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ABSTRACT
Bluetooth Low Energy has established itself as one of the central
protocols of the Internet of Things. Its many features (mobility,
low energy consumption) make it an attractive protocol for smart
devices. However, numerous critical vulnerabilities affecting BLE
have been made public in recent years, some of which are linked to
the protocol’s design itself. The impossibility of correcting these
vulnerabilities without affecting the specification requires the de-
velopment of effective intrusion detection systems, enabling the
detection and prevention of these threats. Unfortunately, the pro-
tocol relies on peer-to-peer communications and introduces many
complex and dynamic mechanisms (e.g., channel hopping), making
monitoring complex, costly and limited. Existing intrusion detec-
tion approaches lack flexibility, are limited in scope and introduce
high deployment costs.

In this paper, we explore a novel approach consisting in embed-
ding an intrusion detection system directly within BLE controllers.
This strategic position tackles these challenges by enabling a more
advanced analysis and instrumentation of the protocol and opens
the way to new defensive applications. We propose OASIS, a frame-
work for injecting detection heuristics into controllers’ firmwares
in a generic way without affecting the normal operation of the
protocol stack. It can be deployed in various contexts during the
life cycle of a device, from the chip manufacturer to a software
developer making use of proprietary components, or even in a full
black box context by a security analyst to harden a commercial
product. We describe its modular architecture and present its im-
plementation within five of the most popular BLE chips from three
different manufacturers, deployed in billions of devices and embed-
ding heterogeneous protocol stacks. We present five modules for
critical low-level protocol attack detection. We show that OASIS
has a low impact on the controller performance (power, timing,
memory) and evaluate its usage in a real-world setting.
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1 INTRODUCTION
The rapid expansion of Internet of Things has motivated the devel-
opment of new wireless protocols, optimizing stack complexity or
power consumption to fit the limited constraints of smart devices.
Bluetooth Low Energy has established itself as one of the most
popular wireless technologies over the years: its massive deploy-
ment in billions of smartphones, tablets and laptops, low complexity
and versatility make it especially attractive for IoT devices. In this
context, Bluetooth security has become a major concern. Multiple
critical vulnerabilities [1; 3; 4; 10; 16] have been discovered recently,
illustrating the growing interest of the community in this technol-
ogy. While some of these vulnerabilities [3; 4; 16] are related to
the stack implementation and can potentially be patched by the
manufacturers, others [1; 6; 8; 10; 19] are related to the protocol
design itself and cannot be easily fixed without either modifying
the specification [5] or not adhering to the standard.

This situation highlights the need to develop defensive measures,
such as Intrusion Detection Systems (IDS), to detect and prevent
these threats. However, building such systems is difficult because
the BLE protocol design and its concrete applications introduce
many fundamental challenges. First, exhaustively analyzing the
traffic from an external probe is unsuitable in many settings for
which BLE was created (e.g., mobile use). Second, such monitoring
is complex because BLE uses channel hopping algorithms during
connections, requiring expensive and complex wideband monitor-
ing. Moreover, the wireless nature of the protocol introduces many
context-dependent factors impacting the completeness and repre-
sentativeness of the monitored traffic. The protocol is also mainly
used to establish direct point-to-point communications that are
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Figure 1: OASIS embedded IDS overview. Below the dashed line, OASIS modifications.

difficult to monitor from a central node. Finally, many BLE devices
are intended for mobile use, resulting in a highly dynamic environ-
ment. These factors deeply impact the practicability of previous
works exploring the domain of BLE Intrusion Detection. Several
works [32; 36; 39] rely on existing BLE sniffers and inherit their
limitations, focusing their work on a small subset of BLE commu-
nications (e.g., advertising mode). Other works [21; 23] explore
various detection techniques on Bluetooth Low Energy without
addressing these challenges by performing offline detection on
datasets, making their deployment difficult in practice.

In this work, we explore an alternative system design, aiming at
embedding our IDS directly into the BLE controllers of the devices
themselves. It allows to monitor BLE traffic and detect attacks lo-
cally, at the lowest level that can be accessed by software, while
providing useful contextual information and allowing a full in-
strumentation of the device that can be leveraged in a prevention
strategy. While a typical BLE stack is composed of two main parts,
the Host (which manages the application layers of the protocol) and
the Controller (which is in charge of the lower layers), most of the
low-level traffic is hidden from the Host by design. As a result, many
attacks would be impossible to detect from the Host, motivating us
to focus our work on the Controller instrumentation. This strategy
allows an exhaustive view of the wireless traffic while giving access
to a large set of relevant features, such as signal strength (RSSI) or
checksum (CRC) validity. It is also strategically positioned to carry
out some low-level defensive actions to prevent a detected attack.

This approach implies several technical challenges. First, the
controllers implementations are generally proprietary and require
reverse engineering to understand and instrument their internals.
Second, controllers are difficult to instrument, as manufacturers
generally do not provide an easy way to patch them to include
defensive code. Third, a protocol stack implementation is time
sensitive by design, resulting in an optimized code that can be
difficult to modify and improve.

In this paper, we present OASIS, a user-friendly, modular, and
easy-to-extend framework designed to tackle these challenges and
largely automate both reverse engineering and instrumentation
processes of BLE controllers, allowing the hardening of currently
deployed embedded devices. It allows to embed various intrusion
detection heuristics, suited for many BLE attacks, operating at
any level of the protocol stack. It can also be used in multiple
contexts and use cases, from an end user having only a binary
firmware without any documentation to an embedded software
developer using a closed-source stack in his application or even

by a manufacturer trying to improve the security of its protocol
stack. Our approach being based on embedded detection performed
locally by the nodes, it does not suffer from many of the technical
limitations of existing research works relying on sniffers. It can
also easily complement other detection approaches or cooperate
with other defensive components, implemented at a higher level
in the device itself or taking advantage of a distributed strategy
across cooperating devices. We demonstrate the relevance of our
lightweight detection heuristics for detecting existing Bluetooth
Low Energy attacks, this work being the first one to provide a
practical detection of low-level attacks targeting the connected
mode, such as InjectaBLE [10], BTLEJack [8] or KNOB [1].

More precisely, our contributions are threefold:
• We propose a novel approach to design a BLE IDS by embed-
ding detection mechanisms directly into the BLE controllers.

• We provide a generic and modular framework, OASIS, dedi-
cated to the integration of intrusion detection modules inside
various BLE controllers’ firmware. We illustrated its capa-
bilities by implementing it on five popular chips from three
major manufacturers, based on heterogeneous BLE stacks
and deployed in billions of commercial products like smart-
phones and IoT devices.

• We show the relevance of OASIS with 5 of the most severe
low-level structural attacks targeting BLE protocol. We de-
signed 5 intrusion detection modules for these attacks and
embedded them into various BLE controllers. We detected
these attacks with very good false positive and negative rates
and low-performance overhead. In particular, we are the first
to propose a detection strategy for critical attacks such as
InjectaBLE [10] or BTLEJack [8].

2 BLUETOOTH LOW ENERGY OVERVIEW
The BLE protocol uses Gaussian Frequency Shift Keying (GFSK)
modulation with a data rate of 1MBps or 2MBps with 40 channels
in the 2.4GHz ISM band.

In advertisement mode, the devices notify other nearby devices
of their presence by broadcasting advertisement packets on the ded-
icated advertisement channels (37, 38, and 39). The other channels
(data channels) are used in connected mode. In connected mode,
communications are based on a Central/Peripheral topology, let-
ting two connected devices exchange data. Each node is assigned a
role according to its capabilities: a) a Broadcaster (or Advertiser) is
only capable of transmitting advertisements; b) a Scanner (or Ob-
server) is only capable of scanning advertisements; c) a Peripheral is
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capable of announcing its presence using advertisements and can
accept incoming connections and d) a Central is capable of scanning
advertisements and initiating a connection with a Peripheral.

