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ABSTRACT
In recent years, a large number of CertificateLess Aggregate Sig-
nature (CLAS) schemes have been proposed to overcome both the
complexity of Public Key Infrastructure (PKI) certificate manage-
ment and the key escrow problem. These CLAS schemes have
mostly been developed for the Internet of Things (IoT). However,
the current CLAS schemes require the trusted authority to manage
all the devices in a network, whose number and turn-over are huge.
One way to alleviate devices’ management in IoT while improv-
ing access to resources is to consider a distributed architecture. In
this paper, we introduce OASIS, an Organizational CertificateLess
Aggregate SIgnature Scheme in IoT networks. OASIS is a hierarchi-
cal CLAS scheme that delegates the devices’ management workload
to multiple entities, while mitigating PKI certification and key es-
crow issues. We prove the security of OASIS in the random oracle
model. Furthermore, the experimental results show that OASIS is
well suitable for IoT distributed systems.
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1 INTRODUCTION
A distributed network has its components and data depend on mul-
tiple sources. Such a network configuration allows every entity to
communicate with one another without going through a centralized
point. In particular, a distributed network is a collection of multiple,
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independently run networks that are collectively managed. In this
paper, we designate those independent networks as sub-networks.

Over the last few years, distributed computing has been seen
as a beneficial technology for the Internet of Things (IoT) to im-
prove its security, scalability and efficiency. IoT connects devices to
networks through information sensing equipment. Devices collect
and exchange data to realize intelligent identification, positioning,
tracking, supervision and other functions. For instance, devices
share and process medical data in Healthcare Wireless Medical
Sensor Networks (HWMSNs) to improve patients and practitioners’
experiences [17].

1.1 Problem Statement
With the rapid development of IoT technologies, many practical
applications have been developed to serve individuals’ daily lives,
such as wireless medical care monitoring [20]. Distributed net-
works in IoT have brought a lot of convenience to companies and
individuals; however, they expand in size and complexity rapidly.
Consequently, maintaining their performance and availability has
become increasingly difficult. Challenges include security, data
consistency, sub-network latency, and resource allocation.

Let us illustrate those limitations with a use case: wireless sensor
networks, that have become an omnipresent application in health-
care [15]. This emerging technology enables healthcare entities
(e.g. patients, practitioners, hospitals) to improve and grow the
quality and efficacy of medical treatments and processes. HWMSNs
aim to offer real-time medical information transfer, reliable patient-
practitioner communication, patient mobility and energy-efficient
routing. Online, instant data sharing in healthcare improves the
efficiency and availability of medical care. Nevertheless, deploying
this recent technology at a large scale in distributed systems with-
out posing the security concerns impacts the integrity of highly
sensitive medical information [17]. The huge number of devices in a
medical distributed network may impede the security if they collect
and exchange altered data. Technical challenges encountered in
HWMSNs include the constrained resources of medical sensing
devices (e.g. storage, bandwidth, power consumption), impacting
the quality of medical service and the interoperability between de-
vices in the network [6]. Therefore, medical data privacy, and thus
patients’ safety, which are essential requirements of healthcare ap-
plications, must be considered carefully based on such constraints.

Security in distributed systems must consider communication
mechanisms among entities (e.g. entity authentication, and data in-
tegrity and confidentiality) and access control to system resources
[2]. As seen above, based on incomplete and/or altered medical
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information, a practitioner may make an unwise or erroneous diag-
nosis to a patient, putting her life in danger [29]. Digital signatures
are a mechanism to achieve data integrity, thus preventing and
detecting unauthorized modification of sensitive data.

A distributed system is deployed over the Internet, thus requires a
strong Public Key Infrastructure (PKI). In a PKI, entities’ public keys
are authenticated by certification authorities through certificates.
However, the management of certificates is complicated, especially
when a distributed network involves many devices with a high turn-
over. An extension of digital signature schemes uses the identity of
the entities to generate their keys. The advantage is that verifying
the signature of a signer only requires her identity, rather than
her public key certified by a certification authority. Nevertheless,
identity-based schemes suffer from the key escrow problem as keys
are generated by a unique trusted Key Generation Center (KGC).

Al-Riyami and Paterson [1] introduced CertificateLess Public Key
Cryptography (CL-PKC) to overcome heavy certificatemanagement
in PKI and key escrow problem in identity-based schemes. CL-PKC
uses identities of entities to create their key pairs (as in identity-
based schemes) while reducing the trust on the KGC by letting
the entities generate their own secret value necessary for signing
messages. In a CertificateLess Signature (CLS) scheme, the KGC is
responsible of registering the devices embedded in the network by
generating their partial signing keys. Each device also creates their
own secret value. The device needs both the partial signing key
and secret value to sign a message. Nevertheless, the CLS scheme
in [1] suits environments with few participating entities, where a
verifier can easily check signatures of signers one by one. Such an
assumption must not apply to distributed IoT networks, where the
number of devices is too high, and so the verifier’s workload.

One variant of CLS is CertificateLess Aggregate Signature (CLAS)
[3, 9]. The difference between CLS and CLAS comes when verifying
the signatures. In CLAS schemes, the signatures are aggregated, re-
sulting into one global signature. Therefore, the verifier only needs
to check one signature for the whole group of signers. Such a design
allows to carefully address the technical challenges encountered in
expanded distributed architectures. Nevertheless, there remains one
issue with the KGC dealing alone with a huge number of devices
connected to a network and managing all their keys directly.

1.2 Idea
We introduce OASIS, an Organizational CertificateLess Aggregate
SIgnature Scheme in distributed networks for IoT. To alleviate
KGC’s management workload, we distribute a network into smaller
sub-networks, such that each of them is managed by a gateway
connected to the KGC and devices are grouped into different sub-
networks. This creates a 2-level hierarchy as for an organizational
chart. The KGC (root) is now responsible of generating the secret
key of each sub-network’s gateway. Then, each gateway (intermedi-
ate level) generates the partial signing key of the devices connected
to it, using both its secret key and a secret value picked at random
by the gateway itself. The device (bottom level) signs a message us-
ing both the partial signing key and a secret value picked at random
by the device itself. Since both the gateway and devices have their
own secret values, key escrow issues are overcome at all levels in
the distributed network. As in traditional CLAS schemes, individual

signatures are aggregated. Verification of individual signatures and
aggregate signatures is a public process.

In addition to improve the PKI management, this organizational
design allows to better control unfortunate events at devices’ level.
Let us suppose that a corrupted device aims to infect the network.
With a traditional design, the whole network can be a victim of
the attack. However, with our hierarchical setting, only the sub-
networkwith the corrupted devicemay suffer from the attack, while
the rest of the network can remain as normal. Indeed, let’s the KGC
decide to discard the connection with the attacked sub-network
by, for example, revoking the corresponding gateway, while still
manages the remaining sub-networks that have not been subject
to the attack.

Our scheme extends Gritti et al.’s 2-level Identity-Based Aggre-
gate Signature (2-IBAS) scheme [11] by embedding techniques from
[1] to mitigate KGC’s workload and key escrow problem. 2-IBAS
was developed specifically for IoT by taking into account the huge
number of devices in networks, their heterogeneity in terms of
provenance and design, and their limited resources in terms of
communication, computation and storage. However, this scheme
suffers from the key escrow problem since devices must solely rely
on a trusted entity to obtain their signing keys. Instead, we enable
devices to generate their own secret value, that is used as an input
for signature generation in addition to their partial signing key
delivered by their gateway. Similarly, the gateway needs two secret
keys, one from the KGC and one from itself, to generate the partial
signing keys of devices connected to it. We prove that our scheme
is secure regarding Type-I and Type-II adversaries in the random
oracle model [1]. We also verify that our scheme is realistically
deployable in distributed networks such as for IoT.

