
Many or Few Samples?
Comparing Transfer, Contrastive and Meta-Learning in Encrypted Traffic Classification

Idio Guarino†, Chao Wang‡, Alessandro Finamore, Antonio Pescapè†, Dario Rossi
† Universitá degli Studi di Napoli Federico II, ‡ EURECOM, Huawei Technology France

Abstract—The popularity of Deep Learning (DL), coupled with
network traffic visibility reduction due to the increased adoption
of HTTPS, QUIC, and DNS-SEC, re-ignited interest towards
Traffic Classification (TC). However, to tame the dependency
from task-specific large labeled datasets, we need to find better
ways to learn representations that are valid across tasks. In this
work we investigate this problem comparing transfer learning,
meta-learning and contrastive learning against reference Machine
Learning (ML) tree-based and monolithic DL models (16 methods
total). Using two publicly available datasets, namely MIRAGE19
(40 classes) and AppClassNet (500 classes), we show that (i)
by using DL methods on large datasets we can obtain more
general representations with (ii) contrastive learning methods
yielding the best performance and (iii) meta-learning the worst
one. While (iv) tree-based models can be impractical for large
tasks but fit well small tasks, (v) DL methods that reuse better
learned representations are closing their performance gap against
trees also for small tasks.

I. INTRODUCTION

Network monitoring is paramount for networks operation,
with Traffic Classification (TC) being a strategic activity to
empower better decision-making. Started more than a decade
ago, the transition towards completely encrypted network
traffic is today reinvigorated by the growing adoption of
QUIC [1], DNSSEC [2], or initiatives like Apple iCloud Pri-
vate Relay [3]—encryption is here to stay for end-users benefit
at the cost of reduced traffic visibility for network operators.

For recovering from such reduction and pursuing better
network management and automation, both academia and
industry started the quest for smarter TC solutions. A first
wave of Machine Learning (ML)-based solutions was already
introduced twenty years ago, while more recent proposals
focus on Deep Learning (DL) [4]—nowadays, TC is the king
of supervised modeling tasks in network traffic analysis.

Training and managing ML/DL models for networks faces
the “infinite loop” of collecting new data and re-train models
to keep them up to date. The key to break this cycle resides in
(i) training more generalized models and (ii) adapting them
to new scenarios by means of little-to-no extra data. This calls
for exploring transfer learning and Few-Shot Learning (FSL),
two DL techniques designed to foster better representation
learning. These techniques allow reusing what learned from a
source task Tsource to address a different task Ttarget. Within
the same scope, contrastive learning and self-supervision come
with the promise of better knowledge extraction thanks to
smarter use of data augmentation.

Considering TC literature, we find several studies investigat-
ing FSL in the context of intrusion detection [5, 6, 7, 8, 9, 10,

11, 12]. Yet, (i) most of them do not follow the conventional
meta-learning training protocol, hence (arguably) biasing their
takeaways (see Sec. II, Sec. III); only [13, 14] investigated
contrastive learning; no previous literature relies on state-of-
the-art transfer learning techniques [15, 16]. Moreover, (ii)
little attention has been spent on investigating ML tree-based
approaches. Considering datasets, (iii) we find most studies
using only up to 20 classes, i.e., possibly not enough variety
to understand the training methodologies pros and cons. Last,
(iv) most methods rely on payload bytes, reshaped as a large
2d matrix, which can be costly to track for monitoring systems.

Motivated by the previous considerations, in this work we
study transfer learning, meta-learning, and contrastive learning
(a total of 16 variants) by means of two public datasets, namely
MIRAGE19 (40 classes) and AppClassNet (500 classes). Be-
side benchmarking the methods, we aim at understanding up
to which extent large TC datasets can be used for learning
better representation via DL. For completeness, we study also
ML tree-based models and traditional CNN-based models.

Our results show that TC literature might have overstated
meta-learning methods benefits which are the worst perform-
ing in our assessment (at least −14/18% from the best alterna-
tive). Conversely, and aligned with recent research in computer
vision, contrastive learning (especially in a supervised setting)
is quite effective, yet suffering from computational costs. Tree-
based models are still superior to all methods but, while they
can grow too deep—a 500 classes model on AppClassNet can
grow up to a depth of 117 corresponding to 416GB file size—
they are still the most practical solution when modeling classes
with ≤1,000 samples/class. Still, the best DL alternatives are
closing the performance gap against tree-based models.

In the following, we start by introducing the principles
behind the DL techniques (Sec. II) and reviewing related
computer vision and TC literature (Sec. III). We continue
stating our research goals (Sec. IV) used when designing our
experiments (Sec. V). We conclude by discussing our results
(Sec. VI) and outlining future research avenues (Sec.VII).

II. BACKGROUND

In this section, we review DL models training princi-
ples for monolithic, transfer, meta- and contrastive learning.
We focus on a supervised task T with a dataset D =
{(x1, y1) · · · (xm, ym)}, where each input sample x ∈ X maps
to a class label y ∈ C = {1...N}. D is partitioned into Dtrain,
Dval and Dtest and each (xi, yi) belongs to one partition only.978-3-903176-58-4 ©2023 IFIP

f� f�zf� f�z

y��������

Training (source) Fine-tuning (target)

y��������f� f�

episodes

Meta-training

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

train
val
testD

target classes

train
val
testD

y��������

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y���������

train
val
testD

11 12

transfer
(via fixed representation)

mini
batches

Dtrain

1 2 3 4 56 7 8 9 10 11 12 13 14 15

InfoNCE
y��������

Dval

y���������
y���������

episodes

y��������

y�����������
y�����������f�

episodes

y�����������

Dtest

11 Meta-validation12 Meta-testing13

transfer

z

z

z

+

-
+ -

f� f�z y�{1..15}

feature
extraction

classifier

latent
space

(x,x,x,y)

Dtrain

1 2 3 4 5

(source)

f�

(a) Monolithic (b) Transfer learning

(c) Meta-learning (d) Supervised contrastive learning

Augment

projection layer

f� f�z f� f�zf� f�z

f� f� f� f�f� f�z z z

(target)

(source)(target) (target)(source)

Fig. 1: DL training strategies comparison.

A. Monolithic training
A DL model embodies a function fθ,φ : X → C mapping

input samples to labels. As sketched in Figure 1(a), the model
decouples feature extraction (a.k.a. encoding, embedding)
fθ : X → Z from classification fφ : Z → C by means of
an intermediate latent space Z where each class projected
samples should be easily separable. Training such model
requires tuning the function parameters (θ, φ) to minimize the
difference (a.k.a. the classification loss) between true labels
y and predicted ones ŷ. To do so, during training Dtrain is
re-played multiple times (a.k.a. epochs) through the model
by means of mini-batches (each being a collection of inputs
sampled from Dtrain) to progressively adjust the parame-
ters. Each training epoch is usually validated by assessing
classification performance on Dval, with model parameters
temporarily frozen for quantifying over-fitting (i.e., verifying
that the model can classify data not belonging to the training
set) and searching optimal hyper-parameters. Lastly, testing on
Dtest yields the final classification performance. As sketched
in Fig. 1(a), training, validation, and testing (i) share the
same task which targets all available classes—the model is
monolithic—and (ii) the dataset partitions are scanned at least
once.1 As we shall see, while transfer learning respects both
principles, meta-learning violates them both.

