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Abstract
Spoofing detection is today a mainstream research topic.

Standard metrics can be applied to evaluate the performance of
isolated spoofing detection solutions and others have been proposed
to support their evaluation when they are combined with speaker
detection. These either have well-known deficiencies or restrict the
architectural approach to combine speaker and spoof detectors. In
this paper, we propose an architecture-agnostic detection cost func-
tion (a-DCF). A generalisation of the original DCF used widely for
the assessment of automatic speaker verification (ASV), the a-DCF
is designed for the evaluation of spoofing-robust ASV. Like the DCF,
the a-DCF reflects the cost of decisions in a Bayes risk sense, with
explicitly defined class priors and detection cost model. We demon-
strate the merit of the a-DCF through the benchmarking evaluation
of architecturally-heterogeneous spoofing-robust ASV solutions.

1. Introduction
All biometric verification systems, including automatic speaker
verification (ASV), have the single task of determining reliably
whether or not a biometric sample corresponds to a claimed
identity [1]. Early on, reliability was interpreted as classifiers which
could discriminate between target trials and (zero-effort)1 non-target
trials [2]. In more recent years, and as a result of advances in
text-to-speech synthesis and voice conversion, the threat of spoofing
attacks, also known as presentation attacks [3], has come to the fore.

Despite the still-evolving consideration and study of spoofing,
the single task of discriminating between target and non-target
trials remains fundamentally unchanged; target trials should be
accepted, while anything else should be rejected. The approach
to address this challenging problem has nonetheless undergone
rather more fundamental shifts. While there are examples of
alternative approaches even in the early literature [4–7], almost all
studies of spoofing-robust ASV adopt the use of so-called tandem
architectures [8,9]. These employ a pair of sub-systems, each also a
binary classifier, one tasked with discriminating between target and
non-target trials (the speaker detector), the other between bonafide
and spoofed trials (the spoof detector). The tandem approach is

*Equal contribution. Similar ideas were devised independently from
two different groups and later combined.

† Corresponding author
Code is available at https://github.com/shimhz/a_dcf.

1Zero-effort implies purely casual impostors which make no concerted
effort to deceive the system.

characteristic of the majority of related work, including studies
involving other biometric traits [10,11].

Standard metrics developed for the evaluation of speaker de-
tectors can also be applied to the evaluation of spoof detectors, also
known as countermeasures (CMs); they are both binary classifiers.
Alternative metrics proposed in recent years also support the evalua-
tion of speaker and spoof detectors when combined [12,13]. While
the combination of speaker and spoof detectors still constitutes a
single, binary classifier with the very same original task of accepting
bonafide target trials and rejecting anything else, the consideration
of spoofing complicates evaluation. Despite still being a binary
classifier, there are now three input classes (target, non-target, and
spoof). The tandem detection cost function (t-DCF) [12] was hence
developed to accommodate the evaluation of spoofing-robust ASV.

The t-DCF, however, is somewhat restrictive in terms of
supported architectures. The speaker detector is used as a gate to the
spoof detector,2 while an AND decision logic is used to combine
their respective classification decisions; given a target trial, the spoof
detector should indicate that an input utterance is bonafide AND the
speaker detector should indicate that the input utterance corresponds
to the claimed identity. The t-DCF requires the computation of
separate speaker and spoof detection scores and cannot be applied to
the evaluation of alternative approaches which, for example, might
produce only a single score. Such approaches have been reported
in the past and continue to emerge [6,14–19]. Their incompatibility
with the t-DCF metric, has hence stimulated the development of
alternative metrics, all forms of equal error rate (EER) estimates [14].
Different metrics are hence employed for the evaluation of different
architectural approaches to the evaluation of spoofing-robust ASV
solutions, despite them all sharing exactly the same goal. Use of
different metrics then complicates the benchmarking of competing
solutions. Furthermore, while an evaluation metric introduced
in [20] can be adapted to incorporate the aforementioned condition,
no existing research explicitly defines this problem to date.

