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Abstract—We present a new method to estimate the rate-
distortion-perception function in the perfect realism regime (PR-
RDPF), for multivariate continuous sources subject to a single-
letter average distortion constraint. The proposed approach is
not only able to solve the specific problem but also two related
problems: the entropic optimal transport (EOT) and the output-
constrained rate-distortion function (OC-RDF), of which the PR-
RDPF represents a special case. Using copula distributions, we
show that the OC-RDF can be cast as an I-projection problem on
a convex set, based on which we develop a parametric solution
of the optimal projection proving that its parameters can be
estimated, up to an arbitrary precision, via the solution of a
convex program. Subsequently, we propose an iterative scheme
via gradient methods to estimate the convex program. Lastly, we
characterize a Shannon lower bound (SLB) for the PR-RDPF
under a mean squared error (MSE) distortion constraint. We
support our theoretical findings with numerical examples by
assessing the estimation performance of our iterative scheme
using the PR-RDPF with the obtained SLB for various sources.

I. INTRODUCTION

Rate-distortion-perception (RDP) theory, which provides a
way to reconstruct complex data sources (e.g., audio, images,
video) when perceptual quality is taken into account in addi-
tion to the distortion criterion, has recently attracted increasing
interest within the information theory, computer vision, and
machine learning communities. This framework, proposed by
Blau and Michaeli [1] and Matsumoto [2], [3], generalizes the
classical rate-distortion function (RDF) formulation by impos-
ing a divergence constraint between the source distribution and
its reconstruction. In RDP theory, the divergence constraint
acts as a proxy for human perception, capturing the difference
between the reconstructed samples and the source ”natural
statistic” [4]. It can also be used as a semantic quality metric
measuring the relevance of the reconstructed source from the
receiver’s perspective [5].

Prior to the development of the RDP theory, a similar
line of research in lossy compression has studied the link
between the statistical properties of the distribution of the
reconstructed samples and their perceptual quality, defining
the so-called output-constrained rate-distortion problem [6]–
[8]. In this class of constrained lossy compression problems,
instead of restricting the maximal statistical divergence be-
tween the source distribution and its reconstruction, the focus
is on constraining the reconstruction to belong to a specific
distribution, which may differ from that of the source. The
resulting problem is in close proximity to the EOT problem

[9], [10]. Interestingly, in both problems, the source and the
reconstruction distributions are assumed to be known a priori.

The mathematical formulation that quantifies the operational
meaning in RDP theory is the RDPF, which, much like
its classical RDF counterpart, is not generally available in
analytical form. Despite the general complexity, closed-form
expressions have been developed under different settings [1],
[11]–[13]. The absence of a general analytic solution for
the RDPF led to the research of computational methods for
its estimation. However, dedicated algorithmic solutions have
been developed so far only for discrete sources [14] or by
discretizing certain classes of continuous sources [15]. For
general sources, RDPF estimation methods often rely on data-
driven solutions [1], [11], [16], which unfortunately do not
have convergence guarantees.

A. Contributions

In this work, we propose a new copula-based estimation
method for the computation of the PR-RDPF for multivariate
continuous sources subject to a single-letter average distortion
constraint. Our estimation method is quite general as it also
allows the computation of the EOT and the OC-RDF for which
the PR-RDPF is a particular case.

The main contributions of this paper are as follows. (i)
We show that there exists a one-to-one correspondence be-
tween the feasible set of solutions of the OC-RDF and EOT
(Theorem 1), making the two problems equivalent. (ii) Using
properties of copula distributions, we demonstrate that the OC-
RDF can be reformulated as a projection problem in the ge-
ometry induced by the Kullback–Leibler (KL)-divergence, i.e.,
I-projection, on a convex constraint set (Problem 1). However,
although this class of projection has been extensively studied
in [17], the existing parametric solution is not directly suitable
for computational purposes. To bypass this technical issue, we
introduce a relaxation of the constraint set of the I-projection,
which results in a lower bound to the original optimization
objective (Problem 2) that we subsequently show that it can be
made arbitrarily tight (Theorem 4). (iii) We characterize the
parametric closed-form solution of the relaxed I-projection,
whose optimal parameters can be directly obtained as the
solution of a strictly convex program (Theorem 5). (iv) We
propose an algorithmic approach via a stochastic gradient
descent method, to estimate the strictly convex optimization
problem of Theorem 5 (see Alg. 1). (v) We derive a Shannon



