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ABSTRACT
Machine-learning phishing webpage detectors (ML-PWD) have
been shown to suffer from adversarial manipulations of the HTML
code of the input webpage. Nevertheless, the attacks recently pro-
posed have demonstrated limited effectiveness due to their lack of
optimizing the usage of the adopted manipulations, and they focus
solely on specific elements of the HTML code. In this work, we
overcome these limitations by first designing a novel set of fine-
grainedmanipulations which allow tomodify the HTML code of the
input phishing webpage without compromising its maliciousness
and visual appearance, i.e., the manipulations are functionality-
and rendering-preserving by design. We then select which ma-
nipulations should be applied to bypass the target detector by a
query-efficient black-box optimization algorithm. Our experiments
show that our attacks are able to raze to the ground the perfor-
mance of current state-of-the-art ML-PWD using just 30 queries,
thus overcoming the weaker attacks developed in previous work,
and enabling a much fairer robustness evaluation of ML-PWD.

CCS CONCEPTS
• Security and privacy → Phishing; • Computing methodolo-
gies → Machine learning.
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1 INTRODUCTION
Over the past years, we witnessed a significant increase in the num-
ber of phishing attacks [28, 41, 45], thereby emphasizing that this
remains a significant form of cybercrime. Among all the different
types of phishing, this work focuses on the detection of phishing
webpages, which are typically created by an attacker to steal sen-
sitive information such as login credentials [5]. To counter this
open problem, in addition to the use of blocklists [35, 40] that have
been demonstrated easy to bypass by adaptive attackers [47], novel
approaches based on machine-learning [16, 24, 26, 34, 42, 46, 47]
have been proposed in recent years to enhance the detection capa-
bilities of phishing detection systems. However, phishing webpage
detectors based on machine-learning (i.e., ML-PWD, using the same
acronym of Apruzzese et al. [5]) have been shown to be vulnerable
to adversarial attacks [2, 4, 5, 8, 9, 16, 23, 30], both in the problem
space, which is the input space of HTML pages, and the feature
space, which is the space where webpages are represented as fea-
ture vectors [5, 7]. In problem-space attacks, the attacker directly
manipulates the URL [8, 9], the HTML code [29, 30] or the visual
representation [2] of the phishing webpage with physically realiz-
able manipulations [7], while feature-space attacks only manipulate
the abstract feature representation of input samples. To this extent,
SpacePhish [5] represents one of the most recent and comprehensive
studies about adversarial attacks against ML-PWD both in the prob-
lem and feature spaces. Indeed, its authors provide a well-validated
benchmark of state-of-the-art ML-PWD.

However, their work is characterized by two major limitations.
First, investigating how the adversarial robustness changes if the
attacker is able to optimize the adversarial attacks by querying the
target ML-PWD is an important open point of their work. Second,
they use a limited set of cheap adversarial manipulations i.e., ma-
nipulations that do not require any knowledge about the structure
of phishing webpages such as the insertion of internal links and
URL-shortening [5, 6], which result in weak or, in some cases, even
useless attacks. Indeed, the reported results show that, for some
evaluated ML-PWD, such cheap attacks (indicated as𝑊𝐴𝑟 in their
paper) cause the manipulated phishing webpage to appear even
more malicious to the ML-PWD.

To address the aforementioned limitations, we propose a novel
methodology for generating optimized and query-efficient HTML
adversarial attacks (see Figure 1). Specifically, we first perform a
thorough security analysis of the HTML features used in SpacePhish
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Figure 1: Overview of our work: we propose a novel set
of adversarial manipulations that are functionality- and
rendering-preserving by design, and a query-efficient black-
box optimizer to generate HTML adversarial attacks that are
able to raze to the ground state-of-the-art machine-learning
phishing webpage detectors (ML-PWD).

(Sect. 2), which are widely adopted in the literature [24, 26, 32, 42],
to understand how they can be evaded. Then, in addition to the
HTML manipulations proposed in SpacePhish, we design a novel
set of 14 manipulations that maintain the original functionality
[17] and rendering [21] while manipulating the HTML code of
phishing webpages (Sect. 4.1). On the basis of these manipulations,
we formulate a query-efficient black-box optimization algorithm
(Sect. 4.2) that generates optimized adversarial phishing webpages
in the problem space.

Finally, we validate our approach through an extensive experi-
mental analysis (Sect. 5), showing that our novel adversarial attacks
are able to completely evade the ML-PWD evaluated in SpacePhish
using just 30 queries. To foster reproducible results, we share the
source code of our work1.

To summarize, we provide the following three contributions:

• We conduct a comprehensive security analysis of the HTML
features used in SpacePhish and, on top of it, we devise a
novel set of adversarial manipulations that are functionality-
and rendering-preserving by design, with the goal to evade
all the analyzed features.

• We propose a black-box optimizer inspired by mutation-
based fuzzing [50], which allows to craft optimized HTML
adversarial attacks using the proposed manipulations;

• We empirically show that our methodology allows to raze to
the ground the detection capabilities of current state-of-the-
art ML-PWD using very few queries.

We conclude the paper by discussing the open points of our work,
along with promising future research directions (Sect. 6).

2 BACKGROUND
In this section, we first give an overview of the basic structure
of webpages and then we describe the HTML features adopted in
SpacePhish [5].

1https://github.com/advmlphish/raze_to_the_ground_aisec23

2.1 Webpage Structure
Webpages are generally described using the HTML language [1].
They have a basic structure that consists of a tree hierarchy rep-
resented by the HTML Document Object Model (DOM) tree [25],
which is made of multiple HTML elements corresponding to the
DOM nodes. Each HTML element is represented through (i) a sin-
gle tag or a pair of (start and end) tags and (ii) some content that
includes text or other nested HTML elements. Moreover, HTML
elements can have attributes consisting of name-value pairs to pro-
vide additional information about the element. Although the HTML
specification includes many types of elements, a typical webpage
(see Listing 1) includes the head (lines 3-8) and the body (lines 9-17)
represented by the <head> and <body> element, respectively. The
head is used to set the webpage title through the <title> element
(line 4) and optionally to define the visual appearance of some em-
bedded HTML elements through the <style> element (lines 5-7).
The body, instead, includes the main content of the webpage, i.e., all
the HTML elements that are generally displayed by a web browser.
For instance, the example webpage includes a login form (lines 11-
16), defined via a <form> element, which consists of two <input>
elements used to collect the username (line 13) and password (line
15) from the user.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title >Website title</title >
5 <style >
6 h1 {color: red;}
7 </style >
8 </head>
9 <body>
10 <h1>Welcome to the website </h1>
11 <form action="login.php", method="get">
12 <label for="pwd">Enter your username: </label >
13 <input type="text" name="username" required >
14 <label for="pwd">Enter your password: </label >
15 <input type="password" name="pass" required >
16 </form>
17 </body>
18 </html>

Listing 1: Example of a webpage.