B. Transfer learning
Transfer learning [17] enables to address a target task

Ttarget via a model Msource trained for a different task

1In each training epoch, the dataset is shuffled and then sequential micro-
batches are formed—this is semantically a scan of the dataset. The process
is the same in validation and testing, although shuffling is unnecessary.

Tsource. Intuitively, the stronger the relationship between
Tsource and Ttarget, the higher the chance the knowledge
in Msource can be used (hence transferred) to Ttarget. How-
ever, exactly quantifying task affinity is challenging [18], but
training on large datasets is a “cheap” way to bypass the
problem [19]. As sketched in Fig. 1(b), Mtarget is composed
of the already trained feature extractor f (source)

θ (a.k.a., trunk,
backbone, encoder) and a new classifier f (target)

φ to be trained
from scratch and possibly having a different number of classes
and/or architecture with respect to Tsource. Given the mixture
of trained and untrained parameters, training of Mtarget is
referred to as fine-tuning and can be performed in a few
ways. Fig. 1(b) shows fixed representation scenarios where the
transferred trunk is frozen ^ when training the new classifier,
i.e., only the new classifier parameters are optimized. Fixed
representation is commonly used to compare different repre-
sentation learning methods, but alternatively, one can fine-tune
all parameters at once, or use a hybrid policy unfreezing trunk
parameters after a certain number of epochs. No matter the
selected option, transfer learning still adheres to monolithic
training—dataset partitions are entirely scanned and Ttarget
enlists all available classes, yet those are disjoint with respect
to Tsource.

C. Meta-learning and episodic training

While transfer learning relies on implicit tasks affinity,
meta-learning is designed to explicitly push cross-tasks rep-
resentation extraction. To do so, (i) Dtrain, Dval and Dtest

contain disjoint set of classes and (ii) training is based on
the generation of synthetic tasks Ti called episodes. During
an epoch, rather than completing a scan of Dtrain by means

of random mini-batches, synthetic tasks Ti are created by ran-
domly sampling a subset of training classes C(train)

i . Then, for
each class two disjoint sets of samples are randomly formed to
drive the learning, namely support Si and query Qi. Episodic
training is synonym of Few-Shot Learning (FSL) [20] and is
also known as (N-way, S-shot) training: an episode contains
N classes (ways) each having two sets of samples, namely
S

def
= |Si| shots and Q

def
= |Qi| query samples acting as a

“micro-training” and “micro-validation” set. We highlight that
sometimes FSL is broadly referred to training (or fine-tuning)
with small datasets but without episodic training (e.g.,[13]).
However, in this paper FSL is synonym for meta-learning.

Notice that while episodes are small batches of samples,
by design they differ from monolithic training mini-batches
as they guarantee class balance. In monolithic training, mini-
batches are formed by randomly selecting samples across the
dataset hence (i) they reflect the dataset class imbalance (if
any) and (ii) even for already balanced dataset, there is no
guarantee that all target classes to be present in a mini-batch.
Conversely, in meta-learning, an episode has (S+Q) samples
for each of the (randomly selected) N target classes (ways).

Overall, this process is known as meta-training and is com-
plemented by the remaining two phases, meta-validation and
meta-testing which still rely on fine-tuning the target models,
but recall that Dtrain, Dval and Dtest are disjoint. More in
details, the target task Mtarget is composed by transferring
the meta-learned source model trunk f

(source)
θ and fine-tune a

classifier specific for an episode. In other words, as pictured
in Fig. 1(c), the evaluation (being validation or testing) creates
multiple models (one per episode) so overall performance
is an aggregation of per-episode models performance. As
in monolithic training, meta-validation facilitates both hyper-
parameters tuning and over-fitting assessment, while meta-
testing yields the final performance. Although not strictly
required, it is also common to maintain the same N-ways for
meta-train, meta-validation and meta-test.

As for transfer learning, it is beneficial to use a Dtrain

offering many classes (e.g., ≥ 100) but episodes are commonly
small, i.e., N={5, 10} classes each having S={1, 5} support
samples and Q={10, 50} query samples—meta-training is
designed to push representation learning through tasks variety.

D. Contrastive learning

From a geometrical standpoint, a well trained supervised
classifier should project input samples in the latent space so
to pull together samples from the same class while distancing
them from other classes samples. Recall that the common
model classifier fφ(·) is a simple linear layer, hence a tra-
ditional classification loss (e.g., cross-entropy loss) implic-
itly trains the feature extractor to achieve such geometrical
property. Contrastive learning [21] is a technique to explicitly
regularize latent space geometry by means of data augmen-
tation and a “contrastive game”: an input sample x ∈ X
(a.k.a. anchor) is transformed (via rotation, cropping, jittering,
blurring, etc.) into a positive sample x+=Augment(x) while
the remaining available samples in X can be used as negative

TABLE I: Computer vision literature summary.

Approach KnowDistil? Classifier Dist-based?

Transf.
Learn.

[15] Baseline # Linear #
[15] Baseline++ # Cosine Sim.
[16] RFS-simple(LR) # Logistic Reg. #
[16] RFS-distill(LR) Logistic Reg. #
[16] RFS-simple(NN) # Nearest Neighbor
[16] RFS-distill(NN) Nearest Neighbor

Meta.
Learn.

[27] ProtoNet # Euclidean distance
[28] RelationNet # MSE #
[29] MAML # Linear #

Contr.
Learn.

[21] SimCLR # none
[26] SupCon # none

samples; then the training loss is formed to penalize cases
where (fθ(x), fθ(x

+)) are far apart and (fθ(x), fθ(x
−)) are

too close. Multiple losses can drive the learning process
with InfoNCE [22], which maximizes the mutual information
between anchor and positive samples, being the most popular
choice. Overall, contrastive learning differs from SMOTE [23],
ADASYN [24] and other augmentations (e.g, random gaussian
jittering) which “blindly” add variety to Dtrain but no latent
space regularization is explicitly introduced.

Contrastive learning is at the core of Self-Supervised Learn-
ing (SSL) and is defined for unsupervised tasks—with no extra
information, a sample can only be self-similar, i.e., a positive
sample is the transformation of the sample itself—with a
wide design space related to the selection of transformations,
positives and negatives samples [25]. As from Fig. 1(d), notice
the presence of fφ(·) acting as a projection layer, not as
a classifier. Even supervised variants of contrastive learning
(e.g., [26]) are still effectively unsupervised as labels guide
the positive samples selection, not a classification loss.