We aim to provide a solution to this problem. We propose a
derivative of the original DCF metric which is agnostic to the chosen
architecture, be it a tandem system comprising separate, cascaded
speaker and spoof detection sub-systems, alternatives whereby the
roles of speaker and spoof detection are more closely integrated and
perhaps jointly optimised, or indeed any other potential architecture.
The only demand of the architecture-agnostic detection cost function
(a-DCF) is that, whatever the architecture might be, it must produce a
single score which provides an indication of whether or not an input

2There are plenty of other possible combination architectures.
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utterance corresponds to the claimed identity and is also bonafide.

2. Related work
Spoof detectors were initially evaluated independently from speaker
detectors, i.e. without consideration of impacts upon ASV behaviour.
There were a number of advantages to this approach. First, as a
fledgling initiative, it seemed sensible to simplify the task so that
researchers without expertise in ASV, but perhaps with other relevant
expertise, could still participate in the development of spoof detec-
tion solutions. Second, at the time the best architecture with which
to combine speaker and spoof detectors was unclear. Third, without
one having been identified, it seemed sensible to avoid the impo-
sition of a particular combination architecture only for the sake of a
common approach to evaluation. Spoof detection performance was
then estimated straightforwardly using an EER metric, a measure
of discrimination between the two classes (bonafide and spoof).

Even if spoof detection solutions were initially evaluated
independently, the potential for their interference with speaker
detection is evident. Just like speaker detectors, spoof detectors
make errors, either by accepting spoofs, or by rejecting bonafide
trials; depending on the combination architecture, a speaker detector
might not be able to recover from errors made by a spoof detector
(or vice versa). The community was hence in need of a metric
which could be used to evaluate the performance of combined
speaker and spoof detection systems.

The tandem-detection cost function (t-DCF) [12] was developed
for this purpose. Again, there were several advantages, not least
because it provided an alternative to the EER metric. As a result
of the assumed conditional independence of speaker and spoof
detection decisions, the t-DCF also promotes the independent
development of spoof detectors.3 Decisions produced by a spoof
detector can be combined with those made by a speaker detector
to provide a measure of spoofing-robust ASV performance. At the
same time, use of a DCF-derived metric also helped bridge the gap
between the relatively young spoof detection community and the
mature speaker detection community which had embraced the DCF
metric [21] decades earlier.

The well-known NIST-defined DCF [21], given by

DCF(t):=CmissπtarP
asv
miss(t)+CfaπnonP

asv
fa (t), (1)

reflects the cost of decisions in a Bayes risk sense [22,23] for an ASV
system in the absence of spoofing attacks. In (1), πtar and πnon=1−
πtar are the class priors. Cmiss andCfa are non-negative costs assigned
to missed targets (false rejections) and non-target false alarms (false
acceptance), respectively. P asv

miss(t) and P asv
fa (t) are the two ASV

detection error rates as a function of the detection threshold, t.
The t-DCF metric can be used for the evaluation of tandem

systems when the non-target class is augmented to include the
potential for spoofing attacks. The general form of the t-DCF is [12]

t-DCF(tcm,tasv):=Cmiss ·πtar ·P tdm
miss,tar(tcm,tasv) (2)

+Cfa,non ·πnon ·P tdm
fa,non(tcm,tasv)

+ Cfa,spf ·πspf ·P tdm
fa,spoof(tcm,tasv),

which now contains a third term related to false alarms stemming
from spoofing attacks, and where the three tandem (tdm) detection
error rates are now functions of two detection thresholds — one
for the spoof detector or CM sub-system (tcm), one for the speaker

3In principle, the conditional independence assumption of the two
sub-systems even enables them to be developed using different datasets,
yet they can still be evaluated in combination; in practice, this is not
recommended, as it introduces an unnecessary data variation factor.

Table 1: Three EERs used in the SASV 2022 challenge. System
is targeted to accept “+” trials and reject “-” trials.

Target Non-target Spoof

SV-EER + -
SPF-EER + -
SASV-EER + - -

detector or ASV sub-system (tasv). Each of the tandem detection
error rates are computed under the assumption that the speaker and
spoof detectors make (class-conditionally) independent decisions.
This leads to an AND-gate rule for combining the two sub-system
decisions; refer to [12, Section III.C] and [13, Section 4.3] for details.

