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Abstract—In this paper, we investigate the channel estimation
for massive multiple-input multiple-output orthogonal frequency
division multiplexing (MIMO-OFDM) systems. We revisit the in-
formation geometry approach (IGA) for massive MIMO-OFDM
channel estimation. By using the constant magnitude property
of the entries of the measurement matrix and the asymptotic
analysis, we find that the second-order natural parameters
(SONPs) of the distributions on all the auxiliary manifolds (AMs)
are equivalent to each other at each iteration of IGA, and the
first-order natural parameters (FONPs) of the distributions on all
the AMs are asymptotically equivalent to each other at the fixed
point. Motivated by these results, we simplify the iterative process
of IGA and propose a simplified IGA for massive MIMO-OFDM
channel estimation. It is proved that at the fixed point, the a
posteriori mean obtained by the simplified IGA is asymptotically
optimal. The simplified IGA allows efficient implementation with
fast Fourier transformation (FFT). Simulations confirm that the
simplified IGA can achieve near the optimal performance with
low complexity in a limited number of iterations.

I. INTRODUCTION

Massive MIMO combined with OFDM can provide tremen-
dous gains in both capacity and energy efficiency for commu-
nication systems [1]–[3]. To fully reap the various benefits of
massive MIMO-OFDM, the accurate acquisition of the chan-
nel state information (CSI) is essential. Pilot-aided channel
estimation is the common channel estimation approach for
practical systems. Given the received pilot signal, the task of
channel estimation is to obtain the a posteriori information of
the channel parameters. With the Gaussian prior, the a posteri-
ori distribution of the channel parameters is also Gaussian, of
which the a posteriori information is determined by the mean
vector and the covariance matrix. Nonetheless, the calculation
of the optimal estimators, e.g., MMSE estimator, is usually
unaffordable for the massive MIMO-OFDM systems due to
the large dimension matrix inverse operation.

A differentiable manifold with a Riemannian structure can
be regarded as the space defined by the parameters of the
a posteriori probability density function. Hence, differential
geometry definitions and tools can be useful in the calculation
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of the a posteriori distribution. This is exactly one of informa-
tion geometry’s topics [4]–[6]. Thus, it is appropriate to apply
information geometry into the channel estimation. Recently,
we have introduced the information geometry approach (IGA)
to the massive MIMO-OFDM channel estimation [6]. We first
provide the space-frequency (SF) beam based channel model
for massive MIMO-OFDM system. The channel estimation
is then formulated as obtaining the a posteriori information
of the beam domain channel. By introducing the information
geometry theory, we solve this problem through calculating
the approximations for the marginals of the a posteriori
distribution. More precisely, we turn the calculation of the
approximations of the marginals into an iterative projection
process by treating the set of Gaussian distributions with
different constraints as different types of manifolds.

In this paper, we first revisit the proposed IGA. By using
the constant magnitude entries of the measurement matrix, we
reveal that at each iteration of IGA the second-order natural
parameters (SONPs) of the distributions on all the AMs are
equivalent to each other, and at the fixed point of IGA the
first-order natural parameters (FONPs) of the distributions
on all the AMs are asymptotically equivalent to each other.
These two results motivate us to set the natural parameters
(NPs) of the distributions on all the AMs as a common
NP. Based on this, we simplify the iteration of IGA and
propose a simplified IGA. It is also shown that at the fixed
point, the a posteriori mean obtained by the simplified IGA is
asymptotically optimal. At last, with the fast Fourier transform
(FFT), we provide a low complexity implementation of the
simplified IGA.