III. RELATED WORK

In this section, we complement the DL training principles
introduced so far with a review of computer vision and traffic
classification literature as summarized in Table I and Table II.

A. Transfer learning

CV literature. Transfer learning is the most adopted method-
ology across literature. In particular, while early meta-learning
literature proves it is possible to learn even from single sam-
ples [27], more recent literature [15, 16] suggests transfering
from models created on large dataset (with many samples
and many classes) yields better performance, especially when
combined with fine-tuning with episodic training for the final
target task, i.e., they mix transfer learning with meta-learning.

A prominent example is Baseline [15] which trains a
Msource model using a large dataset (many classes and many
samples) and then fine-tune a target task (from a disjoint set of
classes) via episodic training. Baseline++ [15] is a variant of
the same approach where the parameters of the classifier are
treated as class embedding. More in details, both methods rely
on a fully connected layer W∈Rd×c where d and c represent
the dimension of the latent space vectors and the number
of target classes respectively. Unlike Baseline that simply

TABLE II: Traffic classification literature summary.

Data Classes
Reference Approach Year All Target Shots Inp.Type Inters?

Transf.
Learn.

[31] Razaei20 Multi-task learn. 18 5 5 n.a. 3 PS
[32] Sun18 TrAdaBoost 05 12 12 n.a. – FF

Meta
Learn.

[5] FS-IDS ProtoNet 14 8 3 1:10 26 FF G#
[6] UMVD-FSL ProtoNet 17,20 ≈76 5/20 1/5 784 B #
[7] Yu20 ProtoNet 09,15 ≈8 2/5 50 44 FF
[8] OICS-VFSL ProtoNet 09,15 ≈12 2/4/7 1:50 —FF
[9] RBRN RelationNet 12,16 ≈15 — — —B

[10] FCNet RelationNet 12,17 ≈10 2 5/10 200 B G#
[11] Festic RelationNet 18,19 ≈25 14 5:15 256 B
[12] FCAD MAML 17 43 13 5:20 33FF+8PS #

Contr.
Learn.

[13] Horiwicz22 SimCLR 18 5 5 — FlowPic

InpType: FF = flow features; B = payload bytes; PS = univariate packet time series; — = unspecified

Inters? target and base classes are#disjoint or either completely orG#partially overlapped.

uses a standard cross-entropy classification loss, Baseline++
relies on a cosine distance-based loss between W=[w1 · · ·wc]
columns and latent space projections z of input samples—each
column wi “embeds” a class. Similar mechanisms power also
RFS-simple(LR) and RFS-simple(NN) [16] differing from
the previous only by the classifier fφ(·) being a logistic
regression—a linear layer with sigmoid activations rather than
softmax—and a 1-nearest neighbour approach respectively—
the model does not have a classifier layer but rather clas-
sifies based on proximity to pre-defined labeled projected
samples. RFS authors also introduced two other variants,
namely RFS-distill(LR) and RFS-distill(NN), based on
self-distillation, a special form of knowledge distillation [30].
In a nutshell, to reinforce models knowledge, the trained
model is further fine-tuned by replaying Dtrain and pairing
the classification loss with an additional term comparing a
smoother version (via temperature scaling) of logits with
respect to the fine-tuned logits—in practice, the task becomes
intentionally more complex to further push the learning. It
follows that RFS-distill(LR) and RFS-distill(NN) use a
3-steps training: training the source model, apply distillation
and finally fine-tune the target tasks.
TC literature. Only [31, 32] used transfer learning but none
of the methods mentioned above. Namely, [31] pre-trained
an unsupervised multi-task model targeting flows duration
and bandwidth which was then transferred to a 5 classes
task. Results show that this transfer was under-performing
with respect to training directly a single-task model. Instead,
[32] used TrAdaBoost [33], an ensemble ML method using
reversed boosting, considering a very old dataset.

B. Meta-learning approaches

CV literature. Computer vision literature is ripe with meta-
learning and FSL methods [20]. In this study we focus on a
small selection of methods based on their extreme popularity.
ProtoNet [27] is the most well known metric-based meta-
learning approach. ProtoNet learns class prototype which
geometrically corresponds to the mean centroid of a class in
the latent space. Query samples are then classified based on
their euclidean distance with respect to class prototypes. The
idea of class prototypes inspired different meta-learning meth-

ods, including Baseline(ClassEmb) (i.e., class embedding
are semantically equivalent to class prototypes).

RelationNet [28] is another popular metric-based meta-
learning method. While ProtoNet uses a closed form distance
metric (i.e., euclidean distance), RelationNet introduces the
idea of “meta-learning” such distance. Specifically, the clas-
sifier fφ(·) embodies a “relation” module trained to provide
a similarity score between support and query samples. Curi-
ously, the classification loss is based on Mean Squared Error
(MSE) rather than softmax.

MAML [29] is the most popular optimization-based meta-
learning approach. Differently from ProtoNet and
RelationNet which optimize model parameters considering
episodes in isolation, MAML uses a two-nested loops process:
the inner loop fine-tunes based on each individual episode;
the outer loop “re-weights” inner loop contributions across
episodes via a second order gradient of the classification loss.

TC literature. As from Table II, several studies successfully
applied these methods on network traffic, mostly targeting
normal-vs-attack classification tasks in intrusion detection
scenarios. While we consider those classifiers as specific forms
of TC, we find most of these studies violate the meta-learning
principle of dis-joining train/val/test partitions. Only [6, 12]
followed the expected protocol, while in all the other studies
the partitions overlapped either perfectly (e.g., meta-train a
binary classifier normal-vs-attack and meta-test on the same
classes) or partially (e.g., normal and the same attack classes
traffic belongs to both meta-train and meta-test).

C. Contrastive learning

CV literature. Similarly to FSL, also contrastive learning is
a very active research area. Across variants, SimCLR [21] is
the most popular method. SupCon [26] extends SimCLR for a
“supervised” setting by simply considering as positive samples
also all other augmented version of samples belonging to
the same class of the selected anchor—it moves from self-
similarity to class-similarity.

TC literature. We find only two previous work using con-
trastive learning for TC. In [13], authors applied contrastive
learning in a “few-shot learning settings” without episodic
training. More specifically, authors trained an unsupervised
model using SimCLR and with a flowpic input representation—
packet time-series are transformed into images representing
the evolution of traffic over a time window; hence transforma-
tion is possible by either manipulating the time series (e.g.,
time shift) or the related image (color jittering, occlusion,
etc.)—and transferred it to the supervised classification task
using just a few labeled samples. In [14] instead, authors apply
BYOL [34]—another popular contrastive learning methods
that does not rely on negative samples—to a similar problem
setting as in [13].

Worth also of mention is [35] where authors used augmenta-
tions similar to the one used in [13], yet no contrastive learning
was applied.