lower bound (SLB) for the PR-RDPF under MSE distortion
(Theorem 6). We supplement our theoretical results with
various numerical evaluations aiming to estimate the PR-
RDPF under various sources and different distortion measures
via Alg. 1, and to demonstrate the efficacy of our algorithmic
approach compared to the obtained SLB.

B. Notation

We indicate with R the set of real numbers and with R̄
the extended set R ∪ {−∞,+∞}. For a set X ⊆ Rd, we
denote with P(X ) the set of distribution functions thereon
defined. For a random variable (RV) X defined on X , we
denote with FX ∈ P(X ) its distribution function (shortly,
d.f.) and with fX its probability density function (shortly, pdf).
Given two RVs X and Y , we will indicate their independent
product d.f. as FX⊗FY , equivalent to the independent product
pdf fX,Y = fXfY . Furthermore, given any joint pdf fX,Y ,
we will indicate with mX(fX,Y ) and mY (fX,Y ) the pdf
associated with the marginal RV’s X and Y , respectively.
We will indicate with DKL(FX ||FY ) the Kullback–Leibler
(KL)-divergence between RV’s X and Y , whereas h(X) and
h(X|Y ) will denote, respectively, the differential entropy of X
and the conditional differential entropy of X given Y . Lastly,
given a set A ⊆ Rn, we will denote with lp(A) the set of
functions g : A → R such that

∫
A |g(s)|pds < ∞.

II. PRELIMINARIES

A. OC-RDF - A link between PR-RDPF and EOT

We begin this section by providing the mathematical defi-
nition of PR-RDPF.

Definition 1. (PR-RDPF) Let fX ∈ P(X ). Then, the PR-
RDPF for the source X ∼ fX under a distortion measure
∆ : X × Y → R+

0 is given as follows

RPR(D) = min
fY |X

E[∆(X,Y )]≤D

X
d
=Y

I(X,Y )

where the minimization is on set of Markov kernels fY |X .

It should be noted that the perfect realism regime represents
a limit case of the general problem of the RDPF [1], where one
constrains the reconstruction Y to have the same distribution
as the source X . Although PR-RDPF became quite popular
through [1], similar ideas were previously explored by Li et.
al. in [6], in the context of distribution-preserving quantization
and distribution-preserving RDF. Multiple coding theorems
have been developed for PR-RDPF. For instance, Chen et.
al. in [18] proves the necessity of some form of randomness,
either private or common, between the encoder and decoder, to
achieve the perfect realism regime and derives the associated
coding theorems. Wagner, in [19], provides a coding theorem
for the RDPF trade-offs for the perfect and near-perfect realism
cases, when only finite common randomness between the
encoder and decoder is available.

Although our primary goal in this work is to study com-
putational aspects of the PR-RDPF for continuous sources,

we do it by also studying a generalization of this problem. In
particular, we study the problem of OC-RDF that was formally
introduced by Saldi et al. in [7] (see also [6]), for which the
mathematical definition is stated next.

Definition 2. (OC-RDF) Let fX ∈ P(X ). Then, the OC-RDF
for the source X ∼ fX under a distortion measure ∆ : X ×
Y → R+

0 and a target reconstruction distribution fY ∈ P(Y)
is given as follows

ROC(D) = min
fY |X∈Π̂(fX ,fY )

E[∆(X,Y )]≤D

I(X,Y ) (1)

where the minimization is on the convex set of Markov kernels
Π̂(fX , fY ) ≜ {fX|Y : mY (fY |X · fX) = fY }.