In advertising mode, the advertising device jumps over the three
advertising channels to broadcast its frames. The time between each
advertising event (a complete cycle of hopping on the three channels)
is the sum of advInterval and advDelay. The advInterval is an integer
chosen by the device multiplied by 0.625ms. On the other hand, the
advDelay is a random delay (between 0 and 10ms) automatically
generated by the Link Layer for each advertising event. After every
advertisement frame transmission, the device listens to the channel
for possible Scan Request or Connection Requests from other devices.

When a Connection Request is accepted, the devices enter the
connected mode. In connected mode, the devices use a channel hop-
ping algorithm configured by several parameters included in the
Connection Request and hop along the data channels. The device ini-
tiating the connection acts as a Central while the device accepting
the incoming connection acts as a Peripheral. The devices commu-
nicate during time slots named connection events: first, the Central
transmits a frame to the Peripheral, then the Peripheral waits for
150`s and transmits its frame to the Central. The duration of a con-
nection event is defined by the Hop Interval parameter, included in
the Connection Request. When a connection event is terminated, the
devices jump to the next channel according to the selected channel
hopping sequence.

Every Link Layer frame starts with a 1-byte preamble, followed
by a 4-byte field (Access Address) used for synchronization. Each
frame also includes a header, a payload, and a 3 bytes-long Cyclic
Redundancy Check (CRC).

3 THE OASIS FRAMEWORK
This section describes the design of OASIS, a generic and modular
framework for embedding intrusion detection mechanisms into
controllers. We cover the threat model, detection requirements,
design guidelines, global architecture, generated code structure,
main component implementations, and a typical use case.

3.1 Threat model
This work considers an attacker who can perform active network
attacks targeting BLE devices. He can use dedicated offensive hard-
ware and attack any protocol stack layer, including the lowest ones
(e.g., Physical and Link Layer). More specifically, we consider that
the attacker can receive and transmit arbitrary signals and packets,
impersonate a device, and sniff both new and existing BLE com-
munications. We assume that the attacker does not have physical
access to attacked devices and cannot perform physical attacks or
alter the controller firmware behavior.

While OASIS could be used to detect some of those attacks, we do
not consider the exploitation of vulnerabilities related to a specific
controller implementation. As a consequence, we consider network
attacks aiming at altering firmware memory, including the embed-
ded IDS itself (e.g., remote exploitation of buffer overflow or format
string), out of the scope of this paper. OASIS is designed to detect
protocol-level attacks aiming to manipulate a BLE communication,
either by disrupting it (e.g., Jamming-based attacks [8]), altering it

(e.g., Man-in-the-Middle [6; 19], hijacking [8] and malicious injec-
tion [10] attacks) or downgrading its security [1].

3.2 Detection requirements
The embedded detection mechanisms in the BLE controllers require
the instrumentation of: a) Packet reception (e.g., LL packets, RSSI,
CRC validity), b) Time management (e.g., accurate timestamps,
timed execution), c) Connection and Device management (e.g.,
connections metadata, BD addresses, controller state), d) High-
level operations (e.g., scan mode trigger).

Implementing these mechanisms can be very heterogeneous
depending on the stack used: to avoid developing multiple detection
modules dependent on the stack, this motivates the development
of a generic framework with wrappers allowing instrumentation
of the stacks and exposing a consistent API.

3.3 Main guidelines
Many controller implementations are proprietary and not docu-
mented, making it often impossible to instrument the source code.
Interacting with the BLE stack often requires patching the firmware
binary and running OASIS code without disrupting the execution.

This motivated the development of a framework to generate
the detection software, which must be able to run independently
from the controller. This implies carefully choosing the hooked
functions to avoid adding delays in time-sensitive components but
also finding a way to inject our code and data into memory without
impacting the controller execution. Our framework must also be
user-friendly, i.e., allow a developer to easily implement a new
detection module without requiring a deep understanding of the
underlying controller architecture.

The controllers are also heterogeneous and cannot be instru-
mented without writing specific code for each of them. However,
a detection module implements a logic independent of the under-
lying controller, and the corresponding code must be written only
once. Consequently, every target-specific wrapper must expose a
homogeneous API, facilitating the development of target-agnostic
components. Therefore, one of the key principles that have guided
our framework design is the genericity.

Some controllers only implement a subset of the BLE specifica-
tion. For example, some IoT-oriented controllers only implement
the Peripheral role, so only a subset of the generated code needs
to be embedded. Given this situation and the strong constraints in
terms of time and memory associated with the embedded approach,
modularity is a fundamental design guideline of our framework.
Similarly, extending the framework to add a new target or detection
module should be straightforward.

3.4 Embedded detection software
The OASIS framework generates an embedded detection software
ready to be loaded into the chip memory. This embedded software
instruments the target controller by patching specific functions
to extract relevant features. Then, these features are forwarded to
the selected detection modules, which analyze them and poten-
tially raise an alert if an attack is detected. The software interacts
with the BLE stack but runs without interfering with its normal
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Figure 2: Embedded detection software overview.

behavior. Therefore, it uses and manages its own memory space
independently of the main firmware.

The detection software is composed of three main components,
as illustrated by Figure 2: a target-specific wrapper, a core, and a set of
detection modules. They are described in the following subsections.

3.4.1 Target-specific wrapper. The wrapper is the target-specific
component for interacting with the controller. It is composed of
two main systems: a) an event management system to react to spe-
cific events (e.g., packet reception, packet transmission, connection
initiation) and to extract all available low-level features from the
controller, and b) an action management system, to trigger specific
actions in the controller (e.g., sending an event to the Host, entering
a specific state).

The event management system comprises a set of wrapper func-
tions corresponding to the monitored events. It instruments the
controller by patching specific instructions of the BLE stack to
redirect the execution flow to a trampoline function that saves the
context and calls the corresponding wrapper function. Once the
wrapper function has been executed, the trampoline function re-
stores the context, executes the instruction altered by the patch,
and redirects the execution flow to the next instruction in the stack.
This mechanism allows calling the corresponding wrapper function
when a specific event occurs. Then, the wrapper function extracts
all available features and propagates them to the event processing
system implemented in the core component.

The action management system comprises a set of functions to
trigger a specific action in the instrumented controller. Depending
on the instrumented stack, it can make a function call, mimic an
HCI command transmitted by the Host, or modify a variable in the
controller memory.

This component is the only one that depends on the target. There-
fore, each implemented wrapper exposes a similar API, allowing
the target-independent components to interact with the controller
in a standardized and unified way.

3.4.2 Core. The core is the central component of the detection
software. It is composed of an event processing system, a set of
libraries, and an instrumentation system.

The event processing system handles the different events the
detection softwaremonitors.When the wrapper generates a specific

Firmware
analyzer

Build system

Patcher Monitor

Detection
modules

Target Core

firmware

patches

Hardware 
board

Figure 3: OASIS Framework architecture.

event, the core collects the features extracted by the wrapper and
possibly infers some complementary features from the extracted
ones (e.g., the core can infer the advInterval used by an Advertiser
or a Peripheral from the timestamps of the advertisements received
from that device). Then, the event processing system propagates the
event and a structure containing the collected features to the loaded
detection modules by executing the corresponding callbacks.