The rest of this paper is organized as follows. The system
configuration and channel model are presented in Section II.
We revisit IGA and reveal two new results in Section III. The
simplified IGA for massive MIMO-OFDM channel estimation
is proposed in Section IV. Simulation results are provided in
Section V. The conclusion is drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Configuration and Channel Model
Consider a typical massive MIMO-OFDM system working

in time division duplexing (TDD) mode with one base station



(BS) serving K single-antenna users within a cell, where
the BS comprises a uniform planar array (UPA) of Nr =
Nr,v × Nr,h antennas, and Nr,v and Nr,h are the numbers
of the antennas at each vertical column and horizontal row,
respectively. We focus on the uplink channel estimation since
the CSI can be obtained from uplink traning, and then used for
UL signal detection and downlink precoding due to channel
reciprocity in TDD mode. Standard OFDM modulation with
Nc subcarriers is applied, where the cyclic prefix (CP) is Ng .
Np training subcarriers are employed, and the set of them
are denoted as Np = {N1, N1 + 1, · · · , N2}. Assume that the
channel is quasi-static. Then, during each OFDM symbol, the
SF domain received signal Y ∈ CNr×Np for training at the
BS can be expressed as [6]–[8]

Y =
∑K

k=1
GkPk + Z, (1)

where Gk ∈ CNr×Np is the SF domain channel of user k,
Pk = Diag {pk} ∈ CNp×Np is the pilot signal of user k, pk

is the pilot sequence of user k, Diag {x} denotes the diagonal
matrix with x along its main diagonal, and Z is the noise
matrix with elements identically and independently distributed
as CN

(
0, σ2

z

)
. With the SF beam based statistical channel

model, Gk can be expressed as [6]
Gk = VHkF

T , k ∈ Z+
K , (2)

where V ≜ Vv ⊗ Vh ∈ CNr×FvFhNr , ⊗ denotes the Kro-
necker product, Vv ∈ CNr,v×FvNr,v and Vh ∈ CNr,h×FhNr,h

are both partial discrete Fourier transformation (DFT) ma-
trices. Specifically, Vv = ĨNr,v×FvNr,v

Ṽv and Vh =

ĨNr,h×FhNr,h
Ṽh, where Ṽv and Ṽh are DFT matrices of

FvNr,v and FhNr,h points, respectively, and ĨN×FN is a
matrix containing the first N rows of the FN dimensional
identity matrix. F ≜ ĨNp×FτNp

F̃ĨFτNp×FτNf
∈ CNp×NτNf ,

where F̃ is a DFT matrix of FτNp points, and ĨFτNp×FτNf

is a matrix containing the first FτNf columns of the FτNp

dimensional identity matrix. Nf = ⌈NpNg/Nc⌉, where ⌈x⌉
to denote the largest integer not larger than x. Fv , Fh and Fτ

are fine factors (FFs). Hk ∈ CFvFhNr×FτNf is the SF beam
domain channel matrix of user k, and the elements in Hk fol-
low the independent complex Gaussian distributions with zero
mean and possibly different variances. We denote the power
matrix of beam domain channel as Ωk = E {Hk ⊙H∗

k} , k ∈
Z+

K , where (·)∗ denotes the conjugate operator and ⊙ is the
Hadamard product. Due to the channel sparsity, most of the
elements in Ωk are (close to) zero. Thus, the BS has sufficient
resources to acquire Ωk [6], [7]. We assume that {Ωk}Kk=1 is
known at the BS. By setting the FFs to be greater than 1, the
SF beam based channel model allows to sample the angles of
arrival as well as the delay more intensively and provides more
accurate modeling of the channel in massive MIMO-OFDM
systems.

B. Problem Statement
In practice, the pilot sequences with constant magnitude

property are preferred for massive MIMO-OFDM systems. In
this paper, we use the adjustable phase shift pilots (APSPs)
[7] as the training signal. Note that any other pilot sequences

with constant magnitude can be adopted. We set the transmit
power of the training signal for each user to 1. Then, the
APSP for the user k is set to be Pk = Diag {r (nk)}P, where
r (nk) ∈ CNp×1,

r (nk) =

[
exp

{
−ȷ̄2π nkN1

FτNp

}
· · · exp

{
−ȷ̄2π nkN2

FτNp

}]T
,

(3)
nk ∈ {0, 1, · · · , FτNp − 1}, and P = Diag {p} is the basic
pilot satisfying PPH = I. Given {Ωk}Kk=1, we can use [7,
Algorithm 1] to determine the value of nk and thus Pk for
each user. Define a partial DFT matrix of FτNp points as
Fd ≜ [r (0) r (1) · · · r (FτNp − 1)] ∈ CNp×FτNp and a
permutation matrix as