Computation of the t-DCF in (2) requires two sets of detection
scores, each corresponding to one of the two sub-systems.
Nonetheless, one can choose to freeze either sub-system (including
its operating point) to give a constrained t-DCF which then becomes
a function of a single detection threshold only. Specifically, the
ASV-constrained t-DCF [12, Eq. (10)] is given by

t-DCF(tcm):=C0+C1P
cm
miss(tcm)+C2P

cm
fa (tcm), (3)

where P cm
miss(tcm) and P cm

fa (tcm) are now the miss and false alarm
rates for the spoof detector. The parameters C0, C1 and C2 [12, Eq.
(11)] depend on pre-defined cost and prior parameters, in addition
to the performance of a (frozen) ASV sub-system (speaker detec-
tor). The ASV-constrained t-DCF remains the cost of a complete
(tandem) system — but where the machine learning engineer’s opti-
mization efforts are constrained to modifying the spoof detector only,
since both the ASV sub-system and the combination rule are already
‘written in stone’. For the ASVspoof challenges [24], this kind of par-
tial optimisation strategy was adopted for the reasons noted above;
the ASV system and tasv in (2) were set by the organisers, while
challenge participants could focus on improving the spoof detector,
while having partial knowledge of speaker detector implementation.

Use of the t-DCF, whether (2) or (3), is nowadays unnecessarily
restrictive. It assumes a specific, non-customisable combination
architecture whereby speaker and spoof detectors are used in
cascade, and whereby decisions produced by each are combined
with an AND decision logic. The constrained t-DCF (3) further
restricts the class of spoofing-robust ASV models. Many other
architectural approaches are also possible, for instance score and
embedding level combination architectures — or even systems
comprising multiple spoof detection sub-systems. None of these
systems can be evaluated using the t-DCF.

An ensemble of three different metrics, all EER estimates, was
developed subsequently to support the evaluation of more flexible
spoofing-robust ASV architectures [14]. Each one corresponds
to an evaluation protocol comprising a different mix of trial types
illustrated in Table 1. The traditional speaker verification EER
(SV-EER) is used to measure the discrimination between targets
an non-targets. The spoofing EER (SPF-EER) measures the
discrimination between bonafide targets and spoofs. Finally, the
spoofing-aware speaker verification EER (SASV-EER) measures
discrimination between bonafide targets (which should be accepted)
and everything else (bonafide non-targets and spoofing attacks,
which should be rejected).

The ensemble of metrics provides insights into classifier per-
formance under different trial combinations, as well as the impacts
of spoofing and spoof detection upon ASV (just like the t-DCF).
Even so, there are three metrics (instead of one), and they are all
EER estimates (instead of DCF estimates). The shortcomings of any
EER-based metric are well-known [3,13,25]. For ASV applications,
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one generally prioritises either a low miss rate or a low false alarm
rate, which conflicts with the notion of equal with the EER. Unlike
DCF-based metrics, the EER is not customizable or an optimization
target for different applications. The SASV-EER metric which pools
non-targets and spoofing attacks among the negative class has even
further issues. The classic EER, when used to measure discrimina-
tion between any pair of two classes is not dependent on the empirical
class priors. As soon as the third class (spoofing attacks) is pooled
with non-targets, however, this property no longer holds [13, Section
4.4]; the SASV-EER metric becomes a function of the empirical
class priors. Hence, the metric itself depends on the evaluation data.

Note the subtle, but critically important, difference in the role
of the class priors for the DCF, t-DCF and the proposed a-DCF. For
all these metrics, the class priors are not a property of any dataset;
they are not estimated or computed from empirical data, but instead
reflect the evaluator’s assumed (uncertain) class priors for the given
application. Different to the implicit (hidden) weighting of the non-
target and spoof false alarm rates for the SASV-EER, DCF-based
metrics make the class priors (and consequences of classification
errors) explicit. For these reasons, we strongly discourage any
further use of the SASV-EER metric. If one absolutely must report
EERs, our recommendation is to limit such reporting to the SV-EER
and SPF-EER. For the interested reader, we point to the recently-
introduced concurrent tandem EER (t-EER) [13] metric which is
not dependent on the empirical class priors. Nonetheless, similar to
t-DCF, it can only be used to evaluate cascaded systems; and similar
to the other EERs, it cannot be customised to different applications.