The core also exposes an instrumentation system, that can be
used by the detection modules to interact with the controller. This
system propagates the function calls to the wrapper, allowing it to
enter a specific state or trigger an action in a generic way. It also pro-
vides various libraries facilitating the modules’ development. The
core exposes a custom memory allocator, allowing to dynamically
allocate and release of memory without interfering with the native
memory management (the embedded detection software manages
its own independent memory), a hashmap implementation, and a
logging system, allowing to send detection alerts to the Host.

3.4.3 Detection modules. The detection modules implement the
detection strategies: they are generally responsible for analyzing
the features provided by the core component to detect attacks.
They can declare a set of callbacks executed when a specific event
occurs, for example, when a packet is received, or a connection is
initiated. They also have access to features collected and inferred
using a specific structure and can trigger various behaviors using
the instrumentation API. We describe both supported low-level
attacks and the corresponding detection algorithms in section 5.

Each module is independent and can be considered a small em-
bedded detection software. With this design, the user can choose
which modules to include in the embedded detection software and
easily write new ones. The currently implemented detection mod-
ules require an average of 64 lines of standard C code, with 17
lines for the simplest heuristic (KNOB) and 108 lines for the more
complex one (InjectaBLE). Depending on the requirements of the se-
lected modules, a system of dependencies also allows one to compile
and flash only a subset of the framework features. It is particularly
relevant given the constraints in time and memory inherent to an
embedded approach.

3.5 Architecture of the OASIS framework
The OASIS framework allows the generation of the aforementioned
embedded detection software and injects it into the memory. The
framework is composed of four main components, as shown in
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Figure 3: the Firmware analyzer, the Build system, the Patcher and
the Monitor. They are described in the following section.

3.5.1 Firmware analyzer. The framework relies on source code and
configuration files describing a target to instrument the controller,
including the wrapper source code, linker scripts, and configuration
files. These files describe all the information the framework needs
to patch the controller firmware, inject the detection software code
into the memory, and interact with the controller.

Identifying the information needed to generate these files gener-
ally requires reverse engineering of the controller firmware, most
proprietary and not documented. Since this process is tedious and
error-prone when performed manually, the role of the firmware
analyzer is to automate this reverse engineering task and the gen-
eration of the corresponding target-specific files.

The process is divided into two main steps. The first is dedicated
to reverse engineering the provided firmware, while the second
uses the collected information to generate the source and config-
uration files describing the target. The reverse-engineering step
is mainly based on an automated static analysis of the firmware
binary, which tries to identify the relevant functions, variables, and
structures using regular expressions describing specific instruction
patterns or values. It exploits the fact that different firmwares may
share many similarities because of code reuse, which allows us to
automate the analysis of several firmwares sharing the same con-
troller architecture. This component currently supports Broadcom,
Cypress, and Nordic Semiconductor proprietary stacks.

Once the firmware is analyzed, the tool generates the target’s
configuration and source code files to instrument it. It automati-
cally disassembles the functions linked to a specific event to iden-
tify instructions to patch, allowing it to build the list of firmware
instructions to patch. The wrapper source code, linker files, and
configuration files are automatically generated from the previously
extracted information.

3.5.2 Build system. Once generated, the target files are provided
as input to the build system, with the target-agnostic software
components (e.g., the core and the selected detection modules).
The build system comprises a set of scripts for generating the final
list of instruction patches and binary blobs that will be injected into
the memory using standard tools such as the GNU GCC compiler
and assembler.

The build system performs the following steps:

• Detection modules compilation: Each selected module is
compiled without linking, allowing the corresponding binary
blobs to be generated.

• Modules callbacks generation: For each selected module,
the build system lists the callbacks needed by the module.
Then, a glue C source code, including the module callbacks
as function pointers for every event, is generated, allowing
the core to redirect the execution flow to the correct module
callback when the event occurs.

• Trampoline functions generation: For each patch re-
quired to instrument the target, the build system generates
a trampoline function to save the context, restore it, and
execute the removed instruction.

• Compilation and linking: The whole embedded software
(including the core, the target wrapper, the detection mod-
ules, the glue code, and the trampoline functions) is compiled
and linked. A dependency mechanism allows compiling only
the required software components if the selected modules
do not use some components.

• Symbols extraction: Each symbol contained in the com-
piled binary is extracted from the binary and stored in a
temporary file containing the symbol name, address, and
content.

• Patches generation: The final list of patches and binary
blobs is generated by combining the symbols previously ex-
tracted from the binary and the patches that must be applied
to the controller firmware to instrument it.

3.5.3 Patcher and monitor. Finally, once the list of patches has
been generated, the framework can inject them into the memory
using the patcher system. Depending on the type of controller used,
a different back-end may be used to execute the patching process
(e.g., InternalBlue [22], OpenOCD).

3.6 Framework usage
The framework can be easily used or extended thanks to the previ-
ously mentioned components. A typical workflow is composed of
the following steps:

• Generating the target-specific files (optional): If the
target-specific files have not been previously generated (the
framework includes a set of pre-generated files for vari-
ous targets), the users can dump the firmware and use the
firmware analyzer to automatically perform the reverse
engineering process and generate the corresponding target-
specific files.

• Selecting detection modules: Users can easily select the
modules theywant to include in the final embedded detection
software or write their own modules using standard C code.
Other components do not require any modifications if the
existing features are sufficient to perform the detection.

• Building and patching the embedded detection soft-
ware: Users can then execute the build system to build the
corresponding embedded detection software, then they can
inject it into the memory using the patcher.

• Monitoring the embedded detection software: Users
can debug the embedded detection software or monitor the
generated logs and detection alerts using themonitor.

4 CONTROLLERS INSTRUMENTATION
We focused our work on three heterogeneous and widely used
BLE stacks: the Broadcom/Cypress stack, embedded in a large num-
ber of Bluetooth chips from these manufacturers, the SoftDevice
from Nordic Semiconductors, embedded in their BLE-enabled chips
(e.g., nRF51 and nRF52 families), and the BLE stack included in
the Zephyr open-source OS. This section briefly presents the in-
ternals and the instrumentation methodology we applied to the
two proprietary stacks, illustrated in Figure 4, as they required a
significant reverse engineering effort. We performed partial reverse
engineering for each analyzed stack, targeting a representative
set of firmwares implementing the stack. It allowed us to identify
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the underlying software architecture, the implementation of the
features listed in our detection requirements (presented in subsec-
tion 3.2), and the memory mapping.

4.1 Broadcom and Cypress BLE controllers
Bluetooth-enabled chips from Broadcom and Cypress use a pro-
prietary stack based on a real-time OS named ThreadX. The chips
involved, based on an ARM Cortex M3 processor, are common in
the wild and can be embedded in various types of devices, such as
smartphones (e.g., Nexus 5, Samsung Galaxy S20), computers (e.g.,
Raspberry Pi) or IoT devices (e.g., FitBit Charge). These chips are
poorly documented, but several works[12; 13; 22] have partially
documented their internals.

The BLE features are implemented as tasks, scheduled by the
Bluetooth Core Scheduler and representing a specific state (e.g., con-
nection, scan). A task is described by a set of functions linked to
a specific event (initialization, packet reception, packet transmis-
sion, etc.) and listed in a specific callbacks table. We hooked the
initialization and packet processing functions linked to each BLE
task, allowing us to analyze the received and transmitted packets
in real time while being able to detect the active GAP role. We
also extracted the structures that store relevant features, such as
connection parameters or Bluetooth device addresses, from some
radio configuration functions.

A specific thread handles the high-level operations, especially
the HCI management. The thread processes every HCI command
and leads to the execution of a specific function, which is stored in
a table of function pointers indexed by the command opcode. The
HCI events are generated using an allocation function that allocates
and initializes the event buffer while another function allows their
transmission. We hooked both the processing of the command
thread, allowing us to inject arbitrary commands to trigger high-
level operations, and the HCI events functions used to build our
logging system by passing detection alerts to the Host.