2.2 HTML Feature Analysis
In the followingwe analyze in details the features used in SpacePhish
to better understand how they work and thus, how to evade them.
This is an missing point in SpacePhish. Indeed, its authors only
provide a brief description of some of them (5 out 22) in the related
supplementary document [6], and do not carefully analyze how
they can bypassed using problem-space manipulations. We also
remark that such features are also widely used in other papers [24,
26, 32, 42], and some of them also in competitions about machine
learning security such as the Machine Learning Security Evasion
Competition (MLSEC)2 [6, 21].
HTML_freqDom. This feature analyzes the number of internal
(n_int) and external (n_ext) HTML elements in the webpage. An
2https://www.robustintelligence.com/blog-posts/ml-security-evasion-competition-
2022
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element is internal if includes a link that shares the same domain
as the webpage URL; otherwise, it is external. Then, if n_ext is 0
or n_int ≥ n_ext, this feature is set to -1 (the webpage is likely
benign); else, it is set to +1 (the webpage is likely phishing). This
feature analyzes the following types of HTML elements: anchors
(<a>), images (<img>), links (<link>) and videos (<video>).
HTML_objectRatio. This feature represents the ratio between the
number of external HTML elements, n_ext, and the total one, n_tot
= n_ext + n_int, where n_int represents the number of internal
HTML elements. The ratio is compared against two thresholds:
the suspicious (0.15) and phishing (0.30) thresholds. If the ratio is
lower than the suspicious threshold, the value of the feature is -1
(the webpage is likely benign). Otherwise, if the ratio is in between
the two thresholds, the webpage is assumed suspicious and the
feature is set to 0. Finally, if the ratio is greater than the phishing
threshold, the feature is set to +1 (the webpage is likely phishing).
The HTML elements considered by this feature are the same as
HTML_freqDom.
HTML_metaScripts. This feature is similar to HTML_objectRatio,
but it applies to script (<script>), meta (<meta>) and link (<link>)
elements. This feature adopts two different values for the thresholds.
Specifically, the suspicious and phishing thresholds are set to 0.52
and 0.61, respectively. Moreover, if the ratio is greater than 0.61,
the feature is set to +1 (the webpage is likely phishing); if the ratio
is less than 0.52, the feature is -1 (the webpage is likely benign);
otherwise, it is set to 0 (the webpage is assumed suspicious).
HTML_commPage. This feature analyzes the number of internal
(n_int) and external (n_ext) elements, and is initialized using the
following formula:

HTML_commPage =
𝑚𝑎𝑥 (n_ext, n_int)

n_ext + n_int

This feature takes into account the same HTML elements analyzed
by both HTML_objectRatio and HTML_metaScripts.
HTML_commPageFoot. This feature works as HTML_commPage
except that it focuses on the HTML elements included in the footer
(<footer>) rather than the body of the webpage.
HTML_SFH. This feature computes the ratio of suspicious forms
as the number of suspicious forms divided by the total number
of forms. The ratio is compared against two thresholds: susp_thr,
which is set to 0.5 and is used to decide if a webpage is suspicious,
and phish_thr, which is set to 0.75 and allows to determine whether
a webpage is phishing. According to its implementation, a form
is considered suspicious if one of the following conditions is sat-
isfied: it includes an external link (specified through the action
attribute), the action attribute is set to "about:blank" (i.e., it points
to a new blank webpage) or when it is set to an empty string (i.e.,
<form action="">). In particular, if the ratio is lower than the
suspicious threshold, the feature is set to -1 (the webpage is likely
benign). Else, if the ratio is greater than the phishing threshold,
then the feature is initialized to +1 (the webpage is likely phishing).
Otherwise, i.e., the ratio is between the two thresholds, this feature
is set to 0 (the webpage is considered suspicious).
HTML_popUP. This feature checks whether the webpage displays
a pop-up window that prompts the user for some input, such as
credentials in case of phishing webpages. A pop-up window can be
commonly introduced by using the prompt() or window.open()