It is time to reconsider the architectures for spoofing-robust
ASV. New metrics are needed for their comparative evaluation.
They should avoid the use of EER-based metrics, and especially
use of the SASV-EER, and inherit the favourable properties of the
DCF and t-DCF metrics with an explicit detection cost model. Last,
they should be agnostic to the classifier architecture.

3. Architecture-agnostic DCF
In this section we outline the theoretical basis for the proposed
architecture-agnostic detection cost function (a-DCF). We start with
a general formulation (Section 3.1), and show how it relates to the
NIST-defined DCF in (1), before presenting the specific formulation
adopted for experiments reported later in the paper (Section 3.3).
We then present the a-DCF as a generalisation of the traditional
two-class DCF (Section 3.4) before arguing how the a-DCF can be
applied to the evaluation of other spoofing-robust ASV architectures.

3.1. General form

Let us assume a multi-class classification problem. Let A =
{a1,a2,...,aK} be a set of K ground-truth class labels, let T ∈A a
true class label for a given trial and E∈A is an estimated/predicted
class label (classifier output). Let us define also the following:

• K×1 column vector of class priors πk=Pr(T=ak):

Π=
[
π1 π2 ··· πK

]⊤ ,

such that, ∀k,πk≥0,
∑K

k=1πk=1.

• K×K matrix of classifier conditional probabilities:

P=[Pqk=Pr(E=aq|T=ak )]

∀q,k∈{1,...K},Pqk≥0, ∀k,
∑K

q=1Pqk=1,

where Pqk is the conditional probability that the classifier
outputs decision aq given the ground-truth class ak.

• K×K matrix of conditional costs:

C=[cqk]

∀q,k∈{1,...K},cqk≥0, ∀k,ckk=0,

where cqk is the cost of the classifier outputting decision aq
given the ground-truth class ak. Without loss of generality,
costs in C can be set to zero in the case of correct decisions
(ckk = 0), whereas incorrect decisions can be assigned
non-negative, real values.

The total cost of making decisions can then be expressed in
compact form by:

CT=11×K ·(C◦P)·Π, (4)

where 11×K is a vector of ones which acts to sum the columns of
the matrix resulting from the terms to the right, and where ◦ is the
Hadamard or entry-wise product. Though expressed using different
formalism, (4) coincidences with [26, Eq. (4)].

In practice, classifier conditional probabilities are defined for
some operating point t for which entries in the matrix of classifier
conditional probabilities, now P(t), can be approximated by
pqk(t)≈Nqk(t)/Nk. Nk is the number of trials belonging to class
ak whereas Nqk (t) is the number of trials among them that are
classified as belonging to class aq.

3.2. Spoofing-robust speaker verification

For a standard ASV task, classifier decisions result in the labeling
of an input trial as either a target or non-target, corresponding
respectively to either accept or reject decisions. In this case, there
are two possible input classes and two possible classifier predictions
(K=2). The formulation in (4) can then written as:

CT(t)=Cnon,tarπtarPnon,tar(t)+Ctar,nonπnonPtar,non(t), (5)

where c1,2=Cnon,tar and c2,1=Ctar,non are the costs of classifying
targets as non-targets and non-targets as targets respectively, πtar

and πnon = 1−πtar are the class priors, and where pnon,tar(t) and
ptar,non(t) are the classifier conditional probabilities of each decision
error at the set classifier threshold t. (5) is identical to the familiar
detection cost function (DCF) in (1) in which ‘miss’ signifies targets
mistaken for non-targets and ‘fa’ (false alarm) signifies non-targets
mistaken for targets.

When subjected to spoofing attacks, the negative input class
becomes a union of bonafide non-target (zero-effort impostor)
trials and spoofed target trials. For brevity, we refer to them simply
as non-target and spoofed trials respectively. Different priors
and costs can be assigned to each. Even so, the decision is still
binary, with inputs still being labeled as either targets (positive
class) or non-targets (negative class). Identical to the traditional
ASV scenario (without spoofing attacks), there hence remains a
single cost for missed target detections. However, since there are
two different negative class priors, one for non-targets and one for
spoofs,4 there are likewise two (possibly different)5 false alarm
costs. Classifier conditional probabilities can also be estimated in
the usual way for a specified operating point or threshold t.

4Note that positive and negative class assignments are arbitrary [12].
In keeping with the literature, here we assume the assignment of bonafide
target trials to the positive class and everything else to the negative class.