The main difference between the problems of PR-RDPF
and OC-RDF lies in how the constraint on the reconstruction
distribution fY is handled. While in the PR-RDPF case,
we specifically constrain the reconstruction distribution and
source distribution to be identical, in the OC-RDF we have
an additional degree of freedom, allowing for the distribution
of the reconstruction to be chosen freely. This results in the
following observation.

Remark 1. The problem of the OC-RDF particularizes to the
problem of PR-RDPF by specifying the reconstruction distri-
bution to be equal to the source distribution (i.e. fY = fX ).

Additionally, the OC-RDF highlights an interesting con-
nection to the EOT problem (see [9], [10]), of which the
mathematical definition is stated as follows.

Definition 3. (EOT) Let fX ∈ P(X ) and fY ∈ P(Y). Then,
the EOT for ϵ > 0 and distortion measure ∆ : X ×Y → R+

0 ,
is given as follows

DEOT (ϵ) = min
fX,Y ∈Π̄(fX ,fY )

E[∆(X,Y )] + ϵI(X,Y ) (2)

where the minimization is on the convex set of joint pdfs
Π̄(fX , fY ) ≜ {fX,Y : mX(fX,Y ) = fX ,mY (fX,Y ) = fY }.

Notably, it can be shown that OC-RDF and EOT are closely
related in the sense that for specific values of D and ϵ, there
exists a one-to-one mapping between the sets of solutions of
the two problems. In other words, we can find the solution
to one problem based on the solution of the other. Although
similar links have been observed for the classical RDF [20],
[21], this observation has not been documented in this specific
setting, hence we formalized it in the following theorem.

Theorem 1. (Connection of OC-RDF and EOT) Let fX ∈
P(X ) and fY ∈ P(Y). Then, for any D > 0, there exists
an ϵ > 0 such that the problems of OC-RDF and EOT are
equivalent.

Proof: See [22, Theorem 1].
In view of Theorem 1, we can treat the OC-RDF and EOT

problems as equivalent problems. As a result, the computa-
tional schemes derived in Section III applicable to the OC-
RDF problem, can be adapted mutatis mutandis to the EOT
problem.



B. Copula distributions

In this subsection, we give some preliminaries to copulas
distributions, as these have a central role in the derivation of
the main results of this paper. The following definitions and
theorems are taken from [23].

Definition 4. (Copula distribution) For every d ≥ 2, a d-
dimensional copula d.f. is a d-variate d.f. on [0, 1]d whose
univariate marginals are uniformly distributed on [0, 1].

The next theorem and the two companion corollaries,
demonstrate that copulas are a powerful tool for the modeling
and analysis of multivariate distributions.

Theorem 2. (Sklar’s Theorem) Let F be a d-dimensional d.f.
with marginal d.f. F1, F2, . . . , Fd. Let Aj denote the range
of Fj , Aj ≜ Fj

(
R̄
)

(j = 1, 2, . . . , d). Then, there exists a
d-copula d.f. C such that for all (x1, x2, . . . , xd) ∈ R̄d,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)). (3)

Such a C is uniquely determined on A1 × A2 × · · ·Ad and,
hence, it is unique when F1, F2, . . . , Fd are continuous.

Corollary 1. Let f : R̄d → R+ be the pdf associated with
(3). Then, f can be uniquely decomposed as

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d∏
j=1

fj(xj) (4)

where fj is the pdf associated with the univariate marginal
d.f. Fj and c : [0, 1]d → R+ is the pdf associated with the
copula d.f. C.

Corollary 2. Let F1, F2, . . . , Fd be univariate d.f.’s and C be
a copula d.f.. Then, the function F : R̄d → [0, 1] defined in
(3) is a d-dimensional d.f. with marginal F1, F2, . . . , Fd.