The firmware is stored in ROM, but the manufacturers have
included amechanism named PatchRam[2] for updating it: a specific
memory area in RAM can be used to store a limited number of ROM
changes. Manufacturer patches are written in a dedicated RAM area.
A specific ROM instruction of the original firmware is patched using
PatchRam to redirect the execution flow to the updated function in
RAM. These mechanisms are triggered using vendor-specific HCI
commands, allowing us to easily divert them to patch the existing
firmware and inject our own code into memory. The embedded
detection software code and data are stored in the manufacturer’s
patch section of RAM, while the PatchRam mechanism can be used
to modify the firmware instructions in ROM to set up our hooks.
InternalBlue tool makes this process much easier, so our framework
uses it as a back end to patch and monitor these chips.

4.2 Nordic Semiconductors SoftDevice
Nordic Semiconductors designed a custom proprietary controller
for its BLE-enabled chips (e.g., nRF51 and nRF52 families, based
on ARM processors), named SoftDevice. These chips are commonly
used in IoT devices, and multiple versions of the SoftDevice can be
found in the wild.

The SoftDevice is provided by the manufacturer as a binary blob,
which is loaded in the lowest parts of the flash. The user application
is flashed in the upper part of the flash and communicates with the
SoftDevice using a non-standard proprietary API based on supervi-
sor calls. A typical application initializes the SoftDevice, configures
it to enable the needed BLE features, then monitors the events trans-
mitted by the controller by calling a specific function in an infinite
loop. The SoftDevice manages the low-level operations: a single
packet processing function is called by the radio interrupt when a
packet is received or transmitted, which can identify the current
GAP role and the current radio operation using a set of internal
variables and structures. We also identified a set of configuration
functions to store relevant features such as connection parameters
in the internal structures. We mainly hooked packet processing and
configuration functions in the SoftDevice component and extracted
various features from the internal structures we identified. The
function used by the application to collect the SoftDevice events has
also been hooked, allowing us to generate the right supervisor call
when we need to trigger a high-level action. Similarly, we hook the
application’s entry point to execute our initialization routine, allow-
ing us to initialize the memory and configure a timer to facilitate
time-management operations. The strategy to patch the firmware
and inject our code into the memory is based on modifying the
firmware binary. The firmware instructions to patch are altered in
the binary itself and then the code and the memory of our detection
software are appended at the end of the firmware. We also inject a
decreased stack pointer initialization value in the interrupt vector,
allowing us to set aside a specific zone of the RAM to avoid conflicts
between the memory used by the SoftDevice, the application, and
our detection software. This modified firmware is flashed into the
chip’s flash using OpenOCD, and our initialization hook copies the
memory zone from the flash to the reserved RAM zone.
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5 DETECTION OF LOW-LEVEL BLE ATTACKS
In this section, we describe five major low-level attacks related to
the protocol design and discuss how these attacks can be detected
using appropriate features at the BLE controller level to build rel-
evant detection modules using OASIS framework. We purposely
focus on attacks related to the protocol design, which cannot be
easily fixed without changing the specification.

5.1 GATTacker and BTLEJuice:
Man-in-the-Middle attacks

Attacks presentation. Two main strategies have been consid-
ered to perform a Man-in-the-Middle attack targeting a BLE con-
nection. They are both based on a spoofing strategy targeting the
advertisements transmitted by a Peripheral before initiating the
connection, even if they adopt different approaches to perform
this operation. GATTacker[19] advertises spoofed advertisement
packets faster than the legitimate Peripheral to maximize the prob-
ability of receiving the Connection Request before the legitimate
device. Once the Central is connected to the attacker fake Periph-
eral, the attacker initiates a connection using a second dongle with
the legitimate Peripheral to establish the Man-in-the-Middle attack.
BTLEJuice[6] establishes a connection with the target Peripheral,
forcing him to stop transmitting its advertisements. Then, the at-
tacker uses a second dongle to expose a spoofed Peripheral, waiting
for a Central to initiate a connection. Let us emphasize that the
spoofing strategies exploited by these Man-in-the-Middle attacks
are also a mandatory preliminary step for more complex attacks,
such as BLESA [37]. As a result, detecting such strategies provides
a first line of defense for these attacks.

Detection strategies. Our strategy to detect GATTacker is based
on the idea that a Peripheral transmitting advertisements must fol-
low a specific channel hopping pattern, which depends on two
parameters (the advDelay and the advInterval, as discussed in sub-
section 2). If an attacker is transmitting advertisements simulta-
neously, a node monitoring the advertising channels as a Scanner
or a Central should receive both the legitimate and the spoofed
advertisements and be able to detect that the received packets are
not compliant with the protocol specification, indicating the pres-
ence of a malicious node. To detect this situation, we first estimate
the advInterval for each device transmitting advertisements in the
absence of attacks. This estimation is based on a sliding window
that is filled with the duration between two consecutive advertise-
ments from the same device received on the same channel. Once
the window has been completely filled, the minimum value in the
window is considered as our advInterval estimate (keeping the min-
imum value allows us to reduce the impact of the random advDelay
parameter). Then we set a detection threshold to the advInterval
value minus the maximum advDelay value, representing the worst
legitimate case. Each time a new packet is received, a new estimate
is calculated. An alert indicates the presence of a malicious node if
the calculated value is lower than the detection threshold.

The BTLEJuice attack is more difficult to detect because a node
monitoring the advertising channel has no guarantee to observe
the Connection Request transmitted by the attacker. Therefore, we
adopt another strategy, allowing the target Peripheral to detect its

own spoofing by an attacker. When a connection is established, the
Peripheral simultaneously maintains the connection and scans the
advertisements. During this scan operation, the Peripheral checks
if its own address is included in the advertisements packets and
raises an alert if this situation is detected.

While these strategies provide effective detection, they have
some limits that should be highlighted. The GATTacker detection
must correctly estimate the legitimate advInterval before it can
detect an attacker node. Consequently, the detection requires that
the monitoring device has been able to fill its sliding window to
estimate the interval before the attack begins. This learning phase
could be removed in a controlled environment with known advIn-
terval values. Likewise, the BTLEJuice detection requires that the
target Peripheral can maintain a connection and scan the advertise-
ments simultaneously: it may be problematic for specific controllers
implementing only a subset of BLE roles. Random addresses can
also be problematic. They could be associated with a device without
storing each address by leveraging the Identity Resolving Key (IRK)
knowledge if they are resolvable. Otherwise, a tradeoff between
space and detection performance must be made.

5.2 BTLEJack attack
Attack presentation. Another attack that may have a signif-

icant impact on availability is named BTLEJack[8]. This attack,
presented by D. Cauquil, is a jamming approach allowing to jam an
established connection or to hijack the Central role under certain
circumstances. The attacker first synchronizes with an established
connection, then transmits a jamming signal when the Peripheral
sends a reply to the Central at each connection event. The attack
exploits a counter mechanism detecting link losses by incrementing
the counter value for every missed or invalid packet. When this
counter reaches a predefined threshold, the Central considers the
connection as lost and exits, allowing the attacker to interrupt it or,
in the worst case, to hijack the Central role if the Peripheral does
not disconnect immediately after the Central disconnection.

Detection strategy. From a Central node perspective, detecting
this attack can be performed easily: unlike a normal connection loss,
the Central receives frames including an invalid CRC on multiple
consecutive connection events during an attack, while none packet
is received in a legitimate scenario. This situation has a very low
probability of occurrence in a legitimate situation, as the channel
hopping algorithm ensures the use of multiple channels distributed
along the ISM band. The detection strategy involves raising an alert
when the consecutively received frames with integrity corruption
counter reach the value of the connection counter minus one.