IV. RESEARCH QUESTIONS

TC literature favors meta-learning with respect to transfer
learning (Table II). Yet, computer vision literature suggests to
pay attention to the latter. Moreover, all previous TC literature
on meta-learning provides positive results, but most of these
studies violate the meta-learning principle of dis-joining the
classes in Dtrain, Dval and Dtest. Thus, we claim the need to
re-assess these methodologies under different settings.

Q1: Is transfer learning yielding better performance com-
pared to meta-learning? Do the benefits, as observed
in computer vision, of transferring from source models
trained on many samples and many classes apply to TC
use-cases as well?

FSL targets scenarios suffering from limited amount of
labeled samples. For instance, in TC this happens when
new applications are introduced. However, differently from
computer vision, we can also rely on traditional ML models to
address these small tasks. Conversely previous TC literature
focused mostly on DL methods adopting image-like input
representation, while we argue that time series input is a more
natural choice for network monitoring.

Q2: How meta-learning performance compares with com-
mon ML tree-based models when considering as input time
series of properties of the first P packets of a flow? Do
more shots improve performance?

Next to transfer learning and meta-learning, also contrastive
learning is designed to facilitate better representation learning.
Since it has been shown to be successful for time series [36]
outside the TC domain, we ask

Q3: Does contrastive learning assist in creating more
general models also for TC? Is supervised contrastive
learning superior to its more traditional version?

V. METHODOLOGY

To address our research questions we relied on two publicly
available datasets and designed multiple modeling campaigns.

A. Datasets

MIRAGE19 [37] encompasses per-biflow traffic logs of 40
Android apps collected at the ARCLAB laboratories of the
University of Napoli Federico II. It was collected by instru-
menting 3 Android devices used by ≈300 volunteers (students
and researchers) interacting with the selected apps for short
sessions. Each session resulted in a pcap file and an strace2

log mapping each socket to the corresponding Android pack-
age name. Pcaps were then post-processed to obtain biflow
logs by grouping all packets belonging to the same 5-tuple
(srcIP, srcPort, dstIP, dstPort, L4proto) and extracting both
aggregate metrics (e.g., total bytes, packets, etc.), per-packet
time series (packet size, direction, TCP flags, etc.), raw packets
payload bytes (encoded as list of integer values) and mapping
a ground-truth label by means of the strace logs.

2https://man7.org/linux/man-pages/man1/strace.1.html

TABLE III: Datasets summary.

MIRAGE19 AppClassNet

Data Num. Samples
ρ

Num. Samples
ρPartition Classes All Max Min Classes All Max Min

Dtrain 24 82k 8.2k 1.3k 6.3 320 9.8M 1M 958 1,044
Dval 8 9.4k 1.3k 1.1k 1.2 80 60.5k 956 579 1.6
Dtest 8 5.1k 904 361 2.5 100 47.4k 578 383 1.5

Dall 40 97k 8.2k 361 22.7 500 9.9M ≈1M 383 2,611

ρ = ratio Max/Min samples per class

AppClassNet [38] is a commercial-grade dataset released
by Huawei Technologies in 2022 and gathered from real
residential and enterprise networks. The dataset encompasses
the traffic of 500 applications for a total of 10M biflows each
represented by a time series of packet-size and direction of
the first 20 packets and, most important, labeled by means of
a commercial and proprietary DPI tool. Prior to release, the
dataset was anonymized to remove privacy-sensitive informa-
tion (i.e., IP addresses, exact timing, protocol headers field
values, and packet-payload) and business-sensitive information
(i.e., applications labels are encoded as integer values and raw
time series values are anonymized).
Dataset partitioning. Table III summarizes datasets prop-
erties. Defining the popularity of a class as its number of
samples, the table reports ρ measuring the datasets imbalance
as the ratio between the most popular and least popular class.
As expected, the imbalance is severe; yet such condition
is rare in computer vision scenarios, especially in meta-
learning settings—typical FSL datasets like Omniglot [39],
miniImageNet [40] and CIFAR-FS [41] have all ρ=1. Ad-
hering to meta-learning protocols, we partition the datasets
by dis-joining train/val/test. To do so, we use class popular-
ity resulting in Dtrain containing the largest classes pool—
imbalance here still reflects network traffic scenarios and the
large availability of data allows to address (Q1)—while Dval

and Dtest focus on unpopular classes—imbalance here is
reduced, better reflecting the typical meta-learning settings
(Q2). We argue that such partitioning is preferable to both
(i) artificially random under-sampling to enforce a “few-shot”
setting and (ii) randomly splitting classes, obtaining scenarios
where a target class has many samples. Conversely, we aim at
target tasks with a naturally reduced number of samples.
Input type. All models are created using packet time series as
input (Q2). Specifically, for MIRAGE19 we consider 4 features
(packet size, direction, inter-arrival time, and TCP window-
size3) for the first 10 packets; for AppClassNet we consider
2 features (packet size and direction) for the first 20 packets.4

B. DL methods

Approaches. We considered a total of 16 methods: 1 for
monolithic training, 8 for transfer learning, 3 for meta-

3For UDP traffic the time series is padded with 0.
4The reason for the different time series length resides in properties of the

datasets: MIRAGE19 contains many short leaved flows, thus using 10 packets
reduces padding.

learning, and 4 for contrastive learning. We use all meth-
ods reported in Table I. However, for transfer learning,
we modify original names to better express their relation-
ship and semantic: Baseline++ → Baseline(ClassEmb),
RFS-simple(LR) → Baseline(LR) and RFS-simple(NN) →
Baseline(NN).5 Still on transfer learning, we added the
two variants Baseline-TL and Baseline(ClassEmb)-TL that
fine-tune via monolithic training rather than episodic training.
For contrastive learning, we considered both unsupervised
(SimCLR) and supervised (SupCon) variants (Q3) considering
models with and without Baseline’s class embedding (4 vari-
ants). We also randomly apply 4 transformations: horizontal
flip reverses the order of packets (1st become last, etc.); shuffle
randomly reorders packets; tail-occlusion masks the second
half of an input time series with zeros; Gaussian noise adds
noise sampled from a normal distribution ϵ ∼ N (0, 1) to each
time series value.
Architectures. We used CNN architectures based of 2d con-
volutional blocks (a convolution layer followed by a batch
normalization layer and a ReLU activation): CNN-2 is inspired
by [42] and has two CNN blocks with 32 and 64 filters
respectively followed by a fully connected layer of 200 units
(trunk with 529k parameters); CNN-4 adds other two CNN
blocks and a fully connected layer of 500 units (trunk 1.3M
parameters).
Implementation. We complemented the PyTorch implemen-
tation provided by [15, 16] by adding monolithic training,
traditional transfer learning, and contrastive learning methods.

C. ML methods

We compared all DL approaches against a reference Ran-
dom Forest (RF) provided by sklearn [43] and fed with the
concatenated packet time series (Q2).