1.3 Related Work
To eliminate the use of certificates and to prevent the key escrow
problem, Al-Riyami and Paterson [1] introduced the concept of
CL-PKC and proposed the first CLS scheme. Each entity owns two
secret keys: one is generated by the KGC and one is generated by
the entity itself. Both keys are needed to generate a signature on a
message. Nevertheless, Huang et al. [13] described an attacker that
can successfully forge a certificateless signature in Al-Riyami and
Paterson’s security model. The authors proposed a new scheme
to fix this problem. Boneh et al. [4] presented an Aggregate Sig-
nature (AS) scheme. In this scheme, the signatures, on different
messages and from various signers, are collected and aggregated,
resulting into one unique, global signature. The verifier only needs
to check the latter to validate all the signatures. Such a design
greatly reduces the workload at the verifier’s side. Subsequently,
multiple schemes have been proposed applicable to IoT environ-
ments, such as AS schemes [21], identity-based AS schemes [22],
CLS schemes [3, 13] and CLAS schemes [9, 12, 28]. Recently, other
CLAS proposals have been released [5, 7, 14, 16, 23, 24, 26, 27], with
the aim of finding a good trade-off between efficiency and security
based on the technical IoT constraints. Most of the papers suggested
pairing-free CLASs, since pairing operations are noticeably costly
and thus not suitable for resource-constrained devices. However,
We et al. [25] found out that Kumar et al.’s CLAS scheme [16] is
vulnerable to a honest-but-curious KGC. They then suggested a
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better version of the CLAS scheme. Moreover, Liu et al. [18] pointed
out that Gayathri et al.’s scheme [7] is not secure. They proposed
an improved pairing-free CLAS scheme. Nevertheless, all the afore-
mentioned CLAS solutions do not consider an organizational chart
in the network. Indeed, the KGC is directly responsible of all the
devices, by generating their partial signing key, rather than the
gateway of the sub-network in which devices are installed. When
a distributed IoT network comprises a huge number of devices,
such as an HWMSN, a 2-level hierarchy allows a better and easier
management of devices and their keys at the KGC’s side.

2 OASIS DEFINITION
2.1 Use Case
First, let’s imagine OASIS in Healthcare Wireless Medical Sensor
Networks (HWMSNs). The KGC is in charge of the network of a
hospital and of the sub-networks. Each sub-network is led by a gate-
way and contains multiple devices connected to the gateway. For
instance, the sub-network is a medical room equipped with sensing
devices that monitor various elements of the patient (e.g. heart
pulsation, glucose level). Each device collects raw data at regular
time intervals and submits it to the gateway. To guarantee that the
collected data has not been tampered in transit, the device signs the
data. The gateway collects the signature/data pairs and aggregates
the signatures to obtain one global signature representing the sub-
network. This allows to reduce the data traffic: instead of having
a huge number of devices’ individual signatures being broadcast
over the whole network, only few aggregate signatures from the
gateways of sub-networks are actually submitted to the KGC. A
verifier (public entity) checks the validity of each sub-network’s
signature. We depict our use case in Figure 1.
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Subnetwork 2

Network

VerifierHospital (KGC)

Gateway

Gateway
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Figure 1: [LEFT] A hospital (KGC) comprises 2 sub-networks
(gateways). A gateway registers its sensors and forwards the
aggregate signatures to the verifier. [RIGHT] Each device
in a sub-network generates a signature and forwards it to
its gateway. The gateway collects individual signatures and
aggregates them.

2.2 Overview
Let us describe the four entities involved in OASIS:

• The KGC is a single trusted authority per IoT distributed network.
The KGC identifies and registers the gateways in the network by
delivering to each of them a secret key through a secure communi-
cation channel.
• The gateway receives a secret key from the KGC and creates a
secret value by itself. From this secret value, a public key is gen-
erated and made available to the network. Using both the secret
key and secret value, it identifies devices that are installed in its
sub-network and delivers their partial signing keys. It also collects
the signatures of all the devices in its sub-network. It optionally
checks each signature individually. Once all validity checks pass,
the gateway aggregates the signatures, resulting into one global
signature.
• The device receives a partial signing key from the gateway it is
connected to. It also generates a secret value by itself. From this
secret value, a public key is generated and made available to the
network. It must uses both the partial signing key and secret value
to sign a message. The device is expected to create one signature
per round, by embedding a counter in its signature. The public key
is used to verify the signature.
• The verifier verifies the validity of the aggregate signature given
the messages of devices, the public keys of the devices, and the
public key of the gateway. If the validity check passes, then it
means that the data collected by its devices have not encountered
any modification in transit. The verification is made public.

2.3 Formal Definition
Let us describe the algorithms of OASIS:
• Setup(𝜆) → (𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘). On input a security parameter 𝜆, the
Setup algorithm, run by the KGC, outputs the public parameters
𝑝𝑎𝑟𝑎𝑚𝑠 and the master secret key𝑚𝑠𝑘 .
• KeyGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘, 𝐼𝑖 ) → 𝑠𝑘𝑖 . On inputs the public param-
eters 𝑝𝑎𝑟𝑎𝑚𝑠 , the master secret key𝑚𝑠𝑘 and the identity 𝐼𝑖 of the
gateway, the KeyGen𝑔𝑎𝑡 algorithm, run by the KGC, outputs the
secret key 𝑠𝑘𝑖 of the gateway. The key is sent to the gateway over
a secure channel.
• SecretGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠) → 𝛽𝑖 . On inputs the public parameters
𝑝𝑎𝑟𝑎𝑚𝑠 , the SecretGen𝑔𝑎𝑡 algorithm, run by the gateway, outputs
the secret value 𝛽𝑖 . The value is securely kept by the gateway.
• PubKeyGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝛽𝑖 ) → 𝑝𝑘𝑖 . On inputs the public param-
eters 𝑝𝑎𝑟𝑎𝑚𝑠 and the secret value 𝛽𝑖 of the gateway, the algorithm
PubKeyGen𝑔𝑎𝑡 , run by the gateway, outputs the public key 𝑝𝑘𝑖 .
• PartKeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘𝑖 , 𝛽𝑖 , 𝐼𝑖, 𝑗 ) → 𝑝𝑠𝑘𝑖, 𝑗 . On inputs the pub-
lic parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , the secret key 𝑠𝑘𝑖 and secret value 𝛽𝑖 of the
gateway, and the identity 𝐼𝑖, 𝑗 of the device connected to the gate-
way, the PartKeyGen𝑑𝑒𝑣 algorithm, run by the gateway, outputs
a partial signing key 𝑝𝑠𝑘𝑖, 𝑗 . The key is sent to the device over a
secure channel.
• SecretGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠) → 𝑥𝑖, 𝑗 . On inputs the public parameters
𝑝𝑎𝑟𝑎𝑚𝑠 , the SecretGen𝑑𝑒𝑣 algorithm, run by the device, outputs
the secret value 𝑥𝑖, 𝑗 . The value is securely kept by the device.
• KeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑠𝑘𝑖, 𝑗 , 𝑥𝑖, 𝑗 ) → 𝑠𝑘𝑖, 𝑗 . On inputs the public
parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , the partial signing key 𝑝𝑠𝑘𝑖, 𝑗 and secret value
𝑥𝑖, 𝑗 of the device, the KeyGen𝑑𝑒𝑣 algorithm, run by the device,
outputs the complete signing key 𝑠𝑘𝑖, 𝑗 .
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• PubKeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑥𝑖, 𝑗 , 𝑝𝑘𝑖 ) → 𝑝𝑘𝑖, 𝑗 . On inputs the public
parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , the secret value 𝑥𝑖, 𝑗 of the device and the public
key 𝑝𝑘𝑖 of the gateway, the PubKeyGen𝑑𝑒𝑣 algorithm, run by the
device, outputs the public key 𝑝𝑘𝑖, 𝑗 .
• Sign(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘𝑖, 𝑗 ,𝑚 𝑗 , 𝑐𝑛𝑡) → 𝜎𝑖, 𝑗 . On inputs the public parame-
ters 𝑝𝑎𝑟𝑎𝑚𝑠 , the signing key 𝑠𝑘𝑖, 𝑗 of the device, a message𝑚 𝑗 and
a fresh counter 𝑐𝑛𝑡 , the Sign algorithm, run by the device, outputs
a signature 𝜎𝑖, 𝑗 on message𝑚 𝑗 .
• Aggregate(𝑝𝑎𝑟𝑎𝑚𝑠, {𝜎𝑖, 𝑗 } 𝑗∈[1,𝑙 ] ) → 𝜎𝑖 . On inputs the public pa-
rameters 𝑝𝑎𝑟𝑎𝑚𝑠 , the set {𝜎𝑖, 𝑗 } 𝑗∈[1,𝑙 ] of all signatures of devices
connected to the gateway, the Aggregate algorithm is run by the
gateway as follows.
Optionally, the gateway first runs the algorithm Verify to check
that each signature 𝜎𝑖, 𝑗 is valid given the message𝑚 𝑗 . If at least
one signature is not valid, then the gateway aborts. Otherwise, it
proceeds by aggregating all the signatures in {𝜎𝑖, 𝑗 } 𝑗∈[1,𝑙 ] to obtain
the aggregate signature 𝜎𝑖 .
• Verify(𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝑖 , 𝐼𝑖, 𝑗 , 𝜎𝑖, 𝑗 ,𝑚 𝑗 , 𝑝𝑘𝑖, 𝑗 ) → {"Accept", "Reject"}. On
inputs the public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 , the identity 𝐼𝑖 of the gateway,
the identity 𝐼𝑖, 𝑗 of the device, the signature 𝜎𝑖, 𝑗 , the message𝑚 𝑗