Javascript (JS) functions. Specifically, this feature looks for the
names of such functions and if finds the former, it is set to 1 (the
webpage is likely phishing); while it is set to 0 (the webpage is
likely suspicious) if finds the latter. Otherwise, its value is -1 (the
webpage is likely benign).
HTML_rightClick. This feature inspects the source code of the
webpage to determine if a context menu has been disabled, which
is the equivalent of disabling the mouse right-click. In particu-
lar, it checks the following patterns to disable a context menu: if
the preventDefault() method of the HTML DOM is present in
the webpage or if there is at least one HTML element with the
oncontextmenu attribute set to "return false". Hence, this fea-
ture is set to +1 (the webpage is likely phishing) if it finds at least
one disabled context menu, and to -1 (the webpage is likely benign)
otherwise.
HTML_domCopyright. This feature analyzes if the webpage con-
tains a copyright notice with the copyright symbol (©). If not, the
webpage is considered suspicious and its value is set to 0. Other-
wise, if the copyright notice contains the website domain name,
the feature is set to -1 (the webpage is likely benign). Else (i.e., no
webpage domain in the copyright notice) it is set to +1 (the webpage
is likely phishing).
HTML_nullLnkWeb. This feature computes the frequency of sus-
picious anchors contained in a website as the number of suspicious
anchors divided by the total number of anchors. An anchor is con-
sidered suspicious if it contains one of the following useless links:
"#", "#content", "#skip" and "JavaScript ::void(0)"; or if it is
an internal link.
HTML_nullLnkFooter. This feature works in the same way as
HTML_nullLnkWeb, but it computes the frequency of suspicious
anchors included in the footer rather than the body.
HTML_brokenLnk. This feature computes the ratio of external
elements with broken links (i.e., links that point to an unreach-
able website) against the total number of external ones included
in the webpage. This feature analyzes the same HTML elements
considered by both HTML_objectRatio and HTML_metaScripts.
HTML_loginForm. This feature is set to +1 (the webpage is likely
phishing) if the webpage contains one or more forms with a useless
internal link or an external one; otherwise, it is set to -1 (the web-
page is likely benign). An internal link is useless if it is equal to one
of the following: "" (empty string), "#", "#nothing", "#null", "#void",
"#doesnotexist", "#whatever", "javascript", "javascript::;",
"javascript::void(0)", "javascript::void(0);".
HTML_hiddenDiv. This feature checks if there are content divi-
sion elements, a.k.a. div (<div>), which are hidden by setting the
style attribute to "visibility:hidden" or "display:none". If so,
this feature is set to +1 (the webpage is likely phishing), else to -1
(the webpage is likely benign).
HTML_hiddenButton. This feature is set to +1 (the webpage is
likely phishing) if there is at least one button (<button>) element
disabled by setting the style attribute to "disabled". Otherwise,
the webpage is considered benign and this feature is set to -1.
HTML_hiddenInput. This feature is set to +1 (the webpage is
likely phishing) if there is at least one input element that is disabled
(i.e., <input disabled>) or hidden (i.e., <input type="hidden">).
Otherwise, this feature is set to -1 (the webpage is likely benign).
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HTML_URLBrand. This feature analyzes the title (<title>) of
the webpage to check whether it contains the website’s domain
name. If so, the webpage is considered benign and this feature is
set to -1. Otherwise, it is initialized to +1 (the webpage is likely
phishing). Moreover, if the title is not found, this feature is set to 0
(the webpage is suspicious).
HTML_iFrame. This feature targets inline frame elements, a.k.a.
iframe (<iframe>), usually used to embed a webpage within an-
other one, by checking patterns commonly used for hiding an
iframe such as <iframe style="display: none"> and <iframe
style="visibility: hidden">. If any of these patterns are found,
the feature is set to +1 (the webpage is likely phishing), else to -1
(the webpage is likely benign).
HTML_favicon. This feature checks if the favicon (i.e., an icon
associated with a particular website) is loaded from an external
source. If so, it is set to +1 (the webpage is likely phishing), while it
is set to -1 (the webpage is likely benign) if the favicon is internal.
Moreover, if no favicon is included in the webpage, it is considered
suspicious and this feature is set to 0. To check the presence of
the favicon, this feature looks for link elements including either
rel="shortcut icon" or rel="icon" attributes.
HTML_statBar.This feature inspects thewebpage to checkwhether
it changes the text of the status bar at the bottom of the browser win-
dow by looking for the presence of window.status in the HTML
code. If so, this feature is set to +1 (the webpage is likely phishing);
else the value of the feature is -1 (the webpage is likely benign).
HTML_css. This feature checks whether the webpage uses an
external CSS style sheet, i.e., if the style sheet is imported from
an external web location using a link element as in the following
example: <link rel="stylesheet" href="mystyle.css">. If so,
this feature is set to +1 (the webpage is likely phishing), else to -1
(the webpage is likely benign).
HTML_anchors. This feature computes the ratio of suspicious an-
chors included in the webpage and compares it against two thresh-
olds: suspicious (0.32) and phishing (0.505). Then, if there are no
anchors in the webpage or the ratio is lower than the suspicious
threshold, then this feature is set to -1 (the webpage is likely be-
nign). Else, if the ratio is higher than the phishing threshold, it is
set to +1 (the webpage is likely phishing). Otherwise, i.e., if the
ratio is between the two thresholds, its value is 0 (the webpage is
considered suspicious). An anchor is assumed suspicious if contains
an external link or if it includes an internal link belonging to the
same list of patterns checked by the HTML_nullLnkWeb feature,
i.e., "#", "#skip", "#content" and "JavaScript ::void(0)".

3 THREAT MODEL
In this section, we first formalize the threat model used in our work,
and then we compare it to the one proposed in SpacePhish [5].

3.1 Formalization
Wedescribe the threat model according to the following four criteria
widely used in the adversarial machine learning literature [12].
Goal. The goal of the adversary consists in causing an integrity
violation by evading a target machine-learning phishing detector at
test time through adversarial phishing webpages generated in the
problem space. In other words, the adversary aims tomanipulate the

HTML code of these webpages using functionality- and rendering-
preserving manipulations so that they are classified as benign.
Knowledge. In our threat model, we assume a black-box scenario
[12, 20]. Specifically, the machine-learning algorithm, its features,
the parameters as well as the data, and the objective function used
during the training phase are unknown to the attacker. Regarding
the feature set, although it is generally assumed that the attacker
does not know the exact features used by the machine learning
algorithm [12], it is possible to obtain information about the most
widely used features in the state-of-the-art by analyzing the descrip-
tion of many solutions that are publicly available in the literature
(e.g., [5, 42]). Based on this idea, we have carefully analyzed the
most common HTML features adopted in the literature and defined
ad-hoc adversarial manipulations to evade all of them. In this way,
the attacker can use all the defined manipulations with the aim to
evade as many features as possible.
Capability. In our threat model, we assume that the attacker can
use the ML-PWD as an oracle by querying it and collecting its
output confidence score, representing the probability of classifying
the input webpages as phishing.
Strategy. The adversarial phishing webpages can be generated by
solving the following optimization problem:

minimize
𝒕 ∈ T

𝑓 (ℎ(𝒛, 𝒕)) , (1)

which amounts to find the sequence ofmanipulations 𝒕 = [𝑡0, . . . , 𝑡𝐾 ]
that, when applied to the given phishing webpage 𝒛, generate an
adversarial phishing webpage, 𝑧★ = ℎ(𝒛, 𝒕), that minimizes the con-
fidence score 𝑓 (𝑧★) returned by the target machine-learning model
denoted with 𝑓 . For simplicity, in our formulation we assume that
the machine-learning model includes a feature extraction step be-
fore classification, i.e., 𝑓 takes the rawwebpage directly as input, but
internally performs a preliminary step to map the input webpage to
a feature vector. Moreover,ℎ : Z×T → Z is a function that applies
a sequence of functionality- and rendering-preserving manipula-
tions 𝒕 to the HTML code of the phishing webpage 𝒛, and outputs a
valid webpage with the same behavior and rendering as the input
one, but with a different HTML code. Under the given black-box
setting, and considering that the feature extraction step performed
by 𝑓 may not be differentiable, the above optimization problem
cannot be solved using classical gradient-based approaches. For
this reason, in this work we adopt a black-box (a.k.a. gradient-free)
optimization algorithm that is described in detail in subsection 4.2.