Πnk
≜

[
O IFτNp−nk

Ink
O

]
∈ CFτNp×FτNp . (4)

Substituting Pk and (2) into (1), we can obtain
Y = VHFT

d P+ Z, (5)
where H =

∑K
k=1 H

e
kΠnk

, He
k = [Hk O] ∈ CFaNr×FτNp ,

and Fa ≜ FvFh. Define Ω ≜
∑K

k=1 Ω
e
kΠnk

with Ωe
k ≜

[Ωk O] ∈ CFaNr×FτNp . It can be checked that Ω is the power
matrix of H. Then, we can obtain

y = vec
{
YPH

}
= Ãh̃+ z, (6)

where Ã = Fd ⊗ V ∈ CN×Ma , h̃ = vec{H} ∈ CMa×1,
Ma = FaFτN , z = vec{ZPH} ∈ CN×1, and z ∼
CN

(
0, σ2

zI
)

since PH is unitary. Define the number of non-
zero elements in ω ≜ vec {Ω} as M and the indexes of
these non-zero elements as P ≜ {p1, p2, · · · , pM}. Define
an extraction matrix as E ≜ [ep1

, ep2
, · · · , epM

] ∈ CMa×M ,
where ei is the i-th column of the Ma dimensional identity
matrix. Then, y can be re-expressed as

y = Ah+ z, (7)
where A = ÃE ∈ CN×M , h = ET h̃ ∈ CM×1, h ∼
CN (0,D) and D ≜ Diag

{
ETω

}
is positive definite. In this

case, the elements in the measurement matrix A have unit
magnitude. Given the observation y, the a posteriori distribu-
tion of h is Gaussian, of which the mean and covariance are
given by [9]

µ̃ = D
(
AHAD+ σ2

zI
)−1

AHy, (8a)

Σ̃ =
(
D−1 +AHA/σ2

z

)−1
. (8b)

µ̃ is also the MMSE estimate of h. The computational com-
plexity of (8) is O

(
M3 +M2N

)
, of which the application

is unaffordable when N and M are large. In this paper, we
propose a simplified IGA to compute the marginals of the a
posteriori distribution.

III. REVISITING IGA

With the received signal model (7), the PDF of the a
posteriori distribution can be expressed as

p (h|y) = exp

{
d ◦ t+

∑N

n=1
cn (h)− ψq

}
, (9)

where d ≜ f
(
0,diag

{
−D−1

})
, diag {X} denotes a vector

consisting of the diagonal elements of X, t ≜ f (h, (h⊙ h∗)),
f (a,b) ≜

[
aT , bT

]T
, a ◦ b ≜

(
bHa+ aHb

)
/2, cn (h) =



(
−hHγnγ

H
n h+ ynh

Hγn + y∗nγ
H
n h

)
/σ2

z , yn is the n-th ele-
ment of y, γn =

[
AH

]
:,n

∈ CM×1, and ψq are the normal-
ization factor. IGA [6] constructs two types of manifolds, the
objective manifold (OBM) and the auxiliary manifold (AM).
The OBM is defined as

M0 = {p0 (h;ϑ0) = exp {(d+ ϑ0) ◦ t− ψ0}} , (10)
where ϑ0 = f (θ0,ν0) with θ0 ∈ CM×1 and ν0 ∈ RM×1, and
ψ0 is the free energy (normalization factor) . We refer to ϑ0,
θ0 and ν0 as the NP, the FONP and the SONP of p0. N AMs
are defined, where the n-th AM is defined as

Mn = {pn (h;ϑn)} , n ∈ Z+
N , (11a)

pn (h;ϑn) = exp {(d+ ϑn) ◦ t+ cn (h)− ψn} , (11b)
where ϑn = f (θn,νn), θn ∈ CM×1 and νn ∈ RM×1

are referred to as the NP, the FONP and the SONP of pn,
Z+

N = {1, 2, . . . , N}, and ψn is the free energy. Based on the
OBM and the AMs, IGA approximates

