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Abstract—Multi-view observations potentially offer a more
comprehensive understanding of real-world phenomena com-
pared to observations acquired from a single viewpoint. Existing
models that utilize multi-view data often consider that all views
are available during inference, but this assumption may not hold
in practical scenarios. To address this limitation, we introduce
MVLD, a novel method that, by employing a deterministic
autoencoder and a score-based diffusion model, is capable of
imputing missing views. We finally envision MVLD being used
in a communication system for image transmission.

I. INTRODUCTION

Real-world observations may be acquired from different
viewpoints, providing a more comprehensive perception com-
pared to single-view observations, which may not be sufficient
to capture the complexity and diversity of a scene. Therefore,
aggregating information from multiple views describing a
given scene into a unified representation that can exploit
unique and redundant information is a key objective.

Driven by these motivations, Multi-View Representation
Learning is a growing research field that aims to find a
meaningful representation from multi-view observations by
learning both the correlation across views and their specific
information [1]. Recently, multi-view datasets, e.g., [2]–[4],
and Machine Learning models that rely upon them have
received significant attention. Many of the available models
exploit multi-view data to perform a specific task, such as
3D object reconstruction [5] or human pose estimation [6].
However, an important underlying assumption in the literature
is that all input views are available at inference time. In
practical deployments, such an assumption might fall short:
sensor failure, obstructions due to dirt, and other phenomena
are typical cases that must be addressed. To tackle this issue,
some methods have been designed specifically to handle
missing views [7], [8], or propose a preliminary phase to
conditionally generate the missing views before performing
the actual downstream task [9].

In this context, our main contributions are twofold: (i)
we present and study a new method called Multi-View Latent
Diffusion (MVLD) that enables conditional generation of any
missing view at inference time, and (ii) we envision our
method being used in a communication system for multi-view
images transmission. Specifically, MVLD endows end-to-end
systems with the ability to carry out data imputation, prior
to performing a downstream task. Given a set of observed
views, MVLD uses a deterministic autoencoder and a score-
based diffusion model that operates on latent representations
to generate the missing views. We study the quality of such
generated views by computing the Fréchet Inception Distance
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Fig. 1. Architecture of the proposed MVLD-based communication system
for multi-view images transmission.

(FID), a relevant metric used to assess the quality of synthetic
images.

We investigate the use of MVLD in a scenario where
such multi-view data must be transmitted over a wireless
communication channel. If available views can be properly
reconstructed from their latent representations and the condi-
tional generation of the missing views is effective, one can
think of proactively transmitting only the latent representation
of a subset of views, from which it is possible to generate
the missing ones at the receiver, for example, to save channel
capacity. Therefore, we study the trade-off between the net-
work load and the quality of generated images. Importantly,
the trade-off depends on the characteristics of the transmission
channel. For instance, if the network has low bandwidth, it
may be convenient to send the latent variables of the least
possible number of views that allow reconstructing the missing
ones with sufficient quality.

Interestingly, MVLD can be employed for semantic commu-
nication. According to this paradigm, instead of transmitting
the exact sequence of bits, only the semantic information,
i.e., the meaning, of the data is transmitted and then used
at the receiver to generate data semantically equivalent to
the original ones. To assess the semantic preservation, one
could evaluate the coherence of conditionally generated views;
for instance, a pre-trained classifier can be employed both
on imputed and observed views: if the class predictions are
consistent the coherence is maintained.

II. METHODOLOGY

We build on the method described in [10], which deals with
the general problem of modeling multiple input modalities that
describe the same concept using, for example, image, audio,
and text data. Specifically, missing views can be generated by
following the same two-stage procedure presented in [10].



Our approach is depicted in Fig. 1, where we consider V
views in total and, for example, one missing view Xm. At
the transmitter, a deterministic encoder eϕ is used to encode
each observed view Xv , with v={1, . . . , V }\m, to obtain their
latent representations Zv=eϕ(X

v). Such latent representations
are concatenated and sent to the receiver, where they are
input to a score-based diffusion model, which we design for
conditional generation through an original method that enables
latent variables to evolve according to different arrows of time
in the forward process, and that induces a correlation between
latent variables in the backward process by means of a joint
score network. The diffusion model can thus generate the
latent variable Ẑm of the missing view Xm, and, finally, a
deterministic decoder dψ transforms available and generated
latent variables back into the input space, thus obtaining
X̂v=dψ(Z

v), v={1, . . . , V }\m, and X̂m=dψ(Ẑ
m).

III. BACKGROUND

In this section, we provide a brief overview of the two main
components of MVLD, namely the deterministic autoencoder
and the score-based diffusion model.

Autoencoder. The deterministic autoencoder is composed
of two blocks, the encoder eϕ and the decoder dψ , and is
trained separately and before the diffusion model. Denoting
with p(x) and l, respectively, the data distribution and a
distance function, we train the autoencoder by minimizing the
following loss:

L =

∫
p(x)l(x− dψ(eϕ(x))) dx . (1)

Importantly, we use a deterministic autoencoder as it can
guarantee no loss of information when mapping data into the
latent space.