and the public key 𝑝𝑘𝑖, 𝑗 of the device, the algorithm Verify, run by
the gateway before aggregation, outputs either “Accept”, i.e. 𝜎𝑖, 𝑗
is a valid signature for the message𝑚 𝑗 , or “Reject”, i.e. 𝜎𝑖, 𝑗 is not
valid.
• VerifyAgg(𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝑖 , {𝐼𝑖, 𝑗 } 𝑗∈[1,𝑙 ] , 𝜎𝑖 , {𝑚 𝑗 } 𝑗∈[1,𝑙 ] , {𝑝𝑘𝑖, 𝑗 } 𝑗∈[1,𝑙 ] )
→ {"Accept", "Reject"}. On inputs the public parameters 𝑝𝑎𝑟𝑎𝑚𝑠 ,
the identity 𝐼𝑖 of the gateway, the set of identities {𝐼𝑖, 𝑗 } 𝑗∈[1,𝑙 ] of the
devices connected to the gateway, the aggregate signature𝜎𝑖 , the set
of messages {𝑚 𝑗 } 𝑗∈[1,𝑙 ] and the set of public keys {𝑝𝑘𝑖, 𝑗 } 𝑗∈[1,𝑙 ] of
the devices connected to the gateway, the algorithm VerifyAgg, run
by the verifier, outputs either “Accept”, i.e. 𝜎𝑖 is a valid aggregate
signature for all message {𝑚 𝑗 } 𝑗∈[1,𝑙 ] , or “Reject”, i.e. 𝜎𝑖 is not valid.

We depict the flow chart of our proposed solution in Table 1.

2.4 Security Models
Correctness. Let us be given (𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘) ← Setup(𝜆), the se-
cret key 𝑠𝑘𝑖 ← KeyGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘, 𝐼𝑖 ), the secret value 𝛽𝑖 ←
SecretGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠) and the public key 𝑝𝑘𝑖 ← PubKeyGen𝑔𝑎𝑡
(𝑝𝑎𝑟𝑎𝑚𝑠, 𝛽𝑖 ) of the gatewaywith identity 𝐼𝑖 , the partial keys 𝑝𝑠𝑘𝑖, 𝑗 ←
PartKeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘𝑖 , 𝛽𝑖 , 𝐼𝑖, 𝑗 ), the secret values𝑥𝑖, 𝑗 ← Secret−
Gen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠), the signing keys 𝑠𝑘𝑖, 𝑗 ← KeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠,

𝑝𝑠𝑘𝑖, 𝑗 , 𝑥𝑖, 𝑗 ) and the public keys 𝑝𝑘𝑖, 𝑗 ← PubKeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑥𝑖, 𝑗 ,

𝑝𝑘𝑖 ) of the devices with identity 𝐼𝑖, 𝑗 for 𝑗 ∈ [1, 𝑙], connected to the
gateway with identity 𝐼𝑖 . Let 𝜎𝑖, 𝑗 ← Sign(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘𝑖, 𝑗 ,𝑚 𝑗 , 𝑐𝑛𝑡) be
the signatures of the devices based on their respective messages𝑚 𝑗

and the fresh counter 𝑐𝑛𝑡 , for 𝑗 ∈ [1, 𝑙]. Let𝜎𝑖 ← Aggregate(𝑝𝑎𝑟𝑎𝑚𝑠,

{𝜎𝑖, 𝑗 } 𝑗∈[1,𝑙 ] ) be the signature obtained from aggregating the signa-
tures𝜎𝑖, 𝑗 for 𝑗 ∈ [1, 𝑙]. For each 𝑗 ∈ [1, 𝑙], the algorithmVerify(𝑝𝑎𝑟𝑎𝑚𝑠,

𝐼𝑖 , 𝐼𝑖, 𝑗 , 𝜎𝑖, 𝑗 ,𝑚 𝑗 , 𝑝𝑘𝑖, 𝑗 ) outputs “Accept”.Moreover, the algorithmVerify−
Agg(𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝑖 , {𝐼𝑖, 𝑗 } 𝑗∈[1,𝑙 ] , 𝜎𝑖 , {𝑚 𝑗 } 𝑗∈[1,𝑙 ] , {𝑝𝑘𝑖, 𝑗 } 𝑗∈[1,𝑙 ] ) outputs
“Accept”.

OASIS also guarantees that individual and aggregate signatures
are existentially unforgeable. We combine CLAS and 2-IBAS secu-
rity models [1, 11] to embed the hierarchical structure of OASIS
into our security models. This means that at least one entity is not

KGC Gateway Device Verifier
Setup

KeyGen𝑔𝑎𝑡
−−−−−−−−−−−−−−−→

SecretGen𝑔𝑎𝑡
PubKeyGen𝑔𝑎𝑡

PartKeyGen𝑑𝑒𝑣−−−−−−−−−−−−−−−→

SecretGen𝑑𝑒𝑣
KeyGen𝑑𝑒𝑣

PubKeyGen𝑑𝑒𝑣
Sign

←−−−−−−−−−−−−−−−

Verify

Aggregate
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

VerifyAgg

Table 1: Flow chart of OASIS. Arrows link a source entity
which runs the algorithm with the appropriate inputs with a
destination entity which receives the output.

corrupted at each hierarchical level, i.e. one gateway and one device
respectively. We allow adversaries to extract secret/partial signing
keys for identities of their choice. We define Game I and Game II for
the adversaries A1 and A2 respectively. The honest-but-curious
adversary A1 cannot access the master secret key 𝑚𝑠𝑘 but can
replace public keys of any entity (gateway and device) with a value
of its choice. The malicious adversary A2 can access the master
secret key𝑚𝑠𝑘 (held by the KGC) but cannot replace any public
keys.