∑N
n=1 cn (h) as ϑ0 ◦t

in a iterative manner. More precisely, we first initialize the
NPs ϑn, n ∈ ZN , where ZN = {0, 1, . . . , N}. Then, at the t-
th iteration, given ϑt

n of pn (h;ϑt
n) , n ∈ Z+

N , IGA calculates
an approximation item of cn (h) through m-projecting pn
onto the OBM, where m-projecting pn onto the OBM is
equivalent to finding the point on the OBM minimizing the
K-L divergence from pn to the OBM, i.e.,

ϑt
0n = argmin

ϑ0

DKL

{
pn

(
h;ϑt

n

)
: p0 (h;ϑ0)

}
, (12a)

DKL

{
pn

(
h;ϑt

n

)
:p0 (h;ϑ0)

}
=Epn

{
ln
pn (h;ϑ

t
n)

p0 (h;ϑ0)

}
.

(12b)
ϑt
0n = f (θt

0n,ν
t
0n) is given by [6, Equation (47)]. Then, the

approximation item is calculated as
ξn = ϑ0n − ϑn, n ∈ Z+

N . (13)
We update the NPs as the following

ϑt+1
n = d

∑
n′ ̸=n

ξtn′ + (1− d)ϑt
n, (14a)

ϑt+1
0 = d

∑N

n=1
ξtn + (1− d)ϑt

0, (14b)
where 0 < d ≤ 1 is the damping introduced to increase
the convergence of the IGA. Then, repeat the m-projections,
calculate the approximation items and the updates until conver-
gence or t reaches the preset number. The mean and variance
of the approximate marginal, p (hi|y) , i ∈ Z+

M , are given by
the i-th component of µ0 and diag {Σ0}, respectively, where
µ0 and Σ0 are given by (22).

We now present two new results on the IGA when A in
(7) has the constant magnitude entries. Unless specified, we
assume that this condition holds in the rest of this paper. We
omit the proofs for the Theorems in this paper due to space
limitation.

Theorem 1. If A in (7) has constant magnitude entry property,
then at each iteration of IGA, the SONPs of pn, n ∈ Z+

N ,
are independent of n, i.e., νt

n = νt
n′ , n, n′ ∈ Z+

N , when the
initializations of the SONPs of p1, p2, · · · , pN are the same.

Define the arithmetic mean of the SONPs of {pn}Nn=1 as
ν ≜ 1

N

∑N
n=1 νn. From Theorem 1, νn, n ∈ Z+

N , in IGA can

be replaced by ν in each iteration, and the two iteration modes
are equivalent when A has constant magnitude entry property.
Motivated by this observation, we find that a similar property
is satisfied between the FONPs of p1, p2, . . . , pN , in IGA.

Denote the fixed points of the NPs in the IGA as ϑ⋆
n =

f (θ⋆
n,ν

⋆
n) , n ∈ ZN . For an M ×M positive definite diagonal

matrix D, define ∥θ∥D ≜
√
θHDθ, where θ ∈ CM×1. Since

D is positive definite diagonal, we have ∥θ∥D = ∥D 1
2 θ∥,

where ∥·∥ is the ℓ2 norm. And ∥·∥D is a weighted norm on
CM×1. Then, we have the following result.

Theorem 2. In IGA, the fixed points of all the FONPs of
p1, p2, · · · , pN are asymptotically equal to N−1

N times the fixed
point of the FONP of p0, i.e.,

lim
N→∞

lim
M→∞

1

NM

N∑
n=1

E
{
∥θ⋆

n − N − 1

N
θ⋆
0∥2D

}
= 0. (15)

Theorem 2 illustrates that as N and M tend to infinity, the
average error between each element in the fixed point of the
FONP of pn, n ∈ Z+

N , and each element in the fixed point
of the FONP of p0 is asymptotically equal to zero, which
indicates that the fixed point of the FONP of pn, n ∈ Z+

N ,
tends to be equal to each other. In massive MIMO-OFDM
channel estimation, N is usually quite large. When the number
of users is high, M can be large enough to be comparable to
N . Define the arithmetic mean of the NPs of p1, p2, · · · , pN ,
as ϑ ≜ 1

N

∑N
n=1 ϑn. Inspired by Theorem 1 and 2, we will

use ϑ instead of ϑn, n ∈ Z+
N , to simplify the iteration of IGA.

