeneous traffic,” IEEE

Internet of Things Journal, vol. 7, no. 6, pp. 5315–5328, 2020.
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