D. Experimental scenarios

We settled on scenarios intentionally designed to go beyond
the traditional FSL settings where meta-training and meta-
testing share the same N -ways, and number of shots is
limited to S∈{1, 5}. Trained DL Msource models are used
in fixed representation (Sec. II-B). We also experimented with
different monolithic models to gather “reference” comparison
performance. Overall, the training campaigns run on multiple
Linux servers equipped with multiple nVidia V100 GPUs.
Monolithic models. When using monolithic training Dval

is discarded6 and the actual training and validation set are
obtained from a 9:1 partitioning of Dtrain. For RF we used
100 estimators but varying max-dept ∈ {unbounded, 10, 30}.
For DL methods we used a batch size of 64 for MIRAGE19 and
1,024 for AppClassNet with a static learning rate of 0.001.
Episodic training. For episodic training, we varied the number
of shots S∈{5, 15, 50, 100, 200} while keeping Q=15 query

5We acknowledge that Baseline is a sub-optimal naming convention, but
we kept it to preserve the relationship with [15].

6Alternatively we could have merged Dtrain with Dval, but transfer
learning training would have enjoyed more classes than for meta-learning.

TABLE IV: Models reference performance.

MIRAGE19 AppClassNet

Arch Train Test Accuracy Params. Accuracy Params.

RF (a) all all 86.29± 0.52 2.5M / 56 66.73 ± 0.12 226M / 116
RF (b) all 4 target 83.30± 0.21 2.5M / 56 55.95 ± 0.63 226M / 116
RF (c) 4 target 4 target 96.84± 0.09 26k / 22 95.88± 0.15 30k / 23

RF-10 (a) all all 57.64± 0.70 94.1k / 10 8.66± 0.08 163k / 10
RF-30 (a) all all 86.25± 0.47 2.4M / 30 52.55± 0.25 90M / 30

CNN-2 (a) all all 79.69± 0.06
529k+

8k 83.91± 0.41
529k+

101k
CNN-2 (b) all 4 target 74.47± 1.29 8k 76.21± 1.84 101k
CNN-2 (c) 4 target 4 target 84.35± 0.95 804 91.26± 0.93 804

CNN-4 (a) all all 79.83± 0.10
1.3M+

20k 84.56± 0.31
1.3M+

250k
CNN-4 (b) all 4 target 73.40± 1.33 20k 75.12± 1.57 250k
CNN-4 (c) 4 target 4 target 84.87± 0.71 2k 91.93± 2.14 2k

For RF*, {total nodes} / {avg depth}; For CNN*, {trunk} + {classifier} params.

samples training for 200 epochs of 100 episodes each. Fol-
lowing the reference implementation, the learning rate was
(slightly) different between the three approaches: ProtoNet
used a policy halving the learning rate every 10 epochs, while
RelationNet and MAML had a fixed learning rate of 0.001 and
0.0001 respectively. We also experimented with varying both
training and testing ways (see Sec. VI-C). The only exception
is MAML which in the reference implementation was not flexible
enough to easily change models classifier during meta-testing.7

Evaluation metric. We measured classification performance
using balanced accuracy, defined as a weighted average of per-
class accuracy based on the inverse of the class popularity [44].

VI. EVALUATION

A. Reference monolithic models

We evaluated RF and DL monolithic models in three scenar-
ios: (a) training and testing on all classes, (b) training on all
classes but testing a random set of 4 unpopular classes and (c)
training and testing on a random set of unpopular classes only.
We repeated the experiments 10 times, each with 5-folds cross-
validation and 300 random selection of 4 unpopular classes for
(b-c). Table IV reports the average balanced accuracy, 95th
Confidence Intervals (CI) and models size, i.e., number of
nodes and depth for RFs and number of trunk and classifier
parameters for CNNs.

Random forests. Unbounded RF models yield the best per-
formance across all scenarios. Yet, (a-b) models are “unre-
alistic upper bound” given their incredibly high complexity.
Specifically, pickle serialization created files of 930MB and
416GB, i.e., 422× and 190M× a CNN-2 size for MIRAGE19

and AppClassNet respectively.8 Reducing trees depth makes
models leaner, but still large in absolute terms—with max-
depth=30 we obtain 880MB and 21.1GB for MIRAGE19 and
AppClassNet respectively—and aggressively reducing depth

7We found the same to be true in other publicly available implementations
of MAML; we believe that this constraint can be alleviated, but we leave it as
future work.

8Sizes do not account for gzip, zlib, etc., compression thus roughly reflect
the memory required to load those models for inference.

TABLE V: Comparing of transfer, meta- and contrastive learning in 4-way Ttarget tasks.

MIRAGE19 AppClassNet

Approach 5-shots 15-shots 50-shots 100-shots 200-shots 5-shots 15-shots 50-shots 100-shots 200-shots

Baseline 60.24± 0.57 72.62± 0.48 82.26± 0.41 86.09± 0.36 88.72± 0.32 77.30± 0.65 85.42± 0.50 90.11± 0.38 91.51± 0.38 93.03± 0.32

Baseline(ClassEmb) 59.98± 0.54 70.78± 0.49 79.03± 0.42 82.16± 0.41 84.48± 0.38 76.54± 0.61 84.35± 0.52 89.16± 0.41 91.39± 0.34 92.30± 0.32

Baseline(LR) 65.50± 0.61 75.28± 0.48 82.40± 0.42 85.87± 0.38 87.99± 0.34 77.42± 0.65 84.03± 0.53 88.77± 0.41 90.48± 0.39 91.83± 0.34

Baseline(NN) 65.48± 0.56 77.13± 0.48 86.41± 0.36 90.26± 0.30 92.84± 0.24 76.93± 0.61 84.81± 0.51 90.18± 0.39 92.25± 0.33 93.77± 0.29

RFS-distill(LR) 64.62± 0.56 75.14± 0.47 82.91± 0.41 86.10± 0.36 88.46± 0.33 77.10± 0.65 83.73± 0.52 88.69± 0.42 90.64± 0.38 92.14± 0.34

RFS-distill(NN) 64.85± 0.58 77.37± 0.47 86.78± 0.36 90.10± 0.30 92.51± 0.25 76.65± 0.66 85.02± 0.50 89.77± 0.40 92.45± 0.34 93.83± 0.30

MAML 57.10± 0.58 65.19± 0.48 70.68± 0.44 73.92± 0.44 73.97± 0.44 61.93± 0.71 72.60± 0.66 75.57± 0.60 77.52± 0.57 78.27± 0.55

ProtoNet 62.62± 0.56 67.07± 0.47 69.93± 0.41 70.72± 0.42 72.09± 0.40 69.93± 0.74 77.81± 0.63 80.31± 0.51 81.05± 0.52 81.94± 0.50

RelationNet 54.28± 0.58 58.73± 0.50 57.73± 0.51 62.99± 0.45 61.60± 0.47 68.65± 0.74 72.22± 0.67 77.24± 0.59 78.54± 0.56 75.09± 0.57