IV. SIMPLIFIED IGA
Instead of (7), we use the following received signal model

to develop the simplified IGA in this section,
y = Ah+ z̃, (16)

where z̃ ∼ CN
(
0, σ̃2

zI
)
, σ̃2

z is a positive constant, and the
other variables are the same as those in (7). Compared to the
real received signal model (7), (16) is a virtual received signal
model, where we fictitiously treat the noise vector as z̃ rather
than the true one, i.e., z. By introducing (16), the input noise
variance of the simplified IGA is changed from σ2

z to σ̃2
z . We

shall see that by determining the value of σ̃2
z based on the

true noise variance σ2
z , we can enable the simplified IGA to

obtain an estimate of h which is asymptotically equal to the
a posteriori mean µ̃ in (8a).

A. Simplified IGA
Compared with IGA, the simplified IGA has the same

input except that the noise power is replaced by σ̃2
z . At the

initialization, we set t = 0 and choose the damping d, where
0 < d ≤ 1. We initialize the NP for p0 as ϑt

0 and initialize
the NP for {pn}Nn=1 as ϑt while ensuring that the SONPs in
ϑt
0 and ϑt satisfy νt

0,ν
t < 0. We refer to ϑ as the common

NP of {pn}Nn=1 (abbreviated as the common NP). Given the
common NP ϑt = f (θt,νt) at the t-th iteration, the simplified
IGA m-projects pn (h;ϑ

t) onto the OBM and obtains the
m-projection, denoted as p0 (h;ϑ

t
0n),where n ∈ Z+

N . The
approximation item ξtn is then re-expressed as

ξtn = ϑt
0n − ϑt, n ∈ Z+

N , (17)



since we replace ϑt
n, n ∈ Z+

N , with ϑt. Then, from (14a),{
ϑt+1
n

}N

n=1
can be obtained. Although

{
ϑt+1
n

}N

n=1
, have

the same SONPs at each iteration of IGA, the FONPs of{
ϑt+1
n

}N

n=1
are only asymptotically equal to each other at the

fixed point, and thus,
{
ϑt+1
n

}N

n=1
are not necessarily equal to

each other at each iteration. To update the common NP ϑ in
the simplified IGA, we calculate ϑt+1 as the arithmetic mean
of

{
ϑt+1
n

}N

n=1
,

ϑt+1 =
1

N

N∑
n=1

ϑt+1
n

(a)
=

d

N

N∑
n=1

N∑
n′=1

(
ξtn′ − ξtn

)
+
1− d

N

N∑
n=1

ϑt
n

(b)
=
d (N − 1)

N

N∑
n=1

ξtn + (1− d)ϑt (18)

(c)
=
d (N − 1)

N

N∑
n=1

ϑt
0n + (1− dN)ϑt,

where (a) comes from (14a), (b) comes from that if ϑ is
updated as above, then at each iteration of the simplified IGA,
ϑt = 1

N

∑N
n=1 ϑ

t
n can be obtained, and (c) comes from (17).

From (14b), the update of ϑ0 can be modified as

ϑt+1
0 = d

N∑
n=1

(
ϑt
0n − ϑt

)
+ (1− d)ϑt

0

= d
N∑

n=1

ϑt
0n − dNϑt + (1− d)ϑt

0.

(19)

We now discuss the simplification of the update way of ϑ0 in
(19), which is derived directly from the non-damping version
of (18) and (19). Setting d = 1 in (18) and (19), and after
some calculation, we can obtain (N − 1)ϑt+1

0 = Nϑt+1.
Then, when 0 < d < 1, if we constrain (N − 1)ϑt

0 = Nϑt,
t = 0, at the initialization, at each iteration of (18) and (19),
we still have (N − 1)ϑt

0 = Nϑt,∀t. In summary, when the
initialization satisfies (N − 1)ϑ0 = Nϑ, the update of the
NPs in the simplified IGA can be summarized as

ϑt+1 =
d (N − 1)

N

N∑
n=1

ϑt
0n + (1− dN)ϑt, (20a)

ϑt+1
0 =

N

N − 1
ϑt. (20b)

We give the detailed expression of ϑt+1 = f
(
θt+1,νt+1

)
in (21). In (21), the common NP ϑt+1 is directly calculated
without the step for calculating the approximation item ξtn.
From (20b), we can see that the NP of p0 in each iteration
relies on the common NP only (also vice versa). Therefore,
its updating in the iteration process is not necessary. We only
need to calculate the NP of p0 with the resulting common NP
from the iteration process. We summarize the simplified IGA
in Algorithm 1.