Game I. Game I between the challenger C1 and adversary A1 is
defined as follows.

Setup:On input the security parameter 𝜆, the challenger C1 runs
the Setup algorithm to get the master secret key𝑚𝑠𝑘 and the public
parameters 𝑝𝑎𝑟𝑎𝑚𝑠 . C1 sends 𝑝𝑎𝑟𝑎𝑚𝑠 to A1 and keeps𝑚𝑠𝑘 .

Queries: The adversary A1 performs a polynomially bounded
number of queries.
• Secret/partial signing key queries: A1 requests the secret/partial
signing key of an entity with identity 𝐼 (either a gateway or a device).
C1 runs the appropriate key generation algorithm and sends the
secret/partial signing key to A1.
• Public key queries: A1 requests the public key of an entity with
identity 𝐼 (either a gateway or a device). C1 runs the appropriate
public key generation algorithm and sends the public key to A1.
• Secret queries: A1 requests the secret of an entity with identity
𝐼 (either a gateway or a device). C1 runs the appropriate secret
generation algorithm and sends the secret to A1.
• Public key replacement queries: A1 chooses a new public key 𝑝𝑘′
for an entity with identity 𝐼 and C1 records such a replacement.
• Signature queries: A1 requests the signature on a message𝑚. C1
runs the appropriate signature generation algorithm and sends the
signature to A1.
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Forgery: A1 outputs a set of 𝑙 devices with identity {𝐼∗
𝑖, 𝑗
}, con-

nected to the same gateway with identity 𝐼∗
𝑖
, with the set of their

corresponding public keys {𝑝𝑘∗
𝑖, 𝑗
}, a set of messages {𝑚∗

𝑗
}, and an

aggregate signature 𝜎∗
𝑖
.

The adversary A1 wins the game if:
• 𝜎∗

𝑖
is a valid aggregate signature.

• Secret/partial signing key queries and secret queries have never
been made for at least one identity in the set {𝐼∗

𝑖, 𝑗
} and for 𝐼∗

𝑖
(i.e.

there is at least one uncorrupted identity for each entity type).
W.l.o.g., let us assume that such identities are 𝐼∗

𝑖
and 𝐼∗

𝑖,1 (i.e. 𝑗 = 1).
• Signature queries have never been made on (𝐼∗

𝑖
, 𝐼∗
𝑖,1,𝑚

∗
1).

Game II. Game II between the challenger C2 and adversary A2 is
defined as follows.

Setup:On input the security parameter 𝜆, the challenger C2 runs
the Setup algorithm to get the master secret key𝑚𝑠𝑘 and the public
parameters 𝑝𝑎𝑟𝑎𝑚𝑠 . C2 sends 𝑝𝑎𝑟𝑎𝑚𝑠 and𝑚𝑠𝑘 to A2.

Queries: The adversary A2 performs a polynomially bounded
number of queries.
• Partial signing key queries: A2 requests the partial signing key
of an entity with identity 𝐼 (only a device as the adversary can
generate itself the secret key of the gateway by using the master
secret key𝑚𝑠𝑘). C2 runs the appropriate key generation algorithm
and sends the partial signing key to A2.
• Public key queries: A2 requests the public key of an entity with
identity 𝐼 (either a gateway or a device). C2 runs the appropriate
public key generation algorithm and sends the public key to A2.
• Secret queries: A2 requests the secret of an entity with identity
𝐼 (either a gateway or a device). C2 runs the appropriate secret
generation algorithm and sends the secret to A2.
• Signature queries: A2 requests the signature on a message𝑚. C2
runs the appropriate signature generation algorithm and sends the
signature to A2.

Forgery: A2 outputs a set of 𝑙 devices with identity {𝐼∗
𝑖, 𝑗
}, con-

nected to the same gateway with identity 𝐼∗
𝑖
, with the set of their

corresponding public keys {𝑝𝑘∗
𝑖, 𝑗
}, a set of messages {𝑚∗

𝑗
}, and an

aggregate signature 𝜎∗
𝑖
.

The adversary A2 wins the game if:
• 𝜎∗

𝑖
is a valid aggregate signature.

• Partial signing key queries have never been made for at least
one identity in the set {𝐼∗

𝑖, 𝑗
} (i.e. there is at least one uncorrupted

identity for devices). Secret queries have never been made for at
least one identity in the set {𝐼∗

𝑖, 𝑗
} and for 𝐼∗

𝑖
(i.e. there is at least one

uncorrupted identity for each entity type). W.l.o.g., let us assume
that such identities are 𝐼∗

𝑖
and 𝐼∗

𝑖,1 (i.e. 𝑗 = 1).
• Signature queries have never been made on (𝐼∗

𝑖
, 𝐼∗
𝑖,1,𝑚

∗
1).

2.5 Going further
We choose to separate KeyGen𝑔𝑎𝑡 from SecretGen𝑔𝑎𝑡 for the gate-
way, and PartKeyGen𝑑𝑒𝑣 from SecretGen𝑑𝑒𝑣 and KeyGen𝑑𝑒𝑣 for
the device. Doing so, we explicitly define the steps taken by the
KGC (resp. the gateway) from the gateway (resp. the device). Even
if all those algorithms aim for generating keys, they are run by
different entities. Separating algorithms allows to emphasize such
differences.

We assume that devices can sign at the same time or sequentially.
We use indexes to simplify the reading of the scheme and to iden-
tify the devices and their signatures, but do not impose any strict
order among devices. When such an order is not enforced, then a
time window is determined for each round, where signatures are
generated and collected as long as the round is not over.

Let us now suppose that a device missed a round by not sending
its signature on time. Consequently, the algorithms Aggregate and
VerifyAgg are simply run without including any inputs from this
missing device. Nevertheless, tracking missing devices may be ben-
eficial if happening at multiple rounds. Extra steps may be taken to
ensure that those devices are still functional. We let such features
as future work.

3 OASIS INSTANTIATION
The 2-IBAS scheme [11] extends the 2-level Identity-Based Multi-
Signature scheme [10] by using the Gentry-Ramzan technique [8] to
allow devices to sign personal messages that are all distinct instead
of signing pre-selected common messages. Informally, entities first
sign a common dummy message, that is the round counter 𝑐𝑛𝑡 , as
in [10], and then embed their personal message into this signatures.

Following techniques from [1], OASIS alleviates the key escrow
problem at the gateway level by letting the second element 𝛽 of the
KGC’s master secret key𝑚𝑠𝑘 in Gritti et al.’s scheme [11] be the
gateway’s secret value 𝛽𝑖 . This implies that the element ℎ2 of the
public parameters in [11] is actually the gateway’s public key 𝑝𝑘𝑖 .
OASIS prevents the key escrow problem at devices’ level by letting
each device complete its partial signing key 𝑝𝑠𝑘𝑖, 𝑗 generated by
the KGC with an additional random secret value 𝑥𝑖, 𝑗 to obtain the
secret key 𝑠𝑘𝑖, 𝑗 , and compute the corresponding public key from
that secret value.