It is worth noticing that Corollary 1 guarantees that the pdf
of any multivariate distribution can be factorized as the product
of the marginal densities and a unique copula distribution.
This factorization can be effectively thought of as decoupling
the correlation structure embedded in the joint distribution
(represented by the copula distribution) from the information
regarding each single marginal. On the other hand, Corollary
2 guarantees that, for a fixed set of marginals distributions,
any copula distribution describes a proper joint distribution.

We conclude this subsection with the definition of the
quantile function, which will also be of use in the derivation
of our main results.

Definition 5. (Quantile function) Let X ∼ FX be a univariate
RV on X ⊆ R. We define the quantile function QX : [0, 1] →
R as QX(u) ≜ sup{x ∈ X : F (x) ≤ u}. If FX is continuous
and strictly increasing, then QX = F−1

X . However, even if
FX may fail to have an inverse function, QX guaranties that
QX(FX(X)) = X almost surely (a.s.).

To ease the notation, in the sequel we denote by uni-
form transformation of an RV X = (X1, . . . , Xd) the
function ΦX : X → [0, 1]d defined as ΦX(X) ≜

(FX1
(X1), . . . , FXd

(Xd)). Moreover, we define the function
ΨX : [0, 1]d → X as ΨX(U) ≜ (QX1(U1), . . . , QXd

(Ud)).
By construction, ΨX is the a.s.-inverse of ΦX , that is,
ΨX(ΦX(X)) = X a.s..

III. MAIN RESULTS

In this section, we derive our main results.

A. Copula Lower Bound

First, we prove a lemma with which the functionals in
the mathematical formulations of Definitions 2 and 3 can be
redefined using copula distributions1.

Lemma 1. Let (X,Y ) ∼ fXY ∈ P(X × Y) be a 2d-variate
RV with marginal pdfs fX ∈ P(X ) and fY ∈ P(Y). Then,
the mutual information I(X,Y ) can be equivalently written
as follows

I(X,Y ) = DKL(CX,Y ||CX ⊗ CY ) (5)

where CX,Y , CX , CY are the copula d.f.’s associated with
distributions FX,Y , FX , and FY , respectively. In addition,
given a distortion function ∆ : X × Y → R+, the following
holds

EFX,Y
[∆(X,Y )] = ECX,Y

[∆(ΨX(UX),ΨY (UY ))] (6)

where U = (UX , UY ) ∼ CX,Y .

Proof: See [22, Lemma 1].
Leveraging Lemma 1, we can provide an alternative formu-

lation of the mathematical expression in (1), which will be
the subject of our estimation analysis. This is stated next as
Problem 1.

Problem 1. (Copula-based OC-RDF) The mathematical ex-
pression (1) can be reformulated as follows

ROC(D) = min
C∈C2d

DKL(C||CX ⊗ CY ) (7)

s.t. EC [∆(ΨX(UX),ΨX(UY ))] = D (8)

where C2d is the set of 2d-copulas and D ∈ [Dmin, Dmax].

Remark 2. (On Problem 1) Problem 1 is a convex program
in the space of copula d.f. Moreover, the problem is equivalent
to finding the I-projection of CX ⊗CY on the set B ⊂ C2d of
copula d.f. satisfying the modified distortion constraint (8).

Problem 1 represents a projection problem in information
geometry, where the goal is to find the copula distribution
C that minimizes the information divergence from the inde-
pendent product copula CX ⊗ CY while respecting a linear
set of constraints. This class of projection problems has been
thoroughly studied by Csiszár in [17], where the analytical
form of the optimal projection for the considered case has been
characterized. Using [17], we derive the following theorem.

Theorem 3. (Analytical solution of Problem 1) Let R =
CX ⊗ CY and assume there exists a copula d.f. P such that

1An alternative link between the mutual information I(X,Y ) and the
associated copula entropy h(CX,Y ) can be found in [24].