We then provide the analysis of the fixed point of the
simplified IGA. When converged, denote the fixed point of
the common NP as ϑ⋆ = f (θ⋆,ν⋆). Denote the NP of p0 at
the fixed point of the simplified IGA as ϑ⋆

0 = f (θ⋆
0 ,ν

⋆
0 ) ≜

N/ (N − 1)ϑ⋆. Denote the mean of p0 (h;ϑ
⋆
0) as µ⋆

0 =
µ0 (ϑ

⋆
0), where µ0 (·) is given by (22). Then, we have the

following theorem.

Theorem 3. If the initialization of the SONP of the common
NP in the simplified IGA satisfies νt < 0, t = 0, then, the
fixed points of the SONPs of the common NP and the NP of
p0 satisfy ν⋆,ν⋆

0 < 0, and µ⋆
0 satisfies

µ⋆
0 = D

[
AHA

(
D− 1

N
Λ⋆

)
+ β⋆I

]−1

AHy, (23)

where
Λ⋆ ≜

(
D−1 −Diag {ν⋆}

)−1
, (24a)

β⋆ ≜ σ̃2
z + tr {Λ⋆} > 0. (24b)

Theorem 3 provides the expression of µ⋆
0 in the simplified

IGA. We then show that µ⋆
0 above is asymptotically optimal

when M < N and N tends to infinity, where M and N are the
numbers of the variables to be estimated and the observations,
respectively. We first define an injection as f : R+ → R,

f (x) = x− tr

{(
D−1 +

N − 1

x
I

)−1
}
, x > 0. (25)

Theorem 4. When the initialization of the SONP of the
common NP in the simplified IGA satisfies νt < 0, t = 0,
and M < N , the asymptotic values of Λ⋆ and f (β⋆) as N
tends to infinity satisfy

lim
N→∞

[Λ⋆]i,i = 0, i ∈ Z+
M , (26a)

lim
N→∞

f (β⋆) = σ̃2
z . (26b)

Then, if σ̃2
z = f

(
σ2
z

)
, we can obtain lim

N→∞
β⋆ = σ2

z and

lim
N→∞

µ⋆
0 = µ̃, (27)

where µ̃ is the a posteriori mean in (8a). Moreover, when M
is fixed, we have lim

N→∞
f
(
σ2
z

)
= σ2

z . In this case, (27) holds

if either σ̃2
z = σ2

z or σ̃2
z = f

(
σ2
z

)
is satisfied.

Theorem 4 provides the asymptotic values of Λ⋆ and f (β⋆)
when N tends to infinity and M < N . It also illustrates that µ⋆

0

is asymptotically optimal as N tends to infinity and M < N
when σ̃2

z is set to be f
(
σ2
z

)
. Meanwhile, it can be checked

that f
(
σ2
z

)
< σ2

z .

Algorithm 1: Simplified IGA
Input: The covariance D of the priori distribution p (h), the

received signal y, the noise power σ̃2
z and the maximal

iteration number tmax.
Initialization: set t = 0, set damping d, where 0 < d ≤ 1, initialize

the common NP as ϑt = f
(
θt,νt

)
and ensure νt < 0;

repeat
1. Update ϑ = f (θ,ν) as (21);
2. t = t+ 1;

until Convergence or t > tmax;
Output: Calculate the NP of p0 (h;ϑ0) as ϑ0 = N

N−1
ϑt. The

mean and variance of the approximate marginal, p (hi|y),
i ∈ Z+

M , are given by the i-th component of µ0 and
diag {Σ0}, respectively, where µ0 and Σ0 are calculated
by (22).