3.1 Background
Bilinear Maps. Let G and G𝑇 be two multiplicative cyclic groups
of prime order 𝑝 according to the security parameter 𝜆. Let 𝑔 be a
generator of G. Let 𝑒 : G × G → G𝑇 be a bilinear map such that:
(1) Bilinearity: ∀𝑢, 𝑣 ∈ G,∀𝑎, 𝑏 ∈ Z𝑝 , 𝑒 (𝑢𝑎, 𝑣𝑏 ) = 𝑒 (𝑢, 𝑣)𝑎𝑏 ; (2) Non-
degeneracy: 𝑒 (𝑔,𝑔) ≠ 1G𝑇 ; (3) Symmetry: ∀𝑎, 𝑏 ∈ Z𝑝 , 𝑒 (𝑔𝑎, 𝑔𝑏 ) =
𝑒 (𝑔,𝑔)𝑎𝑏 = 𝑒 (𝑔𝑏 , 𝑔𝑎). Finally, G is a bilinear group if the group
operation in G × G and the bilinear map 𝑒 are both efficiently
computable.

Computational Diffie-Hellman Assumption. We define the Computa-
tional Diffie-Hellman (CDH) problem as follows. LetG be a group of
prime order 𝑝 according to the security parameter 𝜆. Let 𝑎, 𝑏 ∈ Z𝑝
and 𝑔 be a generator of G. The problem is: Given a CDH tuple
(𝑔,𝑔𝑎, 𝑔𝑏 ), it remains hard to compute 𝑔𝑎𝑏 ∈ G. The CDH assump-
tion holds if no probabilistic polynomial-time adversary A has
non-negligible advantage in solving the CDH problem.

3.2 Construction
To simplify the presentation of our construction, we only consider
the case where 𝑙 devices are connected to one gateway.
• Setup(𝜆) → (𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘). Given the security parameter 𝜆, let
G,G𝑇 be two cyclic multiplicative groups of prime order 𝑝 . Let 𝑔 be
a generator of G and 𝑒 : G × G→ G𝑇 be a bilinear map. The KGC
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randomly chooses 𝛼 ∈ Z∗𝑝 and compute ℎ = 𝑔𝛼 . Let 𝐻1, 𝐻2, 𝐻3 :
{0, 1}∗ → G and 𝐻4 : {0, 1}∗ → Z∗𝑝 be four cryptographic hash
functions seen as random oracles. Finally, the KGC sets the public
parameters as 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝑝,G,G𝑇 , 𝑒, 𝑔, ℎ, 𝐻1, 𝐻2, 𝐻3, 𝐻4) and the
master secret key as𝑚𝑠𝑘 = 𝛼 .
• KeyGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠,𝑚𝑠𝑘, 𝐼𝑖 ) → 𝑠𝑘𝑖 . The KGC computes 𝑔𝑖 =

𝐻1 (𝐼𝑖 ) and sets the secret key 𝑠𝑘𝑖 of the gateway with identity 𝐼𝑖 as
𝑠𝑘𝑖 = 𝑔𝛼

𝑖
.

• SecretGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠) → 𝛽𝑖 . The gateway picks at random 𝛽𝑖 ∈
Z∗𝑝 and sets it as its secret value.
• PubKeyGen𝑔𝑎𝑡 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝛽𝑖 ) → 𝑝𝑘𝑖 . The gateway computes 𝑝𝑘𝑖 =
𝑔𝛽𝑖 and sets it as its public key.
• PartKeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘𝑖 , 𝛽𝑖 , 𝐼𝑖, 𝑗 ) → 𝑝𝑠𝑘𝑖, 𝑗 . Given the secret
key 𝑠𝑘𝑖 and secret value 𝛽𝑖 , the gateway generates the partial sign-
ing key of the device with identity 𝐼𝑖, 𝑗 as follows. It first computes
𝑔 𝑗,0 = 𝐻2 (𝐼𝑖, 𝑗 , 0), 𝑔 𝑗,1 = 𝐻2 (𝐼𝑖, 𝑗 , 1), 𝐷 (1)𝑖, 𝑗

= 𝑠𝑘𝑖 · 𝑔𝛽𝑖𝑗,0 and 𝐷
(2)
𝑖, 𝑗

=

𝑠𝑘𝑖 ·𝑔𝛽𝑖𝑗,1. It then sets the partial signing key as 𝑝𝑠𝑘𝑖, 𝑗 = (𝐷 (1)𝑖, 𝑗
, 𝐷
(2)
𝑖, 𝑗
).

• SecretGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠) → 𝑥𝑖, 𝑗 . The device picks at random 𝑥𝑖, 𝑗 ∈
Z∗𝑝 and sets it as its secret value.
• KeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑝𝑠𝑘𝑖, 𝑗 , 𝑥𝑖, 𝑗 ) → 𝑠𝑘𝑖, 𝑗 . Given its partial sign-
ing key 𝑝𝑠𝑘𝑖, 𝑗 and secret value 𝑥𝑖, 𝑗 , the device computes 𝐸 (1)

𝑖, 𝑗
=

(𝐷 (1)
𝑖, 𝑗
)𝑥𝑖,𝑗 and 𝐸 (2)

𝑖, 𝑗
= (𝐷 (2)

𝑖, 𝑗
)𝑥𝑖,𝑗 and sets the signing key as 𝑠𝑘𝑖, 𝑗 =

(𝐸 (1)
𝑖, 𝑗

, 𝐸
(2)
𝑖, 𝑗
).

• PubKeyGen𝑑𝑒𝑣 (𝑝𝑎𝑟𝑎𝑚𝑠, 𝑥𝑖, 𝑗 , 𝑝𝑘𝑖 ) → 𝑝𝑘𝑖, 𝑗 . Given its secret value
𝑥𝑖, 𝑗 and the gateway’s public key 𝑝𝑘𝑖 , the device computes 𝐹 (1)

𝑖, 𝑗
=

ℎ𝑥𝑖,𝑗 and 𝐹 (2)
𝑖, 𝑗

= 𝑝𝑘
𝑥𝑖,𝑗
𝑖

and sets the public key as 𝑝𝑘𝑖, 𝑗 = (𝐹 (1)𝑖, 𝑗
, 𝐹
(2)
𝑖, 𝑗
).

• Sign(𝑝𝑎𝑟𝑎𝑚𝑠, 𝑠𝑘𝑖, 𝑗 ,𝑚 𝑗 , 𝑐𝑛𝑡) → 𝜎𝑖, 𝑗 . Let the round counter 𝑐𝑛𝑡 be
a fresh string for that round. The device parses its signing key 𝑠𝑘𝑖, 𝑗
as 𝐸 (1)

𝑖, 𝑗
and 𝐸 (2)

𝑖, 𝑗
. It then randomly chooses 𝑡 𝑗 ∈ Z∗𝑝 and computes

𝑔𝑐𝑛𝑡 = 𝐻3 (𝑐𝑛𝑡), 𝑎 𝑗 = 𝐻4 (𝑚 𝑗 , 𝐼𝑖, 𝑗 , 𝑐𝑛𝑡) and the elements 𝐵 (1)
𝑖, 𝑗

=

𝑔
𝑡 𝑗
𝑐𝑛𝑡 · 𝐸

(1)
𝑖, 𝑗
· (𝐸 (2)

𝑖, 𝑗
)𝑎 𝑗 and 𝐵 (2)