3.2 Comparison with SpacePhish
Our threat model differs from that proposed by Apruzzese et al. [5],
as we assume the possibility of querying the ML-PWD. Recall
indeed that this is a valid assumption adopted in many papers
[10, 14, 29, 30, 37], especially when considering Machine-Learning-
as-a-Service (MLaaS) scenarios, in which the attacker can interact
with the target machine-learning model by sending queries to it
and observing its predictions [36, 37]. For instance, those available
through VirusTotal can be easily queried through dedicated APIs
provided by the VirusTotal platform [15, 39]. In this work, we want
to extend the threat model of SpacePhish in order to thoroughly
evaluate the adversarial robustness of state-of-the-art ML-PWD
when the attacker can optimize the adversarial attacks. Finally, it is
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worth noting that, even if the output of the ML-PWD is not avail-
able, the attacker can still optimize the adversarial attacks by using
a so-called surrogate model [17, 20, 36, 52]. However, this approach
is out of the scope of our work.

4 OPTIMIZED HTML ADVERSARIAL
ATTACKS

In this section, we describe our methodology for generating opti-
mized and query-efficient HTML adversarial attacks. Specifically,
we first present our novel set of 14 functionality- and rendering-
preserving adversarial manipulations designed to evade the HTML
features described in subsection 2.2. Then, we describe our black-
box optimizer that uses the proposed manipulations in order to
optimize the generation of adversarial phishing webpages.

4.1 Adversarial Manipulations
Each manipulation consists in a function that takes in input a phish-
ing webpage, modifies its HTML code, and returns the new valid
webpage with the same functionality and rendering as the input.
In the following we will describe the details of our manipulations,
including the HTML features they aim to evade, as well as how
they preserve the original rendering and functionality.
InjectIntElem. This manipulation aims to inject a given number
of internal HTML elements into the body of the webpage. It has
been proposed in SpacePhish to implement the WA𝑟 and �WA𝑟 at-
tacks with the aim to evade the HTML_objectRatio feature [6]. The
former, WA𝑟 , assumes no knowledge about the target phishing
detectors and injects 50 hidden anchors with internal links. On
the other hand, the latter, �WA𝑟 , assumes an attacker who knows
how the HTML_objectRatio feature works including its thresholds,
hence this manipulation injects as many links as needed to meet the
suspicious threshold (0.15) so that the sample is considered benign
by this feature. In our case, we also assume that the attacker does
not know the internal thresholds used by the HTML_objectRatio
feature. Therefore, in order to evade that feature, we design a black-
box algorithm (see subsection 4.2) that iteratively applies this ma-
nipulation in order to inject a fixed number of internal elements,
until the confidence score returned by the target phishing detector
decreases, thus meaning that the feature has been evaded. In our
implementation, we inject the same type of HTML elements as
in SpacePhish, i.e., anchors, but the number of injected internal
elements is set to 10 in order to have a finer level of granular-
ity. Using this manipulation, we are able to evade other HTML
features that depend on anchor elements with internal links, i.e.,
HTML_freqDom, HTML_commPage, HTML_nullLnkWeb. Regard-
ing the HTML_nullLnkWeb feature, this manipulation only targets
internal anchors included in the body or the footer. On the other
hand, to bypass this feature when it searches for patterns that rep-
resent useless internal links we have created another manipulation,
UpdateIntAnchors, which is described in the following.

Finally, since this manipulation injects some HTML elements,
we must ensure that they are properly hidden in order to preserve
the original rendering. To this end, there are several approaches
that can be adopted by the attacker (see Listing 2):

(1) Using the hidden attribute (line 10). Inserting this attribute
into an HTML element tells the browser to not render the

Manipulation Evaded feature(s) Type

InjectIntElem★

HTML_freqDom,
HTML_objectRatio,
HTML_commPage,
HTML_nullLnkWeb

(int. links)

MR

InjectIntElemFoot★
HTML_commPageFoot,
HTML_nullLnkFooter

(int. links)
MR

InjectIntLinkElem HTML_metaScripts MR

InjectExtElem

HTML_freqDom,
HTML_objectRatio,
HTML_metaScripts,
HTML_commPage

MR

InjectExtElemFoot HTML_commPageFoot MR

UpdateForm
HTML_SFH (int. links),

HTML_loginForm
(int. links)

SR

ObfuscateExtLinks

HTML_SHF (ext. links),
HTML_brokenLnk,

HTML_anchors (ext. links),
HTML_css,

HTML_favicon (ext. links),
HTML_loginForm

(ext. links)

SR

ObfuscateJS
HTML_statBar,

HTML_rightClick,
HTML_popUP

SR

InjectFakeCopyright HTML_domCopyright SR

UpdateIntAnchors

HTML_anchors (int. links),
HTML_nullLnkWeb

(useless links),
HTML_nullLnkFooter

(useless links)

SR

UpdateHiddenDivs HTML_hiddenDiv SR

UpdateHiddenButtons HTML_hiddenButton SR

UpdateHiddenInputs HTML_hiddenInput SR

UpdateTitle HTML_URLBrand SR

UpdateIFrames HTML_iFrame SR

InjectFakeFavicon
HTML_favicon

(no favicon included) SR

Table 1: Adversarial manipulations used in this work along
with the corresponding evaded features and their type, de-
fined according to the way they can be applied by the black-
box optimizer (see subsection 4.2), i.e., single-round (SR) or
multi-round (MR). The manipulations marked with ★ have
been originally proposed by Apruzzese et al. [5].
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content of the element. This is the default approach adopted
by this manipulation.

(2) Modifying the style of the element. It is possible to hide an
HTML element setting the style attribute to "display:none"
(line 11). This is the approach used in SpacePhish [5, 6].

(3) Similarly to (2), but using the <style> HTML element (lines
5-7) instead of the style attribute.

(4) Using <noscript> (lines 13-15) and add inside it the HTML
elements to be hidden. It is worth noting that this only works
if JS is enabled on the victim’s web browser.