DKL(P ||R) < ∞ and (8) is satisfied. Then, Problem 1 admits
a minimizing copula Q with Radon–Nikodym derivative with
respect to the measure R of the form

dC

dR
(u) = eµ+θ[∆(ΨX(ux),ΨY (uy))]

2d∏
i=1

gi(ui) (9)

for some constants (µ, θ), and nonnegative uni-variate func-
tions gi such that log(gi(s)) ∈ l1([0, 1]) for i = 1, . . . , 2d.

Proof: See [22, Theorem 3].
Although Theorem 3 provides a characterization of the

solution of Problem 1, the lack of an analytical form for
the free functions {gi(·)}i=1...,2d poses a challenging problem
in the computation of (9). Following an idea of [25], we
circumvent this technical issue by introducing a relaxation on
the constraint set of Problem 1, that results into a lower bound
on OC-RDF. This is demonstrated next in Problem 2.

Problem 2. (Lower bound to Problem 1) For any integer N ,
Problem 1 can be lower bounded as follows

ROC(D) ≥ R
(N)
OC = min

Q∈P([0,1]2d)
E[∆(ΨX(UX),ΨY (UY ))]=D

EQ[un
i ]=αn, (i,n)∈I

DKL(Q||R)

where R = CX ⊗ CY , I = (1, . . . , 2d) × (1, . . . , N),
D ∈ [Dmin, Dmax], and αn is the nth moment of a uniform
distribution on [0, 1].

Remark 3. (Problem 1 vs Problem 2) The main technical
difference between Problems 1 and 2 concerns their constraint
sets. Particularly, in Problem 1 we require that the minimizing
distribution Q∗ belongs to the set of copula distributions,
which means that its marginals are uniformly distributed. On
the other hand, the marginals of the minimizing distribution
Q̂∗

N of Problem 2 only require to respect up to N moments of
a uniform distribution. This in turn implies that the constraint
set of Problem 1 is a proper subset of the constraint set of
Problem 2, justifying the lower bound of the latter.

In the following theorem, we show that, for N → ∞,
Problem 2 recovers the solution of Problem 1.

Theorem 4. Let Q∗ be the optimal solution of Problem 1 and
Q̂∗

N be the optimal solution of Problem 2. Then, as N → ∞,

DKL(Q̂
∗
N ||Q∗) → 0 and R

(N)
OC → ROC .

Proof: See [22, Theorem 4].
We now provide the analytical form of the solution of

Problem 2. Unlike Theorem 3, the optimal solution does not
depend on free functions {gi(·)}i=1...,2d, but it depends only
on the Lagrangian multipliers of Problem 2 obtained as result
of its dual problem.

Theorem 5. (Analytical solution of Problem 2) Let R =
CX ⊗ CY and assume there exists a d.f. P on [0, 1]2d such
that DKL(P ||R) < ∞ and (8) is satisfied. Then, Problem 2

admits minimizing copula Q with Radon–Nikodym derivative
with respect to the measure R of the form

dQ

dR
(u) = eµ+θ∆(ΨX(ux),ΨY (uy))

2d∏
i=1

e
∑N

n=0 νi,nu
n
i (10)

where the constants (µ, θ, {νi,n}(i,n)∈I) are the Lagrangian
multipliers of Problem 2 obtained as a result of the following
dual program

min
(µ,θ,{νi,n}(i,n)∈I)

ER

[
dQ

dR

]
− µ− θD −

∑
(i,n)∈I

νi,nαn (11)

Proof: See [22, Theorem 5].
The following result is a consequence of Theorem 5.

Corollary 3. Let Q be the minimizing copula d.f. charac-
terized in Theorem 5. Then, the mutual information I(X,Y )
of the joint distribution (X,Y ) defined by marginals d.f.
{FXi}i=1,...,d and {FYi}i=1,...,d and copula Q is given by

I(X,Y ) = DKL(Q||R) = −µ− θD −
∑

(i,n)∈I

νi,nαn. (12)

B. Copula Estimation

As anticipated in Theorem 5, the Lagrangian multipliers
(µ, θ, {νi,n}(i,n)∈I) defining the optimal solution of Problem
2 can be obtained by solving (11). Although not available in
closed form, the solution of (11) can be optimally computed
using numerical methods, given the properties of the problem.