SimCLR 63.97± 1.01 74.61± 0.81 79.26± 0.76 80.94± 0.58 81.52± 0.63 77.88± 2.05 86.73± 1.43 91.10± 1.16 91.18± 1.15 91.65± 1.11

SupCon 64.72± 0.83 77.62± 0.69 86.55± 0.50 90.07± 0.43 91.00± 0.39 81.74± 1.07 89.29± 0.82 91.70± 0.64 92.03± 0.60 93.33± 0.51

SimCLR(ClassEmb) 62.82± 0.98 76.53± 0.83 86.91± 0.57 89.89± 0.46 91.01± 0.43 78.27± 2.17 84.70± 1.84 92.05± 1.08 92.35± 0.98 93.35± 0.92

SupCon(ClassEmb) 66.42± 0.84 77.69± 0.68 87.01± 0.48 90.32± 0.43 91.87± 0.37 81.05± 1.09 89.63± 0.75 93.75± 0.53 95.18± 0.48 95.94± 0.44

severely affect performance.9 Considering (c) instead, RF mod-
els are a very lean option as they yield the highest accuracy
with small footprint (≈ 2MB).
CNNs. Doubling the depth of the CNN provides <1% perfor-
mance improvement, yet both CNN-2 and CNN-4 have a small
memory footprint (2.2MB and 5.4MB respectively).
Takeaways. On the one hand, while RF reaps the performance
by dynamically growing its “architecture”, this can lead to
large memory requirements. Yet, for tasks with 4 classes
with ≤1,000 samples RF is still the best monolithic reference
considering that DL models bounds their deployment to (i)
GPU/TPU accelerators availability and (ii) non trivial per-
formance optimization. These aspects have been overlooked
by TC literature which prefers large architectures even for
relatively simple tasks—e.g., [45] uses 7M parameters on a
5-classes task; [46] uses a 3M parameters on a 20-classes
task. This call for an in-depth investigation of DL architectures
taking into account a variety of datasets which is outside the
scope of this work. Conversely, we take the reverse approach
with respect to the literature and we rely on CNN-2 for the
explicit purpose of investigating how much can be learned
with a relatively small architecture.

B. Sensitivity to number of shots

We continue the analysis considering transfer learning,
meta-learning, and contrastive learning approaches on one
specific settings. Recall that for transfer learning Tsource
contains all 320 for AppClassNet (viz. 24 for MIRAGE19)
(Sec.II-B and Sec.V-A). We train Msource models for 200
epochs. For meta-learning, each epoch has 100 episodes with
N=64 ways for AppClassNet (viz. 16 for MIRAGE19), with
Q=15 queries and varying shots S∈{5, 15, 50, 100, 200} for
both datasets. For all methods, Ttarget is based on episodes of
N = 4 ways and Q = 15 queries with the same configurations
of S shots as in training. In each scenario we used a 5-fold
cross validation for Msource models fine-tuning 1, 000 Mtarget

models, each with 4 random classes from Dtest. Table V

9We control trees size by means of max-depth for simplicity, and we
acknowledge that also the estimators should be taken into account to make
our assessment even more robust.

collects the average balanced accuracy and related 95th CI;
we further visually pinpoints the best (green) and worst (red)
method for each category when using 200 shots.
Meta-learning. First of all, we observe a sharp benefit when
increasing the number of shots (Q2). Recall that the typical
setup in computer vision literature limits S ∈ {1, 5} shots, and
also TC literature related to FSL adopts constrained settings
(see Table II).10 Those regimes are the worst performing in our
analysis with models trained on MIRAGE19 suffering a −7%
performance gap compared to AppClassNet models. In other
words, a larger variety of classes/samples is beneficial, yet
meta-training seems affected by (not obvious) “bottlenecks”.

When increasing the shots, beside the larger labeling effort,
two more subtle effects start to appear. First, an increased
computational resource cost—to go beyond 100 shots we had
to split training across multiple GPUs, not for the models
themselves, but due to the resource required to track gradients
given the increased episode size. Second, the higher the
number of shots, the more an episode resembles a “bloated”
micro-batch of traditional monolithic training—an episode is
deprived of its “synthetic random task” nature (see Sec.II-C).
Overall, and differently from previous literature (see Table II),
meta-learning methods fail to obtain solid generalization (Q2).
Episodic transfer learning. Conversely, transfer learning
methods are the best performing (Q1). In particular, on
AppClassNet all methods are within a ±1% gap, while
for MIRAGE19 we observe ±8.36% between the best and
worst performing methods with 200 shots. Recall that most
of these methods differ mostly for the classifier fφ(·). In
particular, on AppClassNet we can rank their performance
as logistic regression < class embedding < linear layer <
nearest neighbor. However, on MIRAGE19 class embedding
is the worst while nearest neighbor has +4% gap compared
to the 2nd performing classifier (logistic regression). This
hints that the latent space representation learned on MIRAGE19

is worse than the one learned on AppClassNet despite the
very different task complexity (32-vs-400 classes)—a nearest

10Except ISCX-VPN-nonVPN and USTC-TFC, popular datasets in TC (Ta-
ble II) enjoy >1, 000 avg. samples/class (even when filtering flows with >10
packets), but lack classes variety, thus more shots are viable.

TABLE VI: Transfer learning without episodic training.

Approach MIRAGE19 AppClassNet AppClassNet →MIRAGE19

Baseline-TL 86.62± 1.15 95.48± 0.78 78.69± 0.41

Baseline(ClassEmb)-TL 82.85± 1.54 94.72± 0.85 71.13± 0.45

neighbor classifier is more flexible than a linear one, which
possibly justifies the better performance on MIRAGE19 if
classes are not well separated; yet, a nearest neighbour classi-
fier needs to carry training data with the model in order to have
labeled “anchors” to use for the classification. Unfortunately,
investigating the latent space by means of silhouette score and
similar clustering metrics did not provide conclusive answers
about the discrepancies between the datasets. Lastly, while
distillation can provide benefits on average, the difference with
respect to other methods falls within the CI ranges, but we
cannot completely discard those methods which were effective
in computer vision literature [16].
Contrastive learning. As suspected, by leveraging label infor-
mation, supervised contrastive learning outperforms the tradi-
tional version—e.g., up to +10.35% and 3.98% on MIRAGE19

and AppClassNet respectively (Q3). Moreover, while class
embedding where ineffective for transfer learning, they are
beneficial for contrastive learning. However, the negative side
of those techniques is their computational cost: each Tsource
model took ≈1 day of training! By investigating the code,
we deemed those costs to the randomized data augmentation.
Thus, we believe that proper code refactoring can further reap
contrastive learning benefits.
Transfer learning without episodes. To complete the bench-
mark, Table VI reports the performance when using trans-
fer learning without episodic training. We observe that for
MIRAGE19 episodic training is more beneficial than for
AppClassNet, even when compared against supervised con-
trastive learning. As before, we suspect these discrepancies
relates to differences in the latent space geometry which are
not so obvious to extrapolate.