InjectIntElemFoot. This manipulation behaves similarly to Inject-
IntElem but injects the internal elements into the footer of the web-
page to evade theHTML_commPageFoot andHTML_nullLnkFooter
features.
InjectIntLinkElem. This manipulation works exactly as InjectIn-
tElem but injects 10 hidden HTML elements of type <link> instead
of <a> in order to evade the HTML_metaScript feature since it
depends on <link> elements.
InjectExtElem. This manipulation behaves similarly to InjectIn-
tElem but injects external HTML elements, i.e., elements with exter-
nal links, instead of internal ones. Specifically, it injects 10 <link>
elements that are also hidden as for InjectIntElem (i.e., by adding
the hidden attribute) to preserve the original rendering. The in-
jected external links are randomly extracted from a list of some
well-known websites selected from the Alexa Top Million ranking3
in order to appear benign. This manipulation evades multiple fea-
tures that depend on external elements, which are HTML_freqDom,
HTML_objectRatio, HTML_commPage, and HTML_metaScript.
InjectExtElemFoot. This manipulation works similarly as InjectEx-
tElem, but the external elements are inserted into the footer of the
webpage with the goal to evade the HTML_commPageFoot feature.
UpdateForm. This manipulation has been designed to evade the
HTML_SFH and HTML_loginForm features when a form in the
webpage includes an internal link matching one of the patterns
searched by the two features, which represent useless internal links
generally used by attackers such as "#". Specifically, this manip-
ulation replaces the original internal link, specified with action
attribute, with another random one that does not trigger the target
features, such as "#!" or "#none". The original rendering is not af-
fected because this manipulation updates a property of forms that
does not affect the visual appearance of the webpage.
ObfuscateExtLinks. This manipulation aims to obfuscate the ex-
ternal links in a webpage in order to evade multiple HTML features,
i.e., HTML_SHF, HTML_loginForm, HTML_css, HTML_anchors,
HTML_brokenLnk and HTML_favicon. Specifically, this manipula-
tion executes the following steps:

(1) Substitute the external link with a random internal one that
is not detected as suspicious by the HTML features ("#!" as
for HTML_SHF);

(2) Create a new script element (<script>) that updates the
value of the "action" attribute to the original external link
when the page is loaded;

(3) Add the new script element into the <head> of the webpage.
To better explain the obfuscation approach, let’s consider a prac-
tical example that shows how to evade the HTML_SHF feature.
3https://www.alexa.com/

For instance, let’s examine the simple webpage shown in Listing 3.
It includes a form (lines 7-10) with a malicious external link (line
7) for stealing the victim’s credentials, which is detected by the
HTML_SHF feature. Listing 4 shows a new webpage in which the
malicious link has been obfuscated using the script in lines 5-9. In
particular, the original link assigned to action is updated with a
random internal one ("#!"), but its original value is restored (line
7) when the page is loaded. This new adversarial phishing web-
page has the same rendering as the original one but it is no longer
detected by the HTML_SHF. Furthermore, this manipulation can
be applied to obfuscate the external links included in any HTML
elements, thus we use it to bypass multiple features as described in
the following. Regarding the HTML_anchors feature, we use this
manipulation to obfuscate the external links embedded in anchor
elements, thus reducing the suspicious anchor rate computed by
this feature. In this way, the attacker is still able to insert hidden
anchors with malicious external links but without being detected
by the HTML_anchors feature. This manipulation can also evade
the HTML_brokenLnk feature by replacing all broken links (if any)
with internal ones, hence resulting in a benign behavior for this
feature. The same applies to HTML_loginForm, HTML_css and
HTML_favicon, which can be evaded using this manipulation by
obfuscating the external links analyzed by such features. Finally, It
is worth noting that, although this manipulation modifies external
links, it is independent of InjectExtElem and InjectExtElemFoot be-
cause they target different features. At the same time, the external
links injected by these manipulations do not affect the features
targeted by ObfuscateExtLinks.
ObfuscateJS. This manipulation aims to obfuscate the Javascript
(JS) code inside the webpage inserted in <script> elements in order
to evade the HTML_popUP, HTML_rightClick and HTML_statBar
features. To achieve so, several techniques have been proposed
in the literature [11, 49]. In this work, however, we use a differ-
ent approach inspired to [21] for obfuscating the entire HTML
code in a webpage, which is described in the following. For in-
stance, let us consider the webpage in Listing 5, which includes a
script element to open a malicious webpage. Because of the use
of window.open() DOM method, the webpage is considered ma-
licious by the HTML_popUP feature. To bypass such feature, this
manipulation operates as follows:

(1) Extracts the JS code from the original script and encodes it
into Base64 [27].

(2) Replaces the content of the original script with new JS code
that creates a new script to hold the original JS code (line 5),
decodes the original obfuscated JS code (line 6), and insert
the new script into the webpage to be executed (line 8).