Lemma 2. The optimization problem (11) is strictly convex,
hence it has a unique solution.

Proof: See [22, Lemma 2].
To compute (11), we propose a low-complexity optimization

scheme based on gradient methods. The main technical detail
to clarify is related to the estimation of the integral present in
(11), since numerically solving a possibly high dimensional in-
tegral could hinder the complexity of the algorithm. However,
since its computation is required only for the estimation of the
gradient and not for the computation of I(X,Y ) (as shown
in (12)), we can approximate the integral using Monte Carlo
method [26]. The resulting iterative scheme can be considered
as a mini-batch stochastic gradient descent algorithm on a
convex objective [27]. The algorithm is given in Alg. 1.

Algorithm 1 ROC(D) - Copula Estimation

Require: marginal distributions {FXi , FYi}i=1,...,d; distortion
level D; number of iterations T ; initial Lagrangian mul-
tipliers l(0) = (µ(0), θ(0), {ν(0)i,n}(i,n)∈I);

1: for i do = 1, . . . , T
2: Sample {ui}i=1...M with ui ∼ U([0, 1]2d)

3: f(l) ≈ (12) +
(

1
M

∑M
i=1

dQ
dR (l,ui)dR(ui)

)
4: l(i) = GradientMethod(l(i−1), f)
5: end for

Ensure: Lagrangian multipliers l(T ); I(X,Y ) = (12).



C. SLB for PR-RDPF

In this subsection, we prove a generalization of the well-
known SLB on the classical RDF with MSE distortion [28]
to the case of PR-RDPF, denoted hereinafter by RSLB

PR . The
bound is stated in the following theorem.

Theorem 6. (SLB for PR-RDPF) Let S ≜ {fX :
EfX

[
(X − E[X])(X − E[X])T

]
⪯ Σ} be the set of source

distribution with a fixed covariance matrix Σ. Then, for all
X ∼ fX with fX ∈ S , the PR-RDPF under MSE distortion
constraint admits the following lower bound

RPR(D) ≥ RSLB
PR (D) = h(X)− h(X∗) +RG

PR(D) (13)

where RG
PR(D) denotes the Gaussian PR-RDPF for a source

X∗ ∼ N(0,Σ).

Proof: See [22, Theorem 6].
We stress the following technical remark on Theorem 6.

Remark 4. (On Theorem 6) For the scalar case of the PR-
RDPF, let S ≜ {fX : EfX

[
(X − E[X])2

]
≤ σ2]} for a finite

variance value σ2. Then, (13) can be further simplified to

RPR(D) ≥ RSLB
PR (D) =

1

2
log

(
N(X)

D − D2

4σ2

)
with N(X) denoting the entropy power of source X . For the
general vector case, the lower bound depends on the vector
Gaussian PR-RDPF, RG

PR, which can be easily computed
using the adaptive reverse-water-filling solution developed in
[12, Corollary 3].

IV. NUMERICAL RESULTS

In this section, we provide a numerical estimation of the
PR-RDPF for both scalar and vector sources using Alg. 1.

Scalar Case: We estimate the PR-RDPF for scalar sources
under a single-letter constraint on the reconstruction error in
terms of (a) the l2 norm, i.e., the MSE distortion (see Fig.
1a), and (b) the l1 norm i.e. the mean-absolute-error (MAE)
distortion (see Fig. 1b). We compare the results for various
source distributions, such as Gaussian, Laplace, exponential,
and uniform, assuming that the source X ∼ (0, 1), i.e., zero
mean with variance σ2

X = 1. In Fig. 1a, we also compare
the estimated result with the SLB derived in Theorem 6.
In Fig. 1a, the Gaussian source case allows us to quantify
the algorithm estimation accuracy by comparing it with the
RSLB

PR , which in this case represents the exact PR-RDPF.
Regarding the other cases, the numerical results show that the
bound RSLB

PR behaves similarly to the SLB of the classical
RDF, that is, being tight only in the low distortion (high
resolution) regime, while becoming loose at the moderate to
high distortion regimes.