5From an applications perspective, the mistaking of non-targets for targets
when caused by an unintentional impostor may not have the same ramifica-
tions (cost) of when a spoof mistaken for a target is caused by a fraudster.
In the spirit of ‘an error is an error, no matter the cause’, for all experiments
reported later in the paper, we use the same costs for each type of false alarm.
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Table 2: Comparison on the characteristics of existing EER and DCF metrics used in the ASV and CM field. SASV refers to spoofing-robust
ASV where ASV and CM sub-systems are combined to produce a single score output. In the first row, ‘Explicit detection cost’, ‘Independent
of class prior’ refers to whether the detection cost is explicitly used or not (difference between DCF and EER families) and whether it is affected
by the number of different trial classes. ‘# Supported classes’ and ‘Scores required’ indicate the number of class types considered and input
score(s) needed for the calculation, respectively.

Explicit detection cost Independent of class prior # Supported classes # scores required
DCF [21] ✓ ✓ 2 1
t-DCF [12] ✓ ✓ 3 2 (ASV and CM)
a-DCF (proposed) ✓ ✓ 3 1 (SASV)
EER ✗ ✓ 2 1 (ASV or CM)
SASV-EER [14] ✗ ✗ 3 1 (SASV)
t-EER [13] ✗ ✓ 3 2 (ASV and CM)

The priors, the matrix of classifier conditional probabilities and
the matrix of conditional costs then have the form:

Π=

 πtar

πnon

πspf



P(t)=

 Ptar,tar(t) Ptar,non(t) Ptar,spf(t)
Pnon,tar(t) Pnon,non(t) Pnon,spf(t)
Pspf,tar(t) Pspf,non(t) Pspf,spf(t)



C=

 0 Ctar,non Ctar,spf

Cnon,tar 0 0
Cspf,tar 0 0


The off-diagonal zero elements in the cost matrix correspond to the
cost of mistaking non-target trials for spoofed trials and vice versa;
the binary classifier distinguishes target trials from anything else
and hence cannot distinguish between non-targets and spoofs. The
total cost is then given again from (4) by:

CT(t):=Cnon,tarπtarPnon,tar(t)

+Cspf,tarπtarPspf,tar(t)

+Ctar,nonπnonPtar,non(t)

+Ctar,spfπspfPtar,spf(t). (6)

Remembering that the negative class is the union of non-target and
spoofed trials, and like the correspondence between (5) and (1), we
obtain the architecture-agnostic detection cost function (a-DCF):

a-DCF(t):=CmissπtarPmiss(t)

+Cfa,nonπnonPfa,non(t)

+Cfa,spfπspfPfa,spf(t), (7)

in which the first two lines of (6) are reduced to a single term which
encapsulates the miss-classification of target trials as non-targets.
Cmiss, Cfa,non and Cfa,spoof are, respectively, the costs of missing
(falsely rejecting) a target speaker, falsely accepting a non-target
speaker, and falsely accepting a spoof. πtar, πnon and πspoof are the
asserted class priors.6 Finally, Pmiss(t) (the miss rate), Pfa,non(t)
(the non-target false alarm rate) and Pfa,spf(t) (the spoof false alarm
rate) are the respective empirical detection error rates at detection
threshold t.7

6As a probability mass function, πtar+πnon+πspoof =1 and therefore
any two of these priors are sufficient to characterize the class priors.

7While, as argued above, costsCfa,non andCfa,spf can be set to different or
identical values, empirical detection error ratesPfa,non(t) andPfa,spf(t) are al-
most certainly different, with the latter normally being greater than the former.

3.3. Normalisation

Identical to the t-DCF, the value of a-DCF is not bounded and can be
difficult to interpret. Therefore, similar to normalisation of the NIST
DCF [21] as well as the t-DCF [12], we further scale the a-DCF
using the cost of a default system [27, 28] which is configured to
either accept (t→−∞) or reject (t→+∞) every trial:

a-DCFdef :=min

{
Cmiss,tarπtar,Cfa,nonπnon+Cfa,spfπspf

}
where the minimum costs of the two edge cases are considered (these
expressions follow directly from the limit behavior of the miss and
false alarm rates in (7)). The normalized a-DCF is then given by:

a-DCF(t)norm=
a-DCF(t)
a-DCFdef

. (8)