𝑖, 𝑗
= 𝑔𝑡 𝑗 . The device sets the signature

as 𝜎𝑖, 𝑗 = (𝐵 (1)𝑖, 𝑗
, 𝐵
(2)
𝑖, 𝑗

, 𝑐𝑛𝑡).
•Aggregate(𝑝𝑎𝑟𝑎𝑚𝑠, {𝜎𝑖, 𝑗 } 𝑗∈[1,𝑙 ] ) → 𝜎𝑖 . Given the (optionally ver-
ified) signatures 𝜎𝑖, 𝑗 = (𝐵 (1)𝑖, 𝑗

, 𝐵
(2)
𝑖, 𝑗

, 𝑐𝑛𝑡), for 𝑗 ∈ [1, 𝑙], with the same
counter 𝑐𝑛𝑡 from the 𝑙 devices connected to the gateway, the latter
generates the aggregated elements 𝑆 (1)

𝑖
=
∏𝑙

𝑗=1 𝐵
(1)
𝑖, 𝑗

and 𝑆
(2)
𝑖

=∏𝑙
𝑗=1 𝐵

(2)
𝑖, 𝑗

. It sets the aggregate signature as 𝜎𝑖 = (𝑆 (1)𝑖
, 𝑆
(2)
𝑖

, 𝑐𝑛𝑡).
•Verify(𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝑖 , 𝐼𝑖, 𝑗 , 𝜎𝑖, 𝑗 ,𝑚 𝑗 , 𝑝𝑘𝑖, 𝑗 ) → {"Accept", "Reject"}. Given
the identity 𝐼𝑖 of the gateway and the identity 𝐼𝑖, 𝑗 of a device
connected to the gateway, the device’s personal message𝑚 𝑗 , and
the corresponding signature 𝜎𝑖, 𝑗 = (𝐵 (1)

𝑖, 𝑗
, 𝐵
(2)
𝑖, 𝑗

, 𝑐𝑛𝑡), the gateway
checks whether the following equation holds:

𝑒 (𝐵 (1)
𝑖, 𝑗

, 𝑔) = 𝑒 (𝐻3 (𝑐𝑛𝑡), 𝐵 (2)𝑖, 𝑗
) · 𝑒 (𝐻1 (𝐼𝑖 ), (𝐹 (1)𝑖, 𝑗

)1+𝑎 𝑗 )

·𝑒 (𝐻2 (𝐼𝑖, 𝑗 , 0) · 𝐻2 (𝐼𝑖, 𝑗 , 1)𝑎 𝑗 , 𝐹
(2)
𝑖, 𝑗
)

where 𝑎 𝑗 = 𝐻4 (𝑚 𝑗 , 𝐼𝑖, 𝑗 , 𝑐𝑛𝑡). If the above equation holds, then the
gateway outputs "Accept"; otherwise, it outputs "Reject".
•VerifyAgg(𝑝𝑎𝑟𝑎𝑚𝑠, 𝐼𝑖 , {𝐼𝑖, 𝑗 } 𝑗∈[1,𝑙 ] , 𝜎𝑖, 𝑗 , {𝑚 𝑗 } 𝑗∈[1,𝑙 ] , {𝑝𝑘𝑖, 𝑗 } 𝑗∈[1,𝑙 ] )
→ {"Accept", "Reject"}. Given the identity 𝐼𝑖 of the gateway and

the set of identities {𝐼𝑖, 𝑗 } 𝑗∈[1,𝑙 ] of the 𝑙 devices connected to the
gateway, the set of their messages {𝑚 𝑗 } 𝑗∈[1,𝑙 ] , and the correspond-
ing aggregate signature 𝜎𝑖 = (𝑆 (1)

𝑖
, 𝑆
(2)
𝑖

, 𝑐𝑛𝑡), the verifier checks
whether the following equation holds:

𝑒 (𝑆 (1)
𝑖

, 𝑔) = 𝑒 (𝐻3 (𝑐𝑛𝑡), 𝑆 (2)𝑖
) ·

𝑙∏
𝑗=1
(𝑒 (𝐻1 (𝐼𝑖 ), (𝐹 (1)𝑖, 𝑗

)1+𝑎 𝑗 )

·𝑒 (𝐻2 (𝐼𝑖, 𝑗 , 0) · 𝐻2 (𝐼𝑖, 𝑗 , 1)𝑎 𝑗 , 𝐹
(2)
𝑖, 𝑗
))

where 𝑎 𝑗 = 𝐻4 (𝑚 𝑗 , 𝐼𝑖, 𝑗 , 𝑐𝑛𝑡). If the above equation holds, then the
verifier outputs "Accept"; otherwise, it outputs "Reject".

3.3 Security Proofs
Correctness. Due to the page limit, we only show that the equation
from VerifyAgg holds. Showing that the equation from Verify holds
works similarly. Let 𝑙 be the number of devices connected to the
gateway. Let 𝐼𝑖 be the identity of the gateway and {𝐼𝑖, 𝑗 } 𝑗∈[1,𝑙 ] be
the set of identities of the devices. Let 𝜎𝑖 = (𝑆 (1)

𝑖
, 𝑆
(2)
𝑖

, 𝑐𝑛𝑡) be
the aggregate signature and {𝑚 𝑗 } 𝑗∈[1,𝑙 ] be the set of the devices’
messages. Let 𝑎 𝑗 = 𝐻4 (𝑚 𝑗 , 𝐼𝑖, 𝑗 , 𝑐𝑛𝑡) with 𝑐𝑛𝑡 being the fresh counter
for that round of signatures.

𝑒 (𝑆 (1)
𝑖

, 𝑔) = 𝑒 (
𝑙∏
𝑗=1

𝐵
(1)
𝑖, 𝑗

, 𝑔)

= 𝑒 (𝑔
∑𝑙

𝑗=1 𝑡 𝑗
𝑐𝑛𝑡 , 𝑔) · 𝑒 (𝑔𝛼

∑𝑙
𝑗=1 𝑥𝑖,𝑗

𝑖
, 𝑔) · 𝑒 (

𝑙∏
𝑗=1

𝑔
𝛽𝑖𝑥𝑖,𝑗
𝑗,0 , 𝑔)

·𝑒 (𝑔𝛼
∑𝑙

𝑗=1 𝑎 𝑗𝑥𝑖,𝑗

𝑖
, 𝑔) · 𝑒 (

𝑙∏
𝑗=1

𝑔
𝛽𝑖𝑎 𝑗𝑥𝑖,𝑗
𝑗,1 , 𝑔)

= 𝑒 (𝑔𝑐𝑛𝑡 , 𝑆 (2)𝑖
) · 𝑒 (𝑔𝑖 ,

𝑙∏
𝑗=1

ℎ𝑥𝑖,𝑗 )

·𝑒 (𝑔𝑖 ,
𝑙∏
𝑗=1
(ℎ𝑥𝑖,𝑗 )𝑎 𝑗 ) ·

𝑙∏
𝑗=1

(
𝑒 (𝑔 𝑗,0, 𝑝𝑘

𝑥𝑖,𝑗
𝑖
) · 𝑒 (𝑔𝑎 𝑗

𝑗,1, 𝑝𝑘
𝑥𝑖,𝑗
𝑖
)
)

= 𝑒 (𝐻3 (𝑐𝑛𝑡), 𝑆 (2)𝑖
) ·

𝑙∏
𝑗=1
(𝑒 (𝐻1 (𝐼𝑖 ), (𝐹 (1)𝑖, 𝑗

)1+𝑎 𝑗 )