Vector Case: We estimate the PR-RDPF under an MSE
distortion metric for correlated bivariate sources, considering
the cases where the source marginals are either Gaussian (see
Fig. 2a) or exponentially (see Fig. 2b) distributed with zero
mean and variance σ2 = 1. In both cases, the multivariate
distribution is constructed by imposing a Gaussian coupling
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Fig. 1: PR-RDPF for various source distributions under (a) MSE distortion
metric and (b) MAE distortion metric.
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Fig. 2: PR-RDPF under MSE distortion metric for a (a) Gaussian, and (b)
exponential bivariate source.

[23] with variable correlation coefficient ρ ∈ [0, 1] on the
considered marginal distributions. By changing ρ, we analyze
the cases where the bivariate source presents independent (ρ =
0), mildly correlated (ρ = 0.5) and highly correlated (ρ = 0.9)
marginals. In Fig. 2a, we demonstrate a comparison between
the Gaussian PR-RDPF estimate obtained via Alg. 1 with
the RSLB

PR obtained in (13) with the term RG
PR(D) computed

via the optimal adaptive reverse-water-filling solution of [12,
Corollary 3], which results into a tight RSLB

PR (D). We observe
that Alg. 1 provides a very good estimate of the Gaussian PR-
RDPF for all the selected ρ. We also notice that the estimation
error when using Alg. 1 remains stable in the low to moderate
correlation cases while showing a slightly noisier behavior
(fluctuations) in the high correlation case. Contrary to Fig.
2a, in Fig. 2b we observe that beyond high resolution (low
distortion), the exponential PR-RDPF estimate obtained via
Alg. 1 is much tighter compared to the RSLB

PR . In fact, the latter
demonstrates a similar behavior to the SLB of the classical
RDF for the multivariate non-Gaussian case.

ACKNOWLEDGEMENT

This work is part of a project that has received funding from
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(Grant Agreement No. 101003431).



REFERENCES

[1] Y. Blau and T. Michaeli, “Rethinking lossy compression: The rate-
distortion-perception tradeoff,” in International Conference on Machine
Learning. PMLR, 2019, pp. 675–685.

[2] R. Matsumoto, “Introducing the perception-distortion tradeoff into the
rate-distortion theory of general information sources,” IEICE Comm.
Express, vol. 7, no. 11, pp. 427–431, 2018.

[3] ——, “Rate-distortion-perception tradeoff of variable-length source cod-
ing for general information sources,” IEICE Comm. Express, vol. 8,
no. 2, pp. 38–42, 2019.

[4] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “completely
blind” image quality analyzer,” IEEE Signal Processing Letters, vol. 20,
no. 3, pp. 209–212, 2013.

[5] M. Kountouris and N. Pappas, “Semantics-empowered communication
for networked intelligent systems,” IEEE Commun. Mag., vol. 59, no. 6,
pp. 96–102, 2021.

[6] M. Li, J. Klejsa, and W. B. Kleijn, “On distribution preserving
quantization,” 2011. [Online]. Available: https://arxiv.org/abs/1108.3728

[7] N. Saldi, T. Linder, and S. Yüksel, “Randomized quantization and
source coding with constrained output distribution,” IEEE Transactions
on Information Theory, vol. 61, no. 1, pp. 91–106, 2015.

[8] ——, “Output constrained lossy source coding with limited common
randomness,” IEEE Transactions on Information Theory, vol. 61, no. 9,
pp. 4984–4998, 2015.