It is worth noting that this approach can be also used to obfuscate
the patterns searched by the other target features. Moreover, the
original rendering is preserved.
InjectFakeCopyright. This manipulation is used to evade the
HTML_domCopyright by injecting a new hidden paragraph con-
taining the copyright symbol followed by the "Copyright" string
and the domain name of the website. For instance, assuming that
the domain name of the webpage to manipulate is mydomain, the in-
jected element is: <p hidden>© Copyright mydomain </p>. Since
the injected paragraph is hidden, the original rendering is preserved.
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UpdateIntAnchors. This manipulation is designed to evade the
HTML_statBar, HTML_nullLnkWeb and HTML_nullLnkFooter fea-
tures by replacing every useless internal link with another one that
is not checked by such features, such as "#!". The original rendering
is preserved since this manipulation does not affect it by design.
UpdateHiddenDivs. This manipulation is designed to evade the
HTML_hiddenDiv feature by updating theway div elements (<div>)
are hidden. It operates in different ways according to how a div ele-
ment is hidden, i.e., by setting the style attribute to "display:none"
or "visibility:hidden". The main difference between the two ap-
proaches consists in how they allocate the space for the hidden
element when rendering the webpage. Specifically, the former (i.e.,
"visibility:hidden") still takes up space in the layout, while the
latter (i.e., "display:none") does not take up any space. For in-
stance, let’s consider Listing 7 showing a div element hidden with
"display:none" (line 7). It can be removed and, to achieve the same
behavior and rendering, we can insert the hidden attribute (line
10 of Listing 8) in order to evade the HTML_hiddenDiv feature
since it does not check for the presence of such attribute. However,
we cannot adopt the same approach for obfuscating div elements
hidden using "visibility:hidden" (line 11 of Listing 7), because
this will change the rendering. In this case, we can still evade
the HTML_hiddenDiv feature by removing "visibility:hidden"
from the style attribute and inserting a new <style> element to
achieve the same result (lines 5-7 of Listing 8).
UpdateHiddenButtons. This manipulation is designed to evade
the HTML_hiddenButton feature by obfuscating all the disabled
button elements. Specifically, for each disabled button, it removes
the disabled attribute and inserts a new script element that, by
exploiting JS, adds this attribute back during rendering using the
setAttribute() DOM method. Notably, this approach is similar
to the one adopted by ObfuscateExtLinks to obfuscate external links.
Thus, both the rendering and original behavior are preserved.
UpdateHiddenInputs. This manipulation consists of evading the
HTML_hiddenInput, and it operates in different ways according
to whether the input element is hidden or disabled (since both are
checked by the HTML_hiddenInput feature). Specifically, if the
input element is hidden, this manipulation updates the value of its
type attribute from "hidden" to "text" and then adds the hidden
attribute. Otherwise, if the input element is disabled, then this
manipulation operates in the same way as UpdateHiddenButtons
by removing the attribute from the element and inserting it back
during the rendering of the webpage by using JS. In both cases, the
original behavior and rendering remain the same.
UpdateTitle.Thismanipulation aims to evade theHTML_URLBrand
feature. Specifically, if the website’s domain name is not included
in the title element, this manipulation updates the webpage title
with the website’s domain name and then replaces back the original
title during rendering using a script element (i.e., similarly as how
UpdateHiddenButtons and UpdateHiddenInputs work).
UpdateIFrames. This manipulation adopts the same approach of
UpdateHiddenDivs. Indeed, both the features look for the same
patterns, but UpdateIFrames targets <iframe> elements in order to
evade the HTML_iFrame feature.
InjectFakeFavicon. This manipulation is designed to inject a fake
favicon in webpages that do not contain one, preventing them
from being flagged as suspicious by the HTML_favicon feature.

Specifically, this manipulation injects a favicon element with a use-
less internal link, such as i.e., <link rel="icon" href="#none">,
into the head of the webpage.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title >Home</title >
5 <style >
6 #mypar {display: none;}
7 </style >
8 </head>
9 <body>
10 <p hidden="">Hidden text</p>
11 <p style="display:none">Hidden text</p>
12 <p id="mypar">Hidden text</p>
13 <noscript >
14 <p>Hidden text</p>
15 </noscript >
16 </body>
17 </html>

Listing 2: Example showing different approaches to hide
HTML elements: using the hidden attribute (line 10),
modifying the CSS style (lines 6 and 11), and embedding
the element in <noscript> (line 14).

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title >Login</title >
5 </head>
6 <body>
7 <form id="myform" action="http :// malicious.io">
8 <label for="pwd">Enter your password: </label >
9 <input type="password" name="pass" required >
10 </form>
11 </body>
12 </html>

Listing 3: Webpage including a form with a malicious
external link (line 7) detected by the HTML_SHF feature.

4.2 Mutation-based Black-box Optimizer
To optimize the choice of the manipulations defined in subsec-
tion 4.1, we propose a black-box optimizer (shown in Algorithm 1)
that is in line with the proposed threat model (see section 3). Our
optimizer draws inspiration from the algorithm proposed inWAF-A-
MoLE [18], which relies on mutation-based fuzzing techniques [50],
recently shown to be promising for generating adversarial exam-
ples [18, 38]. Specifically, the algorithm of WAF-A-MoLE adopts
an iterative approach consisting of consecutive mutation rounds
with the aim to mutate the original malicious sample in order to
minimize the confidence score returned by the machine-learning
model. Starting from the original algorithm of WAF-A-MoLE, we
have designed a novel one that is tailored to the proposed manip-
ulations in order to improve its effectiveness, i.e., minimize the
number of queries when generating the adversarial attacks. To this
end, in the following, we first explain how the manipulations can
be categorized in order to make the optimizer more query-efficient,
and then we describe how the optimizer works step-by-step.
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1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title >Login</title >
5 <script type="text/javascript">
6 window.onload = function () {
7 document.getElementById("myform").setAttribute

("action", "http :// malicious.io");
8 }
9 </script >
10 </head>
11 <body>
12 <form id="myform" action="#!">
13 <label for="pwd">Enter your password: </label >
14 <input type="password" name="passwd" required >
15 </form>
16 </body>
17 </html>

Listing 4: Adversarial phishing webpage generated using
ObfuscateExtLinks, which obfuscates the malicious link
(lines 5 - 9) in the original webpage of Listing 3.

1 <html>
2 <head>
3 <title >Home</title >
4 <script >
5 window.open("http :// malicious.io", "_self");
6 </script >
7 </head>
8 <body>
9 </body>
10 </html>

Listing 5: Webpage using window.open() to load an external
malicious link (line 5) detected by the HTML_popUP feature.

1 <html>
2 <head>
3 <title >Home</title >
4 <script >
5 let script = document.createElement("script");
6 script.innerHTML = atob("d2luZG93Lm9wZW4oImh0 \
7 dHA6Ly9tYWxpY2lvdXMuaW8iLCAiX3NlbGYiKTs=");
8 document.head.append(script);
9 </script >
10 </head>
11 <body>
12 </body>
13 </html>

Listing 6: Adversarial phishing webpage manipulated using
ObfuscateJS in order to obfuscate the JS code (lines 4 - 9) of
the webpage shown in Listing 5.

Categorization of the HTMLManipulations. According to how
the proposed manipulations can be applied to the input phishing
webpage, they can be categorized into two main classes: single-
round (SR), if they can be applied for just a single mutation round,
or multi-rounds (MR), if they require more sequential mutation
rounds. Specifically, SR manipulations generate the same output
(i.e., a manipulated webpage) when used sequentially for more than
one round, so it is sufficient to use them for a single round. On
the other hand, this does not apply to MR manipulations, whose

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title >Home</title >
5 </head>
6 <body>
7 <div id="div1" style="display: none">
8 <p>Text in the first div.</p>
9 </div>
10
11 <div id="div2" style="visibility: hidden">
12 <p>Text in the second div.</p>
13 </div>
14 </body>
15 </html>

Listing 7: Webpage with two hidden div HTML elements
(lines 7 and 11) detected by the HTML_hiddenDiv feature.