Score-based diffusion model. Once the deterministic au-
toencoder is trained, the encoder is employed to obtain the data
latent representations, which are used for the training of the
score-based diffusion model. During this stage, the diffusion
model learns the distribution of such latent representations,
which allows performing conditional generation during the
inference phase.

In general, score-based generative modeling involves two
steps, namely, the forward and the backward diffusion process.
The former is a stochastic noising process, which injects noise
into the input data, i.e., the latent representations in this case,
while the latter reverses the noise perturbation. The forward
process is defined by the following Stochastic Differential
Equation (SDE)1:

dRt = α(t)Rtdt+ g(t)dWt, R0 ∼ q(r, 0), (2)

where Rt is the diffused random variable, while α(t)Rt and
g(t) denote the drift and the diffusion terms, respectively.
Wt is a Wiener process and q(r, t) denotes the probability
density of the stochastic process at time t∈[0, T ]; therefore,

1We use the same notation as the one adopted in [10].

R0∼q(r, 0) is the initial condition influencing the noising
process, where, in our case, q(r, 0) is the latent distribution.

To generate a new sample, we need to reverse the noising
process; we thus derive the following reverse-time SDE1:

dRt =
(
−α(T−t)Rt + g2(T−t)∇log(q(Rt, T−t))

)
dt

+ g(T−t)dWt, R0 ∼ q(r, T ),
(3)

which can be simulated by using a numerical integration
scheme. We remark that, to do so, we first need to estimate
the term ∇log(q(Rt, T−t)), i.e., the true score function, by
using a parametric score network.

Since in this work we are interested in the conditional
generation of the missing views, we properly modify (2) and
(3) so that only the latent variables of the missing views are
diffused. Also, we modify the true score function to make it
conditioned on the observed views.

IV. RELATED WORK

As previously mentioned, our work relies on the approach
presented in [10], which is designed to operate within the
multi-modal domain. The study in [10] and, consequently,
ours are related to the branch of works that employ com-
binations of Variational Autoencoders (VAEs) for generative
modeling of multi-modal data, for both joint and conditional
generation [11]–[13]. However, [10] demonstrates that these
methods suffer from a trade-off between generative quality and
coherence among modalities, i.e., it is not possible to improve
one aspect without negatively affecting the other. Also, they
are generally outperformed by the method in [10], which is
the reason why we use such a method in our study.

The work in [14] identifies as the “generative learning
trilemma” the three main requirements in generative mod-
eling: high-quality sample generation, sample diversity, and
fast sampling. This work underlines that methods based on
Generative Adversarial Networks (GANs) suffer from poor
mode coverage, that is the diversity of generation is bad, and
that VAEs suffer from poor image quality. Score-based diffu-
sion models, instead, generate both high-quality and diverse
images, but they are slower at sampling. To tackle this issue,
they present a denoising diffusion GAN, whose performance in
terms of sample quality and diversity is comparable to standard
diffusion models, while achieving a much faster sampling.
The work in [15] provides a rigorous analysis of diffusion
times in score-based generative models and presents a new
method that, by adopting smaller diffusion time values, is more
computationally efficient in both training and sampling, while
achieving competitive or higher performance compared to
standard diffusion models and other competitors. To accelerate
sampling, the work in [16] introduces a faster numerical
integration scheme.

In the literature, a growing number of papers investigate
multi-view clustering, a method relying on common and
specific information from multiple views to partition data into
clusters. Some works specifically focus on partial multi-view
clustering, where data are not assumed to be complete; for
instance, [17], [18] address the problem of missing views



by imputing them using a GAN. Similarly, [9] generates the
missing views before performing a classification task.

Our paper is related also to another research area, namely,
generative modeling for communications and particularly for
semantic communications. [19] proposes a GAN-based se-
mantic communication system for image transmission that
allows drastic data compression while achieving high-quality
image generation. More precisely, the transmitter employs an
encoder to compute the images latent representations, which
are sent to the receiver where they are fed to a GAN generator
to restore the image content. A second method also uses a
heatmap and a semantic (or instance) map, obtained with a
pre-trained segmentation model, to specify the regions that
can be completely generated and those whose content must be
preserved. An approach similar to the latter is adopted in [20],
while [21] employs a diffusion model to generate images
starting from one-hot encoded maps; such maps are obtained at
the sender by applying a segmentation model and then they are
transmitted over the communication channel. [22] leverages
the generator of a GAN for image semantic communication.
First, the sender maps the images to their latent representations
using the GAN inversion method; then, the latent variables are
transmitted to the receiver, which reconstructs the image using
the generator.

V. CONCLUSIONS

In this paper, we discussed the relevance and the benefits
of multi-view data, and the fact that, in practical scenarios,
such multi-view data may present missing views at inference
time. To address this drawback, we introduced the MVLD
method to generate missing views conditioned on the observed
ones. We then argued that MVLD can be used in a commu-
nication system for multi-view images transmission, allowing
the imputation of potential missing views. For future work,
we will perform extensive experiments on multiple datasets
to test MVLD performance for conditional generation and
to evaluate its robustness when deployed in a communica-
tion system. Finally, we will extend our work with a faster
numerical integration scheme, and study the applicability of
recent variant of diffusion models [23] that operates in the
function space, which would allow our model to be scale- and
resolution-free, while using simpler architectures to learn the
score network.
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