While in real operational settings the detection threshold t must be
set before observing test data, for analysis purposes it is informative
to report the lowest possible cost when t is allowed to vary. The
minimum a-DCF is defined simply by:

a-DCFmin :=min
t∈R

a-DCFnorm(t). (9)

While the normalised a-DCF function in (8) can exceed 1, which
implies that it performs worse than a non-informative system which
either accepts or rejects every trial, the minimum is always bounded
between 0 and 1. All detection costs reported later in the paper are
normalised minimums computed according to (9). For simplicity,
they are denoted simply as a-DCF.

3.4. Relation to NIST DCF and t-DCF

It would be helpful to discuss the relation between a-DCF and other
DCFs reported in [12,20,21]. The comparison is shown in Table 2.
The original DCF [21] in (1), as endorsed by NIST through the
speaker recognition evaluation (SRE) series, is designed for the
benchmarking of binary classifiers which produce a single detection
score — such as standalone speaker or spoof detection systems.
The NIST DCF can be seen as a degenerate case of the a-DCF with
πspf =0 (no spoofing attacks). Interestingly, the NIST 2012 SRE
campaign [20] used a 3-term DCF similar to (7), though the two
FA rate terms are those of known/unknown nontargets (as opposed
to nontargets and spoofs as in our work). Though the 2012 DCF
and a-DCF are in the same function class of evaluation metrics (i.e.
differ only by the choice of costs and priors), they are motivated
(and used) from entirely different perspectives.

The t-DCF [12] in (2) and (3) is closely related to the a-DCF.
The difference in terms of structure is that the t-DCF requires two
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Table 3: Two a-DCF priors and costs accounting for different
scenarios.

πspf πnon πtar Cmiss Cfa,non Cfa,spf

a-DCF1 0.05 0.01 0.94 1 10 10
a-DCF2 0.01 0.01 0.98 1 10 10

detection scores, as opposed to a single score in the case of the NIST
DCF and the a-DCF. Nonetheless, by assigning a peculiar ‘dummy’
countermeasure, we can view the a-DCF as a special case of the
t-DCF. To be specific, by letting the threshold in [12, Eq. (7)] ap-
proach −∞, the spoof detection miss and false alarm rates approach
0 and 1, respectively. This yields precisely the a-DCF expression
in (7). Nonetheless, this is not our point, as we discuss next.

3.5. a-DCF: beyond tandem systems

While the above special cases reveal formal connections between
cost functions, degenerate spoof prior and dummy spoof detectors
are not in the typical scope of conventional (spoofing-robust) ASV
and tandem recognizers, respectively. The former aims to improve
speaker discrimination, without any consideration for spoofing
attacks, hence neither the benchmarking datasets, nor the evaluation
metrics or even the systems need be concerned with the potential
for spoofing attacks. Likewise, the key feature of tandem systems
is that they consist of two non-dummy sub-systems, the decisions
of which result from the application of finite thresholds. A tandem
system with either one of the two systems being a dummy system
is not in the typical scope.

Consider now a slightly revised tandem detection system which
still uses separate thresholds for the speaker and spoof detector, but
which outputs a single soft decision as long as the spoof detector
score is high enough. Namely,

s=

{
sasv, if scm≥tcm

−∞, if scm<tcm,
(10)

where sasv,scm∈R are the detection scores produced by the speaker
detector (the ASV sub-system) and the spoof detector (the CM
sub-system), respectively, and where tcm is a pre-set CM threshold.

4. Experimental setup
While the key contribution of this work is the new a-DCF
metric, we report also an example application to the evaluation of
spoofing-robust ASV solutions. All experiments were performed
using an open source, publicly-available implementation8 which
can be used to reproduce our results.

4.1. Dataset

We employ the ASVspoof 2019 logical access (LA) corpus [31] for
all experiments. The corpus is organised into three subsets: training,
development, and evaluation. The training and development sets
include genuine and spoofed speech from 20 speakers (8 male,
12 female). We employ the evaluation protocol9 used for the
SASV 2022 challenge [14]. The protocol was proposed initially
for calculating the coefficients of ASV-constrained t-DCF (Eq. 10
in [12]) in the ASVspoof 2019 challenge. It consists of three trial

8https://github.com/shimhz/a_dcf
9https://github.com/sasv-challenge/SASVC2022_

Baseline/blob/main/protocols/ASVspoof2019.LA.asv.
eval.gi.trl.txt

types, target, non-target, and spoof, given an enrolment and test
utterances. Hence it can be used for evaluating different types of
ASV systems, including spoofing-robust ASV systems.