1 <!DOCTYPE html>
2 <html>
3 <head>
4 <title >Home</title >
5 <style >
6 #div2 {visibility: hidden ;}
7 </style >
8 </head>
9 <body>
10 <div id="div1" hidden >
11 <p>Text in the first div.</p>
12 </div>
13
14 <div id="div2">
15 <p>Text in the second div.</p>
16 </div>
17 </body>
18 </html>

Listing 8: Adversarial webpage generated by manipulating
the webpage of Listing 7 through UpdateHiddenDivs, which
hides the div elements using CSS combined with the <style>
element (line 6), and the hidden attribute (line 10).

output can change at each round. Furthermore, SR manipulations
are independent of each other, while MR manipulations can be
correlated, i.e., they can impact a common set of features.

To better explain the difference between the two classes, let’s
consider some of the manipulations defined in subsection 4.1. For
instance, theUpdateHiddenDivs is an SRmanipulation because, after
it is used for the first time, all the related div elements are updated
and there is no need to use it in the next rounds since no other
manipulation can inject hidden div elements that may trigger the
features (i.e., HTML_hiddenDiv) targeted by this manipulation. The
same applies to other manipulations such as UpdateHiddenButtons,
UpdateHiddenInputs and UpdateTitle. On the contrary, manipula-
tions like InjectIntElem and InjectExtElem belong to the MR class
because, in general, they need to be applied in multiple consec-
utive rounds to effectively evade the target HTML features. For
instance, let’s consider the HTML_commPage. In order to evade
this feature, the attacker has to apply both InjectIntElem and In-
jectExtElem for multiple consecutive rounds to find the proper ratio
between internal and external links. Clustering manipulations into
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the two defined classes offers a significant advantage in enhancing
the optimizer’s efficiency. Indeed, if using the approach used in
WAF-a-MoLE, which randomly selects manipulations for each mu-
tation round, there’s a risk of applying the same SR manipulation
repeatedly in consecutive rounds, resulting in a significant waste of
queries because the webpage would not be updated. Conversely, to
address this issue our optimizer first executes the SR manipulations
one by one, and then runs the main loop of mutational rounds by
using only the MR manipulations.
Algorithm Description. Initially, the optimizer initializes the best
adversarial example 𝒛★ and score 𝑠★ found so far with the initial
phishing webpage 𝒛 (line 1), and its score 𝑓 (𝒛★) (line 2). Then, it
sequentially applies the SR manipulations (lines 3-5) and updates
the best adversarial example and score found so far each time it
finds a new manipulation that reduces the best score found so far
(lines 6-8). Then, the optimizer executes the loop related to MR
manipulations, which consists of 𝑅 mutation rounds (line 9). Specif-
ically, during each mutation round, the algorithm generates new
candidates (i.e., adversarial phishing webpages) from the current
best adversarial example by using one MR manipulation for each
candidate (lines 11-14). Afterward, the algorithm selects the can-
didate having the lowest confidence score (line 15) and, in case its
score is lower than the best score found so far (line 16), the chosen
becomes the best adversarial example found so far (line 17). Finally,
regarding the choice of the number of mutation rounds 𝑅, given
the maximum query budget 𝑄 , it can be set using the following
formula: 𝑅 = (𝑄 − #𝑆𝑅) / #𝑀𝑅, where #𝑆𝑅 and #𝑀𝑅 are the number
of SR and MR manipulations, respectively.

5 EXPERIMENTAL ANALYSIS
In this section, we first describe the setup adopted in our experi-
ments, and then we present and discuss the obtained results.

5.1 Experimental Setup
We now present the setup underlying our experimental analysis,
conducted on an Ubuntu 18.04.6 LTS server equipped with an Intel
Xeon E7-8880 CPU (16 cores) and 64 GB of RAM.
ML Algorithms. We evaluate the same machine-learning algo-
rithms used in SpacePhish [5]:

• Logistic Regression (𝐿𝑅), a linear model also adopted in the
Google phishing page filter [30, 44];

• Random Forest (𝑅𝐹 ), a tree-based ensemble learning algo-
rithm [13] that has been shown outstanding performance in
phishing detection tasks [47];

• Convolutional Neural Network (𝐶𝑁𝑁 ), a deep learning [22]
model used in [48] for detecting phishing webpages.

As for the feature set, we train each algorithm on the HTML features
as well as the combination of both HTML and URL features, which
are identified in SpacePhish as 𝐹𝑟 and 𝐹𝑐 , respectively [5]. The main
reason for this choice is to assess the effectiveness of our adversarial
attacks, particularly when incorporating supplementary features
beyond those derived from the HTML code.
Dataset. We evaluate our approach on the DeltaPhish dataset [16],
consisting of 5511 benign and 1012 phishing webpages. We perform
a stratified random split (to preserve the original ratio between
benign and phishing distributions) by using the 80:20 ratio, which

Algorithm 1: Mutation-based black-box optimizer to gen-
erate adversarial phishing webpages.
Data: 𝒛, the initial phishing sample;
𝑓 , the machine-learning phishing webpage detector;
ℎ, the function to mutate the phishing webpages;
𝑅, the number of mutation rounds;
𝑆𝑅 the set of single-round (SR) manipulations;
𝑀𝑅 the set of multi-round (MR) manipulations.
Result: 𝒛★, the adversarial phishing sample.