θt+1 =
d (N − 1)

N

(
I− 1

βt
Λt

)−1 [
1

βt
AH

(
2y −AΛtθt

)
+Nθt

]
+ (1− dN)θt (21a)

νt+1 = d (N − 1)diag

{
D−1 −

[
Λt − 1

βt

(
Λt

)2]−1
}

+ (1− dN)νt (21b)

Λt =
(
D−1 −Diag

{
νt
})−1

, β (t) = σ̃2
z + tr

{
Λt

}
(21c)

µ0 (ϑ0) =
1

2
Σ0 (ϑ0)θ0, Σ0 (ϑ0) =

(
D−1 −Diag {ν0}

)−1
(22)

B. Efficient Implementation
The computational complexity of each iteration of the

simplified IGA mainly comes from the two matrix-vector
multiplications by A and AH in (21a). In this subsection,
we focus on (21a) and present an efficient implementation. At
each iteration, (21a) can be rewritten as (we omit the counter
t on the right-side of the equation for convenience)

θt+1=
2JAHy−JAHAΛθt

β
+[NJ+(1−dN) I]θt, (28a)

J =
d (N − 1)

N

(
I− 1

β
Λ

)−1

. (28b)

Since both J and Λ are diagonal, the complexity in (28a)
mainly comes from AHy, AHs and Au, where s = AΛθt ∈
CN×1 and u = Λθt ∈ CM×1. For Au, we have Au =

Ãũ = vec
{
VŨFT

d

}
, where ũ = Eu ∈ CFaFτN×1,

Ũ ∈ CFaNr×FτNp and vec
{
Ũ
}

= ũ. Then, VŨFT
d can

be calculated by FFT since V is the Kronecker product of
two partial DFT matrices and Fd is a partial DFT matrix. The
complexity of the efficient implementation of Au is O (C),
where

C =N
[
FaFτ log2 (FvNr,v) + FhFτ log2 (FhNr,h)

+ Fτ log2 (FτNp)
]
.

(29)

For the calculation of AHs, we have that AHs = ET ÃHs =
ETvec

{
VHSF∗

d

}
, where S ∈ CNr×Np and vec {S} = s. We

first compute S′ ≜ SF∗
d ∈ CNr×FτNp and then VHS′. Both

of the above two calculations can be implemented through
inverse FFT (IFFT). Then, ET ÃHs is equivalent to extracting
the elements from ÃHs with the indexes determined by P .
The complexity of the efficient implementation of ÃHs is
O (C), too. As for the calculation of AHy, since it is the
same at each iteration, we only need to calculate it once. The
calculation of AHy and the corresponding complexities are
the same as that of AHs in one iteration.

We compare the simplified IGA (noted as S-IGA in the
simulation) with the following algorithms. AMP: Approximate
message passing algorithm proposed in [10]. IGA: The origi-
nal information geometry approach proposed in [6]. MMSE:
The MMSE estimation of the beam domain channels based on
(8a). The computational complexities of different algorithms
are summarized in Table I.

V. SIMULATION RESULTS

In this section, we provide simulation results to illustrate the
complexity and performance of the proposed simplified IGA

TABLE I
COMPUTATIONAL COMPLEXITIES OF ALGORITHMS

Algorithm Complexity
MMSE O

(
M3 +M2N

)
AMP/IGA (per iteration) O (NM)

simplified IGA (per iteration) O (C)

for massive MIMO-OFDM channel estimation. The widely
adopted QuaDRiGa [11] is used to generate the SF domain
channel for each user. The simulation scenario is set to
"3GPP_38.901_UMa_NLOS", and main parameters for the
simulations are summarized in Table II. Note that channels
under both LOS and NLOS conditions can be modeled with
SF beam based channel model. We locate the BS at (0, 0, 25)

TABLE II
PARAMETER SETTINGS OF THE QUADRIGA

Parameter Value
Number of BS antenna Nr,v ×Nr,h 8× 16

UT number K 48
Center frequency fc 4.8GHz

Number of training subcarriers Np 360
Subcarrier spacing ∆f 15kHz

Number of subcarriers Nc 2048
CP length Ng 144

and randomly generate the users in a 120◦ sector with radius
r = 200m around (0, 0, 1.5). The SF domain channels are
normalized as E