5.3 KNOB attack
Attack presentation. The KNOB attack, presented by Antonioli

et al. [1], allows an attacker performing a Man-in-the-Middle attack
to inject a low entropy value during the pairing process. Indeed,
the pairing process includes a protocol for entropy negotiation,
allowing each involved device to indicate how many entropy bytes
can be used during key generation. As a result, an attacker can
perform an entropy downgrade attack by setting this number of
bytes to 7 instead of 16 in the case of BLE. Consequently, the key
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can easily be brute-forced, compromising the security of future
communications between the involved devices.

Detection strategy. This attack can be detected by both aCentral
or a Peripheral using a simple passive strategy. When a Pairing
Request (i.e., the packet type used to negotiate the entropy value)
is received, the entropy value field is extracted from the packet
payload. An alert is raised if the value is less than 10 bytes of
entropy. Even if the protocol technically allows such a lower value
to be used legitimately, considering that a device should not be
allowed to use an entropy value low enough to allow a brute force
seems a reasonable assumption from a security perspective.

5.4 InjectaBLE attack
Attack presentation. The last attack we focus on is a new injec-

tion attack targeting BLE communications called InjectaBLE [10].
This attack abuses a feature used to compensate for potential clock
drift between devices. When a Peripheral enters reception mode
to receive a packet from the Central during a connection, it listens
during a short window (named window widening) after and before
the theoretical instant, allowing an attacker to exploit a race con-
dition and inject a malicious packet before the legitimate Central
node. This attack is critical, especially if the connection is not en-
crypted. It allows any role to be hijacked or a Man-in-the-Middle
to be performed by injecting specific frames.

Detection strategy. This attack can be detected by monitor-
ing the interval between two consecutive received packets by the
targeted Peripheral itself. We can detect if a packet is injected by
comparing the last interval to the legitimate connection interval. If
the interval is less than the theoretical interval minus an empiri-
cally estimated threshold, we consider the frame as malicious and
raise an alert.

6 EVALUATION OF OASIS CAPABILITY
We first conducted two sets of experiments to evaluate OASIS’s
detection capabilities. We tested each module independently in
office conditions. Then, we evaluated our IDS detection capabili-
ties on two off-the-shelf devices in real-life conditions. Finally, we
evaluated the performance of the firmware analyzer.

6.1 Detection performance evaluation
We performed several experiments to evaluate the detection perfor-
mance for each detection module on multiple devices connected to
a central gateway monitoring detection logs while legitimate and
malicious traffic was generated.

Table 1: Targets used for each experiment.

Targets
𝑅𝑎 𝑁𝑒 𝐺𝑎 𝐷1 𝐷2

GATTacker ✓ ✓ ✓ ✓
BTLEJuice ✓ ✓ ✓
KNOB ✓ ✓ ✓
InjectaBLE ✓ ✓ ✓
BTLEJack ✓ ✓

6.1.1 Experimental setup. Our first set of experiments was con-
ducted on five different targets: BCM4345C0 in a Raspberry Pi 3+
board; BCM4339 in a Nexus 5 smartphone; the Gablys, a smart
keyfob with an nRF51822 controller; a CYW20735 in an IoT devel-
opment kit, and an nRF51422 in the nRF51 Development kit. Each
are embedding various SDK examples (e.g., Scanner and Peripheral),
respectively called 𝑅𝑎, 𝑁𝑒 , 𝐺𝐴, 𝐷1, 𝐷2 in Table 1.

Most attacks used the Mirage offensive framework [11], which
implements multiple offensive strategies. We extended it with a
KNOB implementation. For Gattacker, BTLEJuice, and KNOB at-
tacks, we performed 250 periods of attacks randomly alternated
with 250 periods of legitimate traffic, targeting a connected light
bulb or the evaluated boards themselves, depending on the attack.
InjectaBLE and BTLEJack attacks require sniffing a connection, a
non-trivial task [9; 26]. They can sometimes fail due to sniffer desyn-
chronization. As a result, performing a fully automated experiment
could lead to invalid results (e.g., an attack failure being considered
a false negative), and we manually monitored the experiment. It
allowed us to control the attack success but impacted the number
of attacks that could be performed in a reasonable amount of time,
leading to 100 attacks alternating with 100 periods of legitimate
traffic in these specific cases.

6.1.2 Experiment results. For each experiment performed, we com-
pute the number of true positives (𝑇𝑃 ) , false positives (𝐹𝑃 ), true
negatives (𝑇𝑁 ) and false negatives (𝐹𝑁 ) the Recall and the Precision
by the target. The results for each experiment are listed in Table 2.
Multiple observations can be made from these results. First, we can
emphasize that our detection strategies successfully detect attacks,
as illustrated by the good Recall values we obtained (ranging from
0.94 to 1.0). Moreover, these experiments have been conducted in
realistic conditions, using standard offensive tools. Similarly, the
high Precision values, all between 0.93 and 1.0, show that our detec-
tion strategies generate only a very small number of false positives.
In addition, four of our five experiments have a precision value
equal to 1.0 for every tested target. The detection strategies that
rely exclusively on passively monitoring advertisements (e.g., GAT-
Tacker) generate slightly more false positives: this can be explained
by the fact that they have to compute some estimates that may be
impacted by some environmental changes inherent to these inten-
sively used channels. Finally, the results of a given experiment are
globally homogeneous for each tested target. This shows that our
detection modules are, as expected, independent of the underlying

Table 2: Experimental results.

Experiment Target TP FP TN FN Recall Precision

GATTacker

𝑅𝑎 250 0 250 0 1.0 1.0
𝑁𝑒 250 0 250 0 1.0 1.0
𝐷1 250 0 250 0 1.0 1.0
𝐷2 250 19 231 0 1.0 0.93

BTLEJuice
𝐺𝑎 245 0 250 5 0.98 1.0
𝐷1 239 0 250 11 0.96 1.0
𝐷2 250 0 250 0 1.0 1.0

KNOB
𝐺𝑎 247 0 250 3 0.99 1.0
𝐷1 250 0 250 0 1.0 1.0
𝐷2 249 0 250 1 0.99 1.0

InjectaBLE
𝑅𝑎 99 0 100 1 0.99 1.0
𝐷1 100 0 100 0 1.0 1.0
𝐷2 94 0 100 6 0.94 1.0

BTLEJack 𝑁𝑒 95 0 100 5 0.95 1.0
𝐷1 98 0 100 2 0.98 1.0
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wrapper implementations. Even if some of our strategies cannot
be implemented on every target due to role requirements, these
experiments demonstrate that these defensive detections can be im-
plemented on various devices, including a smartphone, a Raspberry
Pi, and a commercial connected object with minimal resources.

6.2 Real life experiment
Our second experiment evaluated our embedded IDS in conditions
as close as possible to a real-life deployment. The main goal of this
experiment was to analyze the behavior of our detection heuris-
tics under various environments in a typical daily use case. More
precisely, it allowed us to understand our environment-dependent
heuristics better and identify the factors impacting the false positive
rates. We experimented with two commercial products: the Nexus
5 smartphone and the Gablys smart keyfob. We included two detec-
tion modules on the smartphone (KNOB and GATTacker) and two
detection modules on the keyfob (BTLEJuice and KNOB), covering
both the connected and the advertising modes. We recorded the
alerts on both devices simultaneously for twenty-four hours. We in-
tensively used the BLE controller during this period by performing
scan operations and connections. We moved with the devices run-
ning OASIS between different environments representing various
radio profiles: an apartment, a crowded coffee shop, a street, and a
store. We manually performed 29 attacks at random instants in the
apartment and coffee shop environments. We only used legitimate
traffic in street and store environments.