1 𝒛★ = 𝒛

2 s★ = 𝑓 (𝒛★)
3 for 𝑡 in 𝑆𝑅

4 𝒛′ = ℎ(𝒛★, [𝑡])
5 s′ = 𝑓 (𝒛′)
6 if s′ < s★

7 s★ = s′

8 𝑧★ = 𝑧′

9 for 𝑟 in [1, 𝑅]
10 𝐶 = ∅
11 for 𝑡 in𝑀𝑅

12 𝒛′ = ℎ(𝒛★, [𝑡])
13 s′ = 𝑓 (𝒛′)
14 𝐶 = 𝐶 ∪ {(𝒛′, s′)}
15 𝒛𝑏 , s𝑏 = 𝑔𝑒𝑡_𝑏𝑒𝑠𝑡_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝐶)
16 if s𝑏 < s★

17 𝑧★ = 𝑧𝑏

18 s★ = s𝑏

19 return 𝒛★

is commonly used in related literature [3, 8]. In other words, 80%
of both benign and phishing samples are used to build the training
set, while the remaining 20% of samples are part of the test set.
Generation of Adversarial Phishing Webpages.We adopt the
same approach of Apruzzese et al. [5]. In particular, we randomly
select from the test set 100 phishing samples that are correctly
classified by the best ML-PWD (typically 𝐹𝑐 ). Such 100 samples are
used to evaluate the baseline detection rate of the target ML-PWD
(i.e., no-atk), as well as to craft the adversarial examples using
both the HTML adversarial attacks proposed in this work (our) and
in SpacePhish (i.e., WA𝑟 and �WA𝑟 ) [5]. We would like to remind
the reader that WA𝑟 consists of injecting 50 hidden internal links,
while �WA𝑟 injects as many internal links as needed to meet the
suspicious threshold (0.15) of the HTML_objectRatio feature. As
for our approach, the query budget for optimizing the adversarial
attacks is set to 36 queries, which implies 5 mutation rounds (i.e.,
𝑅 = 5 in Algorithm 1).

5.2 Results and Discussion
The experimental results are reported in Table 2 and Figure 2. The
former shows the detection rate of the evaluated ML-PWD (𝐶𝑁𝑁 ,
𝑅𝐹 and 𝐿𝑅) on the baseline test set of 100 samples (no-atk), as
well as their adversarial robustness against the attacks proposed in
SpacePhish (WA𝑟 and �WA𝑟 ) in this work (our). The latter, instead,
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reports the security evaluation curves that show the detection rate
at 1% False Positive Rate (FPR) of the target ML-PWD w.r.t. the
number of queries when the best sequence of manipulations is
applied. It is worth noting that the drops in the detection rate repre-
sent manipulations that are effective in decreasing the confidence
score and thus are included in the best (i.e., optimal) sequence of
manipulations. Instead, flat regions indicate manipulations that are
ineffective and thus are not used to generate the final adversarial
example. Moreover, we have computed the detection rate at 1% FPR
because this threshold is widely adopted in the literature [16, 19]
as well as to perform a fair evaluation of the ML-PWD, i.e., they
are evaluated assuming the same FPR. From the obtained results
we can gain several takeaways that are described in the following.
Query-efficient Adversarial Attacks. The obtained results high-
light that the proposed adversarial attacks clearly raze to the ground
the detection rate of all the evaluatedML-PWDusing just 30 queries,
hence underlining the effectiveness of the proposed methodology.
Specifically, by only using the SR manipulations (i.e., the first 11
queries shown on the left of the dotted vertical line in Figure 2)
the average detection rate is lower than 50% for all the ML-PWD
except for the 𝑅𝐹 model trained on the whole set of feature (𝐹𝑐 ),
whose detection rate is 53%. As for the MR manipulations, they
play a crucial role in boosting the attack’s effectiveness. Indeed, as
depicted in Figure 2, finding the optimal number of internal and
external elements to inject significantly reduces the detection rate
to nearly zero within just a few queries. This also underlines that
the HTML features related to the number of internal and external
elements play a critical role in terms of adversarial robustness.
HTML Features Matter. Even more interesting is the fact that the
proposed adversarial manipulations, while targeting the HTML fea-
tures, have proven effective in evading the ML-PWD trained on the
whole feature set 𝐹𝑐 , including both the HTML and URL features.
This underlines two key points. First, the adversarial robustness
mainly relies on the HTML features, as also discussed above when
analyzing the manipulations’ effectiveness. Second, the supplemen-
tary URL features do not provide substantial benefits in terms of
adversarial robustness. Indeed, an attacker can effectively evade the
ML-PWD by exclusively leveraging the proposed manipulations
targeting the HTML features.

ML algo 𝐹 no-atk WA𝑟 �WA𝑟 our

𝐶𝑁𝑁
𝐹𝑟 0.81 0.33 0.78 0.00
𝐹𝑐 0.94 0.93 0.90 0.00

𝑅𝐹
𝐹𝑟 0.95 0.90 0.79 0.00
𝐹𝑐 0.97 0.96 0.90 0.00

𝐿𝑅
𝐹𝑟 0.72 0.51 0.53 0.00
𝐹𝑐 0.86 0.77 0.72 0.00

Table 2: Average detection rate at 1% FPR of the target ML-
PWD (𝐶𝑁𝑁 , 𝑅𝐹 and 𝐿𝑅) on the DeltaPhish dataset. Columns
represent the baseline (no-atk), the attacks proposed in
SpacePhish (WA𝑟 and �WA𝑟 ) [5], and our approach (our).
The best results are in bold.
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Figure 2: Security evaluation curves showing how the de-
tection rate at 1% FPR of the target ML-PWD changes w.r.t.
the number of queries when applying the best sequence of
manipulations. Flat regions in the plot indicate manipula-
tions that are not applied because they do not decrease the
output score. The impact of SR and MR manipulations is
shown on the left and right sides of the dotted vertical line,
respectively.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have introduced a novel methodology for generat-
ing query-efficient and notably effective HTML adversarial attacks.
Specifically, we have designed a novel set of 14 functionality- and
rendering-preserving manipulations that extend the current state-
of-the-art, as well as a novel black-box optimizer tailored to such
manipulations in order to generate adversarial phishing webpages
that are able to raze to the ground several state-of-the-art machine-
learning phishing webpage detectors (ML-PWD). Our experiments
also reveal that the ML-PWD’s adversarial robustness primarily
depends on HTML features as our methodology effectively evades
detection even when using additional URL features. To counter the
adversarial attacks proposed in this work, a future work develop-
ment is experimentingwithwell-known state-of-the-art approaches
for increasing the adversarial robustness such as adversarial train-
ing [31, 51] and certified robustness techniques [33]. Moreover,
although the HTML manipulations are specifically crafted to evade
the features used in SpacePhish [6], another interesting future work
is evaluating our methodology in the wild, i.e., assessing its effec-
tiveness against production-grade phishing detectors, as well as
other feature representations proposed in the literature. Finally, as
for the proposed black-box optimizer, while it leverages the output
scores to optimize the selection of the adversarial manipulations,
in principle, it can be also extended to the hard-label scenario [43].
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