Table VI also shows that using AppClassNet as source
model to fine-tune task related to MIRAGE19 yielded poor per-
formance. Recall that AppClassNet underwent an anonymiza-
tion process modifying raw features values. Moreover,
MIRAGE19 relates to mobile apps traffic while the (private)
dataset from which AppClassNet was created relates to
wired networks. Based on these observations, we find quite
remarkable that this transfer still outperforms meta-learning
methods for MIRAGE19.
Takeaways. Differently from previous literature, the analysis
show poor performance for meta-learning, and suggest to fo-
cus on transfer learning and contrastive learning (Q1-2). The
latter of the two poses interesting engineering challenges and
the positive results we gathered seem corroborating the idea
of relying on self-supervision to further boost representation
learning [21]. Notice also how the best DL method is on-par
(or close to) the reference RF on 4 classes tasks—this is a
positive signal of more general representations (Q1).

2 4 6 8

2
4

8
12

16
20

24
RF

Tr
ai

n
W

ay
s/

Cl
as

se
s

83.0

84.7 66.7

83.5 71.2 65.6 58.0

85.0 68.7 64.7 60.3

85.6 72.1 64.1 62.2

84.8 71.8 63.7 62.6

83.8 71.0 66.1 59.1

98.8 96.8 95.5 94.4

ProtoNet

2 4 6 8

92.7

94.7 89.3

95.8 91.7 88.6 86.4

95.9 91.2 88.4 86.5

95.8 91.2 88.3 86.2

96.4 92.1 89.0 87.0

96.9 92.8 90.2 88.0

98.8 96.8 95.5 94.4

Baseline(NN)

2 4 8 16 32 64

2
4

8
16

32
64

12
8

25
6

32
0

RF

88.5

87.2 78.6

89.3 80.2 69.7

90.2 80.5 71.1 61.0

89.6 82.1 70.0 62.7 54.0

91.4 81.9 72.8 63.6 53.9 45.8

91.5 82.8 73.5 65.2 55.8 48.0

91.5 79.2 73.9 65.0 56.5 49.0

91.1 83.2 73.6 64.9 57.8 49.0

98.6 95.9 93.1 89.8 86.3 82.7

ProtoNet

2 4 8 16 32 64

92.6

94.8 88.2

95.0 89.4 83.6

95.5 90.7 85.0 79.2

96.6 92.1 87.1 81.3 75.7

96.8 92.5 87.9 82.2 76.5 70.9

97.2 93.6 89.3 83.9 78.3 72.7

97.5 93.9 89.7 84.1 79.0 73.4

97.2 93.8 89.2 84.0 78.4 72.8

98.6 95.9 93.1 89.8 86.3 82.7

Baseline(NN)

MIRAGE19 AppClassNet

Test Ways

Fig. 2: Sensitivity to train and test ways (S = 200, Q = 15).

C. Sensitivity to the number of ways

Meta-learning methods evaluated in Table V were trained
with a smaller N -way that for transfer learning. If on the one
hand, each episode is less complex than for transfer learning,
it is possible that transfer learning methods enjoy a more
“regularized” latent space due to the higher number of classes
pushing for more knowledge extraction. Thus, it is natural
to wonder if the performance gap is due to the experimen-
tal settings. To investigate this, we run a second campaign
varying both number of training and testing ways. For this
analysis, we focused only on ProtoNet and Baseline(NN)
as representative methods. We fixed S = 200 shots and
Q = 15 queries while varying the number of train ways
{2, 4, 8, 12, 16, 20, 24} and test ways {2, 4, 8} for MIRAGE19

({2, 4, 8, 16, 32, 64, 128, 256, 320} and {2, 4, 8, 16, 32, 64} for
AppClassNet). As before, we trained the models using 200
epochs of 100 episodes each. Fig. 2 heatmaps report the
average balanced accuracy across 1,000 test episodes (CI are in
line with previous experiments, hence not reported for brevity)
as well as the reference RF performance.

Starting from columns values, performance improve when
increasing the train ways—e.g., +4.6% for Baseline(NN) on
AppClassNet when moving from 2 to 320 classes (160×
more classes), yet only +0.4% when moving from 64 to 320
(5× more classes). The same is true for MIRAGE19 too but
with milder benefits. The trend is reversed when considering
rows values—e.g., on MIRAGE19, −8/9% performance drop
for ProtoNet (−2/3% for Baseline(NN)) every time we
double Ttarget number of classes. Overall, all models are
under-performing compared to RF models with unbounded
depth. Yet, also RF performance decreases with similar gaps
to DL when doubling the target task size.

Takeaways. The analysis suggests that better generalization
can indeed be achieved when using a larger pool of classes
(Q1). However, this is just a first step in the right direction.
Recall indeed that we used fixed representation according
to traditional evaluation protocol for representation learning,
and we intentionally fixed models architecture too—our results
are likely lower bounds.

VII. DISCUSSION AND CONCLUSION

In this work, we compared transfer, meta- and contrastive
learning against traditional ML tree-based models and DL
monolithic training using two publicly available datasets with
larger classes variety than in previous TC literature.

On the one hand, tree-based models achieve the highest
performance. Although their size explodes for complex tasks,
when dealing with ≤10 classes (and an average of 1,000
samples/class), they are still the most practical solution (Q2).
On the other hand, compared with tree-based models, DL
models handle more complex tasks, and their performance is
almost on-par with tree-base models also for small tasks when
using transfer learning methods—to the best of our knowledge,
this has been overlooked in previous TC literature.

More important, results show that a large classes variety
fosters reuse of DL models (Q1). In particular, and differently
from previous TC literature, our results show that meta-
learning methods are the worst performing methods (Q2),
while transfer learning based on episodic fine-tuning is a better
option—training with many samples (and many classes) is the
best option to create Msource models; these can then be used
to fine-tune Mtarget models using 100s samples. Moreover,
data augmentations and supervised contrastive learning yield
the best DL models overall (Q3).

We acknowledge also some limitations. For instance, we
follow the traditional protocol of testing representations via
fixed representation (Msource is frozen when transferred), and
we also adopt on relatively small architecture compared to
TC literature, i.e., our results are likely lower bounds. But,
even in this constrained setting, supervised contrastive learning
offers performance almost on-par with RandomForest (when
training tasks with 4 classes) (Q3). We firmly believe that
performance can improve via further optimizations (e.g., dif-
ferent architectures, input type, training methodology, and data
augmentation policies). However, with this work, we aim
to spark a “mind shift” in the TC research community to
depart from simple tasks (≈10 classes), and refocus on more
challenging settings to push the learning. In particular, next to
MIRAGE19 and AppClassNet, new large datasets have been
recently released [47, 48] and more are likely to come: now
we call to the research community to take them into action.