{
∥Gk∥2F

}
= NrNp. The SNR is set as

SNR = 1
σ2
z

. We set the fine factors to Fv = Fh = Fτ = 2
in all simulations, which can achieve significant performance
gain compared with the case with Fv = Fh = Fτ = 1 as
shown in [6]. The algorithm proposed in [12] is adopted to
obtain the channel power matrices Ωk, k ∈ Z+

K . And the
number of total non-zero elements in {Ωk}48k=1 is calculated
as M = 36542, which is smaller than that of the observations
N = Nr,v × Nr,h × Np = 46080. We use the normalized
mean-squared error (NMSE) as the performance metric for
the channel estimation,

NMSE =
1

KNsam

K∑
k=1

Nsam∑
n=1

∥G(n)
k − Ĝ

(n)
k ∥2F

∥G(n)
k ∥2F

, (30)

where Nsam is the number of the channel samples, G(n)
k is

the n-th channel sample of user k, Ĝ
(n)
k is the estimate of

the G
(n)
k and ∥·∥F is the F-norm. We set Nsam = 200 in our

simulations.
The computational complexity of different algorithms are

plotted in Fig. 1 under different numbers of users. The number
of iterations for AMP, IGA and simplified IGA are set to 200.
We can find that the complexity of MMSE is the highest since
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Fig. 2. NMSE performance of simplified IGA
compared with AMP, IGA and MMSE.
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a matrix-inversion is involved. On the other hand, owing to
the utilization of the structure of A and FFT, the complexity
of the simplified IGA (S-IGA) is the lowest among all the
algorithms.

Fig. 2 shows the NMSE performance of simplified IGA
channel estimation compared with AMP, IGA and MMSE.
The iteration number of simplified IGA, AMP and IGA is set
as 200. We can find that IGA can obtain almost the same
NMSE performance as the MMSE estimation at all SNRs.
The performance of simplified IGA can approach that of the
MMSE estimation with a small gap. The SNR gain of the
simplified IGA compared to AMP is about 3dB when the
NMSE performance is −26dB.

Fig. 3 illustrate the convergence performance of simplified
IGA compared with AMP and IGA, where the SNR is set
as 20dB. We can find that the simplified IGA converges
in about 400 iterations, IGA requires about 200 iterations
to converge, while AMP takes more than 1000 iterations to
converge. It can also be found that simplified IGA and IGA
show similar convergence behavior. This can be attributed to
the similarity of the processes of those two approaches. On
the other hand, the computational complexity of simplified
IGA is much lower than that of IGA. Compared with AMP,
simplified IGA converges with a faster rate. The simplified
IGA along with the original IGA are developed based on the
structure of the a posteriori distribution p (h|y) within the
framework of information geometry theory. As a result, we
are able to resolve the statistical inference problem from an
intrinsic and general standpoint. This might be a significant
factor in the improved convergence behavior of the simplified
IGA for massive MIMO-OFDM channel estimation.

VI. CONCLUSION

In this paper, we have investigated the information geometry
approach for channel estimation in massive MIMO-OFDM
systems. The original IGA is first revisited. By using the
constant magnitude property of the measurement matrix en-
tries and the asymptotic analysis, we reveal that the FONPS
of p1, p2, · · · , pN on the AMs are asymptotically equal at
the fixed point of IGA, and the SONPs of p1, p2, · · · , pN
on the AMs are equal to each other at each iteration of
IGA. Based on these results, we simplify the iteration of

IGA by using the common NP to replace the original NPs
of p1, p2, · · · , pN on the AMs and propose a simplified IGA.
In the simplified IGA, the common NP is the only parameter
involved for the iteration. Then, we show that at the fixed
point, the a posteriori mean obtained by the simplified IGA is
asymptotically optimal. An FFT-based fast implementation of
the simplified IGA is also provided. Simulation results verify
that the proposed simplified IGA can obtain near optimal
channel estimation performance with much less computational
complexity compared with the existing algorithms.
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