Our experimental results are detailed in Appendix D. We de-
tected every attack we performed during this experiment without
interfering with the legitimate use of devices. We observed that the
GATTacker heuristic was too sensitive in some noisy environments.
We suspect that packet corruption may impact the advertising inter-
val estimation. Two factors can be optimized to decrease GATTacker
sensitivity: the sliding window size and the time threshold before
raising an alert when the estimation decreases.

6.3 Firmware Analyzer evaluation
We evaluated the firmware analyzer on 9 Broadcom / Cypress
firmwares extracted from BLE controllers embedded in heteroge-
neous devices1 and on 361 Nordic SemiConductors firmwares for
nRF51422 and nRF51822 chips. The 361 firmwares were generated
from the BLE examples included in six nRF5 SDK versions with
nRF51 support (9.0.0 to 12.3.0) and are representative of various
roles (e.g., Peripheral, Central or Both) and different SoftDevices
(e.g., s110, s120, s130). Our fully automated approach managed to
find 100% of functions and data in 307 of the 370 firmwares (stripped
binaries). On average, we find 99.34% of functions and 97.68% of
data, the worst case being 88.88% and 80%. These results show the
feasibility of building a set of heuristics allowing the detection of
relevant functions and data from monolithic firmware blobs, mak-
ing our embedded approach practical for common proprietary BLE
controllers. Regarding the generalization of this strategy, let us em-
phasize that 1) only a limited number of strategic functions and data
are required to build the instrumentation code, 2) open-source im-
plementations of BLE stacks are more andmore common in the wild

1Nexus 5, iPhone 6, Raspberry Pi 3/3+/Zero W, Samsung Galaxy S8, Samsung Galaxy
S10, MacBook Pro 2016, Development kits

(e.g., Zephyr, NimBLE, BTStack, Blessed), considerably facilitating
the controller instrumentation, 3) automatic reverse engineering
of monolithic firmwares is an active research field, and this com-
ponent could be improved by exploiting complementary research
works[17; 34] to implement a more sophisticated approach.

7 EVALUATION OF OASIS IMPACT
Devices relying on BLE are usually low-power, run on batteries,
and have low memory and CPU resources. Therefore, the impact of
OASIS on power consumption and runtime performance is essential
to evaluate. For this purpose, we performed high-resolution power
measurements on development boards in typical use cases. As the
detection modules are generally specific to a given role, we tested
several combinations of detection modules, covering typical BLE
use cases (Table 3). Then, we evaluate the impact on packet timings
and the memory usage of OASIS.

7.1 Experiment 1: fine-grained power
consumption analysis

The first experiment evaluated each profile’s power consumption
with high precision. All tests were conducted on the nRF52-DK
with current consumption monitored using Power Profiler Kit (PPK)
from Nordic Semiconductor [30]. For this test, we used Zephyr’s
“HCI over UART" example, which supports all BLE roles, allow-
ing us to evaluate all the profiles. For each profile, we collected
4-minute long traces under various configurations (with or without
OASIS running one or a combination of supported modules). We
observed a low but measurable increase in average power consump-
tion when OASIS is deployed. The increase depends on the profile
selected and the number of modules. Depending on the conditions,
the power consumption increases from a minimum of 0.54% to a
maximum of 1.11% as described in Table 4 (Details in Appendix A).
We also observed that the power consumption increase was con-
sistent with the modules’ complexity and the number of modules
loaded. We could also note the marginal cost of embedding multiple
modules instead of the most costly one in profiles using connected
mode (increase of respectively 0.07 % and 0.09 % for central and
peripheral profiles), suggesting that the power consumption over-
head in connected mode is mainly related to wrapper and core

Table 3: Micro-Benchmarking configurations for power con-
sumption overhead of OASIS.

Profile Supported modules Benchmark action
Scanner (𝑃𝑆 ) GATTacker running a scan
Peripheral (𝑃𝑃 ) InjectaBLE, KNOB, BTLEJuice accepting connection
Central (𝑃𝐶 ) BTLEJack, KNOB initiating connection
Multiple (𝑃𝑀 ) all alternating scan & connections

Table 4: Power consumption of different OASIS profiles.

Average power consumption (`𝑊 ) Percentage increase
without module with module

InjectaBLE 1226 1232 0.54 %
BTLEJuice 1226 1234 0.67 %
KNOB 1212 1220 0.68 %
GATTacker 1223 1236 1.07 %
BTLEJack 1212 1225 1.11 %
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Figure 5: Contribution of components to the packet delay for
each event.

processing rather than the modules. As a result, it motivates us to
focus on potential optimization work on these specific components.
We complemented this evaluation by a large-scale analysis on 100
Raspberry Pi, described in Appendix B.

7.2 Experiment 2: Execution time analysis
We performed experiments to evaluate the runtime overhead of
OASIS under various conditions. We performed these analyses
on development boards from two manufacturers (CYW20735 and
nRF52-DK). On those devices, we instrumented several points us-
ing hooks (see Figure 6). This instrumentation has low impact and
logs events with microseconds accuracy. For each profile (from Ta-
ble 3), we ran two-minute benchmarks under various configurations
(without the IDS, with the IDS, and with different combinations
of modules) and collected the execution time. Figure 5 shows the
average timing overhead contribution of OASIS core and wrapper
as well as each detection module (average execution time), which
we computed from the measurements.

For both devices, our results are consistent with the power mea-
surements (computations dominate power consumption). These
results confirm that the wrapper and core components are the main
contributors to the overhead. We can see the very low overhead of
the simpler modules, such as KNOB, which is below the microsec-
onds accuracy. On the other hand, the more complex modules, with
higher time overhead, performmanymemory accesses. In the worst
case (OASIS loaded with all modules, CYW20735 board), processing
a packet and response overhead is 54`𝑠 , and the packet response

Event
processing

Event
processingEmbedded IDS Embedded IDS

Record start timestamp

Record stop timestamp,
write duration in log

Without event timing
monitoring With event timing monitoring

Execution flow
redirection

IDS hook
(optional)

Monitoring
hooks

Figure 6: Event instrumentation (hooks) to measure execu-
tion time.

becomes 122`𝑠 . This remains under the standard’s 150`𝑠 response
delay requirement.2 This is consistent with the fact that we did
not see any error or communication failure due to using OASIS.
If more complex modules are integrated, parts of the processing
can be deferred after the packet response, reducing the impact on
time-critical code paths.

7.3 Experiment 3: Memory analysis
The memory used by OASIS can be split into three main sections:
code, static data, and dynamic data (e.g., heap). Dynamic data is
only used by modules relying on a hashmap (e.g., btlejack, gattacker
and injectable), and is dependent on the environment. The end user
can arbitrarily configure an upper limit (default is 2048 bytes). We
analyzed the amount of memory used for static data and code by
each OASIS component for five different targets: detailed results
are presented in Table 5.

We observe an overall static memory consumption between
4291 (Nexus 5) and 6305 bytes (nRF51 peripheral example) when
all modules are loaded. The difference can be explained by a) the
wrapper complexity (nRF51 require more instrumentation code
because of SoftDevice structure), b) the architecture in use (ARMv6-
M is used by nRF51, introducing a supplementary cost in memory
compared to ARMv7-M to handle some operations). We can observe
that most of the static memory in use is related to the wrapper and
core components. The static memory consumption for a module is
included between 48 (best case, knob module) and 500 bytes (worst
case, injectable module). It is consistent with their complexity.