[9] Y. Bai, X. Wu, and A. Özgür, “Information constrained optimal trans-
port: From Talagrand, to Marton, to Cover,” IEEE Transactions on
Information Theory, vol. 69, no. 4, pp. 2059–2073, 2023.

[10] S. Wang, P. A. Stavrou, and M. Skoglund, “Generalizations of talagrand
inequality for Sinkhorn distance using entropy power inequality,” En-
tropy, vol. 24, no. 2, 2022.

[11] G. Zhang, J. Qian, J. Chen, and A. Khisti, “Universal rate-distortion-
perception representations for lossy compression,” Advances in Neural
Information Processing Systems, vol. 34, pp. 11 517–11 529, 2021.

[12] G. Serra, P. A. Stavrou, and M. Kountouris, “On the computation of the
Gaussian rate-distortion-perception function,” IEEE Journal on Selected
Areas in Information Theory, pp. 1–1, 2024.

[13] J. Qian, “On the rate-distortion-perception tradeoff for lossy com-
pression,” Ph.D. dissertation, McMaster University, October 2023,
http://hdl.handle.net/11375/28976.

[14] G. Serra, P. A. Stavrou, and M. Kountouris, “Computation of
rate-distortion-perception function under f-divergence perception con-
straints,” in Proc. IEEE Int. Symp. Inf. Theory, 2023, pp. 531–536.

[15] C. Chen, X. Niu, W. Ye, S. Wu, B. Bai, W. Chen, and S.-J. Lin,
“Computation of rate-distortion-perception functions with Wasserstein
barycenter,” arXiv preprint arXiv:2304.14611, 2023.

[16] O. Kirmemis and A. M. Tekalp, “A practical approach for rate-distortion-
perception analysis in learned image compression,” in 2021 Picture
Coding Symposium (PCS), 2021, pp. 1–5.

[17] I. Csiszár, “I-Divergence Geometry of Probability Distributions and
Minimization Problems,” The Annals of Probability, vol. 3, no. 1, pp.
146 – 158, 1975.

[18] J. Chen, L. Yu, J. Wang, W. Shi, Y. Ge, and W. Tong, “On the
rate-distortion-perception function,” IEEE Journal on Selected Areas in
Information Theory, pp. 1–1, 2022.

[19] A. B. Wagner, “The rate-distortion-perception tradeoff: The role of
common randomness,” arXiv preprint arXiv:2202.04147, 2022.

[20] D. Reshetova, Y. Bai, X. Wu, and A. Özgür, “Understanding entropic
regularization in gans,” in 2021 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2021, pp. 825–830.

[21] E. Lei, H. Hassani, and S. S. Bidokhti, “On a relation between
the rate-distortion function and optimal transport,” arXiv preprint
arXiv:2307.00246, 2023.

[22] G. Serra, P. A. Stavrou, and M. Kountouris, “Copula-based estimation of
continuous sources for a class of constrained rate-distortion-functions,”
2024. [Online]. Available: https://arxiv.org/abs/2401.17089

[23] F. Durante and C. Sempi, “Copula theory: An introduction,” in Copula
Theory and Its Applications. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 3–31.

[24] J. Ma and Z. Sun, “Mutual information is copula entropy,” Tsinghua
Science and Technology, vol. 16, no. 1, pp. 51–54, 2011.

[25] Y.-L. K. Samo, “Inductive mutual information estimation: A convex
maximum-entropy copula approach,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2021, pp. 2242–2250.

[26] C. P. Robert, G. Casella, C. P. Robert, and G. Casella, “Monte carlo
integration,” Monte Carlo statistical methods, pp. 71–138, 1999.

[27] G. Garrigos and R. M. Gower, “Handbook of convergence theorems
for (stochastic) gradient methods,” 2023. [Online]. Available: https:
//arxiv.org/abs/2301.11235v2

[28] T. Berger, Rate Distortion Theory: A Mathematical Basis for Data
Compression. Prentice-Hall, 1971.