·𝑒 (𝐻2 (𝐼𝑖, 𝑗 , 0) · 𝐻2 (𝐼𝑖, 𝑗 , 1)𝑎 𝑗 , 𝐹
(2)
𝑖, 𝑗
))

Game I: Overview of the Security Proof. Here, we only give an
overview of the proof of Game I. We show that OASIS is secure
against Type-I adversaries in the random oracle model, as long as
the CDH problem is hard. We let the reader refer to [1, 11] for more
details. The Type-I adversary A1 wishes to break the security of
OASIS in the random oracle model. The challenger C1 attempts
to solve the CDH problem by interacting with A1. A CDH tuple
(𝑔,𝑔𝑎, 𝑔𝑏 ) is given to C1. The hash functions 𝐻1, 𝐻2, 𝐻3 and 𝐻4 are
controlled by C1, by managing their associated lists. W.l.o.g., we
assume that there is only one sub-network, hence only one gateway
with identity 𝐼∗

𝑖
, such that 𝑙 devices are connected to it. We reduce

the security of OASIS to that of 2-IBAS [11] in which the adversary
can modify the public key presented by C1. Such a reduction uses a
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specific knowledge extractor KE algorithm to manage signature
queries. The knowledge extraction algorithm KE has access to
the lists of 𝐻3 and 𝐻4. Then, we reduce to that of the difficulty in
solving the CDH problem.

Game II: Sketch of the Security Proof. We only sketch the proof of
Game II. We show that OASIS is secure against Type-II adversaries
in the random oracle model, as long as the CDH problem is hard.
We provide some intuition on a challenger C2 being successful in
solving the CDHproblemwhile interactingwith a Type-II adversary
A2. We let the reader refer to [8, 10, 11] for more details. The Type-II
adversary A2 wishes to break the security of OASIS in the random
oracle model. The challenger C2 attempts to solve the CDH problem
by interacting withA2. A CDH tuple (𝑔,𝑔𝑎, 𝑔𝑏 ) is given to C2. The
hash functions 𝐻1, 𝐻2, 𝐻3 and 𝐻4 are controlled by C2. W.l.o.g., we
assume that there is only one sub-network, hence only one gateway
with identity 𝐼∗

𝑖
, such that 𝑙 devices are connected to it. The idea of

the proof is to let the public key of the gateway with identity 𝐼∗
𝑖
be

𝑝𝑘∗
𝑖
= 𝑔𝑏 . Implicitly, 𝛽∗

𝑖
is equal to𝑏. Therefore, we let the adversary

A2 submit public key and secret queries on identities of devices
connected to the gateway with identity 𝐼∗

𝑖
. We now describe how

the challenger C2 replies to queries involving hash computations.
𝐻1 queries: To answer, C2 randomly chooses an element 𝜈𝑖 in Z𝑝
and computes 𝑔𝑖 = 𝑔𝜈𝑖 . We recall that the adversary A2 has access
to the master secret key𝑚𝑠𝑘 = 𝛼 , and thus can compute 𝑔𝛼

𝑖
.

𝐻2 queries: To answer, C2 picks at random 𝜇 𝑗,0, 𝜇 𝑗,1 ∈ Z𝑝 and

defines 𝑔𝛽
∗
𝑖

𝑗,0 as 𝑔
𝑏𝜇 𝑗,0 and 𝑔𝛽

∗
𝑖

𝑗,1 as 𝑔
𝑏𝜇 𝑗,1 . Nevertheless, C2 sometimes

computes 𝑔 𝑗,0 = 𝑔𝜇 𝑗,0 · (𝑔𝑎)𝜇
′
𝑗,0 and 𝑔 𝑗,1 = 𝑔𝜇 𝑗,1 · (𝑔𝑎)𝜇

′
𝑗,1 for some

elements 𝜇′
𝑗,0, 𝜇

′
𝑗,1 ∈ Z𝑝 . Thus, in such a situation, C2 is not able to

answer to a partial signing key generation query on identity 𝐼𝑖, 𝑗 .
However, in the case of this identity 𝐼𝑖, 𝑗 being the target choice of
A2, the forgery of the latter could help C2 solve the CDH problem.
𝐻3 queries: To answer, C2 computes 𝑔𝑐𝑛𝑡 = (𝑔𝑎)𝑑𝑐𝑛𝑡 for a known
random exponent 𝑑𝑐𝑛𝑡 ∈ Z𝑝 most of the time. Nevertheless, it some-
times computes 𝑔𝑐𝑛𝑡 = 𝑔𝑐𝑐𝑛𝑡 for another known random exponent
𝑐𝑐𝑛𝑡 ∈ Z𝑝 .
𝐻4 queries: To answer, B randomly chooses an element 𝜉 𝑗 and
computes 𝑎 𝑗 = 𝑔𝜉 𝑗 if it knows 𝑑𝑐𝑛𝑡 . Otherwise, it calculates 𝑎 𝑗 = 𝑔𝜉

such that the exponent 𝜉 is a unique value that helps cancel out the
multiple of 𝑔𝑎𝑏 in 𝐵

(1)
𝑖, 𝑗

.
C2 is able to reply to a signature query on identity 𝐼𝑖, 𝑗 , counter 𝑐𝑛𝑡

and message𝑚 𝑗 by controlling the 𝐻2, 𝐻3 and 𝐻4 oracles, although
it cannot get the signing key linked to the identity 𝐼𝑖, 𝑗 . There are two
cases: (1) C2 knows 𝑑𝑐𝑛𝑡 , from 𝑔𝑐𝑛𝑡 = (𝑔𝑎)𝑑𝑐𝑛𝑡 . Then, C2 computes
the value of the exponent 𝑡 ′ such that the value 𝑔𝑏𝑡

′
𝑐𝑛𝑡 deletes the

multiple of 𝑔𝑎𝑏 that comes in the other terms of the signing element
𝐵
(1)
𝑖, 𝑗

. It finally sets 𝐵 (2)
𝑖, 𝑗

= (𝑔𝑏 )𝑡 ′ ; (2) C2 does not know 𝑑𝑐𝑛𝑡 , from
𝑔𝑐𝑛𝑡 = (𝑔𝑎)𝑑𝑐𝑛𝑡 . However, it can sometimes fix the exponent 𝑎 𝑗 =
𝐻4 (𝑚 𝑗 , 𝐼𝑖, 𝑗 , 𝑐𝑛𝑡) to be the unique value in Z∗𝑝 such that the multiples

of 𝑔𝑎𝑏 cancel out in the signing element 𝐵 (1)
𝑖, 𝑗

. Hence, C2 is able to
generate a valid signature. If the unique value 𝑎 𝑗 is divulged for the
identity 𝐼𝑖, 𝑗 , then C2 is allowed to re-use this trick later. Suppose
now that C2 does not abort, A2 gives a forgery on identity 𝐼∗

𝑖, 𝑗
,

message𝑚∗
𝑗
and counter 𝑐𝑛𝑡 for which the exponents 𝜇 𝑗,0 and 𝜇 𝑗,1,

from𝑔
𝛽∗𝑖
𝑗,0 = 𝑔𝑏𝜇 𝑗,0 and𝑔𝛽

∗
𝑖

𝑗,1 = 𝑔𝑏𝜇 𝑗,1 , are not known, and the exponent
𝑎 𝑗 is not determined regarding the aforementioned trick. Then, C2
obtains the value of 𝑔𝑎𝑏 with high probability given A2’s forgery.