These results show that our approach only requires a few kilo-
bytes of memory to run with every module loaded. On a nRF51822
with 256KB of memory or a BCM4339 with 196KB of memory, the
framework with all modules represents 3.2% of the memory (as-
suming a full heap with a size equal to 2048 bytes). Supplementary
engineering efforts may significantly reduce memory usage, by
introducing a fine grain dependencies management or exploiting
more aggressive compiler optimizations.

8 RELATEDWORK
8.1 State of the art
One of the main challenges to efficiently monitor BLE is related to
channel hopping algorithms. In [26], Ryan highlighted the problems
associated with these algorithms and developed some heuristics
for inferring connection parameters. This algorithm was improved
by Cauquil [7] to analyze channel maps. A similar implementation

2Bluetooth Core Specification [5] Rev. 5.3, Vol. 6, Part B, Section 4.1.1, p. 2737
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Table 5: Memory consumption per target (code and static
data)
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nRF51 SoftDevice code 5278 1266 2708 496 256 124 380 48
(peripheral) data 1027 587 427 4 4 1 4 0

Raspberry Pi 3 code 3860 730 1902 432 236 124 384 52
data 477 41 423 4 4 1 4 0

Nexus 5 code 3798 668 1902 432 236 124 384 52
data 493 41 439 4 4 1 4 0

CYW20735 code 3904 774 1902 432 236 124 384 52
data 484 41 430 4 4 1 4 0

nRF52 Zephyr code 3886 692 1958 432 236 124 392 52
(hci_uart) data 457 21 423 4 4 1 4 0

was adapted to the Ubertooth One by Sarkar et al. [27]. Cauquil
developed an approach to synchronize a sniffer with the second
PRNG-based channel hopping algorithm [9]. Finally, Qasim Khan
presented Sniffle [25], a new sniffer implementation that increases
the probability of successfully synchronizing the sniffer with a
connection by tracking the device during advertising.

Unfortunately, these passive approaches suffer from several se-
rious limitations that significantly impact the completeness and
representativity of monitored communications. First, most of these
sniffers can only monitor one connection at a time. Del Arroyo et
al. [18] proposed an opportunistic algorithm based on a scheduler in
the Ubertooth One to monitor multiple connections simultaneously,
but the underlying outdated hardware limits this work and may
miss some packets depending on the environment. Second, most
existing implementations are unstable, partially because of the use
of various heuristics unsuitable for some devices (e.g., frequent
channel map updates). Consequently, comprehensive monitoring
of the Link Layer traffic of BLE communications from an external
probe remains an open challenge, especially in connected mode.

This situation significantly impacts the research on intrusion de-
tection systems for BLE. Indeed, those are mostly based on sniffers;
those are therefore limited to monitoring advertisements, limiting
the detection to spoofing or DoS attacks targeting the advertising
mode. Wu et al. presented BlueShield [36], an approach to detect
spoofing attacks by profiling monitored devices using features in-
ferred from the advertisement packets. Sung et al. [32] explored
using Received Signal Strength Indicators (RSSI) to detect intruders.
Finally, Yaseen et al. [39] presented MARC, a framework to detect
Man-in-the-Middle attacks by exploiting four features inferred from
advertisement packets, such as the advertising interval or RSSI.

Other research works also explored the analysis of traffic in
connected mode. For example, Newaz et al. [23] combine an n-
gram-based approach with various machine learning techniques
to detect attacks by analyzing irregular traffic-flow patterns on
Personal Medical Devices. Satam et al. propose a similar method for
Bluetooth Classic networks in [28; 29]. Similarly, Lahmadi et al. [21]
explores usingMachine Learning techniques to identifyMan-in-the-
Middle attacks by building a model of legitimate behaviors based
on features such as RSSI, channel numbers, or distance. While these
works provide interesting results regarding traffic analysis, they
performed offline detection on datasets and are difficult to deploy.

Some complementary research works propose defensive strate-
gies that do not rely on intrusion detection or prevention. For
example, Wu et al. propose LightBlue [38], an automatic approach

to perform Bluetooth protocol stacks debloating to remove unused
code exposing an avoidable attack surface or providing resources
exploitable by an attacker (e.g., ROP Gadgets).

Several researchers approached monolithic firmware analysis.
Gustafson et al. proposed Shimware [17], a methodology to retro-
fit monolithic firmwares and automate some aspects of this pro-
cess. FirmXRay [34] is an automated Bluetooth vulnerability de-
tection mechanism providing scalable firmware analysis. These
works may complement our work on OASIS firmware analyzer. In-
ternalBlue [22] is a framework to instrument and experiment with
Broadcom Bluetooth Firmware. Cui et al. proposed software Sym-
biotes [14], which deploys a wide number of randomized hooks for
including various detection mechanisms in embedded devices. Un-
fortunately, this approach is not applicable to Bluetooth controllers
according to their constraints regarding resources and patching
limit (e.g., patching mechanisms with a limited number of slots),
motivating the development of a lightweight approach.

8.2 Comparison with previous work
Several papers [21; 23; 32; 36; 39] proposed BLE IDS in recent years.
In Table 6, we conduct a qualitative comparison based on multiple
factors: extensibility, implementation availability, and scope. We
indicate if the detection can be performed with a given approach for
each attack. We include the number of supported detection features,
grouped by categories. However, establishing a fair comparison
between OASIS and previous work is challenging, as threat models
differ, and OASIS is the first work to explore an online embedded
intrusion detection approach, aiming at protecting the device itself
instead of a specific environment. Because of the lack of embedded
IDS in previous work, we cannot compare the IDS memory/CPU
usage on the device. We also note that previous work is often
limited to spoofing attacks (e.g., BTLEJuice or GATTacker) and
systematically relies on BLE sniffers, implying the deployment of
static probes (known to be a significant challenge actively studied
in literature [24; 33]) or the manual collection of traffic. Previous
work also performs offline Intrusion detection on small datasets
when the connected mode is considered. Moreover, most of these
works can’t be easily reproduced: only BlueShield [36] source code
is available, but its complex deployment significantly complicates
an experimental evaluation (details in Appendix C).

9 DISCUSSION
This paper focused on low-level attacks, which are difficult to detect
and mitigate by design. However, our approach could be easily
applied to many other active attacks targeting the BLE protocol.
Indeed, implementing the detection at the lowest level accessible by
software allows detecting low-level attacks but is also relevant to
detect attacks targeting the upper layers or being linked to a specific
implementation. We believe this embedded detection approach is
relevant in the IoT context. The need to adapt IoT IDS for low
resource consumption has already been highlighted by previous
works, such as TWINKLE [31], where a two-mode adaptive security
model, alternating between a low consumption mode and a vigilant
mode with higher performance is proposed. Furthermore, OASIS
can also easily cooperate with other defensive components running
on the device itself (e.g., offloading costly modules on Host). While
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Table 6: Comparison between OASIS and current state-of-the-art BLE detection approaches
Ë: supported, Ò: can be implemented, é: not supported

OASIS BlueShield [36] MARC [39] HEKA [23] I.S. IT [32] MiTM ML [21]
Online Detection Ë Ë Ë é Ë é

Extensible Ë é é é é é
IDS Mobility Ë é é é é é

Scope Generic Stationary Networks Medical Medical Beacon Tags Generic

D
et
ec
te
d
A
tt
ac
ks

BTLEJuice Ë Ë é Ë é Ë
GATTacker Ë Ë Ë é é Ë
InjectaBLE Ë é é é é é
BTLEJack Ë é é é é é
KNOB Ë é é é é é
Device DoS Ò é é Ë é é
Replay Ò é é Ë é é
False Data injection Ò é é Ë é é
Physical Intrusion é é é é Ë é

Modes Adv. / Conn. Adv. Adv. Conn. Adv. Adv. / Conn.
Features collection Embedded Static Probe Static Probe Manual Static Probe Manual

Fe
at
. Advertising 4/4 4/4 3/4 0/4 0/4 0/4

Connection 4/4 0/4 0/4 1/4 0/4 0/4
Metadata 6/7 3/7 1/7 0/7 1/7 3/7

Implementation available Ë Ë é é é é

we demonstrated during our experiments that OASIS is lightweight
and can even be implemented in small IoT devices with limited
resources, a tradeoff between the number and cost of detection
modules and the available resources is unavoidable on such systems.