4.2. Systems

We consider three types of systems: cascade, jointly optimised,
and single-model, to demonstrate the architecture-agnostic of the
a-DCF metric.10 For the cascade (decision-level tandem) systems,
RawNet3 [29] is used as an ASV model. As a CM system, AA-
SIST [30], AASIST-L [30] are used and several cascade systems are
composed. In addition, we consider systems submitted to the SASV
2022 challenge [14,32–34] which explored diverse methodologies
including score-level and embedding-level combinations. For
the single-model systems, we employ various versions from [35],
comprising MFA-Conformer [36] and SKA-TDNN [37] models,
where the training data varies throughout the devised multi-stage
training.11 To avoid confusion regarding system details and to focus
on comparing metric measurements, all systems are denoted simply
with the alphanumeric identifiers in Table 5.

5. Results
The discussion below is oriented toward the comparison of different
evaluation metrics, highlighting the merits and agnosticity of each,
rather than the performance of different systems (which is not the
objective). Results are expressed in terms of the four different EERs,
three from Table 1,12 the t-EER [13], the min t-DCF [12], where
possible, and the a-DCF.

As illustrated in the second column of Table 4 which shows
results only for cascade systems, results are shown for two different
configurations in each case where either the speaker detector (an
ASV sub-system), or the spoof detector (a CM sub-system) comes
first. The detection threshold for the first system is set to either
0.05 or 0.5. t-DCF results are computed in the usual way. The
a-DCF results are computed according to (9) in which the roles
of the speaker and spoof detector can be interchanged. In both
cases, the ASV sub-system is the RawNet3 model described in [29].
The CM sub-system is either the AASIST or AASIST-L model, a
lightweight variant, both described in [30]. t-DCF1 and t-DCF2
results are computed with the same priors and costs as a-DCF1 and
a-DCF2 respectively (see Table 3). Though different formulations
are readily derived, computation of the t-DCF according to (3) is
specific to the evaluation of cascade systems comprising a spoof
detector and a frozen speaker detector.13 Finally, the t-EER [13] is
not dependent on the order of the two sub-systems, hence there is
only one value for each combination of ASV and CM sub-systems.
SASV-EER, SV-EER and SPF-EER results can all be computed
for all setups, but they remain EERs and suffer from the detractions
described earlier. Use of the a-DCF avoids these issues with results
also being computable for each setup, with a common formulation

10Note that although we categorise systems in Table 5 into three categories,
it does not mean that all systems should fall into one of the three categories.
‘Jointly optimised’ can be defined differently under diverse circumstances,
where in our case, we use the term to call systems that jointly optimise
pre-trained ASV and CM systems to derive the final score for each input.

11S1, S2, S3, and S4 represent MFA-Conformer index 7 and SKA-TDNN
indices 3, 7, and 11, respectively, from the model indices shown in
https://github.com/sasv-challenge/SASV2_Baseline.

12For the sake of completeness, we include the SASV-EER despite our
previously stated reservations concerning its use.

13The unconstrained t-DCF formulation in (2) is more flexible and can
be applied to the evaluation of other architectures, such as systems where the
CM (rather than the ASV) subsystem is frozen. Nonetheless, this leads to
different cost functions that are not comparable with (3), hence the omission
of some results in Table 4.
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Table 4: Results of cascade (decision-level tandem with an AND gate) systems. The ASV system is a pre-trained RawNet3 model [29]
whereas the CM is the AASIST or AASIST-L (a lightweight variant) model described in [30]. The SASV, SV and SPF EERs are those defined
in the context of the SASV 2022 challenge [14]. t-EER is the tandem EER [13]. Results also reported for a-DCF and t-DCF metrics.