REFERENCES

[1] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld, “A first look at quic in
the wild,” in PAM, 2018.

[2] S. Roth, R. van Rijswijk-Deij, and C. Taejoong, “Tracking registrar
support for dnssec,” IMC, 2019.

[3] M. Trevisan, I. Drago, P. Schmitt, and F. Bronzino, “Measuring the
performance of icloud private relay,” in PAM, 2023.

[4] L. Yang, A. Finamore, F. Jun, and D. Rossi, “Deep learning and zero-day
traffic classification: Lessons learned from a commercial-grade dataset,”
IEEE Transactions on Network and Service Management, vol. 18, no. 4,
pp. 4103–4118, 2021.

[5] Y. Ouyang, B. Li, Q. Kong, H. Song, and T. Li, “FS-IDS: A Novel Few-
Shot Learning Based Intrusion Detection System for SCADA Networks,”
in ICC, 2021.

[6] C. Rong, G. Gou, C. Hou, Z. Li, G. Xiong, and L. Guo, “UMVD-
FSL: Unseen Malware Variants Detection Using Few-Shot Learning,”
in IJCNN, 2021.

[7] Y. Yu and N. Bian, “An intrusion detection method using few-shot
learning,” IEEE Access, vol. 8, pp. 49 730–49 740, 2020.

[8] W. Liang, Y. Hu, X. Zhou, Y. Pan, and K. I.-K. Wang, “Variational few-
shot learning for microservice-oriented intrusion detection in distributed
industrial iot,” IEEE Transactions on Industrial Informatics, vol. 18,
no. 8, pp. 5087–5095, 2022.

[9] W. Zheng, C. Gou, L. Yan, and S. Mo, “Learning to classify: A flow-
based relation network for encrypted traffic classification,” in WWW,
2020.

[10] C. Xu, J. Shen, and X. Du, “A method of few-shot network intrusion
detection based on meta-learning framework,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3540–3552, 2020.

[11] Z. Zhao, Y. Lai, Y. Wang, W. Jia, and H. He, “A few-shot learning based
approach to iot traffic classification,” IEEE Communications Letters,
vol. 26, no. 3, pp. 537–541, 2022.

[12] T. Feng, Q. Qi, J. Wang, and J. Liao, “Few-shot class-adaptive anomaly
detection with model-agnostic meta-learning,” in IFIP Networking,
2021.

[13] E. Horowicz, T. Shapira, and Y. Shavitt, “A few shots traffic classification
with mini-flowpic augmentations,” in IMC, 2022.

[14] Z. Zhao, Y. Guo, J. H. Wang, H. Wang, C. Zhang, and C. An, “Cl-etc: A
contrastive learning method for encrypted traffic classification,” in IFIP
Networking, 2022, pp. 1–9.

[15] W.-Y. Chen, Y.-C. Liu, Z. Kira, Y.-C. Wang, and J.-B. Huang, “A closer
look at few-shot classification,” in ICLR, 2019.

[16] Y. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, and P. Isola, “Rethink-
ing few-shot image classification: A good embedding is all you need?”
in ECCV, 2020.

[17] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer
learning,” Journal of Big Data, vol. 3, 2016.

[18] M. Crawshaw, “Multi-task learning with deep neural networks: A
survey,” arXiv preprint arXiv:2009.09796, 2020.

[19] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in ICML, 2017.

[20] Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generalizing from a few
examples: A survey on few-shot learning,” vol. 53, no. 3, 2020.

[21] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in ICML, 2020.

[22] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[24] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in IEEE international joint
conference on neural networks, 2008.

[25] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 1, pp. 857–876, 2023.

[26] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola,
A. Maschinot, C. Liu, and D. Krishnan, “Supervised contrastive learn-
ing,” in NeurIPS, 2020.

[27] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in NeurIPS, 2017.

[28] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in
CVPR, 2018.

[29] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in ICML, 2017.

[30] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in NIPS, 2015.

[31] S. Rezaei and X. Liu, “Multitask learning for network traffic classifica-
tion,” in ICCCN, 2020.

[32] G. Sun, L. Liang, T. Chen, F. Xiao, and F. Lang, “Network traffic classifi-
cation based on transfer learning,” Computers & Electrical Engineering,
vol. 69, pp. 920–927, 2018.

[33] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu, “Boosting for transfer learning,”
in ICML, 2007.

[34] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, B. Piot,
k. kavukcuoglu, R. Munos, and M. Valko, “Bootstrap your own latent -
a new approach to self-supervised learning,” in NeurIPS, 2020.

[35] S. Rezaei and X. Liu, “How to achieve high classification accuracy with
just a few labels: A semi-supervised approach using sampled packets,”

in ICDM, 2019.
[36] “Timeclr: A self-supervised contrastive learning framework for univari-

ate time series representation,” Knowledge-Based Systems, vol. 245, p.
108606, 2022.

[37] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé, “Mirage:
Mobile-app traffic capture and ground-truth creation,” in ICCCS, 2019.

[38] C. Wang, A. Finamore, L. Yang, K. Fauvel, and D. Rossi, “Appclassnet:
A commercial-grade dataset for application identification research,”
SIGCOMM Comput. Commun. Rev., vol. 52, no. 3, p. 19–27, sep 2022.

[39] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level
concept learning through probabilistic program induction,” Science, vol.
350, no. 6266, pp. 1332–1338, 2015.

[40] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Neurips, 2016.

[41] L. Bertinetto, J. F. Henriques, P. Torr, and A. Vedaldi, “Meta-learning
with differentiable closed-form solvers,” in ICML, 2019.

[42] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret, “Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

[43] sklearn, “scikit-learn,” 2022. [Online]. Available: https://scikit-learn.org/
[44] S. documentation, “Balanced accuracy score,” https://scikit-learn.org/

stable/modules/model evaluation.html#balanced-accuracy-score.
[45] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2img: A sequence-to-image

based approach towards ip traffic classification using convolutional
neural networks,” in Big Data, 2017.

[46] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in ICOIN, 2017.

[47] J. Luxemburk and T. Čejka, “Fine-grained tls services classification with
reject option,” Computer Networks, vol. 220, p. 109467, 2023.

[48] J. Luxemburk, K. Hynek, T. Čejka, A. Lukačovič, and P. Šiška, “Cesnet-
quic22: A large one-month quic network traffic dataset from backbone
lines,” Data in Brief, vol. 46, p. 108888, 2023.

https://scikit-learn.org/
https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-accuracy-score
https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-accuracy-score

	Introduction
	Background
	Monolithic training
	Transfer learning
	Meta-learning and episodic training
	Contrastive learning

	Related work
	Transfer learning
	Meta-learning approaches
	Contrastive learning

	Research questions
	Methodology
	Datasets
	DL methods
	ML methods
	Experimental scenarios

	Evaluation
	Reference monolithic models
	Sensitivity to number of shots
	Sensitivity to the number of ways

	Discussion and Conclusion