We can highlight some challenges of this approach. First, imple-
menting the detection on local nodes complicates the collection of
alerts by a Security Operations Center (SOC). However, this can
be solved by establishing a channel dedicated to alert reporting
between a central node and the local nodes analyzing traffic. Such a
channel could also exploit the decentralized nature of our embedded
approach, allowing to coordinate complex detection algorithms.

Embedding defensive mechanisms in the device itself also raises
the question of the integrity of the detection code and data. While
we consider that attacks aiming at altering the controller itself
(e.g., memory corruption attacks) are out of the scope of this paper,
they may allow to alter or evade the detection logic. Well-known
mitigations can be deployed to harden OASIS against memory cor-
ruption attacks (e.g. stack canaries, ASLR) [20]. A hybrid (Host
instrumentation) or decentralized (cooperation between multiple
Controllers) approach could also allow a remote attestation mech-
anism. Regarding OASIS evasion, the five detection modules are
based on observing the necessary consequences of attacks. To our
knowledge, no evasion technique should be possible under the
assumption of traffic completeness and bug-free implementation.

Another challenge is related to the instrumentation of hetero-
geneous stacks, sometimes proprietary. While we showed in sub-
section 6.3, the feasibility of building heuristics to automatically
identify relevant functions and data in common proprietary con-
trollers architectures, integrating support for other proprietary
architectures may require a reverse engineering effort. This effort
must be put into perspective because 1) open-source wireless stack
implementations are more and more common, 2) only a limited
number of hooks are required, 3) the engineering efforts required
by our approach must be compared to current state-of-the-art BLE
IDS based on sniffers, which need to address significant challenges
(e.g., probe placement, traffic completeness, technical limitations),
whereas our solution can immediately protect devices.

Finally, our framework enables IDS deployment in an adverse
context to provide an effective solution to IoT insecurity. It may

not be systematically possible for a third party to deploy it on
commercial devices, as a firmware update is required. Nonetheless,
it can also be used while developing an IoT device to harden the
BLE controller and protect it from attacks or even integrated by the
chip manufacturers themselves.

10 CONCLUSION
In this paper, we presented OASIS, an embedded IDS for BLE. It
is based on the instrumentation of the controller firmware, which
gives visibility and control over the lowest layers. We demonstrated
its relevance by conducting experiments under realistic conditions
on various targets, including smartphones and IoT devices with
limited resources. We presented detection modules to detect five
critical low-level attacks, including ones targeting the connected
mode, which were difficult to detect with previous approaches.
We further performed micro benchmarks to measure power, mem-
ory and packet timing overhead, and real-world experiments. This
demonstrates that OASIS is lightweight and can be used in various
environments. We provide a modular, generic, and user-friendly
framework for instrumenting BLE controllers, suitable for collect-
ing low-level detection features and released as open-source3.

This framework provides a simple way to instrument BLE con-
trollers to security community. In addition, it could facilitate re-
search in various areas (e.g., vulnerability research, intrusion de-
tection). Future work aims to include new types of controllers,
detection modules, and explore new prevention strategies. In ad-
dition, we plan to explore the feasibility of building a cooperative
IDS using a set of decentralized nodes capable of cooperating and
communicating over a secure wireless communication channel.
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A POWER CONSUMPTION FOR HIGH
PRECISION POWER MEASUREMENTS
IMPACT

Figure 7: Average power consumption for each profile under
different configurations.

B LARGE-SCALE POWER CONSUMPTION
ANALYSIS

To evaluate the impact of OASIS on power consumption in a realistic
network of devices, wemeasured the precise power consumption on
a 100 Raspberry PI 3B+ network (Figure 10). OASIS was installed on
Raspberry’s onboard Bluetooth controller (Broadcom BCM4345C0).
To reduce the impact of external factors, we perform 144 rounds of
experiments of 10 minutes each, where devices perform random
connections and communications. For each round, we randomly
assign half of the devices to behave as Centrals (performing scan-
ning and connections as Central) while the other half behave as
peripherals (performing advertising and connections as Peripheral).
We also alternate rounds with and without IDS. The results show
that OASIS has a small but measurable effect (illustrated in Figures 8
and 9). AWelch’s independent samples t-test showed that the 0.51 %
difference was significant (𝑡 (51485.37) = 53.85, 𝑝 = 0.0 < 0.05)), the
95% confidence interval is [1.18,1.27] while the cohen-d is 0.472299,
indicating a moderate effect.

The power consumption impact is thus very limited, which
shows that OASIS is a lightweight IDS that can be deployed with
minimal impact on power consumption.

Figure 8:Mean powermeasurementswith andwithout OASIS,
with associated 95% confidence intervals.

Figure 9: Power consumption distributions with and without
OASIS.

The mean power consumption in the group running the IDS was
238.78𝑊 with a standard deviation of 2.71 %, whereas the mean
power consumption in the group not running the IDS was 237.56𝑊
with a standard deviation of 2.45 %.

Figure 10: Experimental setup for large-scale performance
evaluation, based on a bay of 100 Raspberry Pi.

C BLUESHIELD EXPERIMENT DETAILS
We reproduced the BlueShield experimental setup described in [36],
using code provided in the associated GitHub repository [35]. Un-
fortunately, BlueShield relies on now deprecated software (e.g.,
Python 2.7) and hardware (e.g., the Ubertooth One has been re-
cently discontinued by its manufacturer, Great Scott Gadgets [15])
running custom firmware. We also had to write minor fixes in C
code to be able to compile both the custom firmware for Ubertooth
One and the associated Host libraries and tools. Since the code of
BlueShield relies on outdated Python 2.7 libraries, we had to run
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some software components in Docker containers to reproduce a
functional software environment. We used two Raspberry Pi 4 and
one Raspberry Pi 3B+, connected to three Ubertooth One running
the custom BlueShield firmware, as collectors. We connected them
to a Local Area Network (LAN) with a computer acting as monitor.
An overview of collectors and one of the profiled devices can be
found in Figure 11.

Figure 11: BlueShield collectors and profiled BLE Lightbulb

We encountered multiple deadlocks and exceptions during the
profiling phase, which were linked to Ubertooth reception issues
during the interval and RSSI estimation step. After several attempts
with different probe locations and minor bugfixes, we successfully
ran BlueShield profiling on two static BLE devices (a TI-based light-
bulb and an nRF51 Development Board running ble_app_blinky
example from nRF5 SDK 11.0). However, the monitoring phase did
not raise any alert in our environment, despite the fact that we ran
multiple successful spoofing attacks targeting the profiled devices
from various BLE transceivers (including BLE dongles used during
Blueshield evaluation, such as CYW20735 or CSR 4.0). We noticed
a significant impact of the probe location on the exhaustivity and
integrity of BLE traffic captured by Ubertooth One, which may
cause packet losses impacting the profile accuracy or the detection.
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D REAL-LIFE EXPERIMENT RESULTS

Figure 12: Results of real-life experiment. Red dotted lines indicate the occurrence of attacks, Orange lines indicate environment
change.
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