Cascade system EERs min a-DCFs min t-DCFs
(threshold t) SASV-EER SV-EER SPF-EER t-EER a-DCF1 a-DCF2 t-DCF1 t-DCF2

RawNet3 + AASIST

ASV→CM (tasv=0.05) 21.51 44.45 0.65

1.36

0.1492 0.4316 0.0226 0.0644
ASV→CM (tasv=0.5) 0.89 0.74 0.91 0.1492 0.0506 0.0358 0.0918
CM→ASV (tcm=0.05) 1.10 0.69 1.49 0.0240 0.0405 N/A N/A
CM→ASV (tcm=0.5) 0.76 0.71 0.80 0.0180 0.0382 N/A N/A

RawNet3 + AASIST-L

ASV→CM (tasv=0.05) 21.68 44.71 0.82

1.23

0.1551 0.4405 0.0264 0.0633
ASV→CM (tasv=0.5) 1.02 0.74 1.04 0.0222 0.0560 0.0379 0.0883
CM→ASV (tcm=0.05) 1.58 0.69 2.24 0.0322 0.0453 N/A N/A
CM→ASV (tcm=0.5) 1.02 0.78 1.30 0.0241 0.0448 N/A N/A

Table 5: EER, a-DCF, and t-DCF results for diverse spoofing-robust ASV systems. Results shown for four different single-model systems
from [35] (S1-S4) and three SASV 2022 challenge submissions (C1-C3). C4 is the same RawNet3 + AASIST (tasv=0.5) system for which
results are also presented in Table 4. The t-EER and t-DCF can be calculated only for system C4. Tandem metrics require two separate scores,
while EER and a-DCF metrics can be calculated for all systems.

System type EERs min a-DCFs min t-DCFs
SASV-EER SV-EER SPF-EER t-EER a-DCF1 a-DCF2 t-DCF1 t-DCF2

S1 Single-model 1.19 1.82 0.58 N/A 0.0222 0.0578 N/A N/A
S2 Single-model 1.25 1.27 1.23 N/A 0.0268 0.0417 N/A N/A
S3 Single-model 1.82 2.51 1.16 N/A 0.0366 0.0853 N/A N/A
S4 Single-model 2.48 3.32 1.56 N/A 0.0485 0.1068 N/A N/A
C1 Jointly optimized (score) 0.13 0.11 0.17 N/A 0.0032 0.0060 N/A N/A
C2 Jointly optimized (embedding) 0.28 0.28 0.28 N/A 0.0067 0.0147 N/A N/A
C3 Jointly optimized (score) 0.37 0.45 0.26 N/A 0.0080 0.0219 N/A N/A
C4 Cascade 0.89 0.74 0.91 1.36 0.1492 0.0506 0.0357 0.0358

and for any given set of priors and costs.
Shown in Table 5 are results for single-model, jointly optimised,

and cascade systems. Four single models from [35] are simply
denoted as ‘S’. Three jointly optimised systems, namely the top-3
performing submissions [32–34] to the SASV 2022 challenge [14],
and one cascade system from Table 4 are denoted as ‘C’. EERs,
though similarly computable for all systems, are still EERs with
the same shortcomings. According to (3), t-DCF values can be
computed only for the cascade system and not for either single or
jointly optimised systems. Once again, the a-DCF can be applied to
the evaluation of all 8 systems when configured to produce a single
score, and with explicitly defined priors and costs.

6. Conclusions
We propose an architecture-agnostic detection cost function (a-DCF)
designed for the evaluation of spoofing-robust automatic speaker
verification (ASV) systems. The a-DCF extends the time-tested
DCF adopted by the ASV community decades ago. An alternative
to the derided equal error rate metric, the a-DCF reflects the cost of
decisions in a Bayes risk sense, with explicitly defined class priors
and detection cost model. The a-DCF is also more flexible than its
previously proposed t-DCF cousin in terms of supported classifier
architectures, so long as they can be configured to produce a single
output score. The a-DCF is also task-agnostic and could also be
applied to studies involving other biometric traits, or indeed entirely
different problems.

Experiments serve as a demonstration of the a-DCF in
benchmarking a broad variety of competing spoofing-robust ASV
solutions. Even if developing the means to compare the performance
of such different approaches was an objective of this work, these

experiments are not, and were not intended to be, sufficient on their
own to help identify the most promising. This requires far more
extensive experimental analysis which is left for future work.
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