4 OASIS EVALUATION
4.1 Comparison with 2-IBAS
The 2-IBAS scheme is the closest to OASIS in terms of computational
benchmark. The former was analysed and claimed as deployable in
IoT [11]. Let us consider one gateway and 𝑙 devices connected to it.
Compared to 2-IBAS, there are 𝑙 + 1 extra random secret values, one
extra exponentiation for the gateway’s public key, 2𝑙 extra exponen-
tiations for the devices’ signing keys and 2𝑙 extra exponentiations
for the devices’ public keys in OASIS. Devices’ signature generation
and verification. along with signature aggregation, incur the same
amount of operations in OASIS and 2-IBAS. The overall operational
process of the aggregate signature verification is similar in both
schemes; however the number of operations differs in OASIS and
2-IBAS. We detail those changes in Table 2.

Type of operation Number in 2-IBAS Number in OASIS
Pairing 4 2 + 2𝑙
Multiplication in G𝑇 2 𝑙 + 1
Exponentiation 2 + 𝑙 2𝑙
Addition in Z𝑝 𝑙 𝑙

Multiplication in G 𝑙 + 1 𝑙

Table 2: Numbers of operations for VerifyAgg in 2-IBAS and
OASIS.

Running VerifyAgg is more cumbersome in OASIS than in 2-
IBAS, with roughly 2𝑙 extra pairing computations and twice more
exponentiations. However, verification is led by a powerful verifier,
which is not limited in terms of computation, communication and
storage, contrary to the devices within the network. Hence, it would
not impact the feasibility of OASIS in IoT distributed systems.

4.2 Implementation
We have implemented our solution in a sub-network with one gate-
way and 𝑙 devices. We chose the cryptographic library MIRACL1,
an open source SDK for elliptic curve cryptography. MIRACL en-
ables to build security into PC but also constrained environments,
such as IoT. We used a processor 2.4 GHz Intel i5 520M to run our
tests. We tested our solution with 𝑙 = 10, 50 and 100 devices to
represent a wide range in one sub-network. We did not include the
algorithms SecretGen𝑔𝑎𝑡 and SecretGen𝑑𝑒𝑣 since there is no costly
operation. Table 3 lists the four Super-Singular Curves (SSCs) pro-
posed by MIRACL. MIRACL enables pre-computation mechanisms
to optimize costly pairing calculations.

Timings, shown in Table 4, were collected per algorithm, based
on exponentiations and multiplications in G, and pairings in G𝑇 .
The algorithms Sign and Verify were run for one device. The al-
gorithms Aggregate and VerifyAgg were run for 𝑙 devices, where
𝑙 = 10, 50 or 100. Pairing calculation optimization is denoted as (o).
1https://github.com/miracl/MIRACL/tree/master
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Embedding AES
Curves Field Modulus/exponent degree security
SSC 1 GF(𝑝) 512-bit modulus 2 80 bits
SSC 2 GF(𝑝) 1536-bit modulus 2 128 bits
SSC 3 GF(2𝑚) 𝑚 = 379 4 80 bits
SSC 4 GF(2𝑚) 𝑚 = 1223 4 128 bits
Table 3: Super-singular curves provided by MIRACL.

Algorithms \ Curves SSC 1 SSC 2 SSC 3 SSC 4

Setup 1.49 0.38 13.57 2.57
(o) 0.30 – 3.01 –
KeyGen𝑔𝑎𝑡 1.49 0.38 13.57 2.57
(o) 0.30 – 3.01 –
PubKeyGen𝑔𝑎𝑡 1.49 0.38 13.57 2.57
(o) 0.30 – 3.01 –
PartKeyGen𝑑𝑒𝑣 4.47 1.14 40.71 7.71
(o) 0.90 – 9.03 –
KeyGen𝑑𝑒𝑣 2.98 0.76 27.14 5.14
(o) 0.60 – 6.02 –
PubKeyGen𝑑𝑒𝑣 2.98 0.76 27.14 5.14
(o) 0.60 – 6.02 –
Sign 7.45 1.90 67.85 12.85
(o) 1.50 – 15.05 –
Aggregate for 𝑙 = 10 11.92 3.04 108.56 20.56
(o) 2.40 – 24.08 –
Aggregate for 𝑙 = 50 71.52 18.24 651.36 123.36
(o) 14.4 – 144.48 –
Aggregate for 𝑙 = 100 146.02 37.24 1329.86 251.86
(o) 29.4 – 294.98 –
Verify 13.19 4.97 130.49 77.54
(o) 4.05 – 47.17 –
VerifyAgg for 𝑙 = 10 81.23 29.99 749.15 444.20
(o) 20.25 – 196.93 –
Aggregate for 𝑙 = 50 383.63 141.19 3498.75 2073.80
(o) 92.25 – 862.53 –
VerifyAgg for 𝑙 = 100 761.63 280.19 6935.75 4110.80
(o) 182.25 – 1694.53 –

Table 4: Timings in milliseconds.

Selecting the curve SSC 3 implies bigger times for all algorithms.
However, with pairing calculation optimization, then timings are
similar to SSC 4, for which the optimization is not supported. More-
over, SSC 1 enables the system to run 10x faster than with SSC 3,
for the same security level. Similarly, the system runs almost 15x
slower with SSC 4 compared to SSC 2. Hence, without optimization
and a higher security level, the best results come with SSC 2. With
optimization and a lower security level, the best results come with
SSC 1.

Algorithms for key generation operate fast when run indepen-
dently. However, when considering those six algorithms and the
two additional ones for secret generation as one unique algorithm,

key generation noticeably takes a longer time. A distributed net-
work includes multiple sub-networks, so multiple gateways and
devices. Hence, timings for key generation would depend on the
total number of entities. However, such remarks could be mitigated
since key generation is handled by powerful entities (KGC and
gateways) and remains occasional (static keys).

Signing remains quicker than verifying, since the former has
no pairing calculation, which is the most expensive operations.
The algorithm Aggregate runs faster than VerifyAgg for the same
reasons. Execution times for Aggregate and VerifyAgg are roughly
linear in the number 𝑙 of signers in a sub-network, since their
number of operations is 𝑂 (𝑙). Pairing pre-computations, available
for SSC 1 and SSC 3, are beneficial; however, at the cost of a lower
security level (80 bits). We recall that the verifier is powerful with no
resource constraints and checks much less signatures compared to
the total number of devices in the network thanks to the aggregation
mechanism, hence yielding pairings acceptable.

As for most of IoT networks, execution times depend on the
total number of participating entities. Nevertheless, our distributed
architecture enables to keep a number of devices relatively low in
each sub-network. For instance, 20 sensors per human body would
be installed in a HWMSN [19]. Therefore, OASIS could be deployed
in an IoT distributed environment; especially when implemented
with SSC 1/(o) for 80-bit security and with SSC 2 for 128-bit security.

5 CONCLUSION AND FUTUREWORK
We presented OASIS, a new CLAS scheme for IoT with an orga-
nizational architecture based on 2 levels, mitigating the complex
PKI certification management. To alleviate the key escrow problem
succinct to identity-based schemes, OASIS enables gateways and
devices to create their own secret value. We gave intuitions to prove
our scheme secure in the random oracle model. We also evaluated
our solution to verify its suitability in IoT distributed networks.

OASIS considers a 2-level hierarchy, with a KGC, few gateways
and multiple devices. Future work will consider an organizational
chart with 𝑁 levels to obtain a more generic solution in larger
distributed networks. Moreover, we quickly discussed how devices
missing a round could be handled. Future work will focus on formal
mechanisms to track those missing devices.
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